JP3213657B2 - Wastewater treatment method and apparatus - Google Patents

Wastewater treatment method and apparatus

Info

Publication number
JP3213657B2
JP3213657B2 JP23697193A JP23697193A JP3213657B2 JP 3213657 B2 JP3213657 B2 JP 3213657B2 JP 23697193 A JP23697193 A JP 23697193A JP 23697193 A JP23697193 A JP 23697193A JP 3213657 B2 JP3213657 B2 JP 3213657B2
Authority
JP
Japan
Prior art keywords
sewage
water
reaction tank
nitrogen
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23697193A
Other languages
Japanese (ja)
Other versions
JPH0788490A (en
Inventor
功 宗宮
洋 津野
登志夫 山田
Original Assignee
功 宗宮
洋 津野
アタカ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 功 宗宮, 洋 津野, アタカ工業株式会社 filed Critical 功 宗宮
Priority to JP23697193A priority Critical patent/JP3213657B2/en
Publication of JPH0788490A publication Critical patent/JPH0788490A/en
Application granted granted Critical
Publication of JP3213657B2 publication Critical patent/JP3213657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、単一槽にて有機物や窒
素化合物などを含有する汚水を浄化処理する汚水の処理
方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating sewage for purifying sewage containing organic substances and nitrogen compounds in a single tank.

【0002】[0002]

【従来の技術】従来より、有機物や窒素化合物などを含
有する例えばし尿などの汚水を浄化処理する場合、溶存
酸素(DO:Dissolved Oxygen)が存在する好気性雰囲
気で、好気性菌や通性嫌気性菌などが汚水に含有される
有機物を栄養源として活性化し、有機物を好気性菌や通
性嫌気性菌などにて酸化分解する酸化分解工程、溶存酸
素の存在下、アンモニア性窒素を亜硝酸菌や硝酸菌にて
亜硝酸性窒素や硝酸性窒素の酸化態窒素に酸化する硝化
工程、および、有機物もしくは自己分解により栄養を得
て溶存酸素が存在しない嫌気性雰囲気で、硝化された酸
化態窒素を脱窒菌が硝酸呼吸にて窒素ガスに還元する脱
窒工程を考慮する必要がある。
2. Description of the Related Art Conventionally, when purifying sewage such as human waste containing organic substances and nitrogen compounds, aerobic bacteria and facultatively anaerobic in an aerobic atmosphere in which dissolved oxygen (DO) is present. An oxidative decomposition process in which anaerobic bacteria and the like are activated by using organic matter contained in sewage as a nutrient source, and oxidatively decompose the organic matter by aerobic bacteria and facultative anaerobic bacteria. Nitrification process in which bacteria and nitric acid oxidize nitrite nitrogen and nitrate nitrogen to oxidized nitrogen, and oxidized nitrate in an anaerobic atmosphere where nutrients are obtained by organic matter or self-decomposition and there is no dissolved oxygen It is necessary to consider a denitrification process in which denitrifying bacteria reduce nitrogen to nitrogen gas by nitric acid respiration.

【0003】したがって、雰囲気の異なる処理工程と、
各処理工程間の汚水の移送と、有機物、各種窒素化合物
および各種菌の増減との複雑な関係を把握して制御する
必要がある。このため、各工程での溶存酸素濃度および
有機物、各種窒素化合物および各種菌の量の関係を、各
種数式にて演算して把握し、演算結果を基に浄化処理を
自動制御する方法、例えば特開昭61−212395号
公報、特開昭63−209796号公報および特開昭6
4−51197号公報に記載の構成が知られている。
Therefore, processing steps having different atmospheres,
It is necessary to grasp and control the complicated relationship between the transfer of sewage between each treatment step and the increase and decrease of organic matter, various nitrogen compounds and various bacteria. For this reason, the relationship between the dissolved oxygen concentration and the amount of organic matter, various nitrogen compounds and various bacteria in each step is calculated and grasped by various mathematical formulas, and a method for automatically controlling the purification process based on the calculation results, for example, JP-A-61-212395, JP-A-63-209796 and JP-A-6-209796
A configuration described in Japanese Patent Application Laid-Open No. 4-51197 is known.

【0004】そして、特開昭61−212395号公報
に記載の汚水の処理方法は、嫌気性の脱窒槽内への汚水
の流入量、汚水の全窒素濃度、分離槽から脱窒槽へ返送
する汚泥の返送汚泥濃度、好気性の硝化槽から脱窒槽へ
の循環水の活性汚泥濃度を測定する。さらに、これらを
制御因子として流入水量に対する循環水の比、および、
流入水量に対する返送汚泥の比を演算する。そして、こ
れらの演算値に基づき循環水量および返送汚泥量を制御
して、汚水の生物学的脱窒素を全自動的に効率よく行い
浄化処理する。
The method of treating sewage described in Japanese Patent Application Laid-Open No. 61-212395 discloses a method of treating wastewater into an anaerobic denitrification tank, the total nitrogen concentration of the sewage, and the sludge returned from the separation tank to the denitrification tank. And the concentration of activated sludge in the circulating water from the aerobic nitrification tank to the denitrification tank. Furthermore, using these as control factors, the ratio of circulating water to inflow water, and
Calculate the ratio of returned sludge to the amount of inflow water. Then, the amount of circulating water and the amount of returned sludge are controlled based on these calculated values, and biological denitrification of the sewage is automatically and efficiently performed for purification.

【0005】しかしながら、この特開昭61−2123
95号公報に記載の汚水の処理方法は、各処理工程に直
接起因する溶存酸素濃度を、流入水量に対する循環水、
および、流入水量に対する返送汚泥の割合に基づいて間
接的に管理するため、各処理工程における溶存酸素濃度
が変動しやすく、良好な浄化処理が行えないおそれがあ
る。さらに、硝化・脱窒工程の循環における循環水量と
返送汚泥量とに基づいて浄化処理の制御を行うため、流
入する汚水の有機物の量が変動したり、汚水の有機物に
よる汚染濃度の変動により、酸化分解工程が良好に行え
ず、硝化・脱窒工程に関与する有機物の収支が変動し、
良好に浄化処理できないおそれがある。また、溶存酸素
濃度の管理を容易にすべく、好気性の硝化槽と嫌気性の
脱窒槽の2つの反応槽を用いて各処理工程を行うため、
装置が大型化するとともに、設置スペースが拡大する問
題がある。
[0005] However, Japanese Patent Application Laid-Open No.
No. 95, the method for treating sewage, the dissolved oxygen concentration directly caused by each treatment step, circulating water with respect to the amount of inflow water,
Further, since the indirect management is performed based on the ratio of the returned sludge to the amount of inflow water, the dissolved oxygen concentration in each processing step is likely to fluctuate, and there is a possibility that a good purification treatment cannot be performed. Furthermore, since the purification process is controlled based on the amount of circulating water and the amount of returned sludge in the circulation of the nitrification / denitrification process, the amount of organic matter flowing into the sewage fluctuates, and the concentration of organic matter in the sewage fluctuates. The oxidative decomposition process could not be performed well, and the balance of organic matter involved in the nitrification and denitrification process fluctuated.
There is a possibility that the purification treatment cannot be performed well. Also, in order to facilitate the management of the dissolved oxygen concentration, each treatment step is performed using two reaction tanks, an aerobic nitrification tank and an anaerobic denitrification tank,
There is a problem that the size of the device is increased and the installation space is increased.

【0006】また、特開昭63−209796号公報に
記載の汚水の処理装置は、汚水の水温やpHなどの環境
因子が安定している際の動力学的定数、炭素系および窒
素系の各基質除去速度式、炭素系および窒素系の各菌体
増殖速度式、溶存酸素濃度に関連する物質収支式、およ
び、プロセス内汚泥量の物質収支式を用いて演算してシ
ミュレーションを実施する。
Further, the sewage treatment apparatus described in Japanese Patent Application Laid-Open No. 63-209796 discloses a kinetic constant when environmental factors such as water temperature and pH of sewage are stable, a carbon-based system and a nitrogen-based system. The simulation is performed using the substrate removal rate equation, the growth rate equation for each of the carbon-based and nitrogen-based cells, the mass balance equation relating to the dissolved oxygen concentration, and the mass balance equation for the amount of sludge in the process.

【0007】一方、これにより定常状態のプロセス内の
硝化に寄与する菌体量または硝化率の経時変化データを
算出し、このデータのうち硝化菌体量または硝化率が安
定した値を目標値として第1のシミュレータ部で出力す
る。また、動力学的定数を環境因子の関数で表して各時
点の環境因子に応じた動力学的定数を用いるとともに、
第1のシミュレータ部からの目標値を導入し、炭素系お
よび窒素系の各基質除去速度式、炭素系および窒素系の
各菌体増殖速度式、溶存酸素濃度に関連する物質収支
式、および、プロセス内汚泥量の物質収支式を用いて演
算してシミュレーションを実施する。
On the other hand, data on the amount of bacterial cells or the rate of nitrification contributing to nitrification in a steady-state process with time are calculated, and a value in which the amount of nitrifying cells or the rate of nitrification is stable is used as a target value. The data is output by the first simulator unit. In addition, the kinetic constant is expressed as a function of the environmental factor, and the kinetic constant according to the environmental factor at each time is used.
Introducing the target value from the first simulator unit, the carbon-based and nitrogen-based substrate removal rate equations, the carbon-based and nitrogen-based cell growth rate equations, the material balance equation related to the dissolved oxygen concentration, and A simulation is performed by calculating using the material balance equation for the amount of sludge in the process.

【0008】そして、このシミュレーションにより、各
時点の溶存酸素濃度の制御要素の適切設定値を第2のシ
ミュレータ部にて求め、有機性汚水および活性汚泥の混
合溶液を反応槽内で曝気し、水温やpHなどの環境因子
が変動しても硝化菌体量あるいは硝化率を目標値に維持
して良好に浄化処理する。
[0008] Then, by the simulation, an appropriate set value of the control element of the dissolved oxygen concentration at each time point is obtained by the second simulator section, and a mixed solution of the organic wastewater and the activated sludge is aerated in the reaction tank, and the water temperature is adjusted. Even if environmental factors such as pH and the like fluctuate, the amount of nitrifying bacteria or the rate of nitrification is maintained at a target value, and the purification treatment is performed well.

【0009】しかしながら、この特開昭63−2097
96号公報に記載の装置は、硝化菌体量あるいは硝化率
を一定に維持させ、硝化工程を効率よく良好に進行させ
るものである。したがって、汚水を浄化処理するために
は、この硝化工程後に脱窒工程を行う装置を必要とす
る。このため、汚水の浄化処理を行う装置が大型化し、
設置スペースが拡大するとともに、浄化処理の操作が煩
雑となる問題がある。
However, Japanese Patent Application Laid-Open No.
The apparatus described in Japanese Patent Publication No. 96 is to maintain the amount of nitrifying bacteria or the rate of nitrification constant, and to efficiently and satisfactorily proceed the nitrification step. Therefore, in order to purify sewage, an apparatus for performing a denitrification step after the nitrification step is required. For this reason, the equipment for purifying sewage becomes larger,
There is a problem that the installation space is enlarged and the operation of the purification process is complicated.

【0010】また、特開昭64−51197号公報に記
載の汚水の処理装置は、硝化槽の入口、中間、出口部の
それぞれの溶存酸素濃度を測定し、あらかじめ設定して
あるそれぞれの目標値と比較して、それぞれ測定した溶
存酸素濃度が対応する各目標値となるように、硝化槽内
の曝気装置を構成する風量調整弁および送風機の吸込み
弁を制御して曝気する。
The sewage treatment apparatus described in Japanese Patent Application Laid-Open No. 64-51197 measures the dissolved oxygen concentration at the inlet, middle, and outlet of the nitrification tank, and sets the respective preset target values. And controlling the air flow regulating valve and the suction valve of the blower, which constitute the aeration device in the nitrification tank, to perform aeration so that the measured dissolved oxygen concentration becomes each corresponding target value.

【0011】さらに、脱窒槽の酸化還元電位をあらかじ
め設定した脱窒に適した酸化還元電位と比較して、測定
した酸化還元電位が設定した酸化還元電位となるよう
に、硝化槽から脱窒槽への循環水量を制御する。
Further, the oxidation-reduction potential of the denitrification tank is compared with a predetermined oxidation-reduction potential suitable for denitrification, and the nitrification tank is transferred from the nitrification tank to the denitrification tank so that the measured oxidation-reduction potential becomes the set oxidation-reduction potential. To control the amount of circulating water.

【0012】そして、入口部での溶存酸素濃度の不足に
よる硝化効率の低下を防止するとともに、脱窒槽への溶
存酸素の持ち込みによる脱窒効率の低下を防止して、効
率よく良好に浄化処理する。
In addition, the nitrification efficiency is prevented from lowering due to the shortage of the dissolved oxygen concentration at the inlet portion, and the denitrification efficiency is prevented from lowering due to the introduction of dissolved oxygen into the denitrification tank, so that the purification treatment is performed efficiently and efficiently. .

