JP6939724B2 - Sewage treatment method and equipment - Google Patents

Sewage treatment method and equipment Download PDF

Info

Publication number
JP6939724B2
JP6939724B2 JP2018131233A JP2018131233A JP6939724B2 JP 6939724 B2 JP6939724 B2 JP 6939724B2 JP 2018131233 A JP2018131233 A JP 2018131233A JP 2018131233 A JP2018131233 A JP 2018131233A JP 6939724 B2 JP6939724 B2 JP 6939724B2
Authority
JP
Japan
Prior art keywords
tank
microaerobic
aerobic
aerobic tank
sewage treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018131233A
Other languages
Japanese (ja)
Other versions
JP2020006341A (en
Inventor
岳志 山川
岳志 山川
功 斉藤
功 斉藤
信義 後藤
信義 後藤
愛澄 佐藤
愛澄 佐藤
圭 馬場
圭 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2018131233A priority Critical patent/JP6939724B2/en
Publication of JP2020006341A publication Critical patent/JP2020006341A/en
Application granted granted Critical
Publication of JP6939724B2 publication Critical patent/JP6939724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、広くは下水・廃水分野に属し、特に廃水からの窒素除去技術に関するものである。 The present invention broadly belongs to the field of sewage and wastewater, and particularly relates to a technique for removing nitrogen from wastewater.

窒素を除去するための従来の代表的な処理プロセスに循環式硝化脱窒法がある。これは攪拌機を具備する無酸素槽と散気装置を具備する好気槽およびその後段の最終沈殿池により構成されるものである。好気槽では汚水中のアンモニア態窒素が硝化細菌の作用により亜硝酸態窒素および硝酸態窒素に硝化される。好気槽で生成した亜硝酸態窒素および硝酸態窒素は硝化液として循環ラインを用いて前段の無酸素槽に送られ、汚水中に含まれる有機炭素を利用した脱窒反応により脱窒されて、廃水中より窒素分が除去される。好気槽から流出した活性汚泥含有液は最終沈殿池で固液分離され、沈殿分離された汚泥は返送汚泥ラインを通って反応槽(無酸素槽又は好気槽)に返送されるとともに、一部は余剰汚泥として系外へ排出される。 A typical conventional treatment process for removing nitrogen is the circulating nitrification denitrification method. It consists of an oxygen-free tank equipped with a stirrer, an aerobic tank equipped with an air diffuser, and a final settling basin in the subsequent stage. In the aerobic tank, ammonia nitrogen in sewage is nitrified into nitrite nitrogen and nitrate nitrogen by the action of nitrifying bacteria. The nitrite nitrogen and nitrate nitrogen generated in the aerobic tank are sent as nitrification liquid to the oxygen-free tank in the previous stage using a circulation line, and denitrified by the denitrification reaction using organic carbon contained in the sewage. , Nitrogen is removed from wastewater. The activated sludge-containing liquid flowing out of the aerobic tank is solid-liquid separated in the final settling basin, and the sludge separated by sedimentation is returned to the reaction tank (anoxic tank or aerobic tank) through the return sludge line. The part is discharged to the outside of the system as excess sludge.

この循環式硝化脱窒法の一つが特許文献1に開示されている。この方法は、原水を嫌気槽で脱窒細菌により脱窒を行う工程と、好気槽で硝化細菌により硝化を行う工程と、沈澱槽で固液分離して上澄液を処理水として放流する工程とを含む活性汚泥循環変法処理において、上記嫌気槽と好気槽との間に、原水の撹拌機構とエア吹出機構とを具備する嫌気−好気両用槽を配備して、演算によって求めた脱窒速度と硝化速度の比から上記撹拌機構もしくはエア吹出機構を適宜に駆動することにより、嫌気−好気両用槽の嫌気/好気比を制御するようにしたことを特徴とする活性汚泥循環変法の運転制御方法である。この嫌気−好気両用槽は、原水に応じて嫌気槽と好気槽のバランスを変えて効率よく排水処理をしようとするものである。 One of the circulating nitrification denitrification methods is disclosed in Patent Document 1. In this method, raw water is denitrified by denitrifying bacteria in an anaerobic tank, nitrified by nitrifying bacteria in an aerobic tank, and solid-liquid separated in a sedimentation tank, and the supernatant is discharged as treated water. In the activated sludge circulation modified method including the step, an anaerobic-aerobic tank equipped with a raw water agitation mechanism and an air blowing mechanism is provided between the anaerobic tank and the aerobic tank, and is calculated by calculation. Activated sludge characterized in that the anaerobic / aerobic ratio of the anaerobic-aerobic tank is controlled by appropriately driving the stirring mechanism or the air blowing mechanism from the ratio of the denitrification rate and the nitrification rate. This is a modified circulation operation control method. This anaerobic-aerobic tank is intended to efficiently treat wastewater by changing the balance between the anaerobic tank and the aerobic tank according to the raw water.

