JP2003053375A - Device for controlling water quality - Google Patents

Device for controlling water quality

Info

Publication number
JP2003053375A
JP2003053375A JP2001251184A JP2001251184A JP2003053375A JP 2003053375 A JP2003053375 A JP 2003053375A JP 2001251184 A JP2001251184 A JP 2001251184A JP 2001251184 A JP2001251184 A JP 2001251184A JP 2003053375 A JP2003053375 A JP 2003053375A
Authority
JP
Japan
Prior art keywords
water
water quality
treated
inflow
calculation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001251184A
Other languages
Japanese (ja)
Inventor
Masahiko Tsutsumi
正 彦 堤
Takumi Obara
原 卓 巳 小
Osamu Yamanaka
中 理 山
Tadao Motoki
木 唯 夫 本
Yoshihiro Shibamoto
本 吉 広 柴
Yukio Hatsuka
鹿 行 雄 初
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001251184A priority Critical patent/JP2003053375A/en
Publication of JP2003053375A publication Critical patent/JP2003053375A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for controlling water quality in which proper treatment to remove the water quality component can be efficiently performed at a low cost even when the concentration of the water quality component is remarkably changed in the objective water. SOLUTION: The device 1 for controlling the water quality is equipped with an aeration tank 3 having a treating mechanism 6 for the water quality component to remove the component in the objective water, and a first settling tank 2 is connected to the aeration tank 3. A second settling tank 4 is connected to the aeration tank 3, and a controlling device 5 is connected to the treating mechanism 6 of the water quality component. The first setting tank 2 is provided with an oxidation reduction potential meter 7 and the potential meter 7 is disposed in the preceding stage than the aeration tank 3. The aeration tank 3 is composed of an anaerobic part 3a, a non-oxygen part 3b and an aerobic part 3c. The treating mechanism 6 for the water quality component has a blower 11, an air distribution pipe 15 disposed in the aerobic part 3c, an air pipe 14 to connect the blower 11 and the air distributing pipe 15, an electric valve 12, and an air flow meter 13. The controlling device 5 has an operational part 23 to estimate the quality of the supplied water, an operational part 21 to determine the target value of the airflow, and a controlling part 22 of the airflow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被処理水中の窒
素、リン、有機物等の水質成分を除去する曝気槽を備え
た水質制御装置に係り、とりわけ水質成分の除去を高効
率かつ低コストに行うことができる水質制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality control device equipped with an aeration tank for removing water components such as nitrogen, phosphorus and organic substances in water to be treated, and more particularly to highly efficient and low cost removal of water components. The present invention relates to a water quality control device that can be performed.

【0002】[0002]

【従来の技術】従来より、下水等の被処理水中の窒素、
リン、有機物等の水質成分は、曝気槽を有する水質制御
装置を用いて除去されていた。
2. Description of the Related Art Conventionally, nitrogen in treated water such as sewage,
Water quality components such as phosphorus and organic matter have been removed using a water quality control device having an aeration tank.

【0003】図7は、従来の水質制御装置を示す構成図
である。
FIG. 7 is a block diagram showing a conventional water quality control device.

【0004】図7に示すように、水質制御装置1は、下
水等の被処理水中の窒素、リン、有機物等の水質成分を
除去する水質成分処理機構6を有する曝気槽3を備えて
いる。曝気槽3の上流側には、第1水配管51を介して
第1沈殿池2が接続されており、曝気槽3の下流側に
は、第2水配管52を介して第2沈殿池4が接続されて
いる。
As shown in FIG. 7, the water quality control device 1 is provided with an aeration tank 3 having a water quality component treatment mechanism 6 for removing water quality components such as nitrogen, phosphorus and organic substances in the water to be treated such as sewage. The first settling tank 2 is connected to the upstream side of the aeration tank 3 via a first water pipe 51, and the second setting tank 4 is connected to the downstream side of the aeration tank 3 via a second water pipe 52. Are connected.

【0005】水質成分処理機構6には、水質成分処理機
構6を制御する制御装置5が取り付けられ、また、曝気
槽3には曝気槽3内の被処理水の酸化、還元の程度を計
測する酸化還元電位計7(ORP計)が設けられてい
る。
A control device 5 for controlling the water quality component treatment mechanism 6 is attached to the water quality component treatment mechanism 6, and the aeration tank 3 measures the degree of oxidation and reduction of the water to be treated in the aeration tank 3. An oxidation-reduction potentiometer 7 (ORP meter) is provided.

【0006】曝気槽3は、上流から下流に渡り、被処理
水の嫌気処理を行う嫌気部3aと、被処理水の好気処理
を行う無酸素部3bおよび好気部3cと、が順次配置さ
れて構成されている。
In the aeration tank 3, an anaerobic part 3a for anaerobic treatment of the water to be treated, an anaerobic part 3b and an aerobic part 3c for aerobic treatment of the water to be treated are sequentially arranged from upstream to downstream. Is configured.

【0007】曝気槽3の好気部3cと無酸素部3bと
は、循環ポンプ54が取り付けられた循環水配管53に
より連結されており、また、第2沈殿池4と曝気槽3の
嫌気部3aとは、返送ポンプ56が取り付けられた返送
水配管55により連結されている。
The aerobic part 3c and the anoxic part 3b of the aeration tank 3 are connected by a circulating water pipe 53 to which a circulation pump 54 is attached, and the anaerobic part of the second settling tank 4 and the aeration tank 3 are connected. 3a is connected by a return water pipe 55 to which a return pump 56 is attached.

【0008】水質成分処理機構6は、ブロア11と、ブ
ロア11から曝気槽3内の被処理水に送られる空気量を
調整することができる電動弁12と、ブロア11から曝
気槽3内の被処理水に送られる空気量を計測する空気流
量計13と、を有する。曝気槽3内の好気部3cには散
気管15が設置され、散気管15はブロア11から空気
管14を介して送られてきた空気を、好気部3c内の被
処理水中に曝気する。
The water quality component treatment mechanism 6 includes a blower 11, an electric valve 12 capable of adjusting the amount of air sent from the blower 11 to the water to be treated in the aeration tank 3, and a blower 11 to control the amount of air in the aeration tank 3. An air flow meter 13 for measuring the amount of air sent to the treated water. An aeration pipe 15 is installed in the aerobic part 3c in the aeration tank 3, and the aeration pipe 15 aerates the air sent from the blower 11 via the air pipe 14 into the water to be treated in the aerobic part 3c. .

【0009】制御装置5は、酸化還元電位計7に接続さ
れ、酸化還元電位計7の計測値に基づいて被処理水の中
の水質成分濃度を予測して、ブロア11から散気管15
へ送る空気量を演算する風量目標値演算部21と、風量
目標値演算部21に接続され、風量目標値演算部21の
演算地と空気流量計13の計測値とに基づいて電動弁1
2を調節する風量制御部22と、を有する。
The control device 5 is connected to the oxidation-reduction potentiometer 7, predicts the concentration of the water quality component in the water to be treated based on the measurement value of the oxidation-reduction potentiometer 7, and the blower 11 to the air diffuser 15
The air flow target value calculation unit 21 that calculates the amount of air to be sent to the air flow rate target unit 21 and the air flow target value calculation unit 21 are connected, and the motor operated valve 1
2 for adjusting the air volume.

【0010】まず、被処理水中に含まれる窒素、リン、
有機物等の水質成分を被処理水から除去する処理工程に
ついて概説する。
First, nitrogen, phosphorus,
The treatment process for removing water quality components such as organic substances from the water to be treated will be outlined.

【0011】供給水配管57を経て第1沈殿池2に供給
された被処理水は、第1水配管51を経て曝気槽3に流
入する。曝気槽3内の被処理水は、嫌気部3aで嫌気処
理が行われ、無酸素部3b及ぶ好気部3cで好気処理が
行われる。特に、好気部3cでは、ブロア11から空気
管14および散気管15を経て送られてくる空気によ
り、被処理水は曝気される。
The water to be treated supplied to the first settling tank 2 via the supply water pipe 57 flows into the aeration tank 3 via the first water pipe 51. The water to be treated in the aeration tank 3 is subjected to anaerobic treatment in the anaerobic section 3a and aerobically treated in the aerobic section 3b and the aerobic section 3c. In particular, in the aerobic part 3c, the water to be treated is aerated by the air sent from the blower 11 through the air pipe 14 and the diffuser pipe 15.

【0012】なお、被処理水に曝気される空気量は、酸
化還元電位計7の計測値に基づいて風量目標値演算部2
1が被処理水の曝気に必要とされる空気量を演算し、風
量制御部22が風量目標値演算部21の演算地および空
気流量計13の計測値に基づいて電動弁12を調節する
ことにより、調整される。また、曝気槽3の好気部3c
の被処理水のうち一部は、循環ポンプ54により循環水
配管53を経て無酸素部3bへ返送される。これによ
り、被処理水は十分に曝気されることとなる。
The amount of air aerated to the water to be treated is calculated based on the value measured by the oxidation-reduction potentiometer 7 and the target air amount calculation unit 2
1 calculates the amount of air required for aeration of the water to be treated, and the air volume control unit 22 adjusts the motor-operated valve 12 based on the calculation place of the air flow target value calculation unit 21 and the measurement value of the air flow meter 13. Is adjusted by. Also, the aerobic part 3c of the aeration tank 3
A part of the untreated water is returned to the oxygen-free portion 3b by the circulation pump 54 through the circulation water pipe 53. As a result, the water to be treated is sufficiently aerated.

【0013】曝気槽3内で曝気された被処理水は、第2
水配管52を経て第2沈殿池4に流入する。第2沈殿池
4に流入した被処理水の一部は、返送ポンプ56により
返送水配管55を介して曝気槽3の上流部に戻される。
これにより、被処理水中の水質成分の除去が十分に行わ
れることとなる。
The water to be treated which has been aerated in the aeration tank 3 is the second
It flows into the second settling tank 4 via the water pipe 52. A part of the water to be treated which has flowed into the second settling tank 4 is returned by the return pump 56 to the upstream part of the aeration tank 3 via the return water pipe 55.
As a result, the water quality component in the water to be treated is sufficiently removed.

【0014】そして、その後、第2沈殿池4内の被処理
水は、排出水配管58を経て後段の処理施設に送られた
り、一般生活用水として供給される。
After that, the water to be treated in the second settling tank 4 is sent to a treatment facility at a subsequent stage through a discharge water pipe 58 or supplied as general domestic water.

【0015】このような水質制御装置により、被処理水
中一定のCODやBODを有する有機物は好気処理さ
れ、また、アンモニア性窒素(NH4−N)は硝化反応
(NH4−N → NO2−N → NO3−N)や脱
窒反応(NO3−N → N2)を経て窒素(N2)と
されて、さらに、被処理水中のリンの主成分であるリン
酸性リン(PO4−P)に含まれるリン成分は、嫌気部
3aのリン蓄積細菌の作用および好気部3cのリン蓄積
細菌の作用により除去される。
With such a water quality control device, organic matter having a constant COD or BOD in the water to be treated is aerobically treated, and ammoniacal nitrogen (NH4-N) is subjected to nitrification reaction (NH4-N → NO2-N →). NO3-N) and denitrification reaction (NO3-N → N2) to nitrogen (N2), and further, phosphorus component contained in phosphoric acid phosphorus (PO4-P) which is the main component of phosphorus in the water to be treated. Is removed by the action of the phosphorus accumulating bacteria in the anaerobic part 3a and the action of the phosphorus accumulating bacteria in the aerobic part 3c.

【0016】次に、制御装置5による水質成分処理機構
6の制御について概説する。
Next, the control of the water quality component processing mechanism 6 by the controller 5 will be outlined.

【0017】酸化還元電位計7は、被処理水の酸化ある
いは還元の程度を計測する。これにより、硝化反応やリ
ンの過剰摂取反応等の酸化反応、あるいは脱窒反応やリ
ンの放出反応等の還元性反応の促進の程度を推定するこ
とができる。
The redox potential meter 7 measures the degree of oxidation or reduction of the water to be treated. This makes it possible to estimate the degree of promotion of an oxidation reaction such as a nitrification reaction or an excessive intake reaction of phosphorus, or a reduction reaction such as a denitrification reaction or a phosphorus release reaction.

【0018】風量目標値演算部21では、以下に示す
(1)〜(3)式に従って、酸化還元電位計7の計測値
偏差を算出し、この計測値偏差にPI演算処理を施し
て、風量制御目標値が算出される。このようにして算出
された風量制御目標値は、風量目標値演算部21から風
量制御部22へ送られる。
In the air volume target value calculation unit 21, the measurement value deviation of the oxidation-reduction potentiometer 7 is calculated according to the following equations (1) to (3), and PI calculation processing is performed on this measurement value deviation to obtain the air volume. The control target value is calculated. The air volume control target value thus calculated is sent from the air volume target value calculation unit 21 to the air volume control unit 22.

【0019】 <風量制御目標値演算部> (1)ORP偏差演算 [d-ORP]t=([SV-ORP]t-[PV-ORP]t) ・・・・・・・(1)式 (2)曝気風量目標値演算 [d-Qg]t=Kp×([d-ORP]t-[d-ORP]t-1)+h/Ti×[d-ORP]t ・・・(2)式 (3)曝気風量補正演算 [SV-Qg]t=[SV-Qg]t-1+[d-Qg]t ・・・(3)式 <記号> [SV-Qg]t :今回の曝気風量目標値 [SV-Qg]t-1 :前回の曝気風量目標値 [d-Qg]t :今回の曝気風量目標値補正値 [PV-ORP]t :今回のORP計測値 [SV-ORP]t :今回のORP計測値の目標値 [d-ORP]t :今回のORP計測値の偏差 [d-ORP]t-1 :前回のORP計測値の偏差 Kp :比例ゲイン Ti :積分時間 h :制御周期 t :時刻 風量制御部22には、空気流量計13で計測された曝気
風量値を決定する電動弁12の開度をインバータによっ
て調節する回路が格納されており、風量制御部22は、
この回路によって電動弁12の開度を制御して、被処理
水に曝気される空気量を調整している。
<Air flow control target value calculation unit> (1) ORP deviation calculation [d-ORP] t = ([SV-ORP] t- [PV-ORP] t) (2) Aeration air amount target value calculation [d-Qg] t = Kp × ([d-ORP] t- [d-ORP] t-1) + h / Ti × [d-ORP] t ・ ・ ・ (2 ) Formula (3) Aeration air volume correction calculation [SV-Qg] t = [SV-Qg] t-1 + [d-Qg] t ・ ・ ・ (3) Formula <symbol> [SV-Qg] t: This time Aeration air volume target value [SV-Qg] t-1: Previous aeration air volume target value [d-Qg] t: Current aeration air volume target value correction value [PV-ORP] t: Current ORP measurement value [SV-ORP ] t: Target value of current ORP measurement value [d-ORP] t: Deviation of current ORP measurement value [d-ORP] t-1: Deviation of previous ORP measurement value Kp: Proportional gain Ti: Integration time h : Control cycle t: Time The air volume control unit 22 stores a circuit that adjusts the opening degree of the motor-operated valve 12 that determines the aeration air volume value measured by the air flow meter 13 by an inverter. ,
This circuit controls the opening of the motor-operated valve 12 to adjust the amount of air aerated to the water to be treated.

【0020】このようにして、酸化還元電位計7の計測
値に基づいて、風量目標値演算部21および風量制御部
22が電動弁12を調節して曝気槽3に送る空気量を調
整して、曝気槽3における水質成分の硝化反応やリンの
過剰摂取反応等が制御されて、窒素やリン等の水質成分
の除去処理が行われている。
In this way, the air flow target value calculation unit 21 and the air flow control unit 22 adjust the electric valve 12 to adjust the amount of air sent to the aeration tank 3 based on the measurement value of the oxidation-reduction potentiometer 7. The nitrification reaction of the water quality component and the excessive intake reaction of phosphorus in the aeration tank 3 are controlled, and the removal treatment of the water quality component such as nitrogen and phosphorus is performed.