【0013】しかしながら、この特開昭64−5119
7号公報に記載の装置は、硝化槽の溶存酸素濃度および
脱窒槽の脱窒状態を示す酸化還元電位に基づいて循環水
量および曝気状態を制御し硝化・脱窒工程の浄化処理を
制御するので、有機物の酸化分解工程を監視しておら
ず、酸化分解工程を良好に行わせるための制御が行われ
ていないため、汚水の流入量および有機物による汚染状
態の変動により、有機物を良好に酸化分解できず、ま
た、硝化・脱窒工程に関与する有機物の収支が変動する
ことによる硝化・脱窒工程が良好に行われないおそれが
ある。さらに、硝化槽と脱窒槽の2つを設けているた
め、装置が大型化するとともに、設置スペースが拡大す
る問題がある。
However, Japanese Patent Application Laid-Open No. 64-5119 discloses this technique.
The apparatus described in Japanese Patent Publication No. 7 controls the amount of circulating water and the state of aeration based on the dissolved oxygen concentration in the nitrification tank and the oxidation-reduction potential indicating the denitrification state of the denitrification tank, and controls the purification treatment in the nitrification / denitrification step. The organic matter is not oxidatively decomposed by monitoring the oxidative decomposition process and controlling the oxidative decomposition process. In addition, the nitrification / denitrification process may not be performed properly due to fluctuations in the balance of organic substances involved in the nitrification / denitrification process. Further, since two units, ie, a nitrification tank and a denitrification tank, are provided, there is a problem that the size of the apparatus is increased and the installation space is increased.

【0014】[0014]

【発明が解決しようとする課題】上述したように、上記
特開昭61−212395号公報に記載の汚水の処理方
法では、各処理工程における溶存酸素濃度の変動によ
り、良好な浄化処理が行えないおそれがあるとともに、
流入する汚水の有機物の量の変動および有機物による汚
染状態の変動により、酸化分解工程が良好に行えず、硝
化・脱窒工程に関与する有機物の収支が変動し、良好に
浄化処理できないおそれがある。
As described above, in the method for treating sewage described in Japanese Patent Application Laid-Open No. 61-212395, good purification cannot be performed due to fluctuations in the concentration of dissolved oxygen in each treatment step. There is a danger,
Fluctuations in the amount of organic matter flowing into the sewage and fluctuations in the state of pollution caused by the organic matter make it impossible to perform the oxidative decomposition process satisfactorily. .

【0015】また、特開昭63−209796号公報に
記載の汚水の処理装置では、硝化工程を基に、有機物の
収支を管理するため、流入する汚水の有機物の量の変動
および有機物による汚染状態の変動により、有機物の酸
化分解工程が良好に行えず、硝化・脱窒工程に関与する
有機物の収支が変動し、良好に浄化処理できないおそれ
がある。
In the sewage treatment apparatus described in Japanese Patent Application Laid-Open No. 63-209796, the amount of organic matter flowing into the sewage is changed and the state of contamination by organic matter is controlled in order to control the balance of organic matter based on the nitrification process. , The oxidative decomposition process of organic substances cannot be performed well, the balance of organic substances involved in the nitrification and denitrification steps fluctuates, and there is a possibility that purification treatment cannot be performed well.

【0016】さらに、特開昭64−51197号公報に
記載の汚水の処理装置では、有機物の酸化分解工程を良
好に行わせるための制御を行わないため、汚水の流入量
および有機物による汚染状態の変動により、有機物を良
好に酸化分解できず、硝化・脱窒工程に関与する有機物
の収支が変動することによる硝化・脱窒工程が良好に行
えないおそれがある。
Further, in the sewage treatment apparatus described in Japanese Patent Application Laid-Open No. 64-51197, since control for making the oxidative decomposition process of organic matter good is not performed, the amount of inflow of sewage and the state of contamination by organic matter are not controlled. Due to the fluctuation, the organic matter cannot be oxidized and decomposed satisfactorily, and the nitrification / denitrification step may not be performed properly due to the fluctuation of the balance of the organic matter involved in the nitrification / denitrification step.

【0017】そして、特開昭61−212395号公報
に記載の汚水の処理方法、および、特開昭64−511
97号公報に記載の汚水の処理装置では、硝化槽と脱窒
槽の2つを設けており、特開昭63−209796号公
報に記載の汚水の処理装置では、汚水を浄化処理するた
めには、別途脱窒槽などの装置を必要とするため、装置
が大型化するとともに、設置スペースが拡大する問題が
ある。
A method for treating sewage described in JP-A-61-212395 and JP-A-64-511
In the sewage treatment apparatus described in Japanese Patent Publication No. 97-206, a nitrification tank and a denitrification tank are provided, and in the sewage treatment apparatus described in JP-A-63-209796, in order to purify sewage, However, since a separate device such as a denitrification tank is required, there is a problem that the size of the device is increased and the installation space is increased.

【0018】本発明は、上記の問題点に鑑みなされたも
ので、単一槽で有機物の酸化分解、硝化、脱窒をそれぞ
れ行わせ、容易で効率よく確実に浄化処理する信頼性の
高い汚水の処理方法およびその装置を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a highly reliable sewage system in which oxidative decomposition, nitrification, and denitrification of organic substances are performed in a single tank, and purification is performed easily, efficiently, and reliably. It is an object of the present invention to provide a processing method and an apparatus therefor.

【0019】[0019]

【課題を解決するための手段】請求項1記載の汚水の処
理方法は、反応槽に流入する汚水の汚染状態を計測する
とともに、前記反応槽内の被処理水の溶存酸素濃度を測
定し、前記被処理水が流過する方向に沿った前記反応槽
内の各位置における前記被処理水の汚染状態を、前記反
応槽に流入する汚水の汚染状態の計測結果と前記溶存酸
素濃度の測定結果とに基づいて、前記被処理水中の有機
物、各種窒素化合物および各種微生物の物質収支式と、
有機物の除去、各種窒素化合物の変換および各種微生物
の増殖の反応速度式と、有機物および各種窒素化合物の
生成速度式とからそれぞれ演算し、前記反応槽内で、前
記微生物により前記有機物を酸化分解する酸化分解工程
およびアンモニア性窒素を酸化態窒素に酸化する硝化工
程の反応が生じる好気性雰囲気と、酸化態窒素を窒素ガ
スに還元する脱窒工程の反応が生じる嫌気性雰囲気との
双方が生じる状態に前記被処理水の溶存酸素濃度を制御
するものである。
According to a first aspect of the present invention, there is provided a method for treating sewage, comprising: measuring a state of contamination of sewage flowing into a reaction tank; measuring a dissolved oxygen concentration of water to be treated in the reaction tank; The contaminated state of the water to be treated at each position in the reaction tank along the direction in which the water to be treated flows, the measurement result of the contamination state of the sewage flowing into the reaction tank, and the measurement result of the dissolved oxygen concentration Based on the organic matter in the water to be treated, various nitrogen compounds and mass balance formula of various microorganisms,
A reaction rate equation for removal of organic substances, conversion of various nitrogen compounds, and growth of various microorganisms, and a production rate equation for organic substances and various nitrogen compounds, respectively, were calculated in the reaction vessel.
An oxidative decomposition step of oxidatively decomposing the organic matter by the microorganism
Nitrification that oxidizes ammonia and ammonia nitrogen to oxidized nitrogen
Aerobic atmosphere where the reaction takes place
Anaerobic atmosphere where the reaction of the denitrification process
The concentration of dissolved oxygen in the water to be treated is controlled so that both occur .

【0020】請求項2記載の汚水の処理方法は、請求項
1記載の汚水の処理方法において、反応槽に流入する汚
水の汚染状態を、前記汚水の流入量と、前記汚水中の有
機物と、前記汚水中の各種窒素化合物との少なくともい
ずれか一方に基づいて計測するものである。
According to a second aspect of the present invention, there is provided a method for treating sewage according to the first aspect, wherein the polluted state of the sewage flowing into the reaction tank is determined by: The measurement is based on at least one of various nitrogen compounds in the sewage.

【0021】請求項3記載の汚水の処理方法は、請求項
1または2記載の処理方法において、被処理水の溶存酸
素濃度を、反応槽に流入する汚水の流入量、この反応槽
内の被処理水への酸素供給量および前記反応槽の下流側
から上流側への前記被処理水の還流量の少なくともいず
れか1つに基づいて制御するものである。
According to a third aspect of the present invention, there is provided a method for treating sewage according to the first or second aspect, wherein the concentration of dissolved oxygen in the water to be treated is determined by the amount of sewage flowing into the reaction tank, The control is performed based on at least one of an oxygen supply amount to the treated water and a reflux amount of the treated water from a downstream side to an upstream side of the reaction tank.

【0022】請求項4記載の汚水の処理装置は、汚水が
流入する流入口を有し微生物が生息する反応槽と、この
反応槽に設けられ反応槽内の被処理水に酸素を供給する
酸素供給手段と、この反応槽に設けられ前記反応槽の下
流側から上流側へ前記被処理水を還流させる還流手段
と、前記流入口を介して流入する汚水の流入量を調整す
る流入調整手段と、前記流入口の近傍に設けられ流入す
る前記汚水の汚染状態を計測する汚染計測手段と、前記
反応槽内に前記被処理水の溶存酸素濃度を測定する溶存
酸素測定手段と、前記汚染計測手段および前記溶存酸素
測定手段の少なくともいずれか一方による測定結果に基
づいて、前記酸素供給手段、前記流入調整手段および前
記還流手段の少なくともいずれか1つを制御し、前記反
応槽内で、前記微生物により前記有機物を酸化分解する
酸化分解工程およびアンモニア性窒素を酸化態窒素に酸
化する硝化工程の反応が生じる好気性雰囲気と、酸化態
窒素を窒素ガスに還元する脱窒工程の反応が生じる嫌気
性雰囲気との双方が生じる状態に前記被処理水の溶存酸
素濃度を制御する制御手段とを具備したものである。
According to a fourth aspect of the present invention, there is provided a sewage treatment apparatus comprising: a reaction tank having an inflow port into which sewage flows and in which microorganisms inhabit; and an oxygen supply port provided in the reaction tank for supplying oxygen to water to be treated in the reaction tank. A supply unit, a reflux unit provided in the reaction tank for refluxing the water to be treated from a downstream side to an upstream side of the reaction tank, and an inflow adjustment unit for adjusting an inflow amount of sewage flowing through the inlet. A pollution measuring means provided near the inflow port for measuring a pollution state of the incoming sewage, a dissolved oxygen measuring means for measuring a dissolved oxygen concentration of the water to be treated in the reaction tank, and the pollution measuring means and based on the measurement result by at least one of the dissolved oxygen measurement means, said oxygen supply means to control at least one of the inflow adjusting means and the return means, said counter
In the reaction tank, the microorganisms are oxidatively decomposed by the microorganism.
Oxidative decomposition process and conversion of ammoniacal nitrogen to oxidized nitrogen
Aerobic atmosphere where the reaction of the nitrification process
Anaerobic reaction that occurs in the denitrification process of reducing nitrogen to nitrogen gas
Dissolved acid in a state where both
Control means for controlling the element concentration .

【0023】[0023]

【作用】請求項1記載の汚水の処理方法は、反応槽内の
被処理水の流過する方向に沿った各位置での汚染状態
を、反応槽に流入する汚水の汚染状態と、反応槽内の被
処理水の溶存酸素濃度とに基づいて、被処理水中の有機
物、各種窒素化合物および各種微生物の物質収支式と、
有機物の除去、各種窒素化合物の変換および各種微生物
の増殖の反応速度式と、有機物および各種窒素化合物の
生成速度式とからそれぞれ演算し、微生物により有機物
を酸化分解する酸化分解工程およびアンモニア性窒素を
酸化態窒素に酸化する硝化工程の反応が生じる好気性雰
囲気と、酸化態窒素を窒素ガスに還元する脱窒工程の反
応が生じる嫌気性雰囲気との双方が反応槽内で生じる状
態に被処理水の溶存酸素濃度を制御するため、1つの反
応槽で、有機物を微生物にて酸化分解する酸化分解工
程、アンモニア性窒素を微生物にて酸化態窒素に酸化す
る硝化工程、および、酸化態窒素を微生物にて窒素ガス
に還元する脱窒工程がそれぞれ良好に進行し、汚水が良
好に浄化処理される。
In the method for treating sewage according to the first aspect, the state of contamination at each position along the flowing direction of the water to be treated in the reaction tank is determined by the state of contamination of the sewage flowing into the reaction tank and the state of contamination of the reaction tank. Based on the dissolved oxygen concentration of the water to be treated in the water, the organic matter in the water to be treated, various nitrogen compounds and the mass balance formula of various microorganisms,
Removal of organics, respectively calculated from the kinetics of the proliferation of conversion and various microorganisms for various nitrogen compounds, the generation kinetics organic and various nitrogen compounds, organic matter by microorganisms
Oxidative decomposition process and oxidative decomposition of ammonia
An aerobic atmosphere in which the nitrification process oxidizes to oxidized nitrogen.
Ambient air and the denitrification process that reduces oxidized nitrogen to nitrogen gas
Both the reaction and the anaerobic atmosphere occur in the reaction tank.
In order to control the concentration of dissolved oxygen in the water to be treated, the oxidative decomposition step of oxidatively decomposing organic substances by microorganisms in one reaction tank, the nitrification step of oxidizing ammonia nitrogen to oxidized nitrogen by microorganisms, and Each of the denitrification steps of reducing oxidized nitrogen to nitrogen gas by microorganisms proceeds well, and sewage is satisfactorily purified.