また、好気条件下の好気槽において生物的に酸化することと、無酸素条件下の無酸素槽で生物的に脱窒することを組合わせて廃水中の窒素系汚濁物質を除去する廃水の処理方法において、前記好気槽と無酸素槽の中間に少なくとも一つの中間反応槽を設け、好気条件と無酸素条件のいずれの条件においても運転可能とすることができることを特徴とする廃水の処理方法(特許文献2)も開発されている。この方法も原水の水質等に応じて中間反応槽を好気槽、無酸素槽のいずれとしても使用しうるようにしたものである。 In addition, wastewater that removes nitrogen-based pollutants in wastewater by combining biological oxidation in an aerobic tank under aerobic conditions and biological denitrification in an oxygen-free tank under anoxic conditions. The wastewater is characterized in that at least one intermediate reaction tank is provided between the aerobic tank and the oxygen-free tank so that the wastewater can be operated under both aerobic conditions and oxygen-free conditions. (Patent Document 2) has also been developed. This method also makes it possible to use the intermediate reaction tank as either an aerobic tank or an oxygen-free tank depending on the quality of the raw water.

さらに、嫌気槽、無酸素槽および好気槽よりなる反応槽または無酸素槽および好気槽よりなる反応槽とその後段の沈殿池とを有し、該好気槽には微生物固定化担体が内在しており、該沈殿池よりの引き抜き汚泥の少なくとも一部を該嫌気槽または該無酸素槽へ返送する廃水の処理方法において、該無酸素槽と該好気槽との中間に、該微生物固定化担体が内在せず、かつ散気設備を備えた中間反応槽を設置し、該散気設備を操作することにより、該中間反応槽を嫌気的条件、好気的条件またはその共存する条件下で運転することを特徴とする、廃水処理方法(特許文献3)も開発されている。この方法も、中間反応槽を無酸素槽の処理状態に応じて嫌気状態、好気状態あるいはその共有状態にするものである。 Further, it has a reaction tank consisting of an anaerobic tank, an oxygen-free tank and an aerobic tank, or a reaction tank consisting of an oxygen-free tank and an aerobic tank, and a settling reservoir in the subsequent stage, and the aerobic tank contains a microorganism-immobilized carrier. In a method for treating wastewater that is inherent and returns at least a part of sludge drawn from the sedimentation pond to the anaerobic tank or the oxygen-free tank, the microorganism is placed between the oxygen-free tank and the aerobic tank. By installing an intermediate reaction vessel without an immobilized carrier and equipped with an air diffuser and operating the air diffuser, the intermediate reaction vessel can be subjected to anaerobic conditions, aerobic conditions or conditions in which it coexists. A wastewater treatment method (Patent Document 3), which is characterized by operating underneath, has also been developed. This method also puts the intermediate reaction tank in an anaerobic state, an aerobic state, or a shared state thereof depending on the processing state of the oxygen-free tank.

特開平7−16595号公報Japanese Unexamined Patent Publication No. 7-16595 特開平10−94796号公報Japanese Unexamined Patent Publication No. 10-94796 特開2000−279993号公報Japanese Unexamined Patent Publication No. 2000-27993

このように循環式硝化脱窒法は、好気槽から無酸素槽へ硝化液を返送するものであり、前述の特許文献1〜3の方法もいずれも硝化液の循環ラインが設けられている。この循環水量は原水量に対する循環比が2〜2.5倍程度と多量であり、循環ポンプのランニングコストがかなりかかることや、溶存酸素を多量に含む硝化液が無酸素槽に送られることによる無酸素槽内の嫌気度の低下が問題になっている。 As described above, the circulation type nitrification denitrification method returns the nitrification liquid from the aerobic tank to the oxygen-free tank, and all of the methods of Patent Documents 1 to 3 described above are provided with a nitrification liquid circulation line. This amount of circulating water has a large circulation ratio of about 2 to 2.5 times the amount of raw water, and the running cost of the circulation pump is considerable, and the vitrified solution containing a large amount of dissolved oxygen is sent to the oxygen-free tank. The decrease in anaerobicity in the oxygen-free tank has become a problem.

本発明は、従来の循環式脱窒法の有する「循環ラインがあること」の欠点を解決するためになされたもので、廃水中からの窒素除去を、より小さい設備で効率的に、かつ安価に行える廃水処理方法と装置を提供することを目的としている。 The present invention has been made to solve the drawback of "having a circulation line" of the conventional circulation denitrification method, and it is possible to remove nitrogen from wastewater efficiently and inexpensively with a smaller facility. The purpose is to provide a wastewater treatment method and equipment that can be performed.