【0021】[0021]

【発明が解決しようとする課題】被処理水中の窒素、リ
ン、有機物等の水質成分は、上述の水質制御装置1によ
って、被処理水から除去されている。
The water quality components such as nitrogen, phosphorus and organic matter in the water to be treated are removed from the water to be treated by the above water quality control device 1.

【0022】しかしながら、上述の従来の水質制御装置
1によって、被処理水中の水質成分を被処理水から除去
する場合には、以下のことが考えられる。
However, in the case of removing the water quality component in the water to be treated from the water to be treated by the above-mentioned conventional water quality control device 1, the following can be considered.

【0023】すなわち、水質制御装置1に流入する被処
理水の水質が急激に変動した場合に、従来の水質制御装
置1では、被処理水中の水質成分を充分に被処理水から
除去することができない場合があるということが考えら
れる。
That is, when the water quality of the water to be treated flowing into the water quality control device 1 suddenly changes, the conventional water quality control device 1 can sufficiently remove the water quality component in the water to be treated from the water to be treated. It is possible that it may not be possible.

【0024】曝気槽3における被処理水の水質成分除去
処理を、曝気槽3に設けられた酸化還元電位計7の計測
値のみに基づいて、制御装置5および水質成分処理機構
6を介して行う場合には、被処理水中の各水質成分の濃
度が急激に変動すると、水質制御装置1はこの水質成分
濃度の急激な変動に追従することができない。このた
め、水質制御装置1は、被処理水中の水質成分濃度が急
激に変動した場合には、被処理水中の窒素、リン、有機
物等の水質成分を除去するための硝化処理、脱窒処理、
脱リン処理を効率的に行うことができず、被処理水の水
質成分除去処理が不十分となることが考えられる。
The water quality component removal treatment of the water to be treated in the aeration tank 3 is performed via the control device 5 and the water quality component treatment mechanism 6 based on only the measured value of the redox electrometer 7 provided in the aeration tank 3. In this case, when the concentration of each water quality component in the treated water changes rapidly, the water quality control device 1 cannot follow this rapid change in the concentration of water quality component. Therefore, when the water quality component concentration in the water to be treated suddenly changes, the water quality control device 1 performs nitrification treatment, denitrification treatment for removing water components such as nitrogen, phosphorus, and organic substances in the water to be treated,
It is conceivable that the dephosphorization treatment cannot be carried out efficiently and that the water component removal treatment of the water to be treated becomes insufficient.

【0025】図8は、酸化還元電位計7による計測値、
曝気槽3に流入する流入水中のNH4濃度、および曝気
槽3において水質成分除去処理を受けた処理水中のNH
4濃度と、時間との関係を示す図である。
FIG. 8 shows the values measured by the redox potentiometer 7,
NH4 concentration in the inflow water flowing into the aeration tank 3 and NH in the treated water that has been subjected to the water quality component removal processing in the aeration tank 3
It is a figure which shows the relationship between 4 density | concentration and time.

【0026】図8に示すように、流入水中のNH4濃度
が急激に大きくなったときには、酸化還元電位計7の計
測値が安定していても、処理水中のNH4濃度は悪化す
る。他方、流入水中のNH4濃度が急激に小さくなった
ときには、被処理水中のNH4濃度は良好になるもの
の、曝気槽3に送られる空気量が過大となって過曝気状
態となる。これにより、例えば下水処理場では電力費の
約2分の1を締める曝気コストが増加する等して、運転
コストが増加する。また、被処理水中で形成された活性
汚泥フロックが解体してしまうということが考えられ
る。
As shown in FIG. 8, when the NH4 concentration in the inflow water suddenly increases, the NH4 concentration in the treated water deteriorates even if the measurement value of the redox electrometer 7 is stable. On the other hand, when the NH4 concentration in the inflow water suddenly decreases, the NH4 concentration in the water to be treated becomes good, but the amount of air sent to the aeration tank 3 becomes excessive, resulting in an over-aeration state. As a result, for example, in the sewage treatment plant, the operating cost increases because the aeration cost for closing about half of the electric power cost increases. Further, it is considered that the activated sludge flocs formed in the water to be treated are disassembled.

【0027】また、図7に示す水質制御装置1の第1沈
殿池2にSS計やUV計等の水質センサを設置して、水
質制御装置1に流入する被処理水中の水質成分濃度をよ
り迅速かつ的確に求めて、被処理水中の水質成分濃度の
急激な上昇に対応する方法も考えられる。しかしなが
ら、この場合には、SS計やUV計等の水質センサが第
1沈殿池2内の被処理水により汚されやすく、水質制御
装置1を数日間運転すると、水質センサは測定精度が悪
化して利用できなくなるということが考えられる。従っ
て、このような方法では、水質制御装置1のメンテナン
スの頻度が非常に多くなり、現実の下水処理場等におい
て、このような水質制御装置1を利用することが難し
い。
Further, a water quality sensor such as an SS meter or a UV meter is installed in the first settling tank 2 of the water quality control device 1 shown in FIG. A method of responding to a rapid increase in the concentration of the water quality component in the water to be treated may be considered by quickly and accurately obtaining it. However, in this case, the water quality sensor such as the SS meter and the UV meter is easily polluted by the water to be treated in the first settling basin 2, and if the water quality control device 1 is operated for several days, the measurement accuracy of the water quality sensor deteriorates. It may be impossible to use it. Therefore, with such a method, the frequency of maintenance of the water quality control device 1 becomes very high, and it is difficult to use such a water quality control device 1 in an actual sewage treatment plant or the like.

【0028】本発明はこのような点を考慮してなされた
ものであり、被処理水中の水質成分濃度が急激に変化し
た場合でも、適切な水質成分除去処理を高効率かつ低コ
ストに行うことができる水質制御装置を提供することを
目的とする。
The present invention has been made in view of the above points, and it is possible to perform an appropriate water quality component removal treatment with high efficiency and at low cost even when the water quality component concentration in the water to be treated changes abruptly. An object of the present invention is to provide a water quality control device capable of achieving the above.

【0029】[0029]

【課題を解決するための手段】本発明は、被処理水中の
特定の水質成分を除去する水質成分処理機構を有する曝
気槽と、曝気槽より前段に設置され、曝気槽への被処理
水の酸化あるいは還元の程度を計測する酸化還元電位計
と、酸化還元電位計に接続され、酸化還元電位計の計測
値と水質成分との関係式に基づいて被処理水中の水質成
分濃度を予測する流入水質予測演算部と、流入水質予測
演算部に接続され、流入水質予測演算部で予測された水
質成分濃度に基づいて水質成分処理機構を制御する制御
部と、を備えた水質制御装置である。
The present invention is directed to an aeration tank having a water quality component treatment mechanism for removing a specific water quality component in the water to be treated, and an aeration tank installed in front of the aeration tank. An inflow that is connected to a redox electrometer that measures the degree of oxidation or reduction and a redox electrometer that predicts the concentration of the water quality component in the treated water based on the relational expression between the measurement value of the redox potential meter and the water quality component. A water quality control device comprising: a water quality prediction calculation unit; and a control unit that is connected to the inflow water quality prediction calculation unit and controls the water quality component processing mechanism based on the water quality component concentration predicted by the inflow water quality prediction calculation unit.

【0030】本発明によれば、被処理水中の水質成分濃
度は曝気槽より前段に設置された酸化還元電位計の計測
値に基づいて予測されるので、被処理水が曝気槽に流入
する前に被処理水中の水質成分濃度を予測することがで
きる。これにより、曝気槽では、被処理水中の水質成分
濃度に応じた水質成分除去処理を適切に行うことができ
る。
According to the present invention, since the concentration of the water quality component in the water to be treated is predicted based on the measurement value of the oxidation-reduction potentiometer installed before the aeration tank, before the water to be treated flows into the aeration tank. Moreover, it is possible to predict the concentration of water quality components in the water to be treated. As a result, in the aeration tank, it is possible to appropriately perform the water quality component removal process according to the concentration of the water quality component in the water to be treated.

【0031】好ましくは、酸化還元電位計は、被処理水
の流れ方向に複数個配置され、流入水質予測演算部は、
各酸化還元電位計により計測された各計測値および各計
測値の差分と水質成分との関係式を格納している。
Preferably, a plurality of oxidation-reduction potentiometers are arranged in the flow direction of the water to be treated, and the inflow water quality prediction calculation unit is
It stores each measurement value measured by each oxidation-reduction potentiometer and the relational expression between the difference between each measurement value and the water quality component.

【0032】好ましくは、酸化還元電位計は、被処理水
の流れ方向に対して垂直高さ方向をなす方向に複数個配
置され、流入水質予測演算部は、各酸化還元電位計によ
り計測された各計測値および各計測値の差分と水質成分
との関係式を格納している。
Preferably, a plurality of oxidation-reduction potentiometers are arranged in a direction that is vertical to the flow direction of the water to be treated, and the inflow water quality prediction calculation unit is measured by each oxidation-reduction potentiometer. The relational expression between each measured value and the difference between each measured value and the water quality component is stored.

【0033】好ましくは、酸化還元電位計の入り側に濾
過装置が設けられている。
Preferably, a filter device is provided on the inlet side of the redox potentiometer.

【0034】より好ましくは、濾過装置は、膜濾過機構
を有する。
More preferably, the filtration device has a membrane filtration mechanism.

【0035】より好ましくは、濾過装置は、砂濾過機構
を有する。
More preferably, the filtering device has a sand filtering mechanism.

【0036】好ましくは、汚泥処理する汚泥処理槽と、
汚泥処理槽と曝気槽とを連結し、汚泥処理槽からの被処
理水を曝気槽の前段に返送する戻し水配管と、を備え、
酸化還元電位計は、戻し水配管を流れる被処理水の酸化
あるいは還元の程度を計測する。
Preferably, a sludge treatment tank for treating sludge,
A sludge treatment tank and an aeration tank are connected, and a return water pipe for returning the water to be treated from the sludge treatment tank to the previous stage of the aeration tank,
The redox potentiometer measures the degree of oxidation or reduction of the water to be treated flowing through the return water pipe.

【0037】好ましくは、流入水質予測演算部は、酸化
還元電位計の計測値の変化値に基づいて、被処理水中の
水質成分濃度の変化を予測し、制御部は、流入水質予測
演算部で予測された水質成分濃度および水質成分濃度の
変化に基づいて水質成分処理機構を制御する。
Preferably, the inflow water quality prediction calculation unit predicts a change in the water quality component concentration in the water to be treated based on the change value of the measured value of the oxidation-reduction potentiometer, and the control unit is the inflow water quality prediction calculation unit. The water quality component treatment mechanism is controlled based on the predicted water quality component concentration and the change in the water quality component concentration.

【0038】好ましくは、曝気槽に流入する被処理水の
流量を計測する流入流量計測手段と、流入流量計測手段
に接続され、流入流量計測手段の計測値に基づいて、流
入水質予測演算部から送られる水質成分濃度を補正して
制御部へ送る補正演算部と、をさらに備えている。
Preferably, the inflow water quality predicting / calculating section is connected to the inflow flow rate measuring means for measuring the flow rate of the water to be treated flowing into the aeration tank, and is connected to the inflow flow rate measuring means on the basis of the measured value of the inflow flow rate measuring means. And a correction calculation unit that corrects the concentration of the water quality component sent and sends the corrected water quality component concentration to the control unit.

【0039】好ましくは、曝気槽に流入する被処理水に
含まれる固形物濃度を計測する流入水固形物濃度計測手
段と、流入水固形物濃度計測手段に接続され、流入水固
形物濃度計測手段の計測値に基づいて、流入水質予測演
算部から送られる水質成分濃度を補正して制御部へ送る
補正演算部と、をさらに備えている。
Preferably, the inflowing water solids concentration measuring means for measuring the concentration of solids contained in the treated water flowing into the aeration tank, and the inflowing water solids concentration measuring means are connected to the inflowing water solids concentration measuring means. And a correction calculation unit that corrects the water quality component concentration sent from the inflow water quality prediction calculation unit and sends it to the control unit.

【0040】好ましくは、曝気槽に流入する被処理水の
紫外線吸光度を計測する流入水UV値計測手段と、流入
水UV値計測手段に接続され、流入水UV値計測手段の
計測値に基づいて、流入水質予測演算部から制御部に送
られる水質成分濃度を補正する補正演算部と、をさらに
備えている。
Preferably, it is connected to the inflow water UV value measuring means for measuring the ultraviolet absorption of the water to be treated flowing into the aeration tank and the inflow water UV value measuring means, and based on the measurement value of the inflow water UV value measuring means. And a correction calculation unit that corrects the concentration of the water quality component sent from the inflow water quality prediction calculation unit to the control unit.

【0041】好ましくは、曝気槽に流入する被処理水の
水温を計測する流入水水温計測手段と、流入水水温計測
手段に接続され、流入水水温計測手段の計測値に基づい
て、流入水質予測演算部から制御部に送られる水質成分
濃度を補正する補正演算部と、をさらに備えている。
Preferably, the inflow water temperature measuring means for measuring the water temperature of the treated water flowing into the aeration tank and the inflow water temperature measuring means are connected, and the inflow water quality is predicted based on the measured value of the inflow water temperature measuring means. And a correction calculation unit that corrects the concentration of the water quality component sent from the calculation unit to the control unit.

【0042】好ましくは、曝気槽に流入する被処理水の
pHを計測する流入水pH計測手段と、流入水pH計測
手段に接続され、流入水pH計測手段の計測値に基づい
て、流入水質予測演算部から制御部に送られる水質成分
濃度を補正する補正演算部と、をさらに備えている。
Preferably, the inflow water pH measuring means for measuring the pH of the water to be treated flowing into the aeration tank and the inflow water pH measuring means are connected, and the inflow water quality is predicted based on the measured value of the inflow water pH measuring means. And a correction calculation unit that corrects the concentration of the water quality component sent from the calculation unit to the control unit.

【0043】好ましくは、曝気槽で除去される被処理水
中の水質成分は、アンモニア性窒素、全窒素、ケルダー
ル窒素、リン酸性リン、全リン、発酵生産物、および易
分解性有機物のうちいずれか1つまたはこれらの組み合
わせである。
Preferably, the water quality component in the treated water to be removed in the aeration tank is any one of ammonia nitrogen, total nitrogen, Kjeldahl nitrogen, phosphoric acid phosphorus, total phosphorus, fermentation products, and easily decomposable organic substances. One or a combination of these.

【0044】[0044]

【発明の実施の形態】第1の実施の形態 以下、図面を参照して本発明の実施の形態について説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION First Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

【0045】図1は本発明の第1の実施の形態を示す図
である。ここで図1は、被処理水中の水質成分を除去処
理する水質制御装置1を示す構成図である。
FIG. 1 is a diagram showing a first embodiment of the present invention. Here, FIG. 1 is a configuration diagram showing a water quality control device 1 for removing water quality components in the water to be treated.

【0046】図1に示すように、水質制御装置1は、下
水等の被処理水中の窒素、リン、有機物等の特定の水質
成分を除去する水質成分処理機構6を有する曝気槽3を
備えている。
As shown in FIG. 1, the water quality control device 1 is provided with an aeration tank 3 having a water quality component treatment mechanism 6 for removing specific water quality components such as nitrogen, phosphorus and organic substances in the water to be treated such as sewage. There is.

【0047】曝気槽3の上流側には、第1水配管51を
介して第1沈殿池2が接続されており、曝気槽3の下流
側には、第2水配管52を介して第2沈殿池4が接続さ
れている。また、第1沈殿池2の上流側には供給水配管
57が接続され、第2沈殿池4の下流側には排出水配管
58が接続がされている。
The first settling tank 2 is connected to the upstream side of the aeration tank 3 via a first water pipe 51, and the second settling tank 2 is connected to the downstream side of the aeration tank 3 via a second water pipe 52. The sedimentation tank 4 is connected. A supply water pipe 57 is connected to the upstream side of the first settling basin 2, and a discharge water pipe 58 is connected to the downstream side of the second settling basin 4.