【0024】請求項2記載の汚水の処理方法は、請求項
1記載の汚水の処理方法において、反応槽に流入する汚
水の汚染状態を、汚水の流入量と、汚水中の有機物と、
汚水中の各種窒素化合物との少なくともいずれか一方に
基づいて計測するため、反応槽に流入する汚水の汚染状
態から反応槽内の被処理水の流過する方向に沿った各位
置での汚染状態を容易に演算可能で、汚水の浄化処理が
容易となる。
According to a second aspect of the present invention, there is provided a method for treating sewage according to the first aspect, wherein the polluted state of the sewage flowing into the reaction tank is determined by:
Since the measurement is based on at least one of various nitrogen compounds in the sewage, the contamination state at each position along the flowing direction of the water to be treated in the reaction tank from the contamination state of the sewage flowing into the reaction tank Can be easily calculated, and the purification process of the sewage becomes easy.

【0025】請求項3記載の汚水の処理方法は、請求項
1または2記載の処理方法において、反応槽内の被処理
水の溶存酸素濃度を、反応槽に流入する汚水の流入量、
反応槽内の被処理水への酸素供給量および反応槽の下流
側から上流側への被処理水の還流量の少なくとも1つに
基づいて制御するため、汚水の浄化処理操作が容易で、
有機物を微生物にて酸化分解する酸化分解工程、アンモ
ニア性窒素を微生物にて酸化態窒素に酸化する硝化工
程、および、酸化態窒素を微生物にて窒素ガスに還元す
る脱窒工程が、1つの反応槽で良好に効率よく進行し、
汚水が良好に浄化処理される。
According to a third aspect of the present invention, in the treatment method of the first or second aspect, the concentration of dissolved oxygen in the water to be treated in the reaction tank is determined by:
Since the control is performed based on at least one of the oxygen supply amount to the water to be treated in the reaction tank and the reflux amount of the water to be treated from the downstream side to the upstream side of the reaction tank, the purification operation of the sewage is easy,
The oxidative decomposition step of oxidatively decomposing organic substances by microorganisms, the nitrification step of oxidizing ammonia nitrogen to oxidized nitrogen by microorganisms, and the denitrification step of reducing oxidized nitrogen to nitrogen gas by microorganisms are one reaction. Proceeds well and efficiently in the tank,
Sewage is well purified.

【0026】請求項4記載の汚水の処理装置は、反応槽
の流入口の近傍に設けた汚染計測手段にて、流入口を介
して反応槽に流入する汚水の汚染状態を計測するととも
に、溶存酸素測定手段にて反応槽内の被処理水の溶存酸
素濃度を測定し、これらの結果の少なくともいずれか一
方に基づいて制御手段にて、被処理水に酸素を供給する
酸素供給手段、汚水の流入量を調整する流入調整手段お
よび反応槽の下流側から上流側へ被処理水を還流させる
還流手段の少なくともいずれか1つを制御して、微生物
により有機物を酸化分解する酸化分解工程およびアンモ
ニア性窒素を酸化態窒素に酸化する硝化工程の反応が生
じる好気性雰囲気と、酸化態窒素を窒素ガスに還元する
脱窒工程の反応が生じる嫌気性雰囲気との双方が反応槽
内で生じる状態に被処理水の汚水の溶存酸素濃度を制御
し、汚水を浄化処理するため、汚水の浄化処理操作が容
易で、有機物を微生物にて酸化分解する酸化分解工程、
アンモニア性窒素を微生物にて酸化態窒素に酸化する硝
化工程、および、酸化態窒素を微生物にて窒素ガスに還
元する脱窒工程が1つの反応槽で良好に効率よく進行
し、汚水が良好に浄化処理される。
According to a fourth aspect of the present invention, there is provided a sewage treatment apparatus for measuring the contamination state of sewage flowing into a reaction tank through an inlet by means of pollution measuring means provided near an inlet of the reaction tank. The dissolved oxygen concentration of the water to be treated in the reaction tank is measured by the oxygen measuring means, and the oxygen supply means for supplying oxygen to the water to be treated is supplied by the control means based on at least one of these results. A microorganism is controlled by controlling at least one of an inflow adjusting means for adjusting the inflow amount and a reflux means for refluxing the water to be treated from a downstream side to an upstream side of the reaction tank.
Oxidative Decomposition Process and Ammonia
The reaction of the nitrification process that oxidizes near nitrogen to oxidized nitrogen
Aerobic atmosphere and reducing oxidized nitrogen to nitrogen gas
Both the reaction tank and the anaerobic atmosphere where the reaction of the denitrification process occurs
An oxidative decomposition process in which the concentration of dissolved oxygen in the water to be treated is controlled to a state generated in the effluent and the sewage is purified, so that the sewage purification treatment operation is easy and organic matter is oxidatively decomposed by microorganisms;
The nitrification step of oxidizing ammonia nitrogen to oxidized nitrogen by microorganisms and the denitrification step of reducing oxidized nitrogen to nitrogen gas by microorganisms proceed efficiently and efficiently in one reaction tank, and sewage becomes good. Purification processing is performed.

【0027】[0027]

【実施例】本発明の汚水の処理方法を実施する装置の一
実施例の構成を図面を参照して説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of an apparatus for carrying out a method for treating wastewater according to the present invention.

【0028】図1において、1は反応槽で、この反応槽
1は、例えば容積が270m3 で、水深が10mの円筒
状に形成され、下端には下方に漏斗状に突出する底部2
が形成されている。そして、この反応槽1の下部には、
有機物および各種窒素化合物を含有する例えばし尿排水
などの汚水3が流入する流入口4が開口形成され、この
流入口4には、汚水中の砂や礫、金属片、紙、ビニール
などの夾雑物を分離する図示しない除渣装置から導出さ
れた流入管5が接続されている。さらに、この流入管5
には、除渣装置にて夾雑物が除去された汚水3の反応槽
1への流入を制御する図示しない電磁弁が設けられてい
る。また、この流入管5には、反応槽1に流入する汚水
3の流入量を測定する図示しない流量計が設けられてい
る。
In FIG. 1, reference numeral 1 denotes a reaction tank. This reaction tank 1 is formed in a cylindrical shape having a volume of, for example, 270 m 3 and a water depth of 10 m, and has a bottom portion 2 protruding downward in a funnel shape at a lower end.
Are formed. And, in the lower part of the reaction tank 1,
An inflow port 4 into which sewage 3, such as human wastewater, containing organic substances and various nitrogen compounds flows, is formed with an opening. The inflow port 4 is provided with contaminants such as sand and gravel, metal pieces, paper, and vinyl in the sewage. Is connected to an inflow pipe 5 led out from a debris removing device (not shown) for separating the water. Furthermore, this inflow pipe 5
Is provided with an electromagnetic valve (not shown) for controlling the flow of the sewage 3 from which contaminants have been removed by the residue removing apparatus into the reaction tank 1. The inflow pipe 5 is provided with a flowmeter (not shown) for measuring the inflow amount of the sewage 3 flowing into the reaction tank 1.

【0029】そして、この反応槽1には、底部2の下端
から反応槽1の上部に反応槽1内の流入した汚水3と反
応槽1内の各種微生物との混合液である被処理水3aを還
流させる還流管7が接続され、この還流管7には、図示
しない還流ポンプおよび流量計が設けられている。さら
に、この還流管7の上部には、被処理水3aが反応槽1内
に流入する際に、被処理水3aの流過にて発生する負圧に
より空気を吸入し、被処理水3a中に空気を混入させる図
示しないエゼクタが設けられている。
In the reaction tank 1, treated water 3 a, which is a mixed liquid of the sewage 3 flowing into the reaction tank 1 and various microorganisms in the reaction tank 1 from the lower end of the bottom 2 to the upper part of the reaction tank 1. A reflux pipe 7 is connected to the reflux pipe 7. The reflux pipe 7 is provided with a reflux pump and a flow meter (not shown). Further, when the water to be treated 3a flows into the reaction tank 1, air is sucked into the upper part of the reflux pipe 7 by the negative pressure generated by the flow of the water to be treated 3a. Is provided with an ejector (not shown) that mixes air into the device.

【0030】なお、反応槽1内の各種微生物は、反応槽
1内にて順養したり、後述する分離槽10から汚泥を返送
するなどにより得られる。
The various microorganisms in the reaction tank 1 can be obtained by acclimating in the reaction tank 1 or returning sludge from a separation tank 10 described later.

【0031】また、反応槽1の略中間部には、反応槽1
内の被処理水3aの溶存酸素(DO:Dissolved Oxygen)
の濃度を測定する図示しないセンサが設けられていると
ともに、この中間部分の被処理水3aを反応槽1外に流出
する流出管8が接続されている。そして、この流出管8
には、被処理水3aの流出量を制御する図示しない電磁弁
および流量計が設けられている。
In a substantially intermediate portion of the reaction tank 1, the reaction tank 1 is provided.
Oxygen (DO: Dissolved Oxygen) in the water to be treated 3a
A sensor (not shown) for measuring the concentration of the water is provided, and an outflow pipe 8 for flowing the water to be treated 3a in the intermediate portion out of the reaction tank 1 is connected. And this outflow pipe 8
Is provided with an unillustrated solenoid valve and a flow meter for controlling the outflow amount of the water to be treated 3a.

【0032】一方、10は分離槽で、この分離槽10は、下
部に下方に漏斗状に突出する沈殿部11を設け容積が30
3 の円筒状に形成されている。そして、この分離槽10
の上部に反応槽1に接続された流出管8が接続されてい
る。また、分離槽10の沈殿部11の下端には、沈殿部11に
沈殿した汚泥を反応槽1の下部に返送する汚泥管12が接
続され、この汚泥管12には図示しない汚泥ポンプおよび
流量計が設けられている。さらに、この分離槽10には、
分離槽10内の水面に浮遊する汚泥を反応槽1の上部に返
送する返送管13が設けられ、この返送管13には図示しな
い返送ポンプおよび流量計が設けられている。そして、
分離槽10には、浄化処理された上澄み分を処理水として
放流する放流口14が形成されている。
On the other hand, reference numeral 10 denotes a separation tank, which is provided with a sedimentation section 11 which protrudes downward in a funnel shape at the lower part and has a capacity of 30.
It is formed in a cylindrical shape of m 3 . And this separation tank 10
Outlet pipe 8 connected to reaction tank 1 is connected to the upper part of the tank. At the lower end of the sedimentation section 11 of the separation tank 10, a sludge pipe 12 for returning sludge settled in the sedimentation section 11 to the lower part of the reaction tank 1 is connected. Is provided. Furthermore, in this separation tank 10,
A return pipe 13 for returning the sludge floating on the water surface in the separation tank 10 to the upper portion of the reaction tank 1 is provided. The return pipe 13 is provided with a return pump and a flow meter (not shown). And
The separation tank 10 has a discharge port 14 for discharging the purified supernatant as treated water.

【0033】なお、反応槽1および分離槽10は、水容積
の変化がないように形成されている。さらに、分離槽10
は、沈殿式のものに限らず、濾過膜にて汚泥を分離する
膜分離式や遠心分離式などいずれの構造のものでもでき
る。
The reaction tank 1 and the separation tank 10 are formed so that the water volume does not change. In addition, separation tank 10
Is not limited to a sedimentation type, but may be of any structure such as a membrane separation type for separating sludge by a filtration membrane or a centrifugal separation type.

【0034】また、この装置には、図示しない制御手段
が設けられ、この制御手段は、反応槽1に流入する汚水
3の汚染状態、例えば流入する汚水3の流入量、およ
び、汚水3中の有機物、各種窒素化合物の濃度から算出
される反応槽1に流入する汚染物質の量などの数値を入
力可能で、反応槽1内の被処理水3aの溶存酸素濃度を測
定するセンサが接続されている。そして、制御手段は、
これら各種測定値や入力値に基づいて、各電磁弁の開
度、および、還流ポンプ、汚泥ポンプおよび返送ポンプ
の駆動状態を制御する。
The apparatus is provided with control means (not shown). The control means controls the state of contamination of the sewage 3 flowing into the reaction tank 1, for example, the amount of the sewage 3 flowing in, and It is possible to input numerical values such as the amount of contaminants flowing into the reaction tank 1 calculated from the concentrations of organic substances and various nitrogen compounds, and a sensor for measuring the dissolved oxygen concentration of the water 3a to be treated in the reaction tank 1 is connected. I have. And the control means,
Based on these various measured values and input values, the opening degree of each solenoid valve and the driving state of the reflux pump, the sludge pump, and the return pump are controlled.

【0035】次に、この装置についての動作を汚水の処
理について説明する。
Next, the operation of this apparatus will be described for the treatment of sewage.