【0048】第1沈殿池2および第2沈殿池4は、それ
ぞれ汚泥水配管64を介して汚泥処理槽10に接続され
ている。第1沈殿池2および第2沈殿池4の汚泥を含む
汚泥水は、汚泥水配管64を経て汚泥処理槽10に送ら
れて、汚泥処理される。また、汚泥処理槽10と供給水
配管57とは、戻し水配管65により連結されており、
汚泥処理槽10で汚泥処理された汚泥処理返流水は、汚
泥処理槽10から戻し水配管65を経て、曝気槽3より
前段に設置された供給水配管57へ返送される。
The first settling tank 2 and the second settling tank 4 are each connected to the sludge treatment tank 10 via a sludge water pipe 64. Sludge water containing sludge in the first settling tank 2 and the second settling tank 4 is sent to the sludge treatment tank 10 through a sludge water pipe 64 and is subjected to sludge treatment. Further, the sludge treatment tank 10 and the supply water pipe 57 are connected by a return water pipe 65,
The sludge treatment return water that has been sludge-treated in the sludge treatment tank 10 is returned from the sludge treatment tank 10 through the return water pipe 65 to the supply water pipe 57 installed upstream from the aeration tank 3.

【0049】水質成分処理機構6には制御装置5が接続
されており、また、第1沈殿池2の後段部には第1沈殿
池2内の被処理水の酸化、還元の程度を計測する酸化還
元電位計7(ORP計)が設けられている。従って、酸
化還元電位計7は、曝気槽3より前段に設置され、曝気
槽3へ流入することとなる被処理水の酸化あるいは還元
の程度を計測することとなる。
A controller 5 is connected to the water quality component treatment mechanism 6, and the degree of oxidation and reduction of the water to be treated in the first settling tank 2 is measured at the rear stage of the first settling tank 2. An oxidation-reduction potentiometer 7 (ORP meter) is provided. Therefore, the oxidation-reduction potentiometer 7 is installed in the preceding stage of the aeration tank 3 and measures the degree of oxidation or reduction of the water to be treated which flows into the aeration tank 3.

【0050】曝気槽3は、上流から下流に渡り、被処理
水の嫌気処理を行う嫌気部3aと、被処理水の好気処理
を行う無酸素部3bおよび好気部3cと、が順次配置さ
れて構成されている。
The aeration tank 3 has an anaerobic section 3a for performing anaerobic treatment of the water to be treated, an anaerobic section 3b for performing aerobic treatment of the water to be treated, and an aerobic section 3c arranged in order from the upstream to the downstream. Is configured.

【0051】曝気槽3のうち好気部3cと無酸素部3b
とは、循環ポンプ54が取り付けられた循環水配管53
により連結されており、また、第2沈殿池4と曝気槽3
の嫌気部3aとは、返送ポンプ56が取り付けられた返
送水配管55により連結されている。
Aerobic part 3c and anoxic part 3b of the aeration tank 3
Is a circulating water pipe 53 to which a circulating pump 54 is attached.
Connected by the second settling tank 4 and aeration tank 3
The anaerobic part 3a is connected by a return water pipe 55 to which a return pump 56 is attached.

【0052】水質成分処理機構6は、ブロア11と、曝
気槽3の好気部3c内に設置された散気管15と、ブロ
ア11と散気管15とを連結する空気管14と、を有す
る。従って、散気管15は、ブロア11から空気管14
を介して送られてきた空気を、曝気槽3の好気部3c内
の被処理水中に曝気することとなる。空気管14には、
ブロア11から散気管15に送られる空気量を調整する
ことができる電動弁12と、ブロア11から散気管15
に送られる空気量を計測する空気流量計13とが取り付
けられている。
The water quality component treatment mechanism 6 has a blower 11, an air diffusing pipe 15 installed in the aerobic section 3c of the aeration tank 3, and an air pipe 14 connecting the blower 11 and the air diffusing pipe 15. Therefore, the air diffuser 15 is connected to the air pipe 14 from the blower 11.
The air sent via the air is aerated into the water to be treated in the aerobic part 3c of the aeration tank 3. In the air tube 14,
A motor-operated valve 12 capable of adjusting the amount of air sent from the blower 11 to the air diffuser 15, and an air diffuser 15 from the blower 11
And an air flow meter 13 for measuring the amount of air sent to.

【0053】制御装置5は、流入水質予測演算部23
と、風量目標値演算部21と、風量制御部22とを有す
る。流入水質予測演算部23は、酸化還元電位計7に電
気的に接続され、後述する酸化還元電位計7の計測値と
NH4(水質成分)との関係式に基づいて、被処理水中
のNH4(水質成分)濃度を演算予測する。風量目標値
演算部21は、流入水質予測演算部23に電気的に接続
され、流入水質予測演算部23における演算値に基づい
てブロア11から曝気槽3に送る空気の量を演算する。
風量制御部22は、風量目標値演算部21に電気的に接
続されるとともに、空気流量計13および電動弁12に
も電気的に接続されている。この風量制御部22は、風
量目標値演算部21における演算値および空気流量計1
3における計測値に基づいて電動弁12を調節して、ブ
ロア11から曝気槽3に送られる空気量を調整して風量
を制御している。なお、風量目標値演算部21と、風量
制御部22とから制御部が構成されている。
The control unit 5 has an inflow water quality prediction calculation unit 23.
And an air volume target value calculation unit 21 and an air volume control unit 22. The inflow water quality prediction calculation unit 23 is electrically connected to the oxidation-reduction potentiometer 7, and based on the relational expression between the measurement value of the oxidation-reduction potentiometer 7 and NH4 (water quality component), which will be described later, NH4 ( Water quality component) Concentration is calculated and predicted. The air volume target value calculation unit 21 is electrically connected to the inflow water quality prediction calculation unit 23, and calculates the amount of air sent from the blower 11 to the aeration tank 3 based on the calculation value in the inflow water quality prediction calculation unit 23.
The air volume control unit 22 is electrically connected to the air volume target value calculation unit 21, and also electrically connected to the air flow meter 13 and the motor-operated valve 12. This air volume control unit 22 calculates the air flow rate target value calculation unit 21 and the air flow meter 1
The motor-operated valve 12 is adjusted based on the measurement value in 3 to adjust the amount of air sent from the blower 11 to the aeration tank 3 to control the air amount. The air volume target value calculation unit 21 and the air volume control unit 22 constitute a control unit.

【0054】なお、流入水質予測演算部23は、曝気槽
3に流入する被処理水中のNH4濃度を演算予測する以
下に示す(4)式を格納している。また、風量目標値演
算部21は、曝気風量目標値を演算予測する(5)式
と、曝気風量目標値補正値を演算する(6)式とを格納
している。
The inflow water quality predicting / calculating section 23 stores the following equation (4) for calculating and predicting the NH4 concentration in the water to be treated flowing into the aeration tank 3. The air volume target value calculation unit 21 also stores equation (5) for calculating and predicting the aeration air volume target value and equation (6) for calculating the aeration air volume target value correction value.

【0055】 <流入水質予測演算部> (1)NH4濃度予測演算 [NH4in]t=a1×[PV-ORP]t+b1 ・・・・・・・(4)式 <風量制御目標値演算部> (2)曝気風量目標値演算 [d-Qg]t=Kp×([NH4in]t-[NH4in]t-1) ・・・・・・・(5)式 (3)曝気風量補正演算 [SV-Qg]t=[SV-Qg]t-1+[d-Qg]t ・・・・・・・(6)式 <記号> [PV-ORP]t :今回のORP計測値 [NH4in]t :今回のNH4予測値 [SV-Qg]t :今回の曝気風量目標値 [SV-Qg]t-1 :前回の曝気風量目標値 [d-Qg]t :今回の曝気風量目標値補正値 a1、b1 :予測演算係数 Kp :比例ゲイン t :時刻 次にこのような構成からなる本実施の形態の作用につい
て説明する。
<Inflow Water Quality Prediction Calculation Section> (1) NH4 Concentration Prediction Calculation [NH4in] t = a1 × [PV-ORP] t + b1 ... (4) Equation <Air Volume Control Target Value Calculation Section > (2) Aeration air flow rate target value calculation [d-Qg] t = Kp × ([NH4in] t- [NH4in] t-1) ... (5) Equation (3) Aeration air flow rate correction calculation [ SV-Qg] t = [SV-Qg] t-1 + [d-Qg] t ···· (6) Formula <Symbol> [PV-ORP] t: ORP measurement value of this time [NH4in] t: NH4 predicted value [SV-Qg] t of this time: Target value of aeration air volume [SV-Qg] t-1: Target value of aeration air volume of previous time [d-Qg] t: Target value of aeration air volume correction value of this time a1, b1: Prediction calculation coefficient Kp: Proportional gain t: Time Next, the operation of the present embodiment having such a configuration will be described.

【0056】まず、水質制御装置1による水質成分除去
処理について概説する。
First, the water quality component removal processing by the water quality control device 1 will be outlined.

【0057】水質制御装置1に新たに供給されNH4等
の水質成分の除去処理が必要とされる被処理水は、供給
水配管57を経て第1沈殿池2に流入する。
The water to be treated, which is newly supplied to the water quality control device 1 and requires the removal treatment of the water quality component such as NH 4, flows into the first settling tank 2 through the supply water pipe 57.

【0058】第1沈殿池2に流入した被処理水は、フロ
ックや汚泥の沈殿処理が行われる。また、第1沈殿池2
内の被処理水は、酸化還元電位計7によって酸化あるい
は還元の程度が計測される。この酸化還元電位計7によ
る計測値は、酸化還元電位計7から制御装置5の流入水
質予測演算部23に送られる。
The water to be treated which has flowed into the first settling tank 2 is subjected to floc and sludge settling treatment. In addition, the first settling tank 2
The degree of oxidation or reduction of the water to be treated therein is measured by the oxidation-reduction potentiometer 7. The value measured by the oxidation-reduction potentiometer 7 is sent from the oxidation-reduction potentiometer 7 to the inflow water quality prediction calculation unit 23 of the control device 5.

【0059】被処理水は、第1沈殿池2から第1水配管
51を経て曝気槽3に流入する。曝気槽3に流入した被
処理水は、曝気槽3の嫌気部3a、無酸素部3b、好気
部3cを順次経て、各部において水質成分除去処理が行
われる。
The water to be treated flows into the aeration tank 3 from the first settling tank 2 through the first water pipe 51. The water to be treated that has flowed into the aeration tank 3 is sequentially passed through the anaerobic part 3a, the anoxic part 3b, and the aerobic part 3c of the aeration tank 3, and the water quality component removal process is performed in each part.

【0060】特に、好気部3cでは、後述する制御装置
5による水質成分処理機構6の制御に基づいて、被処理
水は曝気されて好気処理が促進される。
In particular, in the aerobic section 3c, the water to be treated is aerated and the aerobic treatment is promoted under the control of the water quality component treatment mechanism 6 by the controller 5 described later.

【0061】このような曝気槽において、被処理水中一
定のCODやBODを有する有機物は、無酸素部3bや
好気部3c中の従属栄養細菌により好気処理されて除去
される。
In such an aeration tank, the organic matter having a constant COD or BOD in the water to be treated is aerobically treated and removed by the heterotrophic bacteria in the anoxic part 3b and the aerobic part 3c.

【0062】また、被処理水中のアンモニア性窒素(N
H4−N)は、好気部3cで硝化菌の硝化反応(NH4
−N → NO2−N → NO3−N)により硝酸性
窒素(NO3−N)に酸化される。この硝酸性窒素を多
量に含む硝化液の一部は、循環ポンプ54により好気部
3cから循環水配管53を経て無酸素部3bに送られ
て、従属栄養細菌(脱窒菌)の脱窒反応(NO3−N
→ N2)によりN2に還元される。
Further, ammoniacal nitrogen (N
H4-N) is a nitrification reaction (NH4) of nitrifying bacteria in the aerobic part 3c.
Oxidized into nitrate nitrogen (NO3-N) by -N → NO2-N → NO3-N). A part of this nitrifying solution containing a large amount of nitrate nitrogen is sent from the aerobic part 3c to the anoxic part 3b through the circulating water pipe 53 by the circulation pump 54, and the denitrification reaction of heterotrophic bacteria (denitrifying bacteria) is carried out. (NO3-N
→ It is reduced to N2 by N2).

【0063】また、被処理水中のリンの主成分であるリ
ン酸性リン(PO4−P)は、嫌気部3aのリン蓄積細
菌の作用によりリン成分が放出され、このリン成分は、
好気部3cのリン蓄積細菌に摂取されて除去される。
The phosphoric acid phosphorus (PO4-P), which is the main component of phosphorus in the water to be treated, is released by the action of the phosphorus accumulating bacteria in the anaerobic part 3a.
It is ingested and removed by the phosphorus accumulating bacteria in the aerobic part 3c.

【0064】被処理水は、上述のようにして、曝気槽3
における水質成分除去処理が行われた後に、曝気槽3か
ら第2水配管52を経て第2沈殿池4に流入する。
The water to be treated is aerated in the aeration tank 3 as described above.
After the water quality component removing process in (1) is performed, it flows into the second settling tank 4 from the aeration tank 3 through the second water pipe 52.

【0065】第2沈殿池では、被処理水中のフロックや
汚泥の沈殿除去処理が行われる。また、第2沈殿池4に
流入した被処理水のうち一部は、返送ポンプ56によ
り、返送水配管55を経て曝気槽3の好気部3cに返送
される。これにより、水質制御装置1に供給された被処
理水の水質成分除去処理が充分に行われることとなる。
In the second settling basin, flocs and sludge in the water to be treated are removed. A part of the water to be treated that has flowed into the second settling tank 4 is returned by the return pump 56 to the aerobic section 3c of the aeration tank 3 via the return water pipe 55. As a result, the water quality component removing process of the water to be treated supplied to the water quality control device 1 is sufficiently performed.

【0066】そして、その後、第2沈殿池4内の被処理
水は、排出水配管58を経て後段の処理施設に送られた
り、一般生活用水として供給される。
After that, the water to be treated in the second settling tank 4 is sent to the treatment facility in the subsequent stage through the discharge water pipe 58 or supplied as general domestic water.

【0067】また、第1沈殿池2および第2沈殿池4に
おいて除去されたフロックや汚泥を含む被処理水は、第
1沈殿池2および第2沈殿池4から汚泥水配管64を経
て汚泥処理槽10に送られて、汚泥処理される。また、
汚泥処理槽10で汚泥処理された汚泥処理返流水は、戻
し水配管65を経て供給水配管57に送られて、水質制
御装置1に新たに供給された被処理水とともに第1沈殿
池2に流入することとなる。
The treated water containing flocs and sludge removed in the first settling tank 2 and the second settling tank 4 is sludge treated from the first settling tank 2 and the second settling tank 4 through the sludge water pipe 64. It is sent to the tank 10 and treated with sludge. Also,
The sludge treatment return water that has been sludge-treated in the sludge treatment tank 10 is sent to the supply water pipe 57 via the return water pipe 65, and is supplied to the first settling tank 2 together with the treated water newly supplied to the water quality control device 1. It will flow in.

【0068】次に、制御装置5による水質成分処理機構
6の制御について詳述する。
Next, the control of the water quality component processing mechanism 6 by the controller 5 will be described in detail.

【0069】酸化還元電位計7は、硝化反応やリンの過
剰摂取反応等の酸化反応が促進されている場合には、酸
化側(0〜300mV)の正の値を示す。また、脱窒反
応やリンの放出反応等の還元性反応が促進されている場
合には、還元側(−500m〜0mV)の負の値を示
す。従って、酸化還元電位計7の計測値が計測値が低く
還元側にある場合には、制御装置5におけるブロア11
から曝気槽3に送られる空気量の制御の際の風量制御目
標値を上げて設定し、また、電位計の計測値が計測値が
高く酸化側にある場合には、制御装置5における風量制
御目標値を上げて設定する必要がある。
The oxidation-reduction potentiometer 7 shows a positive value on the oxidation side (0 to 300 mV) when the oxidation reaction such as the nitrification reaction or the phosphorus excessive intake reaction is promoted. When a reducing reaction such as a denitrification reaction or a phosphorus release reaction is promoted, a negative value on the reducing side (-500 mV to 0 mV) is shown. Therefore, when the measurement value of the oxidation-reduction potentiometer 7 is low and is on the reduction side, the blower 11 in the control device 5 is
When the air flow rate control target value for controlling the amount of air sent from the air to the aeration tank 3 is increased and set, and when the measurement value of the electrometer is high and is on the oxidation side, the air volume control in the control device 5 is performed. It is necessary to raise and set the target value.

【0070】第1沈殿池2の後段部の被処理水は、この
ような酸化還元電位計7により酸化あるいは還元の程度
が計測される。そして、酸化還元電位計7の計測値は、
制御装置5の流入水質予測演算部23に送られる。
The degree of oxidation or reduction of the water to be treated in the latter part of the first settling tank 2 is measured by such an oxidation-reduction potentiometer 7. Then, the measurement value of the redox electrometer 7 is
It is sent to the inflow water quality prediction calculation unit 23 of the control device 5.

【0071】流入水質予測演算部23では、酸化還元電
位計7の計測値に基づき、上記の(4)式に従って被処
理水中のNH4濃度を演算予測し、演算予測したNH4
濃度を風量目標値演算部21に送る。
The inflow water quality predicting / calculating section 23 calculates and predicts the NH4 concentration in the water to be treated based on the measurement value of the oxidation-reduction potentiometer 7 according to the above equation (4), and the calculated and predicted NH4
The concentration is sent to the air volume target value calculation unit 21.

【0072】風量目標値演算部21は、流入水質予測演
算部23から送られたNH4濃度の演算値と、上記の
(5)式および(6)式とに基づいて、ブロア11から
曝気槽3に送られ曝気槽3の好気部3cにおいて曝気す
るために用いられる空気の曝気風量の目標値が演算され
るとともに、この曝気風量目標値を補正する曝気風量目
標値補正値が演算される。
The target air flow rate calculation unit 21 calculates the NH4 concentration from the inflow water quality prediction calculation unit 23 and the above equations (5) and (6) based on the equations (5) and (6). The target value of the aeration air amount of the air used for aeration in the aerobic unit 3c of the aeration tank 3 is calculated, and the aeration air amount target value correction value for correcting the aeration air amount target value is calculated.

【0073】風量目標値演算部21で演算された曝気風
量目標値と曝気風量目標値補正値は、風量制御部22に
送られる。また、空気管14を流れる空気の空気量は空
気流量計13により計測され、この計測値は空気流量計
13から風量制御部22に送られる。
The aeration air amount target value and the aeration air amount target value correction value calculated by the air amount target value calculation unit 21 are sent to the air amount control unit 22. The air flow rate of the air flowing through the air pipe 14 is measured by the air flow meter 13, and the measured value is sent from the air flow meter 13 to the air volume control unit 22.

【0074】風量制御部22は、風量目標値演算部21
からの曝気風量目標値および曝気風量目標値補正値と、
空気流量計13からの空気量計測値とに基づいて電動弁
12を調節して、ブロア11から空気管14を介して散
気管15に送られる空気量を調整して風量を制御してい
る。これにより、曝気槽3の好気部3cでは、被処理水
中の水質成分濃度に応じた好気処理を行うことができ
る。
The air volume control unit 22 includes an air volume target value calculation unit 21.
Aeration air volume target value and aeration air volume target value correction value from
The electric valve 12 is adjusted based on the measured air amount from the air flow meter 13 to adjust the amount of air sent from the blower 11 to the diffuser pipe 15 via the air pipe 14 to control the air flow. Thereby, the aerobic part 3c of the aeration tank 3 can perform aerobic treatment according to the water quality component concentration in the water to be treated.

【0075】以上説明したように、本実施の形態によれ
ば、酸化還元電位計7は曝気槽3より前段に設置される
ので、被処理水が曝気槽3に流入する前に被処理水中の
水質成分濃度を演算予測することができる。このため、
ブロア11から空気管14および散気管15を介して曝
気槽3の好気部3cに送られる風量は、時間的余裕をも
って制御される。このため、水質制御装置1は、被処理
水中の水質成分濃度に応じた効率的な好気処理を行うこ
とが可能となる。これにより、被処理水中の水質成分濃
度が急激に変化した場合でも、適切な水質成分除去処理
を高効率かつ低コストに行うことができる。
As described above, according to the present embodiment, the oxidation-reduction potentiometer 7 is installed before the aeration tank 3, so that the water in the water to be treated before the water to be treated flows into the aeration tank 3. The water quality component concentration can be calculated and predicted. For this reason,
The amount of air sent from the blower 11 to the aerobic part 3c of the aeration tank 3 via the air pipe 14 and the air diffuser 15 is controlled with a time margin. Therefore, the water quality control device 1 can perform efficient aerobic treatment according to the concentration of the water quality component in the water to be treated. As a result, even when the concentration of the water quality component in the water to be treated suddenly changes, the appropriate water quality component removal treatment can be performed with high efficiency and at low cost.

【0076】また、ブロア11から空気管14および散
気管15を介して曝気槽3の好気部3cに送られる風量
は、被処理水中のNH4等の水質成分濃度に応じて制御
され、適量が確保されるので、運転コストとして大きな
割合を占める曝気コストを低減することができる。
The amount of air sent from the blower 11 to the aerobic part 3c of the aeration tank 3 via the air pipe 14 and the air diffuser pipe 15 is controlled according to the concentration of water quality components such as NH4 in the water to be treated. Since this is ensured, it is possible to reduce the aeration cost, which accounts for a large proportion of the operating cost.

【0077】また、酸化還元電位計7が1個のみ設置さ
れているので、ブロア11から曝気槽3の好気部3cに
送られる風量の制御に必要な被処理水の酸化あるいは還
元の程度の計測値は、単独計測値となる。このため、複
数の計測値に基づいて空気量を調整して風量を制御する
場合よりも、シンプルな制御構成となり、制御の運用を
効率化することができる。
Since only one redox electrometer 7 is installed, the degree of oxidation or reduction of the water to be treated necessary for controlling the amount of air sent from the blower 11 to the aerobic part 3c of the aeration tank 3 is controlled. The measured value is a single measured value. Therefore, the control configuration is simpler than the case where the air volume is controlled by adjusting the air volume based on a plurality of measured values, and the control operation can be made efficient.

【0078】また、流入水質予測演算部23ではNH4
濃度を演算予測するので、水質制御装置1は、NH4の
除去処理に伴う硝化反応を制御することができる。ま
た、流入水質予測演算部23におけるNH4濃度の演算
予測には、(4)式で表される簡潔な線形式を演算式と
して用いるので、この演算式のパラメータ調整が容易と
なる。なお、流入水質予測演算部23でNH4濃度の演
算予測に用いられる演算式は、線形式で表される(4)
式に限定されるものではなく、他の指数(以下の(4
a)式参照)、対数(以下の(4b)式参照)、べき乗
(以下の(4c)式参照)、積分(以下の(4d)式参
照)等の各種関数を利用することができる。また、ニュ
ーラルネットワーク等の非線形型モデル式も用いること
ができる。
In addition, the inflow water quality predicting / calculating unit 23 uses NH4
Since the concentration is calculated and predicted, the water quality control device 1 can control the nitrification reaction accompanying the NH4 removal processing. In addition, since the simple linear form represented by the equation (4) is used as the arithmetic expression for the arithmetic prediction of the NH4 concentration in the inflow water quality prediction arithmetic unit 23, the parameter adjustment of this arithmetic expression becomes easy. The calculation formula used in the calculation calculation of the NH4 concentration in the inflow water quality prediction calculation unit 23 is expressed in a linear format (4).
The index is not limited to the formula, and other indices ((4
Various functions such as a (see a)), logarithm (see (4b) below), exponentiation (see (4c) below), integration (see (4d) below), and the like can be used. Also, a non-linear model formula such as a neural network can be used.

【0079】 <流入水質予測演算部> (1)NH4濃度予測演算 [NH4in]t=a7×[PV-ORP]tC7+b7 ・・・・・・・(4a)式 [NH4in]t=a8×ln[PV-ORP]t+b8 ・・・・・・・(4b)式 [NH4in]t=a9×exp[PV-ORP]t+b9 ・・・・・・・(4c)式 [NH4in]t=a10×∫[PV-ORP]t+b10 ・・・・・・・(4d)式 <記号> [PV-ORP]t :今回のORP計測値 [NH4in]t :今回のNH4予測値 a7,a8,a9,a10, b7,b8,b9,b10 :予想演算係数 なお、酸化還元電位計7の配置場所は、第1沈殿池2の
後段部に限定されるものではなく、曝気槽3よりも前段
であれば、どの位置にでも配置することができる。例え
ば、第1沈殿池2のあらゆる場所や、第1沈殿池2と曝
気槽3との間に位置する第1水配管51内や、第1沈殿
池2より前段に位置する図示しないポンプ井、沈砂池、
流入渠等に、酸化還元電位計7を配置することができ
る。
<Inflow Water Quality Prediction Calculation Unit> (1) NH4 concentration prediction calculation [NH4in] t = a7 × [PV-ORP] t C7 + b7 ... (4a) Equation [NH4in] t = a8 × ln [PV-ORP] t + b8 ・ ・ ・ ・ ・ ・ (4b) formula [NH4in] t = a9 × exp [PV-ORP] t + b9 ・ ・ ・ ・ ・ ・ ・ (4c) formula [NH4in ] t = a10 × ∫ [PV-ORP] t + b10 ···· (4d) Equation <Symbol> [PV-ORP] t: ORP measurement value of this time [NH4in] t: NH4 predicted value of this time a7, a8, a9, a10, b7, b8, b9, b10: Expected calculation coefficient The location of the redox electrometer 7 is not limited to the latter part of the first settling tank 2 and the aeration tank 3 It can be arranged at any position as long as it is in the preceding stage. For example, in any place of the first settling basin 2, in the first water pipe 51 located between the first settling basin 2 and the aeration tank 3, or in a pump well (not shown) located before the first settling basin 2, Sand pond,
The oxidation-reduction potentiometer 7 can be arranged in an inflow conduit or the like.

【0080】また、流入水質予測演算部23で演算予測
され、また、曝気槽3で除去される被処理水中の水質成
分は、NH4に限定されるものではない。他の被処理水
中の水質成分は、例えば、全窒素(T−N)、ケルダー
ル窒素(TKN)、リン酸性リン(PO4−P)、全リ
ン(T−P)、酢酸に代表される低分子有機酸を含む発
酵生産物(SA)、および易分解性有機物(SF)のう
ちいずれか1つまたはこれらの組み合わせが考えられ
る。流入水質予測演算部23は、被処理水中のこれらの
水質成分について、酸化還元電位計7の計測値に基づい
て各水質成分濃度を演算予測することも可能である。こ
の場合には、演算予測する各水質成分に応じた適当な演
算式を用いることが必要である。
The water quality component in the water to be treated, which is calculated and predicted by the inflow water quality prediction calculation unit 23 and which is removed in the aeration tank 3, is not limited to NH4. Other water quality components in the water to be treated include, for example, total nitrogen (TN), Kjeldahl nitrogen (TKN), phosphoric acid phosphorus (PO4-P), total phosphorus (TP), low molecular weight compounds represented by acetic acid. Any one or a combination of a fermentation product (SA) containing an organic acid and a readily degradable organic matter (SF) is considered. The inflow water quality prediction calculation unit 23 can also calculate and predict the concentration of each water quality component based on the measurement value of the redox electrometer 7 for these water quality components in the water to be treated. In this case, it is necessary to use an appropriate calculation formula according to each water quality component to be calculated and predicted.

【0081】また、本実施の形態における、被処理水中
の水質成分を除去する水質成分処理機構6は、曝気槽3
に送る空気を調整して被処理水の曝気風量を制御するも
のであるが、これに限定されるものではなく、他の水質
成分処理機構6を制御することもできる。他の水質成分
処理機構6の制御方法として、例えば以下のものがあ
る。すなわち、曝気風量を流入量で除した曝気比率を一
定に制御する曝気比率制御、溶存酸素濃度DOが一定に
なるように曝気風量目標値を演算するDO一定制御、返
送流量を一定に制御する返送量制御、返送比率を一定に
制御する返送率制御、タイマーの引き抜き時間で余剰汚
泥引抜量を制御する余剰汚泥引抜タイマー制御、固形物
滞留時間SRTが一定になるように余剰汚泥引抜量を制
御するSRT一定制御、曝気槽3汚泥濃度MLSSが一
定になるように返送量もしくは余剰汚泥引き抜き量を制
御するMLSS一定制御、PACや硫酸鉄等の凝集剤の
注入量を制御する凝集材流入量制御、PACや硫酸鉄等
の凝集剤の注入比率を制御する凝集剤注入率制御等にも
応用することができる。
Further, the water quality component treatment mechanism 6 for removing the water quality component in the water to be treated in the present embodiment is the aeration tank 3
Although the amount of aeration air to be treated water is controlled by adjusting the air sent to, the present invention is not limited to this, and other water quality component treatment mechanism 6 can be controlled. Other control methods of the water quality component processing mechanism 6 include, for example, the following. That is, the aeration ratio control for controlling the aeration ratio by dividing the aeration air amount by the inflow amount to be constant, the DO constant control for calculating the aeration air target value so that the dissolved oxygen concentration DO is constant, and the return flow rate for constant return Amount control, return rate control to control the return ratio to a constant, excess sludge removal timer control to control the excess sludge removal amount by the removal time of the timer, control excess sludge removal amount to keep the solid retention time SRT constant SRT constant control, aeration tank 3 sludge concentration MLSS constant control that controls the return amount or excess sludge withdrawal amount so that the MLSS becomes constant, coagulant inflow control that controls the injection amount of coagulant such as PAC and iron sulfate, It can also be applied to a coagulant injection rate control for controlling the injection ratio of a coagulant such as PAC or iron sulfate.

【0082】第2の実施の形態 図2は本発明の第2の実施の形態を示す図である。ここ
で図2は、被処理水中の水質成分を除去処理する水質制
御装置1を示す構成図である。
Second Embodiment FIG. 2 is a diagram showing a second embodiment of the present invention. Here, FIG. 2 is a configuration diagram showing a water quality control device 1 for removing water quality components in the water to be treated.

【0083】図2に示す第2の実施の形態において、水
質制御装置1は、酸化還元電位計7を2個(複数個)有
し、各酸化還元電位計7は、第1沈殿池2に、被処理水
の流れ方向に設置されている。また、流入水質予測演算
部23は、各酸化還元電位計7により計測された各計測
値および各計測値の差分と水質成分との関係式である、
以下の(7)式を格納している。
In the second embodiment shown in FIG. 2, the water quality control device 1 has two (a plurality of) redox electrometers 7, and each redox electrometer 7 is connected to the first settling tank 2. , Is installed in the flow direction of the water to be treated. Further, the inflow water quality prediction calculation unit 23 is a relational expression between each measurement value measured by each oxidation-reduction potentiometer 7 and the difference between each measurement value and the water quality component,
The following expression (7) is stored.