【0036】まず、除渣装置から流入管5を介して反応
槽1に流入する汚水3を少量採取し、この汚水3中の有
機物、すなわち、生物化学的酸素要求量(Biochemical
Oxygen Demand :BOD)および化学的酸素要求量(Ch
emical Oxygen Demand:COD)と各種窒素化合物の濃
度とを測定し、この測定結果を制御手段に入力する。そ
して、制御手段が、流入管5の電磁弁を所定の開度に開
口し、除渣装置からの汚水3を流入口4から反応槽1の
下部に流入させる。なお、制御手段は、所定の汚水3の
流量になった時点で電磁弁を閉塞する。
First, a small amount of sewage 3 flowing into the reaction tank 1 via the inflow pipe 5 is collected from the residue removing apparatus, and organic matter in the sewage 3, that is, a biochemical oxygen demand (Biochemical oxygen demand) is obtained.
Oxygen Demand (BOD) and chemical oxygen demand (Ch
Emergency oxygen demand (COD) and the concentration of various nitrogen compounds are measured, and the measurement results are input to the control means. Then, the control means opens the electromagnetic valve of the inflow pipe 5 to a predetermined opening, and allows the sewage 3 from the residue removing apparatus to flow into the lower part of the reaction tank 1 from the inflow port 4. The control means closes the solenoid valve when the flow rate of the wastewater 3 reaches a predetermined value.

【0037】そして、反応槽1に汚水3が流入し混合し
た被処理水3aは、反応槽1内に増殖する微生物にて浄化
され、制御手段にて駆動された還流ポンプにて還流管7
を流過し、エゼクタにより空気を導入しつつ反応槽1の
上部に還流する。
The treated water 3a into which the sewage 3 has flowed and mixed into the reaction tank 1 is purified by the microorganisms growing in the reaction tank 1, and is returned to the reflux pipe 7 by a reflux pump driven by control means.
To the upper part of the reaction tank 1 while introducing air by an ejector.

【0038】さらに、反応槽1を各種微生物にて浄化処
理されつつ徐々に下部に流過し、一部は、制御手段にて
電磁弁の開度が制御され開口する流出管8から分離槽10
に流入し、残りは再び反応槽1の底部から還流管7を介
して反応槽1の上部に還流する。
Further, the reaction vessel 1 gradually flows downward while being purified by various microorganisms, and a part of the reaction vessel 1 is controlled by the control means so that the opening of the solenoid valve is controlled.
And the remainder is again returned from the bottom of the reactor 1 to the upper portion of the reactor 1 via the reflux pipe 7.

【0039】そして、分離槽10に流入した被処理水3a
は、この被処理水3a中に浮遊する汚泥が沈殿分離され、
沈殿した汚泥は、制御手段にて制御された汚泥ポンプの
駆動により、再び汚泥管12を介して反応槽1の底部に搬
送する。また、分離槽10の水面に浮遊する汚泥は、返送
管13を介して制御手段にて制御された返送ポンプの駆動
により反応槽1の上部に返送する。
The treated water 3a flowing into the separation tank 10
Sludge suspended in the water to be treated 3a is settled and separated,
The settled sludge is again conveyed to the bottom of the reaction tank 1 through the sludge pipe 12 by driving the sludge pump controlled by the control means. The sludge floating on the water surface of the separation tank 10 is returned to the upper part of the reaction tank 1 via a return pipe 13 by driving a return pump controlled by a control unit.

【0040】そして、浄化処理した分離槽10内の処理水
は放流口14を介して放流する。
Then, the treated water in the separation tank 10 after the purification treatment is discharged through the discharge port 14.

【0041】なお、制御手段は、汚水の汚染状態である
入力したCOD、BODおよび各窒素化合物の濃度と、
汚水の流入量と、反応槽の中間部に設けたセンサにより
測定した被処理水3aの溶存酸素濃度とに基づいて演算す
る。そして、適切な処理結果が得られる被処理水3aの溶
存酸素濃度、すなわち、被処理水3a中の有機物もしくは
自己分解により栄養を得て嫌気性雰囲気で、硝化された
酸化態窒素を脱窒菌が硝酸呼吸にて窒素ガスに還元する
脱窒工程、溶存酸素濃度が存在する好気性雰囲気で、好
気性菌や通性嫌気性菌などが被処理水3a中の残存する有
機物を栄養源として活性化し、この有機物を好気性菌や
通性嫌気性菌などにて酸化分解する酸化分解工程、およ
び、溶存酸素の存在下、アンモニア性窒素を亜硝酸菌や
硝酸菌にて亜硝酸性窒素や硝酸性窒素の酸化態窒素に酸
化する硝化工程の反応工程が良好に進行し、汚水3が良
好に浄化処理される溶存酸素濃度となるように、各電磁
弁や各ポンプを各流量計の流量値を監視しつつ制御す
る。
The control means controls the concentration of the inputted COD, BOD and the concentration of each nitrogen compound, which are in the polluted state of sewage.
The calculation is performed based on the inflow amount of the sewage and the dissolved oxygen concentration of the water to be treated 3a measured by a sensor provided in an intermediate portion of the reaction tank. Then, the denitrifying bacteria dissolve the nitrified oxidized nitrogen in an anaerobic atmosphere in which the dissolved oxygen concentration of the water to be treated 3a for which an appropriate treatment result is obtained, that is, the organic matter in the water to be treated 3a or nutrients obtained by self-decomposition in an anaerobic atmosphere. Denitrification process in which nitric acid is reduced to nitrogen gas by respiration, in aerobic atmosphere with dissolved oxygen concentration, aerobic bacteria and facultative anaerobic bacteria activate the remaining organic matter in the treated water 3a as a nutrient source. , An oxidative decomposition process in which this organic matter is oxidatively decomposed by aerobic bacteria or facultative anaerobic bacteria, and in the presence of dissolved oxygen, ammonia nitrogen is converted to nitrite nitrogen or nitrate by nitrite or nitrate bacteria. The solenoid valves and the pumps are controlled by the flow rate values of the respective flow meters so that the reaction step of the nitrification step of oxidizing nitrogen to oxidized nitrogen proceeds satisfactorily and has a dissolved oxygen concentration at which the sewage 3 is well purified. Control while monitoring.

【0042】次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be described.

【0043】まず、有機物および窒素化合物を含有する
汚水3の浄化処理において、溶存酸素濃度が存在する好
気性雰囲気で、好気性菌や通性嫌気性菌などが流入する
汚水3に含有される有機物を栄養源として活性化し、有
機物を好気性菌や通性嫌気性菌などにて酸化分解する酸
化分解工程、溶存酸素の存在下、アンモニア性窒素を亜
硝酸菌や硝酸菌にて亜硝酸性窒素や硝酸性窒素の酸化態
窒素に酸化する硝化工程、および、有機物もしくは自己
分解により栄養を得て嫌気性雰囲気で、硝化された酸化
態窒素を脱窒菌が硝酸呼吸にて窒素ガスに還元する脱窒
工程の3つ主たる反応工程を考慮する必要がある。
First, in the purification treatment of the sewage 3 containing organic matter and nitrogen compounds, the organic matter contained in the sewage 3 into which aerobic bacteria and facultative anaerobic bacteria flow in an aerobic atmosphere having a dissolved oxygen concentration. Oxidative decomposition process of oxidizing and decomposing organic matter by aerobic bacteria and facultative anaerobic bacteria, etc. in the presence of dissolved oxygen, and converting ammoniacal nitrogen into nitrite by nitrite or nitrate in the presence of dissolved oxygen A nitrification process that oxidizes nitric oxides to oxidized nitrogen or nitrate nitrogen, and a denitrification process in which nitrified oxidized nitrogen is reduced to nitrogen gas by nitric acid respiration in an anaerobic atmosphere with nutrients obtained by organic matter or autolysis. It is necessary to consider the three main reaction steps of the nitriding step.

【0044】そして、このことから、図2のブロック図
に示すように、状態変数として、亜硝酸菌(BA1)、硝
酸菌(BA2)、他栄養性細菌(BH )、難分解性固形性
有機物(炭素CDS、窒素NDS)、易分解性固形性有機物
(炭素CS 、窒素NS )、難分解性溶解性有機物(炭素
DD、窒素NDD)、易分解性溶解性有機物(炭素CD
窒素ND )、アンモニア性窒素(NA )、亜硝酸性窒素
(NB1)、硝酸性窒素(NB2)を設定して、物質変換の
モデルが作成される。
From this, as shown in the block diagram of FIG. 2, as the state variables, nitrite (B A1 ), nitrate (B A2 ), vegetative bacterium (B H ), hardly degradable Solid organic matter (carbon C DS , nitrogen N DS ), easily decomposable solid organic matter (carbon C S , nitrogen N S ), hardly decomposable organic matter (carbon C DD , nitrogen N DD ), easily decomposable Organic matter (carbon C D ,
By setting nitrogen N D ), ammonia nitrogen (N A ), nitrite nitrogen (N B1 ), and nitrate nitrogen (N B2 ), a model of material conversion is created.

【0045】なお、この図2に示す各物質変換の係数
は、表1ないし表4に示す。そして、これら表1ないし
表4に示す値は、硝化に関する半飽和定数の値以外は、
下水処理の分野で使用される値である。
The coefficients of each substance conversion shown in FIG. 2 are shown in Tables 1 to 4. The values shown in Tables 1 to 4 are the values of the half-saturation constants related to nitrification,
It is a value used in the field of sewage treatment.

【0046】[0046]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 また、この図2の各状態変数の変換過程は、易分解性固
形性有機物の易分解性および難分解性の溶解性有機物へ
の可溶化、アンモニア性窒素の生成である易分解性溶解
性有機物の無機化と他栄養性細菌の増殖、アンモニア性
窒素の亜硝酸化と亜硝酸菌の増殖、亜硝酸性窒素の硝酸
化と硝酸菌の増殖、硝酸性窒素の亜硝酸性窒素への還元
および亜硝酸性窒素の脱窒と有機物除去および他栄養性
細菌の増殖、および、各細菌の易分解性および難分解性
の固形性有機物への自己分解である。
[Table 4] The conversion process of each state variable in FIG. 2 is performed by solubilizing a readily decomposable solid organic substance into a readily decomposable and hardly decomposable soluble organic substance, and producing a readily decomposable soluble organic substance by producing ammoniacal nitrogen. Mineralization and growth of vegetative bacteria, nitrification of ammonia nitrogen and growth of nitrite, nitrification of nitrite and growth of nitrate, reduction of nitrate to nitrite and Denitrification of nitrite nitrogen, removal of organic matter, growth of vegetative bacteria, and autolysis of each bacterium into easily decomposable and hardly decomposable solid organic matter.

【0047】なお、これらの変換する反応速度は、関与
する基質などの影響が半飽和定数(Michaelis 定数)の
値によって0次反応から1次反応の範囲で表示でき、変
化速度が負となることを防止しうるため、M−M型(Mi
chaelis-Menten型)で表示した。
Incidentally, the reaction rate of these conversions can be expressed in the range from the 0th-order reaction to the 1st-order reaction depending on the value of the half-saturation constant (Michaelis constant) due to the influence of the substrate involved, and the rate of change is negative. MM type (Mi
chaelis-Menten type).

【0048】そして、易分解性固形性有機物の可溶化速
度(R1 mgCOD/l・hr)は、その濃度にM−M型で影響を
受け他栄養性細菌濃度に比例するとし、易分解性溶解性
有機物の無機化である摂取速度(R2 mgCOD/l・hr)は、
その濃度および溶存酸素濃度の影響をM−M型で受け他
栄養性細菌に比例するとして表示した。
The solubilization rate (R 1 mgCOD / l · hr) of the easily degradable solid organic matter is influenced by the MM type and is proportional to the concentration of the allotrophic bacteria. The intake rate (R 2 mgCOD / lhr), which is the mineralization of soluble organic matter,
The influence of the concentration and the dissolved oxygen concentration was indicated as being proportional to the vegetative bacterium in the MM type.

【0049】また、アンモニア性窒素の亜硝酸化速度
(R31mgN/l・hr)は、その濃度および溶存酸素濃度の影
響をM−M型で受け亜硝酸菌濃度に比例するとし、亜硝
酸性窒素の硝酸化速度(R32mgN/l・hr)は、その濃度お
よび溶存酸素濃度の影響をM−M型で受け硝酸菌濃度に
比例するとして表示した。
The nitrite rate (R 31 mgN / l · hr) of ammoniacal nitrogen is affected by the concentration and dissolved oxygen concentration in the MM type and is proportional to the concentration of nitrite. The nitrate rate (R 32 mgN / l · hr) of the agglomerated nitrogen was expressed as being proportional to the nitrate bacterium concentration affected by the concentration and dissolved oxygen concentration in the MM type.

【0050】さらに、亜硝酸性窒素の脱窒および硝酸性
窒素の亜硝酸性窒素への還元の速度(R41,R42mgN/l・
hr)は、それぞれ亜硝酸性窒素あるいは硝酸性窒素の濃
度および有機物濃度にM−M型で影響を受けるとし、溶
存酸素の影響は飽和型阻害関数で表示しうるとし、他栄
養性細菌濃度に比例するとして表示した。
Furthermore, the rate of denitrification of nitrite nitrogen and reduction of nitrate nitrogen to nitrite nitrogen (R 41 , R 42 mgN / l ·
hr), the concentration of nitrite nitrogen or nitrate nitrogen and the concentration of organic matter are affected by the MM type, and the effect of dissolved oxygen can be expressed by a saturated inhibition function. Indicated as proportional.