【0084】 <流入水質予測演算部> (1)NH4濃度予測演算 [NH4in]t=a2×{[PV-ORP2]t-[PV-ORP1]t}+b2 ・・・・・・・(7)式 <記号> [PV-ORP1]t :第1のORP計測値 [PV-ORP2]t :第2のORP計測値 [NH4in]t :NH4予測値 a2、b2 :予測演算係数 なお、上記(7)式は、各酸化還元電位計7の各計測値
の差分値は、第1沈殿池2の被処理水の流れ方向におけ
るNH4濃度の変化値と、曝気槽3に流入する被処理水
中の水質成分濃度と、の間の相関関係を考慮した式であ
る。
<Inflow Water Quality Prediction Calculation Unit> (1) NH4 Concentration Prediction Calculation [NH4in] t = a2 × {[PV-ORP2] t- [PV-ORP1] t} + b2 ··· (7 ) <Symbol> [PV-ORP1] t: First ORP measurement value [PV-ORP2] t: Second ORP measurement value [NH4in] t: NH4 predicted value a2, b2: Prediction calculation coefficient 7) is the difference between the measured values of the redox electrometers 7, the change value of the NH4 concentration in the flow direction of the treated water in the first settling tank 2, and the treated water flowing into the aeration tank 3. This is an equation that takes into account the correlation between the concentration of water quality components.

【0085】他の構成は図1に示す第1の実施の形態と
略同一である。
The other structure is substantially the same as that of the first embodiment shown in FIG.

【0086】図2において、図1に示す第1の実施の形
態と同一部分には同一符号を付して詳細な説明は省略す
る。
In FIG. 2, the same parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals and detailed description thereof will be omitted.

【0087】供給排水管を経て第1沈殿池2に流入した
被処理水は、各酸化還元電位計7により、被処理水の酸
化あるいは還元の程度が計測される。各酸化還元電位計
7による各計測値は、各酸化還元電位計7から流入水質
予測演算部23に送られる。
The degree of oxidation or reduction of the water to be treated, which has flowed into the first settling tank 2 through the supply and drainage pipes, is measured by each oxidation-reduction potentiometer 7. Each measured value by each redox potential meter 7 is sent from each redox potential meter 7 to the inflow water quality prediction calculation unit 23.

【0088】流入水質予測演算部23は、各酸化還元電
位計7からの各計測値に基づいて、被処理水中のNH4
(水質成分)濃度を演算予測する。すなわち、流入水質
予測演算部23は、各酸化還元電位計7による計測値の
差分と、上記(7)式とに基づいてNH4濃度を求め
る。
The inflow water quality predicting / calculating section 23 calculates the NH4 in the water to be treated based on the respective measured values from the respective redox electrometers 7.
(Water quality component) Concentration is calculated and predicted. That is, the inflow water quality prediction calculation unit 23 obtains the NH4 concentration based on the difference between the measurement values of the respective redox electrometers 7 and the above equation (7).

【0089】流入水質予測演算部23で求められたNH
4濃度の演算値は、流入水質予測演算部23から風量目
標値演算部21に送られて、風量目標値および風量目標
値補正値が演算される。そして、風量制御部22は、こ
の風量目標値および風量目標値補正値と、空気流量計1
3の計測値に基づいて電動弁12を調節して、ブロア1
1から曝気槽3に送られる空気量を調整して風量を制御
している。
NH calculated by the inflow water quality prediction calculation unit 23
The calculated values of the four concentrations are sent from the inflow water quality prediction calculation unit 23 to the air volume target value calculation unit 21, and the air volume target value and the air volume target value correction value are calculated. Then, the air volume control unit 22 receives the air volume target value and the air volume target value correction value, and the air flow meter 1
Adjust the motor-operated valve 12 based on the measured value of 3 and blower 1
The amount of air sent from 1 to the aeration tank 3 is adjusted to control the amount of air.

【0090】なお、この場合、流入水質予測演算部23
における演算の際に用いられる各酸化還元電位計7の計
測値の差分値は、第1沈殿池2の底部における生汚泥分
の酸化還元電位計7の計測値を差し引き補正したもので
ある。
In this case, the inflow water quality prediction calculation unit 23
The difference value of the measurement values of the respective redox electrometers 7 used in the calculation in 1. is subtracted from the measurement value of the redox electrometer 7 of the raw sludge at the bottom of the first sedimentation tank 2.

【0091】次に、本実施の形態の一変形例について説
明する。
Next, a modification of the present embodiment will be described.

【0092】図2に示すように、汚泥処理槽10と供給
水配管57とを連結する戻し水配管65に、酸化還元電
位計7を設けて、この酸化還元電位計7を制御装置5の
流入水質予測演算部23に電気的に接続してもよい。
As shown in FIG. 2, an oxidation-reduction potentiometer 7 is provided in the return water pipe 65 connecting the sludge treatment tank 10 and the supply water pipe 57, and the oxidation-reduction potentiometer 7 is introduced into the controller 5. It may be electrically connected to the water quality prediction calculation unit 23.

【0093】汚泥処理槽10で汚泥処理された汚泥処理
返流水は、戻し水配管65を経て供給水配管57に送ら
れる。このとき、戻し水配管65を流れる汚泥処理返流
水の酸化あるいは還元の程度は、戻し水配管65に設け
られた酸化還元電位計7により計測され、この計測値は
酸化還元電位計7から制御装置5の流入水質予測演算部
23に送られる。流入水質予測演算部23では、上述の
第2の実施の形態の水質制御装置1と同様に、各酸化還
元電位計7の計測値に基づいてNH4濃度の演算予測が
行われ、風量目標値演算部21では、風量目標値および
風量目標値補正値が求められる。そして、風量制御部2
2は、風量目標値および風量目標値補正値と、空気流量
計13の計測値とに基づいて、ブロア11から曝気槽3
に送られる空気量を調整して風量を制御している。
The sludge treated return water which has been sludge treated in the sludge treatment tank 10 is sent to the supply water pipe 57 through the return water pipe 65. At this time, the degree of oxidation or reduction of the sludge treatment return water flowing through the return water pipe 65 is measured by an oxidation-reduction potentiometer 7 provided in the return water pipe 65, and the measured value is measured from the oxidation-reduction potentiometer 7 to a controller. 5 is sent to the inflow water quality prediction calculation unit 23. In the inflow water quality prediction calculation unit 23, similarly to the water quality control device 1 of the second embodiment described above, the calculation prediction of the NH4 concentration is performed based on the measurement value of each oxidation-reduction potentiometer 7, and the air flow target value calculation is performed. The unit 21 obtains the target air amount value and the target air amount correction value. And the air volume control unit 2
2 is based on the air flow rate target value, the air flow rate target value correction value, and the measurement value of the air flow meter 13 from the blower 11 to the aeration tank 3
The air volume is controlled by adjusting the amount of air sent to.

【0094】次に、本実施の形態の他の変形例について
説明する。
Next, another modification of the present embodiment will be described.

【0095】図3に示すように、2個の酸化還元電位計
7を、第1沈殿池2に、被処理水の流れ方向に対して垂
直高さ方向をなす方向にそれぞれ配置してもよい。本変
形例においても、上述の第2の実施の形態の水質制御装
置1と同様に、流入水質予測演算部23では、各酸化還
元電位計7の計測値に基づいてNH4濃度の演算予測が
行われ、風量目標値演算部21では、風量目標値および
風量目標値補正値が求められる。そして、風量制御部2
2は、風量目標値および風量目標値補正値と、空気流量
計13の計測値とに基づいて、ブロア11から曝気槽3
に送られる空気量を調整して風量を制御している。
As shown in FIG. 3, two redox electrometers 7 may be arranged in the first settling tank 2 in the direction perpendicular to the flow direction of the water to be treated. . In this modified example as well, similar to the water quality control device 1 of the second embodiment described above, the inflow water quality prediction calculation unit 23 performs the calculation prediction of the NH4 concentration based on the measurement value of each oxidation-reduction potentiometer 7. That is, the air volume target value calculation unit 21 obtains the air volume target value and the air volume target value correction value. And the air volume control unit 2
2 is based on the air flow rate target value, the air flow rate target value correction value, and the measurement value of the air flow meter 13 from the blower 11 to the aeration tank 3
The air volume is controlled by adjusting the amount of air sent to.

【0096】なお、この場合は、流入水質予測演算部2
3における演算の際に用いられる各酸化還元電位計7の
計測値の差分値は、第1沈殿池2の底部における生汚泥
分の酸化還元電位計7の計測値を差し引き補正したもの
である。
In this case, the inflow water quality prediction calculation unit 2
The difference value of the measured values of the respective redox electrometers 7 used in the calculation in 3 is obtained by subtracting and correcting the measured value of the redox electrometer 7 of the raw sludge content at the bottom of the first sedimentation tank 2.

【0097】以上説明したように、本実施の形態によれ
ば、複数個の酸化還元電位計7からの各計測値に基づい
て電動弁12を調節して、ブロア11から曝気槽3に送
られる空気量を調整して風量を制御することにより、1
個の酸化還元電位計7の計測値に基づく場合に比べて、
より敏感かつ的確に、被処理水の性状に応じた水質成分
除去処理を行うことができる。
As described above, according to the present embodiment, the motor-operated valve 12 is adjusted based on each measurement value from the plurality of redox electrometers 7 and the air is sent from the blower 11 to the aeration tank 3. By adjusting the air volume and controlling the air volume, 1
Compared to the case based on the measurement value of each redox electrometer 7,
It is possible to perform the water quality component removal treatment according to the property of the water to be treated more sensitively and accurately.

【0098】第3の実施の形態 図4は本発明の第3の実施の形態を示す図である。ここ
で図4は、被処理水中の水質成分を除去処理する水質制
御装置1を示す構成図である。
Third Embodiment FIG. 4 is a diagram showing a third embodiment of the present invention. Here, FIG. 4 is a configuration diagram showing a water quality control device 1 for removing water quality components in the water to be treated.

【0099】図4に示す第3の実施の形態において、水
質制御装置1は、酸化還元電位計7の入り側に濾過装置
8が設けられている。
In the third embodiment shown in FIG. 4, the water quality control device 1 is provided with a filtering device 8 on the inlet side of the oxidation-reduction potentiometer 7.

【0100】濾過装置8は、第1沈殿池2の後段部に第
1濾過水配管59を介して接続された限外濾過膜31
と、限外濾過膜31に第2濾過水配管60を介して接続
された濾過水槽32とを有している。限外濾過膜31と
第1沈殿池2前段部とは、濾過ポンプ63が取り付けら
れた第1濾過返送管61により連結されている。また、
濾過水槽32と第1沈殿池2前段部とは、第2濾過返送
管62により連結されており、濾過水槽32内の被処理
水が第2濾過返送管62の取り付け位置より高位になる
と、濾過水槽32内の被処理水は重力流により第2濾過
返送管62を経て第1沈殿池2に返送されるようになっ
ている。このように濾過装置8は、第1濾過水配管5
9、限外濾過膜31、第2濾過水配管60、濾過水槽3
2、濾過ポンプ63、第1濾過返送管61、第2濾過返
送管62とにより形成される膜濾過機構を有している。
The filtration device 8 is composed of an ultrafiltration membrane 31 connected to a rear part of the first settling tank 2 via a first filtered water pipe 59.
And a filtered water tank 32 connected to the ultrafiltration membrane 31 via a second filtered water pipe 60. The ultrafiltration membrane 31 and the first stage of the first sedimentation tank 2 are connected by a first filtration return pipe 61 to which a filtration pump 63 is attached. Also,
The filtered water tank 32 and the first stage of the first settling tank 2 are connected by a second filtration return pipe 62, and when the water to be treated in the filtered water tank 32 becomes higher than the mounting position of the second filtration return pipe 62, it is filtered. The water to be treated in the water tank 32 is returned by gravity flow to the first settling tank 2 through the second filtration return pipe 62. In this way, the filtering device 8 includes the first filtered water pipe 5
9, ultrafiltration membrane 31, second filtered water pipe 60, filtered water tank 3
2. A membrane filtration mechanism formed by the filtration pump 63, the first filtration return pipe 61, and the second filtration return pipe 62.

【0101】また、濾過水槽32には酸化還元電位計7
が設けられており、酸化還元電位計7は、濾過水槽32
内の被処理水の酸化あるいは還元の程度を計測すること
ができる。
Further, in the filtered water tank 32, an oxidation-reduction potentiometer 7
Is provided, and the oxidation-reduction potentiometer 7 includes a filtered water tank 32.
The degree of oxidation or reduction of the water to be treated can be measured.

【0102】また、流入水質予測演算部23は、曝気槽
3に流入する被処理水中のNH4濃度を演算予測する以
下の(8)式を格納している。
Further, the inflow water quality prediction calculation section 23 stores the following equation (8) for calculating and predicting the NH4 concentration in the water to be treated flowing into the aeration tank 3.

【0103】 <流入水質予測演算部> (1)NH4濃度予測演算 [NH4in]t=a3×{[PV-d-ORP]t}+b3 ・・・・・・・(8)式 <記号> [PV-d-ORP]t :溶解性ORP計測値 [NH4in]t :NH4予測値 a3、b3 :予測演算係数 他の構成は図1に示す第1の実施の形態と略同一であ
る。
<Inflow Water Quality Prediction Calculation Unit> (1) NH4 Concentration Prediction Calculation [NH4in] t = a3 × {[PV-d-ORP] t} + b3 (8) Equation <Symbol> [PV-d-ORP] t: Soluble ORP measurement value [NH4in] t: NH4 predicted value a3, b3: Prediction calculation coefficient Other configurations are substantially the same as those of the first embodiment shown in FIG.

【0104】図4において、図1に示す第1の実施の形
態と同一部分には同一符号を付して詳細な説明は省略す
る。
In FIG. 4, the same parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals and detailed description thereof will be omitted.

【0105】第1沈殿池2後段部の被処理水は、濾過ポ
ンプ63を駆動することにより、第1濾過水配管59を
経て限外濾過膜31に流入して膜濾過された後、被処理
水は、限外濾過膜31から第1濾過返送管61を経て第
1沈殿池2前段部に返送される。このようにして被処理
水は第1沈殿池2と濾過装置8との間を循環することと
なる。
The water to be treated in the latter part of the first settling basin 2 is driven by the filtration pump 63 to flow into the ultrafiltration membrane 31 through the first filtered water pipe 59 to be membrane-filtered, and then to be treated. Water is returned from the ultrafiltration membrane 31 to the first stage of the first settling tank 2 via the first filtration return pipe 61. In this way, the water to be treated circulates between the first settling tank 2 and the filtration device 8.

【0106】このように被処理水が循環する過程におい
て、限外濾過膜31で膜濾過された被処理水の一部は、
限外濾過膜31の表面のフロスフロー力により、第2濾
過水配管60を経て濾過水槽32に流入する。
In the process of circulating the water to be treated as described above, a part of the water to be treated which has been membrane-filtered by the ultrafiltration membrane 31 is
Due to the floss flow force on the surface of the ultrafiltration membrane 31, it flows into the filtered water tank 32 through the second filtered water pipe 60.

【0107】濾過水槽32に流入した被処理水は、酸化
還元電位計7により酸化あるいは還元の程度が計測され
る。従って、酸化還元電位計7により計測される被処理
水は、膜濾過されて固形物(SS)の成分が完全に除去
された濾過水となる。
The degree of oxidation or reduction of the water to be treated flowing into the filtered water tank 32 is measured by the oxidation-reduction potentiometer 7. Therefore, the water to be treated measured by the oxidation-reduction potentiometer 7 is filtered water that has been subjected to membrane filtration to completely remove the solid matter (SS) component.

【0108】このようにして酸化還元電位計7によって
計測された計測値は、流入水質予測演算部23に送られ
る。流入水質予測演算部23では、酸化還元電位計7の
計測値に基づき、上記の(8)式に従って被処理水中の
NH4濃度を演算予測する。
The measurement value thus measured by the oxidation-reduction potentiometer 7 is sent to the inflow water quality prediction calculation unit 23. The inflow water quality prediction calculation unit 23 calculates and predicts the NH4 concentration in the water to be treated based on the measurement value of the oxidation-reduction potentiometer 7 according to the above equation (8).

【0109】また、風量目標値演算部21は、流入水質
予測演算部23から送られたNH4濃度と、(5)式お
よび(6)式とから、曝気風量の目標値および曝気風量
目標値補正値が演算される。そして、風量制御部22
は、風量目標値演算部21からの曝気風量目標値および
曝気風量目標値補正値と、空気流量計13からの空気量
計測値とに基づいて電動弁12を調節して、ブロア11
から空気管14を介して散気管15に送られる空気量を
調整して風量を制御している。
Further, the air volume target value calculation unit 21 corrects the target value of the aeration air volume and the aeration air volume target value from the NH4 concentration sent from the inflow water quality prediction calculation unit 23 and the equations (5) and (6). The value is calculated. Then, the air volume control unit 22
Adjusts the motor-operated valve 12 based on the aeration air amount target value and the aeration air amount target value correction value from the air amount target value calculation unit 21 and the air amount measurement value from the air flow meter 13, and the blower 11
The air volume is controlled by adjusting the amount of air sent from the air diffuser 15 to the air diffuser 15 via the air pipe 14.

【0110】濾過水槽32に流入した被処理水は、第2
濾過返送管62の取り付け位置より高位になると、重力
流により第2濾過返送管62を経て第1沈殿池2に返送
される。
The water to be treated which has flowed into the filtered water tank 32 is the second
When the position is higher than the mounting position of the filtration return pipe 62, it is returned to the first settling tank 2 through the second filtration return pipe 62 by the gravity flow.

【0111】次に、本実施の形態の一変形例について説
明する。
Next, a modification of the present embodiment will be described.

【0112】本発明による水質制御装置1は、限外濾過
膜31の代わりに砂濾過装置33を用いてもよい。この
場合、濾過装置8は、砂濾過装置33等により、膜濾過
機構の代わりに砂濾過機構を有することとなる。この場
合、第1濾過水配管59を経て砂濾過装置33に流入し
た被処理水は、砂濾過されて固形物(SS)の成分が完
全に除去される。これにより、酸化還元電位計7により
計測される被処理水は、固形物の成分が除去された濾過
水が用いられる。
In the water quality control device 1 according to the present invention, the sand filtration device 33 may be used instead of the ultrafiltration membrane 31. In this case, the filtration device 8 has a sand filtration mechanism instead of the membrane filtration mechanism by the sand filtration device 33 and the like. In this case, the water to be treated which has flowed into the sand filter device 33 through the first filtered water pipe 59 is sand-filtered to completely remove the solid matter (SS) component. As a result, the water to be treated measured by the oxidation-reduction potentiometer 7 is filtered water from which solid components have been removed.

【0113】また、砂濾過装置33を用いる場合には、
砂濾過装置33を下方に配置して被処理水を自然流下さ
せれば濾過ポンプ63のような動力源が不要となり、簡
潔な構造にするとともに運転コストを低減させることが
できる。
If the sand filter 33 is used,
If the sand filter device 33 is disposed below to allow the water to be treated to flow down naturally, a power source such as the filtration pump 63 becomes unnecessary, and the structure can be simplified and the operating cost can be reduced.

【0114】本実施の形態の他の変形例として、限外濾
過膜31の代わりに精密濾過膜(MF膜)や中空糸膜等
の他の濾過膜を用いることもできる。この場合にも、酸
化還元電位計7により計測される被処理水は、第1濾過
水配管59を経て、精密濾過膜や中空糸膜等の他の濾過
膜により濾過されて固形物(SS)の成分が除去された
濾過水が用いられることとなる。
As another modification of the present embodiment, the ultrafiltration membrane 31 may be replaced with another filtration membrane such as a microfiltration membrane (MF membrane) or a hollow fiber membrane. Also in this case, the water to be treated measured by the oxidation-reduction potentiometer 7 is filtered through another filtration membrane such as a microfiltration membrane or a hollow fiber membrane through the first filtered water pipe 59 to obtain a solid matter (SS). The filtered water from which the component was removed will be used.

【0115】以上説明したように、本実施の形態によれ
ば、酸化還元電位計7の計測対象となる被処理水は、限
外濾過膜31により濾過されて固形物成分が除去された
濾過水が用いられる。これにより、流入水質予測演算部
23は被処理水中の水質成分濃度を精度良く求めること
ができる。特に、NH4濃度の演算予測のように、溶解
性の水質成分が流入水質予測演算部23における予測対
象である場合には、被処理水中の固形成分が酸化還元電
位計7の計測に大きな影響を与えるので、固形物成分を
除去した濾過水を酸化還元電位計7の計測に用いること
により、流入水質予測演算部23は被処理水中の水質成
分濃度をさらに精度良く求めることができる。
As described above, according to the present embodiment, the water to be treated which is to be measured by the oxidation-reduction potentiometer 7 is filtered water obtained by filtering the solid component by the ultrafiltration membrane 31. Is used. Thereby, the inflow water quality prediction calculation unit 23 can accurately obtain the water quality component concentration in the water to be treated. In particular, when a soluble water quality component is a target of prediction in the inflow water quality prediction calculation unit 23, as in the calculation prediction of NH4 concentration, the solid component in the treated water has a great influence on the measurement of the redox electrometer 7. Therefore, by using the filtered water from which the solid component has been removed for the measurement of the oxidation-reduction potentiometer 7, the inflow water quality prediction calculation unit 23 can more accurately obtain the water quality component concentration in the water to be treated.

【0116】第4の実施の形態 本実施の形態における水質制御装置1は、図1に示す制
御装置5の流入水質予測演算部23では、酸化還元電位
計7の計測値と、酸化還元電位計7の計測値の変化値
と、に基づいて、被処理水中の水質成分濃度および水質
成分濃度の変化を演算予測するために、以下の(9)式
を格納している。
Fourth Embodiment In the water quality control device 1 according to the present embodiment, in the inflow water quality prediction calculation unit 23 of the control device 5 shown in FIG. 1, the measured value of the redox potential meter 7 and the redox potential meter are used. The following equation (9) is stored in order to calculate and predict the concentration of the water quality component in the water to be treated and the change in the concentration of the water quality component based on the change value of the measurement value of No. 7 and the change value.

【0117】 <流入水質予測演算部> (1)NH4濃度予測演算 [NH4in]t=a4×{[PV-ORP]t-[PV-ORP]t-1}+b4 ・・・・・・・(9)式 <記号> [PV-ORP]t :今回のORP計測値 [PV-ORP]t-1 :前回のORP計測値 [NH4in]t :今回のNH4予測値 a4、b4 :予測演算係数 また、制御装置5の風量目標値演算部21では、流入水
質予測演算部23からの水質成分濃度および水質成分濃
度の変化に基づいて、風量目標値および風量目標値補正
値が求められる。
<Inflow Water Quality Prediction Calculation Unit> (1) NH4 concentration prediction calculation [NH4in] t = a4 × {[PV-ORP] t- [PV-ORP] t-1} + b4 ... (9) Formula <Symbol> [PV-ORP] t: Current ORP measurement value [PV-ORP] t-1: Previous ORP measurement value [NH4in] t: Current NH4 predicted value a4, b4: Prediction calculation coefficient Further, the air volume target value calculation unit 21 of the control device 5 obtains the air volume target value and the air volume target value correction value based on the change in the water quality component concentration and the water quality component concentration from the inflow water quality prediction calculation unit 23.

【0118】他の構成は図1に示す第1の実施の形態と
略同一である。
The other structure is substantially the same as that of the first embodiment shown in FIG.

【0119】図1に示す第1の実施の形態と同一部分に
は同一符号を付して詳細な説明は省略する。
The same parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals and detailed description thereof will be omitted.

【0120】供給水配管57を経て第1沈殿池2に流入
した被処理水は、酸化還元電位計7により酸化あるいは
還元の程度が計測され、この酸化還元電位計7の計測値
は、制御装置5の流入水質予測演算部23に送られる。
流入水質予測演算部23では、酸化還元電位計7の計測
値と、酸化還元電位計7の計測値の変化値と、上記の
(9)式とに基づいて、被処理水中の水質成分濃度およ
び水質成分濃度の変化を演算予測する。図5は、計測時
間と酸化還元電位計の計測値との関係、および計測時間
と酸化還元電位計の計測値の微分値との関係を示す図で
ある。
The degree of oxidation or reduction of the water to be treated which has flowed into the first settling tank 2 via the supply water pipe 57 is measured by the redox electrometer 7, and the measured value of the redox electrometer 7 is the control device. 5 is sent to the inflow water quality prediction calculation unit 23.
The inflow water quality prediction calculation unit 23 calculates the water quality component concentration in the water to be treated based on the measurement value of the oxidation-reduction potentiometer 7, the change value of the measurement value of the oxidation-reduction potentiometer 7, and the above equation (9). Calculate and predict changes in water quality component concentrations. FIG. 5 is a diagram showing the relationship between the measurement time and the measurement value of the redox electrometer, and the relationship between the measurement time and the differential value of the measurement value of the redox electrometer.

【0121】流入水質予測演算部23で演算予測された
被処理水中の水質成分濃度および水質成分濃度の変化
は、風量目標値演算部21に送られ、風量目標値演算部
21では、この水質成分濃度および水質成分濃度の変化
に基づいて風量目標値および風量目標値補正値が演算さ
れている。
The water quality component concentration in the to-be-treated water and the change in the water quality component concentration, which are calculated and predicted by the inflow water quality prediction calculation unit 23, are sent to the air flow target value calculation unit 21, which then calculates the water quality component. The air volume target value and the air volume target value correction value are calculated based on the changes in the concentration and the water quality component concentration.

【0122】以上説明したように、本実施の形態によれ
ば、制御装置5の風量目標値演算部21では、流入水質
予測演算部23で演算された被処理水中の水質成分濃度
および水質成分濃度の変化に基づいて、風量目標値およ
び風量目標値補正値が演算される。図5に示すように、
水質成分濃度の変化の値がマイナスの場合には、酸化性
物質であるNH4の流入量が減少し、プラスの場合に
は、NH4の流入量が増大していることを示す。従っ
て、風量目標値演算部21における風量目標値および風
量目標値補正値の演算の際に、被処理水中の水質成分濃
度の他に、水質成分濃度の変化も考慮することにより、
被処理水の曝気に必要とされるブロア11から曝気槽3
に送られる空気量を、さらに精度良く求めることがで
き、制御装置5はより精度の高い風量制御を行うことが
できる。
As described above, according to the present embodiment, in the air volume target value calculation unit 21 of the control device 5, the water quality component concentration and the water quality component concentration in the treated water calculated by the inflow water quality prediction calculation unit 23 are calculated. Based on the change of, the air volume target value and the air volume target value correction value are calculated. As shown in FIG.
When the value of the change in the concentration of the water quality component is negative, the inflow amount of NH4, which is an oxidizing substance, is decreased, and when the value is positive, the inflow amount of NH4 is increased. Therefore, when calculating the air flow target value and the air flow target value correction value in the air flow target value calculation unit 21, by considering not only the water quality component concentration in the treated water but also the change in the water quality component concentration,
Aeration tank 3 from blower 11 required for aeration of treated water
The amount of air sent to the air conditioner can be obtained with higher accuracy, and the control device 5 can perform more accurate air flow rate control.

【0123】第5の実施の形態 図6は本発明の第5の実施の形態を示す図である。ここ
で図6は、被処理水中の水質成分を除去処理する水質制
御装置1を示す構成図である。
Fifth Embodiment FIG. 6 is a diagram showing a fifth embodiment of the present invention. Here, FIG. 6 is a configuration diagram showing a water quality control device 1 for removing water quality components in the water to be treated.

【0124】図6に示す第5の実施の形態において、第
1沈殿池2と曝気槽3とを連結する第1水配管51には
流入流量計9(流入流量計測手段)が取り付けられてい
る。流入流量計9は、第1水配管51を流れて曝気槽3
に流入することとなる被処理水の流量を計測することが
できる。
In the fifth embodiment shown in FIG. 6, an inflow flow meter 9 (inflow flow rate measuring means) is attached to the first water pipe 51 connecting the first settling tank 2 and the aeration tank 3. . The inflow flow meter 9 flows through the first water pipe 51 and flows into the aeration tank 3
It is possible to measure the flow rate of the water to be treated that will flow into the.

【0125】また、制御装置5は流入水質予測補正演算
部24(補正演算部)をさらに有している。流入水質予
測補正演算部24は、流入水質予測演算部23に電気的
に接続されるとともに、風量目標値演算部21に電気的
に接続され、さらに流入流量計9にも電気的に接続され
ている。流入水質予測補正演算部24は、流入水質予測
演算部23から送られてくる被処理水中の水質成分濃度
の演算値である水質成分濃度予測値と、流入流量計9か
ら送られてくる被処理水の流入量とに基づいて被処理水
中の水質成分濃度を補正した水質成分濃度予測補正値を
風量目標値演算部21に送る。
The controller 5 further has an inflow water quality prediction correction calculation unit 24 (correction calculation unit). The inflow water quality prediction correction calculation unit 24 is electrically connected to the inflow water quality prediction calculation unit 23, is electrically connected to the air volume target value calculation unit 21, and is also electrically connected to the inflow flow meter 9. There is. The inflow water quality prediction correction calculation unit 24 calculates the water quality component concentration predicted value, which is the calculated value of the water quality component concentration in the water to be processed, sent from the inflow water quality prediction calculation unit 23, and the processed water sent from the inflow flowmeter 9. A water quality component concentration predicted correction value obtained by correcting the water quality component concentration in the water to be treated based on the water inflow amount is sent to the air volume target value calculation unit 21.

【0126】なお、流入水質予測演算部23は、曝気槽
3に流入する被処理水中のNH4濃度を演算予測する以
下の(10)式を格納している。
The inflow water quality prediction calculation unit 23 stores the following equation (10) for calculating and predicting the NH4 concentration in the water to be treated flowing into the aeration tank 3.

【0127】 <流入水質予測演算部> (2)NH4濃度予測補正演算 [NH4in]t=a5×[Qin]t×[NH4in]t+b5 ・・・・・・・(10)式 <記号> [PV-ORP]t :今回のORP計測値 [PV-ORP]t-1 :前回のORP計測値 [NH4in]t :今回のNH4予測値 [Qin]t :今回の流入流量計測値 a1,b1,a5,b5 :予測演算係数 他の構成は図1に示す第1の実施の形態と略同一であ
る。
<Influent Water Quality Prediction Calculation Unit> (2) NH4 Concentration Prediction Correction Calculation [NH4in] t = a5 × [Qin] t × [NH4in] t + b5 ... (10) Equation <Symbol> [PV-ORP] t: Current ORP measurement value [PV-ORP] t-1: Previous ORP measurement value [NH4in] t: Current NH4 predicted value [Qin] t: Current inflow measurement value a1, b1 , a5, b5: Prediction calculation coefficient Other configurations are substantially the same as those of the first embodiment shown in FIG.

【0128】図6において、図1に示す第1の実施の形
態と同一部分には同一符号を付して詳細な説明は省略す
る。
In FIG. 6, the same parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals and detailed description thereof will be omitted.

【0129】供給水配管57を経て第1沈殿池2に流入
した被処理水は、第1水配管51を経て曝気槽3に流入
する。このとき、曝気槽3に流入する被処理水の流量
は、第1水配管51に取り付けられた流入流量計9によ
り計測され、この流入流量計9の計測値は、制御装置5
の流入水質予測補正演算部24に送られる。
The water to be treated which has flowed into the first settling tank 2 via the supply water pipe 57 flows into the aeration tank 3 via the first water pipe 51. At this time, the flow rate of the water to be treated flowing into the aeration tank 3 is measured by the inflow flow meter 9 attached to the first water pipe 51, and the measured value of the inflow flow meter 9 is the control device 5.
Is sent to the inflow water quality prediction correction calculation unit 24.