【0051】また、各細菌の固形性有機物への自己分解
速度(R5 ,R61,R62mgCOD/l・hr)は、それぞれの細
菌濃度に関して一次で、また、溶存酸素濃度にM−M型
で影響を受けるとした。
The rate of self-decomposition of each bacterium into solid organic matter (R5, R61, R62 mg COD / l · hr) is primary for each bacterial concentration, and the dissolved oxygen concentration is affected by the MM type. I took it.

【0052】そして、上記各工程の反応速度の数式を表
5に示す。
Table 5 shows formulas of the reaction rates in the above steps.

【0053】[0053]

【表5】 一方、反応槽1を、その構造、想定操作条件および上記
各反応工程などを考慮し、図1に示すように、反応槽1
の上部から好気性ゾーン(区画3)、微好気性ゾーン
(区画2)および無酸素ゾーン(区画1)の3つの区画
に、各区画の容積がそれぞれV3 として88m3 、V2
として88m3 、V1 として94m3 に仮想区画する。
[Table 5] On the other hand, taking into account the structure, assumed operating conditions, the above-mentioned respective reaction steps, and the like, the reaction tank 1 is, as shown in FIG.
From the upper part of the aerobic zone (compartment 3), microaerobic zone (compartment 2) and anoxic zone (compartment 1), the volume of each compartment is 88 m 3 , V 2 as V 3 respectively.
Virtual partitioned into 94m 3 as 88m 3, V 1 as.

【0054】そして、各区画および分離槽10はそれぞれ
完全混合と仮定し、各区画および分離槽10における水量
収支式が、式1ないし式3に示すように表示できる。な
お、各式のQk は、図1に示す各所の水量(m3 /hr)
で、各式の右辺のQk の値は各流量計にて実測される。
Assuming that each section and the separation tank 10 are completely mixed, the water balance equation in each section and the separation tank 10 can be displayed as shown in Equations 1 to 3. Note that Q k in each equation is the water volume (m 3 / hr) at each location shown in FIG.
The value of Q k on the right side of each equation is actually measured by each flow meter.

【0055】[0055]

【式1】 (Equation 1)

【0056】[0056]

【式2】 (Equation 2)

【0057】[0057]

【式3】 一方、各区画jや分離槽jにおける状態変数iに関わる
生成速度(Fi,j )は、図2に示す各物質変換のモデル
中の表5に示す反応速度に、収率、変換割合を乗じたも
のとして示される。なお、その一部を表6に例示する。
(Equation 3) On the other hand, the production rate (F i, j ) related to the state variable i in each section j and the separation tank j is obtained by adding the yield and the conversion ratio to the reaction rates shown in Table 5 in the model of each substance conversion shown in FIG. Shown as multiplied. Table 6 shows some of them.

【0058】[0058]

【表6】 そして、反応槽1の各区画jおよび分離槽jでの易分解
性溶解性有機物、アンモニア性窒素、亜硝酸性窒素など
各物質の状態変数iの濃度(Ci,j )の時間的変動は、
各区画や分離槽10での物質収支式で示され、この物質収
支式を、表7に示す。なお、物質収支式において、分離
槽10では物質変換反応は生じていないものと仮定する。
[Table 6] Then, the temporal variation of the concentration (C i, j ) of the state variable i of each substance such as easily decomposable soluble organic matter, ammonia nitrogen, and nitrite nitrogen in each section j of the reaction tank 1 and the separation tank j is as follows. ,
It is shown by the material balance formula in each section and the separation tank 10, and this material balance formula is shown in Table 7. In the material balance equation, it is assumed that no material conversion reaction occurs in the separation tank 10.

【0059】[0059]

【表7】 このように、上述した有機物を好気性菌や通性嫌気性菌
などにて酸化分解する酸化分解工程、アンモニア性窒素
を亜硝酸菌や硝酸菌にて酸化態窒素に酸化する硝化工
程、および、硝化された酸化態窒素を脱窒菌が硝酸呼吸
にて窒素ガスに還元する脱窒工程の3つの主たる反応工
程を考慮して、被処理水3aの各区画における処理の状況
がモデル化される。
[Table 7] Thus, an oxidative decomposition step of oxidatively decomposing the above-mentioned organic substances with aerobic bacteria or facultative anaerobic bacteria, a nitrification step of oxidizing ammonia nitrogen to oxidized nitrogen with nitrite or nitrate, and The state of treatment in each section of the water to be treated 3a is modeled in consideration of three main reaction steps of a denitrification step in which nitrified oxidized nitrogen is reduced to nitrogen gas by nitric acid respiration by nitric acid respiration.

【0060】そして、上記式1ないし式3、表7中の式
(16)ないし式(19)、および、上記実施例において測
定した汚水3中の有機物および各種窒素化合物の濃度を
初期条件、すなわち時間t=0における各区画および分
離槽10の易分解性溶解性有機物、アンモニア性窒素、亜
硝酸性窒素など各物質の状態変数iの濃度として、例え
ば表8に示すCi,1 ,Ci,2 ,Ci,3 ,Ci,4 に0以外
の任意の数値を入力し、Q1 、Q2 、Q5 およびQ6
操作値を入力し、定常状態に達するまで演算したシミュ
レーションの演算値を表9に示す。
The concentrations of the organic substances and various nitrogen compounds in the sewage 3 measured in the above formulas 1 to 3, the formulas (16) to (19) in Table 7, and the above examples, ie, the initial conditions, labile soluble organic substances in each compartment and the separation vessel 10 at time t = 0, ammonia nitrogen, as the concentration of the state variable i of each substance such as nitrite nitrogen, for example, C i shown in Table 8, 1, C i , 2 , C i, 3 , C i, 4 , input an arbitrary numerical value other than 0, input the operation values of Q 1 , Q 2 , Q 5 and Q 6 , and calculated the simulations until the steady state was reached. Table 9 shows the calculated values.

【0061】一方、上記実施例において、制御手段によ
る制御として、汚水3の浄化処理操作を、23分間汚水
3を反応槽1に流入させ、37分間は流入を停止する6
0分を1サイクルとし、この1サイクルにおける流入量
は約2.5m3 /hrと設定する。この条件により、反応
槽1内の流入水ベースでの水理学的滞留時間(Hydrauli
c Residence Time :HRT)が4.5日で、この4.
5日で流入する汚水3は被処理水3aとして滞留される。
On the other hand, in the above embodiment, as the control by the control means, the purifying operation of the sewage 3 is performed by flowing the sewage 3 into the reaction tank 1 for 23 minutes and stopping the inflow for 37 minutes.
One cycle is defined as 0 minutes, and the inflow rate in this one cycle is set to about 2.5 m 3 / hr. Due to this condition, the hydraulic residence time based on the influent water in the reactor 1 (Hydrauli
c Residence Time (HRT) is 4.5 days.
The sewage 3 flowing in 5 days is retained as the treated water 3a.

【0062】さらに、還流ポンプを反応槽1内の被処理
水3aが約27m3 /hrで還流管7を流過し、エゼクタに
より空気を約1100〜1300m3 /hr導入しつつ反
応槽1の上部に還流するように駆動させ、この還流は1
0分間に1回行うように設定する。
Further, the water to be treated 3a in the reaction vessel 1 flows through the reflux pipe 7 at a flow rate of about 27 m 3 / hr, and air is introduced into the reaction vessel 1 by an ejector at a rate of about 1100 to 1300 m 3 / hr. It is driven to return to the top and this
Set to run once every 0 minutes.

【0063】また、汚泥ポンプを、分離槽10内の沈殿し
た汚泥を2.4m3 /hrで汚泥管12を介して反応槽1の
底部に搬送するように駆動させ、また、分離槽10の水面
に浮遊する汚泥を、3.6m3 /hrで反応槽1の上部に
返送するように返送ポンプを駆動させるように設定す
る。これにより、反応槽1での実質的な滞留時間は、
1.3日となる。
Further, the sludge pump is driven so that the sludge settled in the separation tank 10 is conveyed to the bottom of the reaction tank 1 through the sludge pipe 12 at 2.4 m 3 / hr. The return pump is set to drive the sludge floating on the water surface to return to the upper part of the reaction tank 1 at 3.6 m 3 / hr. Thereby, the substantial residence time in the reaction tank 1 is:
1.3 days.

【0064】そして、上記設定で汚水3の浄化処理を行
い、反応槽1および分離槽10の各点で被処理水3aを採水
し、有機物および窒素化合物の物質変換特性を検査し、
実験1を行った。その結果を上述のシミュレーション演
算値と比較して表8ないし表9に示す。また、上記設定
条件による反応槽1および分離槽10での除去率を表10
に示す。
Then, the sewage water 3 is purified under the above-mentioned settings, and the water 3a to be treated is sampled at each point of the reaction tank 1 and the separation tank 10, and the substance conversion characteristics of organic substances and nitrogen compounds are inspected.
Experiment 1 was performed. The results are shown in Tables 8 and 9 in comparison with the above-mentioned simulation calculation values. Table 10 shows the removal rates in the reaction tank 1 and the separation tank 10 under the above set conditions.
Shown in

【0065】なお、測定項目は、溶存酸素(DO:Diss
olved Oxygen)、pH、アルカリ度、重クロム酸カリウ
ムにて測定される全および溶解性の化学的酸素要求量
(CODCr)、全および溶解性の生物化学的酸素要求量
(BOD)、全および溶解性の窒素、溶解性の亜硝酸性
窒素や硝酸性窒素の酸化態窒素、アンモニア性窒素、揮
発性浮遊物質(VSS:Volatile Suspended Solids )
などで、日本下水道協会にて1984年に出版された下
水試験方法、および、アメリカン パブリックヘルス
アソシエーション(American Public Health Associati
on:APHA)、アメリカン ウォーター ワークス
アソシエーション(American Water Works Associatio
n:AWWA)、ウォーター ポリューション コント
ロール フェデレーション(Water Pollution Control
Federation:WPCF)にて1985年に第16版とし
て米国で出版されたスタンダード メソッド(STAN
DARD METHODS)に基づいて行った。
The measurement items were dissolved oxygen (DO: Diss).
olved Oxygen), pH, alkalinity, total and soluble chemical oxygen demand (COD Cr ) measured in potassium dichromate, total and soluble biochemical oxygen demand (BOD), total and soluble Soluble nitrogen, soluble nitrogen oxides such as nitrite nitrogen and nitrate nitrogen, ammonia nitrogen, volatile suspended solids (VSS)
Sewage test methods published in 1984 by the Japan Sewerage Association, and American Public Health
Association (American Public Health Associati
on: APHA), American Water Works
Association (American Water Works Association)
n: AWAWA), Water Pollution Control Federation
Standard Method (STAN) published in the United States as a 16th edition in 1985 at Federation: WPCF.
DARD METHODS).

【0066】[0066]

【表8】 [Table 8]

【表9】 [Table 9]

【表10】 そして、表8および表9に示すように、上記設定による
浄化処理において、反応槽1内の被処理水3aのアルカリ
度は平均500(標準偏差35)mg/l、pHは6.9
である。そして、これら結果から、物質変換速度への影
響は小さいものと判断される。また、区画2に配設した
センサにより測定した溶存酸素濃度は、約0.5mg/l
であった。さらに、反応槽1に流入した汚水3の全窒素
(TN:Total Nitrogen)は約3450mg/l、全化学
的酸素要求量(T(Total )−CODCr)は約1550
0mg/l、アンモニア性窒素(NH4 + −N)は約27
00mg/l、溶解性化学的酸素要求量(S(Soluble )
−CODCr)は約5530mg/lである。
[Table 10] Then, as shown in Tables 8 and 9, in the purification treatment under the above settings, the alkalinity of the water 3a to be treated in the reaction tank 1 is 500 mg / l on average (standard deviation 35), and the pH is 6.9.
It is. From these results, it is determined that the influence on the material conversion rate is small. The dissolved oxygen concentration measured by the sensor disposed in the section 2 is about 0.5 mg / l
Met. Furthermore, the total nitrogen (TN: Total Nitrogen) of the sewage 3 flowing into the reaction tank 1 is about 3450 mg / l, and the total chemical oxygen demand (T (Total) -COD Cr ) is about 1550.
0 mg / l, ammonia nitrogen (NH 4 + -N) is about 27
00mg / l, soluble chemical oxygen demand (S (Soluble)
-COD Cr ) is about 5530 mg / l.

【0067】また、表10に示すように、反応槽1およ
び分離槽10において、固形物関連(浮遊物質 SS:Su
spended Solids、および、揮発性浮遊物質 VSS:Vo
latile Suspended Solids 等)は20〜35%程度除去
され、溶解性物質はほぼ90%以上が除去されている。
特に、溶解性窒素(SN:Soluble Nitrogen)および溶
解性生物化学的酸素要求量(S−BOD)は95%程度
除去され、それぞれ約130および100mg/lとなっ
ており、汚水3が良好に浄化処理されていることが分か
る。
Further, as shown in Table 10, in the reaction tank 1 and the separation tank 10, solid substances (suspended substances SS: Su
Spend spent solids and volatile suspended solids VSS: Vo
Latile Suspended Solids, etc.) are removed by about 20-35%, and soluble substances are removed by about 90% or more.
In particular, about 95% of soluble nitrogen (SN: Soluble Nitrogen) and soluble biochemical oxygen demand (S-BOD) are removed, and are about 130 and 100 mg / l, respectively, and the sewage 3 is satisfactorily purified. You can see that it has been processed.