【0130】また、第1沈殿池2内の被処理水は、酸化
還元電位計7により酸化あるいは還元の程度が計測され
て、この酸化還元電位計7の計測値に基づいて流入水質
予測演算部23で演算された被処理水中の水質成分濃度
の演算値は、流入水質予測演算部23から流入水質予測
補正演算部24へ送られる。
The degree of oxidation or reduction of the water to be treated in the first settling basin 2 is measured by the oxidation-reduction potentiometer 7, and the inflow water quality prediction calculation unit is based on the measured value of the oxidation-reduction potentiometer 7. The calculated value of the water quality component concentration in the treated water calculated in 23 is sent from the inflow water quality prediction calculation unit 23 to the inflow water quality prediction correction calculation unit 24.

【0131】流入水質予測補正演算部24では、流入流
量計9から送られてきた曝気槽3に流入する被処理水の
流量の計測値と、流入水質予測演算部23から送られて
きた被処理水の水質成分濃度の演算値と、上記の(4)
式および(10)式と、に基づいて、被処理水中の水質
成分(NH4)濃度が補正される。
In the inflow water quality prediction correction calculation unit 24, the measured value of the flow rate of the water to be treated flowing into the aeration tank 3 sent from the inflow flow meter 9 and the treated water sent from the inflow water quality prediction calculation unit 23. Calculated value of water quality component concentration and (4) above
The water quality component (NH4) concentration in the water to be treated is corrected based on the equation and the equation (10).

【0132】なお、流入水質予測補正演算部24で被処
理水中の水質成分濃度を補正する代わりに、流入水質予
測演算部23で、予め流入流量計9から送られてくる曝
気槽3に流入する被処理水の流量の計測値を考慮した数
式を用いて水質成分濃度を演算することもできる。この
場合、例えば以下の(11)式を用いることができる。
Instead of correcting the concentration of the water quality component in the water to be treated by the inflow water quality prediction calculation unit 24, the inflow water quality prediction calculation unit 23 flows the aeration tank 3 sent from the inflow flowmeter 9 in advance. It is also possible to calculate the water quality component concentration using a mathematical formula that takes into consideration the measured value of the flow rate of the water to be treated. In this case, for example, the following equation (11) can be used.

【0133】 <補正演算を含有する流入水質予測演算部> (1)NH4濃度予測演算 [NH4in]t=a6×[PV-ORP]t+c6×[Qin]t+b6 ・・・・・・・(11)式 <記号> [PV-ORP]t :今回のORP計測値 [PV-ORP]t-1 :前回のORP計測値 [NH4in]t :今回のNH4予測値 a6,b6,c6 :予想演算係数 次に、本実施の形態の一変形例について説明する。[0133] <Inflow water quality prediction calculation unit including correction calculation> (1) NH4 concentration prediction calculation   [NH4in] t = a6 × [PV-ORP] t + c6 × [Qin] t + b6 ・ ・ ・ ・ ・ ・ (11)     <Symbol>     [PV-ORP] t: ORP measurement value this time     [PV-ORP] t-1: Previous ORP measurement value     [NH4in] t: NH4 predicted value this time     a6, b6, c6: Expected calculation coefficient Next, a modified example of the present embodiment will be described.

【0134】曝気槽3に流入する被処理水の流量を計測
する流入計測手段として、第1沈殿池2より前段に設け
られ、被処理水を水質制御装置1内を流すポンプ井(図
示せず)に設けられた水位計を用いることもできる。
As an inflow measuring means for measuring the flow rate of the water to be treated flowing into the aeration tank 3, a pump well (not shown) is provided in front of the first settling basin 2 and flows the water to be treated inside the water quality control device 1. It is also possible to use the water level gauge provided in).

【0135】水位計により計測されたポンプ井の水位
H、およびこの水位Hと曝気槽3に流入する被処理水の
流量Qとの関係を示すQ−Hカーブより、曝気槽3に流
入する被処理水の流量Qを演算することができる。
From the water level H of the pump well measured by the water level gauge, and the QH curve showing the relationship between this water level H and the flow rate Q of the water to be treated flowing into the aeration tank 3, the aeration tank 3 flowing into the aeration tank 3 is shown. The flow rate Q of treated water can be calculated.

【0136】このようにして演算された曝気槽3に流入
する被処理水の流量Qは、流入水質予測補正演算部24
で被処理水中の水質成分(NH4)濃度を補正するのに
用いられる。
The flow rate Q of the water to be treated flowing into the aeration tank 3 calculated in this way is calculated by the inflow water quality prediction correction calculation unit 24.
Is used to correct the water quality component (NH4) concentration in the water to be treated.

【0137】次に、本実施の形態の他の変形例について
説明する。
Next, another modification of this embodiment will be described.

【0138】第1水配管51に流入SS計(流入水固形
物濃度計測手段)を取り付けて、このSS計と制御装置
5の流入水質予測補正演算部24とを電気的に接続する
こともできる。
It is also possible to attach an inflow SS meter (inflow water solids concentration measuring means) to the first water pipe 51 and electrically connect this SS meter to the inflow water quality prediction correction calculation section 24 of the controller 5. .

【0139】曝気槽3に流入する被処理水に含まれる固
形物濃度は、SS計により計測されて、このSS計の計
測値は、SS計から流入水質予測補正演算部24に送ら
れる。
The solids concentration contained in the water to be treated flowing into the aeration tank 3 is measured by the SS meter, and the measured value of the SS meter is sent from the SS meter to the inflow water quality prediction correction calculation unit 24.

【0140】流入水質予測補正演算部24では、SS計
から送られてきた曝気槽3に流入する被処理水被処理水
中の固形物濃度に基づき、適当な演算式を用いることに
より流入水質予測演算部23から送られてきた被処理水
のNH4(水質成分)濃度の演算値を補正する。
The inflow water quality predicting / calculating unit 24 uses an appropriate arithmetic expression to calculate the inflow water quality based on the solid concentration in the treated water to be treated flowing into the aeration tank 3 sent from the SS meter. The calculated value of the NH4 (water quality component) concentration of the water to be treated sent from the unit 23 is corrected.

【0141】酸化還元電位計7により計測された被処理
水の酸化あるいは還元の程度から、被処理水中の水質成
分濃度を求める際には、被処理水中の固形物濃度が大き
く影響する。従って、SS計により計測された被処理水
中の固形物濃度を用いて、被処理水中の水質成分濃度を
補正することにより、被処理水中の水質成分濃度は精度
良く求められる。
When the concentration of the water quality component in the water to be treated is determined from the degree of oxidation or reduction of the water to be treated measured by the oxidation-reduction potentiometer 7, the solid matter concentration in the water to be treated has a great influence. Therefore, by correcting the water quality component concentration in the treated water using the solid matter concentration in the treated water measured by the SS meter, the concentration of the water quality component in the treated water can be accurately obtained.

【0142】また、SS計が設置される第1水配管を流
れる被処理水は、第1沈殿池でフロックや汚泥の沈殿処
理が行われているので、SS計は被処理水により汚され
ることが少なくなっている。
Further, since the treated water flowing through the first water pipe in which the SS meter is installed undergoes flocculation and sludge sedimentation treatment in the first settling tank, the SS meter should be polluted by the treated water. Is decreasing.

【0143】なお、流入水質予測補正演算部24で水質
成分濃度を補正する際には、以下の計測器の計測値を用
いることができる。
When the inflow water quality prediction correction calculation unit 24 corrects the water quality component concentration, the following measurement values of the measuring instruments can be used.

【0144】すなわち、第1水配管51に流入濁度計
(流入水固形物濃度計測手段)を取り付けて、この流入
濁度計と制御装置5の流入水質予測補正演算部24とを
電気的に接続することもできる。流入水質予測演算部2
3で演算予測されたNH4濃度は、この流入濁度計によ
り計測された曝気槽3に流入する被処理水中の濁度成分
濃度を用いて、流入水質予測補正演算部24で補正され
る。
That is, an inflow turbidity meter (inflow water solids concentration measuring means) is attached to the first water pipe 51, and the inflow turbidity meter and the inflow water quality prediction correction calculation section 24 of the control device 5 are electrically connected. You can also connect. Inflow water quality calculation unit 2
The NH4 concentration calculated and predicted in 3 is corrected by the inflow water quality prediction correction calculation unit 24 using the turbidity component concentration in the treated water flowing into the aeration tank 3 measured by the inflow turbidity meter.

【0145】また、第1水配管51に紫外線吸光度を計
測する流入UV計(流入水UV値計測手段)を取り付け
て、この流入UV計と制御装置5の流入水質予測補正演
算部24とを電気的に接続することもできる。流入水質
予測演算部23で演算予測されたNH4濃度は、この流
入UV計により計測された曝気槽3に流入する被処理水
中の濁度成分濃度を用いて、流入水質予測補正演算部2
4で補正される。すなわち、曝気槽3に流入する被処理
水中の流入有機物濃度は、高い相関関係を有する流入U
Vの影響を受けるので、流入UVにより水質成分濃度を
補正することにより、より精度良く被処理水中の水質成
分濃度を求めることができる。
Further, an inflow UV meter (inflow water UV value measuring means) for measuring the ultraviolet absorbance is attached to the first water pipe 51, and this inflow UV meter and the inflow water quality prediction correction calculation section 24 of the control device 5 are electrically connected. You can also connect to each other. The NH4 concentration calculated and predicted by the inflow water quality prediction calculation unit 23 uses the turbidity component concentration in the treated water flowing into the aeration tank 3 measured by this inflow UV meter to calculate the inflow water quality prediction correction calculation unit 2
Corrected in 4. That is, the inflow organic matter concentration in the water to be treated flowing into the aeration tank 3 has a high correlation with the inflow U.
Since it is affected by V, the concentration of the water quality component in the water to be treated can be calculated more accurately by correcting the concentration of the water quality component by the inflow UV.

【0146】また、第1水配管51に被処理水の水温を
計測する流入水温計(流入水水温計測手段)を取り付け
て、この流入水温計と制御装置5の流入水質予測補正演
算部24とを電気的に接続することもできる。流入水質
予測演算部23で演算予測されたNH4濃度は、この流
入水温計により計測された曝気槽3に流入する被処理水
中の濁度成分濃度を用いて、流入水質予測補正演算部2
4で補正される。
Further, an inflow water thermometer (inflow water temperature measuring means) for measuring the water temperature of the water to be treated is attached to the first water pipe 51, and the inflow water temperature gauge and the inflow water quality prediction correction calculation unit 24 of the controller 5 Can also be electrically connected. The NH4 concentration calculated and predicted by the inflow water quality prediction calculation unit 23 uses the turbidity component concentration in the treated water flowing into the aeration tank 3 measured by the inflow water thermometer to calculate the inflow water quality prediction correction calculation unit 2
Corrected in 4.

【0147】また、第1水配管51に被処理水のpHを
計測する流入pH計(流入水pH計測手段)を取り付け
て、この流入pH計と制御装置5の流入水質予測補正演
算部24とを電気的に接続することもできる。流入水質
予測演算部23で演算予測されたNH4濃度は、この流
入pH計により計測された曝気槽3に流入する被処理水
のpHを用いて、流入水質予測補正演算部24で補正さ
れる。
Further, an inflow pH meter (inflow water pH measuring means) for measuring the pH of the water to be treated is attached to the first water pipe 51, and this inflow pH meter and the inflow water quality prediction correction calculation unit 24 of the control device 5 are provided. Can also be electrically connected. The NH4 concentration calculated and predicted by the inflow water quality prediction calculation unit 23 is corrected by the inflow water quality prediction correction calculation unit 24 using the pH of the water to be treated flowing into the aeration tank 3 measured by this inflow pH meter.

【0148】以上説明したように、本実施の形態によれ
ば、流入流量計9により計測された曝気槽3に流入する
被処理水中の固形物濃度を用いて、制御装置5の流入水
質予測演算部23で計測された被処理水中の水質成分濃
度を補正することにより、より精度の高い水質成分濃度
を求めることができる。これにより、被処理水は、曝気
槽3でより的確な水質成分除去処理を受けることができ
る。
As described above, according to the present embodiment, the inflow water quality prediction calculation of the controller 5 is performed using the solid matter concentration in the water to be treated flowing into the aeration tank 3 measured by the inflow flow meter 9. By correcting the water quality component concentration in the water to be treated measured by the unit 23, a more accurate water quality component concentration can be obtained. As a result, the water to be treated can be subjected to a more accurate water quality component removal treatment in the aeration tank 3.

【0149】また、酸化還元電位計7とは異なる、ポン
プ井の水位計、流入SS計、流入濁度計、流入UV計、
流入水温計、流入pH計等の他のセンサにより計測され
た各計測値に基づいて、被処理水中の水質成分濃度を補
正することにより、より精度の高い水質成分濃度を求め
ることができる。
Further, different from the oxidation-reduction potentiometer 7, a water level gauge at the pump well, an inflow SS meter, an inflow turbidity meter, an inflow UV meter,
By correcting the water quality component concentration in the water to be treated on the basis of each measurement value measured by another sensor such as an inflow water thermometer or an inflow pH meter, a more accurate water quality component concentration can be obtained.

【0150】[0150]

【発明の効果】以上説明したように、本発明によれば、
被処理水中の水質成分を除去する水質成分処理機構を制
御する際に用いられる被処理水の酸化あるいは還元の程
度を計測する酸化還元電位計は、曝気槽より前段に設置
されている。このため、曝気槽において、被処理水の性
状に迅速に対応した水質成分除去処理を行うことができ
る。従って、被処理水中の水質成分濃度が急激に変化し
た場合でも、適切な水質成分除去処理を高効率かつ低コ
ストに行うことができる。
As described above, according to the present invention,
An oxidation-reduction potentiometer for measuring the degree of oxidation or reduction of the water to be treated, which is used when controlling the water quality component treatment mechanism for removing the water quality component in the water to be treated, is installed in front of the aeration tank. Therefore, in the aeration tank, it is possible to quickly perform the water quality component removal treatment that corresponds to the property of the water to be treated. Therefore, even if the concentration of the water quality component in the water to be treated changes rapidly, the appropriate water quality component removal treatment can be performed with high efficiency and at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による水質制御装置の第1の実施の形態
を示す構成図である。
FIG. 1 is a configuration diagram showing a first embodiment of a water quality control device according to the present invention.

【図2】本発明による水質制御装置の第2の実施の形態
を示す構成図である。
FIG. 2 is a configuration diagram showing a second embodiment of a water quality control device according to the present invention.

【図3】本発明による水質制御装置の第2の実施の形態
の一変形例を示す構成図である。
FIG. 3 is a configuration diagram showing a modification of the second embodiment of the water quality control device according to the present invention.

【図4】本発明による水質制御装置の第3の実施の形態
を示す構成図である。
FIG. 4 is a configuration diagram showing a third embodiment of a water quality control device according to the present invention.

【図5】計測時間と酸化還元電位計の計測値との関係、
および計測時間と酸化還元電位計の計測値の微分値との
関係を示す図である。
FIG. 5 shows the relationship between the measurement time and the measurement value of the redox potentiometer,
It is a figure which shows the relationship between measurement time and the differential value of the measured value of an oxidation-reduction potentiometer.

【図6】本発明による水質制御装置の第5の実施の形態
を示す構成図である。
FIG. 6 is a configuration diagram showing a fifth embodiment of a water quality control device according to the present invention.

【図7】従来の水質制御装置を示す構成図である。FIG. 7 is a configuration diagram showing a conventional water quality control device.

【図8】酸化還元電位計による計測値、曝気槽に流入す
る流入水中のNH4濃度、および曝気槽において水質成
分除去処理を受けた処理水中のNH4濃度と、時間との
関係を示す図である。
FIG. 8 is a diagram showing a relationship between a value measured by an oxidation-reduction potentiometer, an NH4 concentration in inflow water flowing into an aeration tank, an NH4 concentration in treated water subjected to a water quality component removal treatment in the aeration tank, and time. .