【0068】さらに、上記設定による浄化処理の水質と
シミュレーションの演算値とが近似しており、シミュレ
ーションを構成する表1ないし表7、および、式1ない
し式3に示す各式が、汚水3の浄化処理によく適合して
いることが判断できる。
Further, the water quality of the purification treatment according to the above setting and the calculated value of the simulation are close to each other, and the respective expressions shown in Tables 1 to 7 and Expressions 1 to 3 which constitute the simulation are expressed as follows. It can be determined that it is well suited for the purification process.

【0069】次に、表1ないし表7、および、式1ない
し式3に示す各式からなる汚水3の浄化処理のモデルに
て、汚水3の浄化処理をシミュレートし、その結果を、
実際の汚水3の浄化処理と比較して、実験2を行った。
Next, the purification process of the sewage 3 is simulated by using the model of the purification process of the sewage 3 shown in Tables 1 to 7 and Expressions 1 to 3, and the result is shown as follows.
Experiment 2 was performed in comparison with the actual purification treatment of the wastewater 3.

【0070】この実験2は、表8および表9に示す流入
汚水3の水質と、反応槽1の各区画の容積と、汚水3の
還流量および分離槽10の沈殿および浮遊汚泥の返送量
と、各区画での溶存酸素濃度(区画1は0mg/l、区画
2は0.5mg/l、区画3は1mg/l)とを、表1ない
し表7、および、式1ないし式3に示す各式からなる各
区画における被処理水3aの浄化処理のモデルに入力し、
各区画での被処理水3aが定常状態になるまで演算を繰り
返し、汚水3の浄化処理をシミュレートした。
In Experiment 2, the water quality of the inflowed sewage 3 shown in Tables 8 and 9, the volume of each section of the reaction tank 1, the amount of reflux of the sewage 3 and the amount of sediment in the separation tank 10 and the amount of suspended sludge returned. , The dissolved oxygen concentration in each section (0 mg / l in section 1, 0.5 mg / l in section 2 and 1 mg / l in section 3) are shown in Tables 1 to 7 and Equations 1 to 3. Input to the model of the purification process of the water to be treated 3a in each section consisting of each formula,
The calculation was repeated until the water to be treated 3a in each section became a steady state, thereby simulating the purification treatment of the wastewater 3.

【0071】また、実験1の装置を用いて、実験1と同
様な操作により浄化処理し、反応槽1および分離槽10の
各点で採水し、有機物および窒素化合物の物質変換特性
を検査し、定常状態に達した後の1サイクルおよび1日
間におけるシミュレート結果と比較した。その結果を図
3および図4に示す。
Using the apparatus of Experiment 1, purification treatment was performed in the same manner as in Experiment 1, water was collected at each point of the reaction tank 1 and the separation tank 10, and the substance conversion characteristics of organic substances and nitrogen compounds were examined. , One cycle after reaching steady state and one day. The results are shown in FIGS.

【0072】なお、シミュレートにおける定常状態は、
汚水3の流入サイクル間でのアンモニア性窒素、亜硝酸
性窒素や硝酸性窒素の酸化態窒素、他栄養性細菌、易分
解性溶解性有機物、硝酸菌などの濃度の変動状態が同一
となった状態をいう。また、この定常状態において、こ
の実験2の操作条件により汚泥の反応槽1および分離槽
10での合計の滞留時間は約6日で、硝酸菌は系から流亡
し亜硝酸菌のみが残存し、脱窒は亜硝酸脱窒が卓越する
ことが分かる。
The steady state in the simulation is as follows:
During the inflow cycle of the sewage 3, the fluctuation states of the concentrations of ammonia nitrogen, nitrite nitrogen, oxidized nitrogen of nitrate nitrogen, other vegetative bacteria, readily decomposable soluble organic matter, and nitrate bacteria became the same. State. In this steady state, the sludge reaction tank 1 and the separation tank
At 10 the total residence time was about 6 days, the nitric acid spilled out of the system and only the nitrite remained, indicating that nitrite denitrification was dominant in denitrification.

【0073】この図3および図4に示す結果から、汚水
3の浄化処理のモデルによるシミュレートが、実際の汚
水3の処理状況とサイクル中の汚水3の状態変動も含め
て、良好に近似していることが分かり、この汚水3の浄
化処理のモデルに基づいて、汚水3の浄化処理の操作を
制御することにより、汚水3を良好に浄化処理できるこ
とが分かる。
From the results shown in FIG. 3 and FIG. 4, the simulation using the model of the purification process of the wastewater 3 is well approximated, including the actual treatment status of the wastewater 3 and the state variation of the wastewater 3 during the cycle. It can be seen that the sewage 3 can be satisfactorily purified by controlling the operation of the sewage 3 purification based on the model of the sewage 3 purification.

【0074】次に、実験2でのシミュレート試験におい
て、区画1の溶存酸素濃度0mg/l、区画2の溶存酸素
濃度0.5mg/l、区画3の溶存酸素濃度1mg/lを、
区画1での溶存酸素濃度を0mg/lに設定し、区画2の
溶存酸素濃度を変化させ、区画3の溶存酸素濃度を区画
2の溶存酸素濃度の2倍とし、定常状態になるまで演算
し、実験3を行った。その結果を図5ないし図7に示
す。なお、反応槽1内の水理学的滞留時間を、実際の浄
化処理操作の条件である4.5日とした。
Next, in the simulated test in Experiment 2, the dissolved oxygen concentration in section 1 was 0 mg / l, the dissolved oxygen concentration in section 2 was 0.5 mg / l, and the dissolved oxygen concentration in section 3 was 1 mg / l.
The dissolved oxygen concentration in section 1 was set to 0 mg / l, the dissolved oxygen concentration in section 2 was changed, the dissolved oxygen concentration in section 3 was set to twice the dissolved oxygen concentration in section 2, and the calculation was performed until a steady state was reached. Experiment 3 was performed. The results are shown in FIGS. In addition, the hydraulic retention time in the reaction tank 1 was set to 4.5 days, which is the condition of the actual purification treatment operation.

【0075】これら図5および図6に示す結果から、区
画2での溶存酸素濃度が0.3〜0.4mg/l程度を境
に、溶存酸素濃度を低下させると、硝化が起こりにくく
なり、酸素呼吸とともに硝酸呼吸の量も減るため、他栄
養性細菌および自栄養性細菌が急激に減少し、系内に保
持できなくなることが分かる。
From the results shown in FIG. 5 and FIG. 6, when the dissolved oxygen concentration is lowered around the boundary of the dissolved oxygen concentration in the section 2 of about 0.3 to 0.4 mg / l, nitrification becomes less likely to occur. It can be seen that since the amount of nitrate respiration decreases with oxygen respiration, allotrophic bacteria and autotrophic bacteria rapidly decrease and cannot be retained in the system.

【0076】また、図7に示すように、区画2での溶存
酸素濃度が1mg/l程度を境に、溶存酸素濃度が上昇す
ると亜硝酸性窒素や硝酸性窒素の酸化態窒素の濃度が上
昇し、溶存酸素濃度が低下するとアンモニア性窒素の濃
度および易分解性溶解性有機物が上昇することが分か
る。
As shown in FIG. 7, when the dissolved oxygen concentration rises from the boundary of the dissolved oxygen concentration in the section 2 of about 1 mg / l, the concentrations of nitrite nitrogen and oxidized nitrogen such as nitrate nitrogen increase. However, it can be seen that when the dissolved oxygen concentration decreases, the concentration of ammonia nitrogen and the easily decomposable soluble organic matter increase.

【0077】そして、アンモニア性窒素が上昇するの
は、硝化に必要な酸素量が不足するためである。また、
溶存酸素濃度が上昇すると酸化態窒素濃度が上昇するの
は、溶存酸素による脱窒の抑制に加え、有機物の酸素呼
吸による消費と硝酸呼吸による消費とのバランスが崩れ
脱窒に必要な有機物量が不足するためである。
The reason why the ammonia nitrogen is increased is that the amount of oxygen necessary for nitrification is insufficient. Also,
When the dissolved oxygen concentration increases, the oxide nitrogen concentration increases because, in addition to the suppression of denitrification due to dissolved oxygen, the balance between the consumption of organic substances by oxygen respiration and the consumption by nitrate respiration is lost, and the amount of organic substances required for denitrification is reduced. This is due to lack.

【0078】したがって、区画2における溶存酸素濃度
を0.5〜1.5mg/lとなるように、汚水3を浄化処
理することが適当であると判断できる。
Therefore, it can be determined that it is appropriate to purify the sewage 3 so that the dissolved oxygen concentration in the section 2 becomes 0.5 to 1.5 mg / l.

【0079】次に、実験3において、区画1での溶存酸
素濃度を0mg/l、区画2の溶存酸素濃度を1mg/l、
区画3の溶存酸素濃度を2mg/lに設定し、反応槽1内
の水理学的滞留時間を変化させ、各区画での被処理水が
定常状態になるまで演算してシミュレートし、実験4を
行った。その結果を図8ないし図10に示す。
Next, in Experiment 3, the dissolved oxygen concentration in section 1 was 0 mg / l, the dissolved oxygen concentration in section 2 was 1 mg / l,
Experiment 4 was carried out by setting the dissolved oxygen concentration in section 3 to 2 mg / l, changing the hydraulic residence time in reaction tank 1 and calculating until the water to be treated in each section reached a steady state. Was done. The results are shown in FIGS.

【0080】この図8に示す結果から、水理学的滞留時
間が2日より長ければ、硝化に関与する自栄養性細菌の
反応槽1内の現存量はあまり変化しないが、有機物の酸
化分解や脱窒に関与する他栄養性細菌の反応槽1内の現
存量は、水理学的滞留時間が6日より短くなるにしたが
って減少することが分かる。
From the results shown in FIG. 8, when the hydraulic retention time is longer than 2 days, the existing amount of autotrophic bacteria involved in nitrification in the reaction tank 1 does not change much, but the oxidative decomposition of organic matter and It can be seen that the existing amount of heterotrophic bacteria involved in denitrification in the reaction tank 1 decreases as the hydraulic retention time becomes shorter than 6 days.

【0081】また、図9に示すように、反応槽1から流
出する汚水3の易分解性溶解性有機物の濃度は、水理学
的滞留時間が3日より短いと急激に上昇する。さらに、
酸化態窒素の濃度は、水理学的滞留時間が4.5日より
短いと上昇し、3.6日以下ではその上昇が急激とな
る。また、アンモニア性窒素の濃度は、水理学的滞留時
間が3日以下になると上昇することが分かる。
As shown in FIG. 9, the concentration of easily decomposable soluble organic matter in the sewage 3 flowing out of the reaction tank 1 sharply increases when the hydraulic retention time is shorter than 3 days. further,
The concentration of oxidized nitrogen increases when the hydraulic retention time is shorter than 4.5 days, and increases rapidly below 3.6 days. Also, it can be seen that the concentration of ammonia nitrogen increases when the hydraulic retention time is 3 days or less.

【0082】さらに、図10に示す結果から、全窒素お
よび溶解性窒素の濃度は水理学的滞留時間が3.6日以
下、溶解性有機物の化学的酸素要求量(溶解性CO
Cr)の濃度は2.5日以下になると上昇することが分
かる。
Further, from the results shown in FIG. 10, the concentrations of total nitrogen and soluble nitrogen were as follows: the hydraulic retention time was 3.6 days or less, and the chemical oxygen demand (soluble CO
It can be seen that the concentration of D Cr ) rises below 2.5 days.

【0083】また、上記実験4において、水理学的滞留
時間を3.6日に設定し、実験3と同様に溶存酸素濃度
を変化させ、定常状態になるまで演算してシミュレート
し、実験5を行った。その結果を図11に示す。
In Experiment 4 above, the hydraulic retention time was set to 3.6 days, the dissolved oxygen concentration was changed in the same manner as in Experiment 3, and the calculation was performed until a steady state was reached. Was done. The result is shown in FIG.

【0084】この図11に示す結果から、区画2での溶
存酸素濃度が0.65mg/l以上であれば、易分解性溶
解性有機物による化学的酸素要求量およびアンモニア性
窒素の濃度が低下し、易分解性溶解性有機物およびアン
モニア性窒素が良好に除去されるが、酸化態窒素の濃度
が上昇し始める。このため、区画2での溶存酸素濃度を
0.65〜0.7mg/l程度に設定することにより、水
理学的滞留時間が4.5日に設定した浄化処理と同様に
良好な浄化処理が行えることが分かる。しかしながら、
水理学的滞留時間が3.6日では、良好な汚水3の浄化
処理が行える溶存酸素濃度の幅が極端に狭くなる。
From the results shown in FIG. 11, when the dissolved oxygen concentration in the section 2 is 0.65 mg / l or more, the chemical oxygen demand by the readily decomposable soluble organic matter and the concentration of ammonia nitrogen decrease. The easily decomposable soluble organic matter and ammonia nitrogen are removed well, but the concentration of oxidized nitrogen starts to increase. For this reason, by setting the dissolved oxygen concentration in the section 2 to about 0.65 to 0.7 mg / l, a good purification treatment can be performed similarly to the purification treatment in which the hydraulic retention time is set to 4.5 days. You can see that you can do it. However,
When the hydraulic retention time is 3.6 days, the range of the dissolved oxygen concentration at which good purification treatment of the sewage 3 can be performed becomes extremely narrow.

【0085】すなわち、水理学的滞留時間を4.5日に
設定することで、安定した処理が余裕を持って行えると
判断できる。
That is, by setting the hydraulic retention time to 4.5 days, it can be determined that stable processing can be performed with a margin.

【0086】したがって、上記実施例は、反応槽1に流
入する汚水3の流入量と、汚水3中の有機物および各窒
素化合物の濃度とから、反応槽1内の被処理水3a中の有
機物、各種窒素化合物および各種微生物の物質収支式
と、有機物の除去、各種窒素化合物の変換および各種微
生物の増殖の反応速度式と、有機物および各種窒素化合
物の生成速度式とからなる被処理水3aの処理の状況モデ
ルを反応槽1の各区画において実行し、反応槽1内の被
処理水3aの溶存酸素濃度が算出される結果を、状況モデ
ルのシミュレーションの演算値と比較して、絶えず状況
モデルのシミュレーションの演算値に沿うように、すな
わち、例えば各種測定値および入力値に基づいて、各区
画での被処理水3aの処理の状況モデルをシミュレートし
た結果、酸化分解工程、硝化工程および脱窒工程がそれ
ぞれ良好に進行する溶存酸素濃度となるように、汚水3
の流入量、還流量、汚泥の返送量などを制御し、汚水3
を浄化処理する。
Therefore, the above embodiment is based on the inflow amount of the sewage 3 flowing into the reaction tank 1 and the concentration of the organic matter and each nitrogen compound in the sewage 3, Treatment of the water to be treated 3a comprising a mass balance formula of various nitrogen compounds and various microorganisms, a reaction rate formula of organic matter removal, conversion of various nitrogen compounds and growth of various microorganisms, and a production rate formula of organic substances and various nitrogen compounds. The situation model is executed in each section of the reaction tank 1, and the result of calculating the dissolved oxygen concentration of the water 3a to be treated in the reaction tank 1 is compared with the calculated value of the simulation of the situation model. As a result of simulating the situation model of the treatment of the water to be treated 3a in each section based on the calculated values of the simulation, that is, for example, based on various measured values and input values, the oxidative decomposition process As a dissolved oxygen concentration of the nitrification step and the denitrification step proceeds favorably respectively, sewage 3
Control the inflow, reflux, sludge return, etc.
To purify.

【0087】このため、1つの反応槽1で、有機物およ
び窒素化合物を含有する汚水3の浄化処理、すなわち、
被処理水3a中の有機物もしくは自己分解により栄養を得
て溶存酸素が存在しない嫌気性雰囲気で、硝化された酸
化態窒素を脱窒菌が硝酸呼吸にて窒素ガスに還元する脱
窒工程、溶存酸素が存在する好気性雰囲気で、好気性菌
や通性嫌気性菌などが被処理水3a中の残存する有機物を
栄養源として活性化し、有機物を好気性菌や通性嫌気性
菌などにて酸化分解する酸化分解工程、および、溶存酸
素の存在下、アンモニア性窒素を亜硝酸菌や硝酸菌にて
亜硝酸性窒素や硝酸性窒素の酸化態窒素に酸化する硝化
工程の3つの主な工程がそれぞれ良好に進行でき、汚水
3を良好に浄化処理できる。
For this reason, in one reaction tank 1, the purification treatment of the sewage 3 containing organic substances and nitrogen compounds, ie,
Denitrification process in which nitrified oxidized nitrogen is reduced to nitrogen gas by nitric acid respiration in an anaerobic atmosphere where organic matter in the treated water 3a or nutrients obtained by self-decomposition and no dissolved oxygen is present, and nitric oxide is breathed by nitric acid. In an aerobic atmosphere where aerobic bacteria exist, aerobic bacteria and facultative anaerobic bacteria activate the remaining organic matter in the treated water 3a as a nutrient source, and oxidize the organic matter with aerobic bacteria and facultative anaerobic bacteria. There are three main processes: an oxidative decomposition process that decomposes, and a nitrification process that oxidizes ammonia nitrogen to nitrite nitrogen or nitrate nitrogen in the presence of dissolved oxygen. Each can proceed well, and the sewage 3 can be purified well.

【0088】さらに、1つの反応槽1で汚水3の浄化処
理ができるため、装置が小型化し、設置スペースを縮小
でき、製造性が向上するとともに、装置の運転コストが
低減でき、浄化処理操作も簡略化できる。
Further, since the purification treatment of the wastewater 3 can be performed in one reaction tank 1, the apparatus can be downsized, the installation space can be reduced, the productivity can be improved, the operation cost of the apparatus can be reduced, and the purification operation can be performed. Can be simplified.

【0089】また、流入汚水3の汚染状態である有機物
および各種窒素化合物の濃度の測定結果などを入力する
のみで、汚水3の浄化処理がほぼ自動的に行われ、浄化
処理操作が容易にできる。
Further, only by inputting the measurement results of the concentrations of the organic substances and various nitrogen compounds which are in the polluted state of the inflowing sewage 3, the purification of the sewage 3 is performed almost automatically, and the purification operation can be easily performed. .

【0090】なお、上記実施例において、流入汚水3の
汚染状態である有機物による生物化学的酸素要求量や化
学的酸素要求量および各種窒素化合物の濃度をあらかじ
め測定し、この測定結果を制御手段に入力して、浄化処
理することについて説明したが、各種電磁弁や流量計を
用いず、化学的酸素要求量から汚染状態を計測し、流入
量や還流量、汚泥の返送量を一定にして、汚水3を浄化
処理する簡易式のものや、有機物による生物化学的酸素
要求量や化学的酸素要求量および各種窒素化合物の濃度
などをセンサなどにより自動的に測定し、この測定結果
と流入汚水3の流入量とから反応槽1に流入する有機物
や各種窒素化合物などの量を汚染状態として計測し、制
御手段にて汚水3の浄化処理の操作を自動的に制御し
て、汚水3を浄化処理する自動式のものでもできる。
In the above embodiment, the biochemical oxygen demand, the chemical oxygen demand, and the concentrations of various nitrogen compounds by the organic matter in the polluted state of the inflowing sewage 3 are measured in advance, and the measurement results are sent to the control means. Although input and purification processing were explained, without using various solenoid valves and flowmeters, the pollution state was measured from the required amount of chemical oxygen, and the inflow, reflux, and sludge return rates were kept constant. A simple type for purifying the sewage 3 or automatically measuring the biochemical oxygen demand, the chemical oxygen demand, and the concentration of various nitrogen compounds by organic substances using a sensor, etc. The amount of organic matter and various nitrogen compounds flowing into the reaction tank 1 is measured as a contaminated state from the inflow amount of the sewage 3, and the operation of the purification process of the sewage 3 is automatically controlled by the control means, thereby purifying the sewage 3. You can do things of automatic that.

【0091】さらに、被処理水3aの溶存酸素濃度を区画
2の反応槽1の中間に設けたセンサにて測定して説明し
たが、センサを被処理水3aの流過する方向に沿って反応
槽1内に複数設け、それぞれに対応して複数仮想区画
し、それぞれの溶存酸素濃度に基づいて、各区画での被
処理水3aの浄化処理の状況モデルを実行し、それぞれの
区画に設けた曝気装置にて溶存酸素濃度を調整するよう
にしてもできる。そしてさらに、1つのセンサを移動さ
せ、反応槽1の各位置にて溶存酸素濃度を測定して、汚
水3の浄化処理の操作を制御するようにしてもできる。
Further, the dissolved oxygen concentration of the water 3a to be treated was measured using a sensor provided in the middle of the reaction tank 1 in the section 2, and the sensor was reacted along the flowing direction of the water 3a. A plurality of virtual compartments are provided in the tank 1 and a plurality of virtual compartments are correspondingly provided. Based on the respective dissolved oxygen concentrations, a situation model of the purification process of the water to be treated 3a in each compartment is executed and provided in each compartment. The dissolved oxygen concentration may be adjusted by an aeration device. Further, one sensor may be moved to measure the concentration of dissolved oxygen at each position of the reaction tank 1 to control the operation of the purification treatment of the sewage 3.

【0092】また、汚水3として、有機物および各種窒
素化合物を含有する、例えばし尿排水を用いて説明した
が、有機物、各種窒素化合物のいずれか含有するいずれ
の汚水3を対象とすることができる。
The wastewater 3 is described using, for example, human wastewater containing organic matter and various nitrogen compounds. However, any wastewater 3 containing any of organic matter and various nitrogen compounds can be used.

【0093】[0093]

【発明の効果】請求項1記載の汚水の処理方法によれ
ば、反応槽内の被処理水の各位置での汚染状態を、汚水
の汚染状態と、被処理水の溶存酸素濃度とに基づいて、
物質収支式、反応速度式および生成速度式とからそれぞ
れ演算し、微生物により有機物を酸化分解する酸化分解
工程およびアンモニア性窒素を酸化態窒素に酸化する硝
化工程の反応が生じる好気性雰囲気と、酸化態窒素を窒
素ガスに還元する脱窒工程の反応が生じる嫌気性雰囲気
との双方が反応槽内で生じる状態に被処理水の溶存酸素
濃度を制御するため、1つの反応槽で、有機物を微生物
にて酸化分解する酸化分解工程、アンモニア性窒素を微
生物にて酸化態窒素に酸化する硝化工程、および、酸化
態窒素を微生物にて窒素ガスに還元する脱窒工程がそれ
ぞれ良好に進行でき、汚水を良好に浄化処理できる。
According to the method for treating sewage according to the first aspect, the state of contamination at each position of the water to be treated in the reaction tank is determined based on the state of contamination of the sewage and the concentration of dissolved oxygen in the water to be treated. hand,
Oxidative decomposition, in which the organic matter is oxidatively decomposed by microorganisms , calculated from the material balance equation, reaction rate equation and production rate equation
Process and nitrate to oxidize ammoniacal nitrogen to oxidized nitrogen
Aerobic atmosphere where the reaction of the
Anaerobic atmosphere in which the reaction of the denitrification process to reduce to elemental gas occurs
In order to control the concentration of dissolved oxygen in the water to be treated so that both occur in the reaction tank, the oxidative decomposition step of oxidatively decomposing organic substances by microorganisms in one reaction tank The nitrification step of oxidizing to nitrogen and the denitrification step of reducing oxidized nitrogen to nitrogen gas by microorganisms can proceed satisfactorily, and sewage can be purified well.

【0094】請求項2記載の汚水の処理方法によれば、
請求項1記載の汚水の処理方法において、反応槽に流入
する汚水の汚染状態を、汚水の流入量と、汚水中の有機
物と、汚水中の各種窒素化合物に基づいて計測するた
め、反応槽に流入する汚水の汚染状態から反応槽内の被
処理水の流過する方向に沿った各位置での汚染状態を容
易に演算可能で、汚水を容易に浄化処理できる。
According to the method for treating sewage described in claim 2,
In the method for treating sewage according to claim 1, the contamination state of the sewage flowing into the reaction tank is measured based on the amount of inflow of the sewage, organic matter in the sewage, and various nitrogen compounds in the sewage. The contamination state at each position along the flowing direction of the water to be treated in the reaction tank can be easily calculated from the contamination state of the inflowing wastewater, and the wastewater can be easily purified.

【0095】請求項3記載の汚水の処理方法によれば、
請求項1または2記載の処理方法において、被処理水の
溶存酸素濃度を、汚水の流入量、被処理水への酸素供給
量および反応槽の下流側から上流側への被処理水の還流
量に基づいて制御するため、汚水の浄化処理操作が容易
にでき、有機物を微生物にて酸化分解する酸化分解工
程、アンモニア性窒素を微生物にて酸化態窒素に酸化す
る硝化工程、および、酸化態窒素を微生物にて窒素ガス
に還元する脱窒工程が、1つの反応槽で良好に効率よく
進行でき、汚水を良好に浄化処理できる。
According to the method for treating sewage described in claim 3,
3. The treatment method according to claim 1, wherein the dissolved oxygen concentration of the water to be treated is determined based on an inflow amount of the wastewater, an oxygen supply amount to the water to be treated, and a reflux amount of the water to be treated from the downstream side to the upstream side of the reaction tank. , The sewage purification operation can be easily performed, the oxidative decomposition step of oxidatively decomposing organic substances by microorganisms, the nitrification step of oxidizing ammonia nitrogen to oxidized nitrogen by microorganisms, and The denitrification step of reducing nitrocellulose to nitrogen gas by microorganisms can proceed efficiently and efficiently in one reaction tank, and sewage can be satisfactorily purified.