【符号の説明】[Explanation of symbols]

1 水質制御装置 2 第1沈殿池 3 曝気槽 3a 嫌気部 3b 無酸素部 3c 好気部 4 第2沈殿池 5 制御装置 6 水質成分処理機構 7 酸化還元電位計 8 濾過装置 9 流入流量計 10 汚泥処理槽 11 ブロア 12 電動弁 13 空気流量計 14 空気管 15 散気管 21 風量目標値演算部 22 風量制御部 23 流入水質予測演算部 24 流入水質予測補正演算部 31 限外濾過膜 32 濾過水槽 33 砂濾過装置 51 第1水配管 52 第2水配管 53 循環水配管 54 循環ポンプ 55 返送水配管 56 返送ポンプ 57 供給水配管 58 排出水配管 59 第1濾過水配管 60 第2濾過水配管 61 第1濾過返送管 62 第2濾過返送管 63 濾過ポンプ 64 汚泥水配管 65 戻し水配管 1 Water quality control device 2 First sedimentation tank 3 aeration tank 3a Anaerobic part 3b Anoxic part 3c Aerobic part 4 second sedimentation tank 5 control device 6 Water quality component treatment mechanism 7 Redox potentiometer 8 Filtration device 9 Inflow meter 10 Sludge treatment tank 11 Blower 12 Motorized valve 13 Air flow meter 14 air tubes 15 Air diffuser 21 Target air volume calculation unit 22 Airflow controller 23 Influent water quality calculation unit 24 Influent water quality prediction correction calculation unit 31 ultrafiltration membrane 32 filtered water tank 33 sand filter 51 First water piping 52 Second water pipe 53 Circulating water piping 54 Circulation pump 55 Return water piping 56 Return pump 57 Supply water piping 58 Discharged water piping 59 First filtered water piping 60 Second filtered water piping 61 First filtration return pipe 62 Second filtration return pipe 63 Filtration pump 64 Sludge water piping 65 Return water piping

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 11/00 C02F 11/00 C 11/14 11/14 B (72)発明者 山 中 理 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 本 木 唯 夫 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 柴 本 吉 広 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 初 鹿 行 雄 大阪府大阪市北区大淀中1丁目1番30号 株式会社東芝関西支社内 Fターム(参考) 4D028 AB00 AC01 AC09 BC01 BC14 BC18 BD08 BD16 BE08 CA01 CA09 CC01 CD01 CE01 4D040 BB05 BB07 BB32 BB57 BB65 BB72 BB92 4D059 AA04 AA05 BE55 CA28 DA16 DA35 EB02 EB11 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 11/00 C02F 11/00 C 11/14 11/14 B (72) Inventor Osamu Yamanaka Tokyo Fuchu No. 1 in Toshiba Fuchu Works, Toshiba Corporation (72) Inventor Yuio Motoki 1-1-1, Shibaura, Minato-ku, Tokyo Inside Toshiba Head Office (72) Inventor Yoshihiro Shibamoto Minato-ku, Tokyo Shibaura 1-1-1 Toshiba Headquarters Office (72) Inventor Hatsuka Kazuo 1-30-1 Oyonaka, Kita-ku, Osaka-shi, Osaka Toshiba Kansai Branch F-term (reference) 4D028 AB00 AC01 AC09 BC01 BC14 BC18 BD08 BD16 BE08 CA01 CA09 CC01 CD01 CE01 4D040 BB05 BB07 BB32 BB57 BB65 BB72 BB92 4D059 AA04 AA05 BE55 CA28 DA16 DA35 EB02 EB11

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】被処理水中の特定の水質成分を除去する水
質成分処理機構を有する曝気槽と、 曝気槽より前段に設置され、曝気槽への被処理水の酸化
あるいは還元の程度を計測する酸化還元電位計と、 酸化還元電位計に接続され、酸化還元電位計の計測値と
水質成分との関係式に基づいて被処理水中の水質成分濃
度を予測する流入水質予測演算部と、 流入水質予測演算部に接続され、流入水質予測演算部で
予測された水質成分濃度に基づいて水質成分処理機構を
制御する制御部と、を備えた水質制御装置。
1. An aeration tank having a water quality component treatment mechanism for removing a specific water quality component in the water to be treated, and a stage installed before the aeration tank to measure the degree of oxidation or reduction of the water to be treated to the aeration tank. The redox electrometer and an inflow water quality prediction calculation unit that is connected to the redox electrometer and predicts the water quality component concentration in the treated water based on the relational expression between the measured value of the redox electrometer and the water quality component, and the inflow water quality A water quality control device comprising: a control unit that is connected to the prediction calculation unit and that controls the water quality component processing mechanism based on the water quality component concentration predicted by the inflow water quality prediction calculation unit.
【請求項2】酸化還元電位計は、被処理水の流れ方向に
複数個配置され、 流入水質予測演算部は、各酸化還元電位計により計測さ
れた各計測値および各計測値の差分と水質成分との関係
式を格納していることを特徴とする請求項1記載の水質
制御装置。
2. A plurality of oxidation-reduction potentiometers are arranged in the flow direction of the water to be treated, and the inflow water quality prediction calculation unit measures each measured value by each oxidation-reduction potentiometer and the difference between each measured value and the water quality. The water quality control device according to claim 1, wherein a relational expression with components is stored.
【請求項3】酸化還元電位計は、被処理水の流れ方向に
対して垂直高さ方向をなす方向に複数個配置され、 流入水質予測演算部は、各酸化還元電位計により計測さ
れた各計測値および各計測値の差分と水質成分との関係
式を格納していることを特徴とする請求項1記載の水質
制御装置。
3. A plurality of oxidation-reduction potentiometers are arranged in a direction that is vertical to the flow direction of the water to be treated, and the inflow water quality prediction calculation unit is provided for each of the oxidation-reduction potentiometers. The water quality control device according to claim 1, wherein a relational expression between the measured value and the difference between the measured values and the water quality component is stored.
【請求項4】酸化還元電位計の入り側に濾過装置が設け
られていることを特徴とする請求項1乃至3のうちいず
れか1項に記載の水質制御装置。
4. The water quality control device according to claim 1, wherein a filter device is provided on the inlet side of the redox electrometer.
【請求項5】濾過装置は、膜濾過機構を有することを特
徴とする請求項4記載の水質制御装置。
5. The water quality control device according to claim 4, wherein the filtration device has a membrane filtration mechanism.
【請求項6】濾過装置は、砂濾過機構を有することを特
徴とする請求項4記載の水質制御装置。
6. The water quality control device according to claim 4, wherein the filtration device has a sand filtration mechanism.
【請求項7】汚泥処理する汚泥処理槽と、 汚泥処理槽で汚泥処理された汚泥処理返流水を曝気槽よ
り前段に返送する戻し水配管と、を備え、 酸化還元電位計は、戻し水配管を流れる汚泥処理返流水
の酸化あるいは還元の程度を計測することを特徴とする
請求項1乃至6のうちいずれか1項に記載の水質制御装
置。
7. A sludge treatment tank for sludge treatment, and a return water pipe for returning the sludge treatment return water sludge-treated in the sludge treatment tank to a stage preceding the aeration tank. The oxidation-reduction potentiometer is a return water pipe. The water quality control device according to any one of claims 1 to 6, wherein the degree of oxidation or reduction of the sludge treatment return water flowing through the tank is measured.
【請求項8】流入水質予測演算部は、酸化還元電位計の
計測値の変化値に基づいて、被処理水中の水質成分濃度
の変化を予測し、 制御部は、流入水質予測演算部で予測された水質成分濃
度および水質成分濃度の変化に基づいて水質成分処理機
構を制御することを特徴とする請求項1乃至7のうちい
ずれか1項に記載の水質制御装置。
8. The inflow water quality prediction calculation unit predicts a change in the water quality component concentration in the treated water based on the change value of the measurement value of the redox electrometer, and the control unit predicts the inflow water quality prediction calculation unit. The water quality control device according to claim 1, wherein the water quality component processing mechanism is controlled based on the changed water quality component concentration and the change in the water quality component concentration.
【請求項9】曝気槽に流入する被処理水の流量を計測す
る流入流量計測手段と、 流入流量計測手段に接続され、流入流量計測手段の計測
値に基づいて、流入水質予測演算部から送られる水質成
分濃度を補正して制御部へ送る補正演算部と、をさらに
備えたことを特徴とする請求項1乃至8のうちいずれか
1項に記載の水質制御装置。
9. An inflow water flow rate measuring means for measuring the flow rate of the water to be treated flowing into the aeration tank, and an inflow water quality predicting and calculating section connected to the inflow flow rate measuring means based on a measured value of the inflow water flow rate measuring means. The water quality control device according to any one of claims 1 to 8, further comprising: a correction calculation unit that corrects the concentration of the water quality component that is sent to the control unit.
【請求項10】曝気槽に流入する被処理水に含まれる固
形物濃度を計測する流入水固形物濃度計測手段と、 流入水固形物濃度計測手段に接続され、流入水固形物濃
度計測手段の計測値に基づいて、流入水質予測演算部か
ら送られる水質成分濃度を補正して制御部へ送る補正演
算部と、をさらに備えたことを特徴とする請求項1乃至
8のうちいずれか1項に記載の水質制御装置。
10. An inflowing water solids concentration measuring means for measuring a concentration of solids contained in the water to be treated flowing into the aeration tank, and an inflowing waters solids concentration measuring means 9. A correction calculation unit that corrects the concentration of the water quality component sent from the inflow water quality prediction calculation unit based on the measured value and sends it to the control unit, further comprising any one of claims 1 to 8. Water quality control device described in.
【請求項11】曝気槽に流入する被処理水の紫外線吸光
度を計測する流入水UV値計測手段と、 流入水UV値計測手段に接続され、流入水UV値計測手
段の計測値に基づいて、流入水質予測演算部から送られ
る水質成分濃度を補正して制御部へ送る補正演算部と、
をさらに備えたことを特徴とする請求項1乃至8のうち
いずれか1項に記載の水質制御装置。
11. Inflow water UV value measuring means for measuring the ultraviolet absorption of the water to be treated flowing into the aeration tank, and inflow water UV value measuring means are connected, based on the measurement values of the inflow water UV value measuring means. A correction calculation unit that corrects the concentration of the water quality component sent from the inflow water quality prediction calculation unit and sends it to the control unit,
The water quality control device according to any one of claims 1 to 8, further comprising:
【請求項12】曝気槽に流入する被処理水の水温を計測
する流入水水温計測手段と、 流入水水温計測手段に接続され、流入水水温計測手段の
計測値に基づいて、流入水質予測演算部から送られる水
質成分濃度を補正して制御部へ送る補正演算部と、をさ
らに備えたことを特徴とする請求項1乃至8のうちいず
れか1項に記載の水質制御装置。
12. An inflow water quality predicting calculation, which is connected to the inflow water temperature measuring means for measuring the water temperature of the treated water flowing into the aeration tank and is connected to the inflow water temperature measuring means based on the measured value of the inflow water temperature measuring means. 9. The water quality control device according to claim 1, further comprising a correction calculation unit that corrects the concentration of the water quality component sent from the unit and sends it to the control unit.
【請求項13】曝気槽に流入する被処理水のpHを計測
する流入水pH計測手段と、 流入水pH計測手段に接続され、流入水pH計測手段の
計測値に基づいて、流入水質予測演算部から送られる水
質成分濃度を補正して制御部へ送る補正演算部と、をさ
らに備えたことを特徴とする請求項1乃至8のうちいず
れか1項に記載の水質制御装置。
13. Inflow water pH measuring means for measuring the pH of the water to be treated flowing into the aeration tank, and inflow water quality prediction calculation based on the measured value of the inflow water pH measuring means, which is connected to the inflow water pH measuring means. 9. The water quality control device according to claim 1, further comprising a correction calculation unit that corrects the concentration of the water quality component sent from the unit and sends it to the control unit.
【請求項14】曝気槽で除去される被処理水中の水質成
分は、アンモニア性窒素、全窒素、ケルダール窒素、リ
ン酸性リン、全リン、発酵生産物、および易分解性有機
物のうちいずれか1つまたはこれらの組み合わせである
ことを特徴とする請求項1乃至13のうちいずれか1項
に記載の水質制御装置。
14. The water quality component in the water to be treated which is removed in the aeration tank is any one of ammonia nitrogen, total nitrogen, Kjeldahl nitrogen, phosphoric acid phosphorus, total phosphorus, fermentation products and easily decomposable organic substances. The water quality control device according to claim 1, wherein the water quality control device is one or a combination thereof.
JP2001251184A 2001-08-22 2001-08-22 Device for controlling water quality Withdrawn JP2003053375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251184A JP2003053375A (en) 2001-08-22 2001-08-22 Device for controlling water quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251184A JP2003053375A (en) 2001-08-22 2001-08-22 Device for controlling water quality

Publications (1)

Publication Number Publication Date
JP2003053375A true JP2003053375A (en) 2003-02-25

Family

ID=19079869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251184A Withdrawn JP2003053375A (en) 2001-08-22 2001-08-22 Device for controlling water quality

Country Status (1)

Country Link
JP (1) JP2003053375A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303010C (en) * 2003-10-23 2007-03-07 株式会社东芝 Water discharge treatment system
JP2007263723A (en) * 2006-03-28 2007-10-11 National Agriculture & Food Research Organization Water quality monitoring device
KR100884504B1 (en) * 2008-06-17 2009-03-06 태화강재산업 주식회사 Apparatus for treating waste water and method for controlling the same
JP2013043100A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Water treating process controller
CN113917103A (en) * 2021-10-15 2022-01-11 贵州师范学院 Multi-water-quality parameter detection device capable of automatically adjusting depth
US11325853B2 (en) 2018-11-07 2022-05-10 Kyogyoku Engineering Co., Ltd Sewage treatment system
JP7460267B2 (en) 2019-11-14 2024-04-02 学校法人 中央大学 Information processing device, information processing method, and program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303010C (en) * 2003-10-23 2007-03-07 株式会社东芝 Water discharge treatment system
JP2007263723A (en) * 2006-03-28 2007-10-11 National Agriculture & Food Research Organization Water quality monitoring device
KR100884504B1 (en) * 2008-06-17 2009-03-06 태화강재산업 주식회사 Apparatus for treating waste water and method for controlling the same
JP2013043100A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Water treating process controller
US11325853B2 (en) 2018-11-07 2022-05-10 Kyogyoku Engineering Co., Ltd Sewage treatment system
JP7460267B2 (en) 2019-11-14 2024-04-02 学校法人 中央大学 Information processing device, information processing method, and program
CN113917103A (en) * 2021-10-15 2022-01-11 贵州师范学院 Multi-water-quality parameter detection device capable of automatically adjusting depth
CN113917103B (en) * 2021-10-15 2023-05-19 贵州师范学院 Multi-water quality parameter detection device capable of automatically adjusting depth

Similar Documents

Publication Publication Date Title
JP3961835B2 (en) Sewage treatment plant water quality controller
KR100649417B1 (en) Apparatus for controlling aeration air volume used in the sewage treatment plant
JP4334317B2 (en) Sewage treatment system
JP3691650B2 (en) Water treatment method and control device
KR100945458B1 (en) Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP.
JP4229999B2 (en) Biological nitrogen removal equipment
JP3525006B2 (en) Sewage treatment plant water quality control equipment
JP4008694B2 (en) Sewage treatment plant water quality controller
JP2003053375A (en) Device for controlling water quality
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JP6334244B2 (en) Water treatment process control system
JP2006315004A (en) Water quality control unit for sewage disposal plant
KR20210000141A (en) Integrated control system for sewage treatment plant
JP3384951B2 (en) Biological water treatment method and equipment
JP3379199B2 (en) Operation control method of activated sludge circulation method
JP3707305B2 (en) Water treatment monitoring control method and apparatus
JP3214489B2 (en) Sewage treatment method and sewage treatment device
JP4573575B2 (en) Advanced sewage treatment method and apparatus
JP3708752B2 (en) Nitrate nitrogen biological treatment method and apparatus
JP3213657B2 (en) Wastewater treatment method and apparatus
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPH08117793A (en) Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method
JP3260575B2 (en) Control method of intermittent aeration type activated sludge method
JP3782738B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104