【0096】請求項4記載の汚水の処理装置によれば、
汚水の汚染状態を汚染計測手段にて計測するとともに、
溶存酸素測定手段にて反応槽内の被処理水の溶存酸素濃
度を測定し、これらの結果に基づいて制御手段にて、酸
素供給手段、流入調整手段および還流手段を制御し、
生物により有機物を酸化分解する酸化分解工程およびア
ンモニア性窒素を酸化態窒素に酸化する硝化工程の反応
が生じる好気性雰囲気と、酸化態窒素を窒素ガスに還元
する脱窒工程の反応が生じる嫌気性雰囲気との双方が反
応槽内で生じる状態に被処理水の溶存酸素濃度を制御
し、汚水を浄化処理するため、汚水の浄化処理操作が容
易にでき、有機物を微生物にて酸化分解する酸化分解工
程、アンモニア性窒素を微生物にて酸化態窒素に酸化す
る硝化工程、および、酸化態窒素を微生物にて窒素ガス
に還元する脱窒工程が、1つの反応槽で良好に効率よく
進行でき、汚水を良好に浄化処理できる。
According to the sewage treatment apparatus according to the fourth aspect,
Measure the pollution status of sewage with pollution measurement means,
The dissolved oxygen concentration of the water to be treated in the reaction vessel was measured with a dissolved oxygen measuring means, by the control means on the basis of these results, the oxygen supply means, the inlet adjustment means and recirculation means controls, fine
An oxidative decomposition step of oxidatively decomposing organic matter by living organisms, and
Reaction of nitrification process that oxidizes ammoniacal nitrogen to oxidized nitrogen
Aerobic atmosphere and oxidized nitrogen reduced to nitrogen gas
Reaction with the anaerobic atmosphere where the reaction of the denitrification process
An oxidative decomposition process in which the concentration of dissolved oxygen in the water to be treated is controlled to a state generated in the reaction tank and the sewage is purified. Process for oxidizing nitrogen to oxidized nitrogen with microorganisms and denitrification process for reducing oxidized nitrogen to nitrogen gas with microorganisms can proceed efficiently and efficiently in one reaction tank, and purify sewage well. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の汚水の処理方法を実施する装置の一実
施例の構成を示す系統説明図である。
FIG. 1 is a system explanatory diagram showing a configuration of an embodiment of an apparatus for performing a wastewater treatment method of the present invention.

【図2】同上汚水の浄化処理工程の物質変換のモデルを
示す系統説明図である。
FIG. 2 is a system explanatory diagram showing a model of substance conversion in a purification treatment step of the wastewater.

【図3】同上有機物および窒素化合物の物質変換特性の
定常状態に達した後の1サイクルにおけるシミュレート
結果と実測値との対比を示すグラフである。
FIG. 3 is a graph showing a comparison between a simulation result and an actually measured value in one cycle after the material conversion characteristics of an organic substance and a nitrogen compound reach a steady state.

【図4】同上有機物および窒素化合物の物質変換特性の
定常状態に達した後の1日間におけるシミュレート結果
と実測値との対比を示すグラフである。
FIG. 4 is a graph showing a comparison between simulated results and measured values for one day after reaching a steady state in the substance conversion characteristics of the organic substance and the nitrogen compound.

【図5】同上区画2の溶存酸素濃度を変化させたシミュ
レート結果を示すグラフである。
FIG. 5 is a graph showing a simulation result when the dissolved oxygen concentration in the same section 2 is changed.

【図6】同上区画2の溶存酸素濃度を変化させたシミュ
レート結果を示すグラフである。
FIG. 6 is a graph showing a simulation result when the dissolved oxygen concentration in the same section 2 is changed.

【図7】同上区画2の溶存酸素濃度を変化させたシミュ
レート結果を示すグラフである。
FIG. 7 is a graph showing a simulation result when the dissolved oxygen concentration in the same section 2 is changed.

【図8】同上水理学的滞留時間を変化させたシミュレー
ト結果を示すグラフである。
FIG. 8 is a graph showing a simulation result when the hydraulic retention time is changed.

【図9】同上水理学的滞留時間を変化させたシミュレー
ト結果を示すグラフである。
FIG. 9 is a graph showing a simulation result when the hydraulic residence time is changed.

【図10】同上水理学的滞留時間を変化させたシミュレ
ート結果を示すグラフである。
FIG. 10 is a graph showing a simulation result when the hydraulic residence time is changed.

【図11】同上区画2の溶存酸素濃度を変化させたシミ
ュレート結果を示すグラフである。
FIG. 11 is a graph showing a simulation result when the dissolved oxygen concentration in the same section 2 is changed.

【符号の説明】[Explanation of symbols]

1 反応槽 3 汚水 3a 被処理水 4 流入口 5 流入管 7 還流管 DESCRIPTION OF SYMBOLS 1 Reaction tank 3 Sewage 3a Treated water 4 Inlet 5 Inflow pipe 7 Reflux pipe

フロントページの続き (72)発明者 山田 登志夫 大阪府大阪市西区立売堀二丁目1番9号 アタカ工業株式会社内 (56)参考文献 特開 平5−123689(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/02 C02F 3/20 Continuation of the front page (72) Inventor Toshio Yamada 2-9-1, Noribori, Nishi-ku, Osaka-shi, Osaka Inside Ataka Industry Co., Ltd. (56) References JP-A-5-123689 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C02F 3/02 C02F 3/20

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応槽に流入する汚水の汚染状態を計測
するとともに、前記反応槽内の被処理水の溶存酸素濃度
を測定し、 前記被処理水が流過する方向に沿った前記反応槽内の各
位置における前記被処理水の汚染状態を、前記反応槽に
流入する汚水の汚染状態の計測結果と前記溶存酸素濃度
の測定結果とに基づいて、前記被処理水中の有機物、各
種窒素化合物および各種微生物の物質収支式と、有機物
の除去、各種窒素化合物の変換および各種微生物の増殖
の反応速度式と、有機物および各種窒素化合物の生成速
度式とからそれぞれ演算し、前記反応槽内で、前記微生物により前記有機物を酸化分
解する酸化分解工程およびアンモニア性窒素を酸化態窒
素に酸化する硝化工程の反応が生じる好気性雰囲気と、
酸化態窒素を窒素ガスに還元する脱窒工程の反応が生じ
る嫌気性雰囲気との双方が生じる状態に 前記被処理水の
溶存酸素濃度を制御することを特徴とする汚水の処理方
法。
1. A method for measuring the state of contamination of sewage flowing into a reaction tank, measuring the concentration of dissolved oxygen in the water to be treated in the reaction tank, and measuring the concentration of dissolved oxygen in the reaction tank along a direction in which the water to be treated flows. The state of contamination of the water to be treated at each position within, the organic matter in the water to be treated, various nitrogen compounds, based on the measurement result of the state of contamination of the wastewater flowing into the reaction tank and the measurement result of the dissolved oxygen concentration. And the material balance formula of various microorganisms, the removal rate of organic substances, the reaction rate equation of the conversion of various nitrogen compounds and the growth of various microorganisms, and the calculation rate equations of the production rate of organic substances and various nitrogen compounds, respectively, in the reaction vessel, The microorganisms oxidize the organic matter.
Oxidative decomposition process and ammonia nitrogen
An aerobic atmosphere in which the reaction of the nitrification process that oxidizes nitrogen
The reaction of the denitrification process that reduces oxidized nitrogen to nitrogen gas occurs
Wherein the concentration of dissolved oxygen in the water to be treated is controlled in such a state that both the anaerobic atmosphere and the anaerobic atmosphere occur .
【請求項2】 反応槽に流入する汚水の汚染状態を、前
記汚水の流入量と、前記汚水中の有機物と、前記汚水中
の各種窒素化合物との少なくともいずれか一方に基づい
て計測することを特徴とする請求項1記載の汚水の処理
方法。
2. The method according to claim 1, wherein the polluting state of the sewage flowing into the reaction tank is measured based on at least one of an inflow amount of the sewage, organic matter in the sewage, and various nitrogen compounds in the sewage. The method for treating sewage according to claim 1, wherein:
【請求項3】 被処理水の溶存酸素濃度を、反応槽に流
入する汚水の流入量、この反応槽内の被処理水への酸素
供給量および前記反応槽の下流側から上流側への前記被
処理水の還流量の少なくともいずれか1つに基づいて制
御することを特徴とする請求項1または2記載の汚水の
処理方法。
3. The concentration of dissolved oxygen in the water to be treated is determined based on the amount of wastewater flowing into the reaction tank, the amount of oxygen supplied to the water to be treated in the reaction tank, and the amount of oxygen supplied from the downstream to the upstream of the reaction tank. The method according to claim 1, wherein the control is performed based on at least one of a reflux amount of the water to be treated.
【請求項4】 汚水が流入する流入口を有し微生物が生
息する反応槽と、 この反応槽に設けられ反応槽内の被処理水に酸素を供給
する酸素供給手段と、 この反応槽に設けられ前記反応槽の下流側から上流側へ
前記被処理水を還流させる還流手段と、 前記流入口を介して流入する汚水の流入量を調整する流
入調整手段と、 前記流入口の近傍に設けられ流入する前記汚水の汚染状
態を計測する汚染計測手段と、 前記反応槽内に前記被処理水の溶存酸素濃度を測定する
溶存酸素測定手段と、 前記汚染計測手段および前記溶存酸素測定手段の少なく
ともいずれか一方による測定結果に基づいて、前記酸素
供給手段、前記流入調整手段および前記還流手段の少な
くともいずれか1つを制御し、前記反応槽内で、前記微
生物により前記有機物を酸化分解する酸化分解工程およ
びアンモニア性窒素を酸化態窒素に酸化する硝化工程の
反応が生じる好気性雰囲気と、酸化態窒素を窒素ガスに
還元する脱窒工程の反応が生じる嫌気性雰囲気との双方
が生じる状態に前記被処理水の溶存酸素濃度を制御する
制御手段とを具備したことを特徴とする汚水の処理装
置。
4. An inflow port into which sewage flows, and microorganisms are produced.
A reaction tank for breathing, an oxygen supply means provided in the reaction tank for supplying oxygen to the water to be treated in the reaction tank, and the water to be treated provided in the reaction tank from the downstream side to the upstream side of the reaction tank. Reflux means for refluxing, inflow adjustment means for adjusting the amount of inflow of sewage flowing through the inflow port, pollution measurement means provided near the inflow port to measure a pollution state of the inflowing sewage, Dissolved oxygen measuring means for measuring the dissolved oxygen concentration of the water to be treated in the reaction vessel; and the oxygen supply means, the inflow based on the measurement result by at least one of the pollution measuring means and the dissolved oxygen measuring means. At least one of the adjusting means and the reflux means is controlled , and the fine
An oxidative decomposition step of oxidatively decomposing the organic matter by living organisms, and
Nitrification process to oxidize ammonia and ammonia nitrogen to oxidized nitrogen
An aerobic atmosphere in which a reaction occurs, and oxidized nitrogen converted to nitrogen gas
Both in the anaerobic atmosphere where the reaction of the reducing denitrification process occurs
And a control means for controlling the concentration of dissolved oxygen in the water to be treated in a state where water is generated .
JP23697193A 1993-09-22 1993-09-22 Wastewater treatment method and apparatus Expired - Lifetime JP3213657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23697193A JP3213657B2 (en) 1993-09-22 1993-09-22 Wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23697193A JP3213657B2 (en) 1993-09-22 1993-09-22 Wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH0788490A JPH0788490A (en) 1995-04-04
JP3213657B2 true JP3213657B2 (en) 2001-10-02

Family

ID=17008482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23697193A Expired - Lifetime JP3213657B2 (en) 1993-09-22 1993-09-22 Wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3213657B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000588B2 (en) * 2008-03-10 2012-08-15 住重環境エンジニアリング株式会社 Biological wastewater treatment method
JP2009291719A (en) * 2008-06-05 2009-12-17 Sumiju Kankyo Engineering Kk Biological wastewater treatment apparatus
JP2010017689A (en) * 2008-07-14 2010-01-28 Kobelco Eco-Solutions Co Ltd Simulation method and biological treatment method
JP5015215B2 (en) * 2009-09-24 2012-08-29 住重環境エンジニアリング株式会社 Waste water treatment method and waste water treatment equipment

Also Published As

Publication number Publication date
JPH0788490A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
JP4334317B2 (en) Sewage treatment system
JP6939724B2 (en) Sewage treatment method and equipment
JP4367037B2 (en) Water quality information processing unit
JP3213657B2 (en) Wastewater treatment method and apparatus
JP2002126779A (en) Sludge treatment method and apparatus used therefor
KR100424060B1 (en) A single body wastewater disposal plant and wastewater treatment process using the same
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JP3384951B2 (en) Biological water treatment method and equipment
JP6375257B2 (en) Water treatment equipment
JPH1015590A (en) Removal of nitrogen of waste water and apparatus therefor
Cheng et al. Enhanced biodegradation of organic nitrogenous compounds in resin manufacturing wastewater by anoxic denitrification and oxic nitrification process
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
WO2019244964A1 (en) Water treatment method and water treatment device
CN202033867U (en) Real-time biological inhibitive ability monitoring and early-warning device
Kayser Activated sludge process
JP3708752B2 (en) Nitrate nitrogen biological treatment method and apparatus
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
JP2001198590A (en) Simulation method and device of activated-sludge water treating device
JP3782738B2 (en) Wastewater treatment method
KR100424999B1 (en) Controlling system and method of sequencing batch reactor
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
Mahendraker et al. Comparative evaluation of mass transfer of oxygen in three activated sludge processes operating under uniform conditions
JPH0910796A (en) Operation control of circulation type nitration and denitrification method
JPH0520160B2 (en)
JP3303475B2 (en) Operation control method of activated sludge circulation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140719

Year of fee payment: 13