硝化液循環ラインを省いたプロセスで高い窒素除去率を達成するために、低DOに設定した微好気槽を設け、該微好気槽で硝化反応と脱窒反応を同時に行う。このことで循環ラインの設置を省くことが可能になる。汚水から高い除去率で窒素除去を行うには、返送汚泥中に含まれるNOの無酸素槽における脱窒も重要である。無酸素槽での脱窒を効率的に行うには、好気槽での硝化率アップが重要であり、それを少ない設置面積で達成するために、担体を添加した好気槽を具備する。プロセスのランニングコストを低減するためには、曝気コストの低減を図ることが重要であり、そのための好気槽DOを3.0mg/L以下となるように運転する。また、微好気槽での硝化脱窒同時反応を促進するためには、微好気槽の設定DOが重要であり、微好気槽DOを1.0mg/L以下で運転することが好ましい。これらを行うことで、汚水から低いランニングコスト、かつ省スペースで窒素を除去できるプロセスが提供される。 In order to achieve a high nitrogen removal rate in a process that omits the nitrification liquid circulation line, a microaerobic tank set to a low DO is provided, and the nitrification reaction and the denitrification reaction are simultaneously performed in the microaerobic tank. This makes it possible to omit the installation of the circulation line. To do nitrogen removal at a high removal rate from sewage, denitrification in the anoxic tank of the NO X contained in the return sludge is also important. In order to efficiently denitrify in the oxygen-free tank, it is important to increase the nitrification rate in the aerobic tank, and in order to achieve this with a small installation area, an aerobic tank to which a carrier is added is provided. In order to reduce the running cost of the process, it is important to reduce the aeration cost, and the aerobic tank DO for that purpose is operated so as to be 3.0 mg / L or less. Further, in order to promote the simultaneous nitrification and denitrification reaction in the microaerobic tank, the setting DO of the microaerobic tank is important, and it is preferable to operate the microaerobic tank DO at 1.0 mg / L or less. .. By doing so, a process that can remove nitrogen from sewage at a low running cost and in a small space is provided.

従って、本発明は、無酸素槽、微好気槽及び好気槽とその後段に設置される沈澱池を少なくとも具備し、該好気槽には硝化細菌を担持した微生物固定化担体が収容されており、該沈澱池から引き抜いた汚泥の少なくとも一部を該無酸素槽へ返送する汚水処理方法において、好気槽から無酸素槽へ硝化液を返送することなく、微好気槽の溶存酸素濃度は好気槽の溶存酸素濃度と同等又はそれ以下であり、好気槽の溶存酸素濃度が1.0mg/L以上3.0mg/L以下であることを特徴とする汚水処理方法と、
無酸素槽、微好気槽及び好気槽とその後段に設置される沈澱池を少なくとも具備し、該好気槽には硝化細菌を担持した微生物固定化担体が収容されており、該沈澱池から引き抜いた汚泥の少なくとも一部を該無酸素槽へ返送する返送ラインが設けられている汚水処理装置において、好気槽から無酸素槽への硝化液の循環ラインがなく、微好気槽の溶存酸素濃度を好気槽の溶存酸素濃度と同等又はそれ以下とし、好気槽の溶存酸素濃度を1.0mg/L以上3.0mg/L以下とする制御機構を備えたことを特徴とする汚水処理装置を提供するものである。
Therefore, the present invention includes at least an oxygen-free tank, a microaerobic tank, an aerobic tank, and a sedimentation pond installed in the subsequent stage, and the aerobic tank contains a microbial-immobilized carrier carrying nitrifying bacteria. In the sewage treatment method in which at least a part of the sludge drawn from the sedimentation pond is returned to the anoxic tank, the dissolved oxygen in the slightly aerobic tank is not returned from the aerobic tank to the anoxic tank. A sewage treatment method characterized in that the concentration is equal to or less than the dissolved oxygen concentration in the aerobic tank and the dissolved oxygen concentration in the aerobic tank is 1.0 mg / L or more and 3.0 mg / L or less.
It is provided with at least an oxygen-free tank, a microaerobic tank, an aerobic tank, and a settling pond installed in the subsequent stage, and the aerobic tank contains a microbial immobilization carrier carrying nitrifying bacteria, and the settling pond. In a sewage treatment device provided with a return line for returning at least a part of the sludge drawn from the oxygen tank to the oxygen-free tank, there is no circulation line for the nitrifying liquid from the aerobic tank to the oxygen-free tank, and the slightly aerobic tank has no circulation line. It is characterized by having a control mechanism for setting the dissolved oxygen concentration to be equal to or lower than the dissolved oxygen concentration in the aerobic tank and setting the dissolved oxygen concentration in the aerobic tank to 1.0 mg / L or more and 3.0 mg / L or less. It provides a sewage treatment device.

以上のように、本発明によれば、廃水の循環式硝化脱窒法において硝化液の循環ラインを無くし好気槽DOを3.0mg/L以下で運転することにより、循環ポンプの運転コストを削減でき、廃水中からの窒素除去を従来技術よりも小さい設備で、かつ安価に行うことができる。 As described above, according to the present invention, the operating cost of the circulation pump is reduced by eliminating the circulation line of the nitrifying liquid and operating the aerobic tank DO at 3.0 mg / L or less in the wastewater circulation type nitrification denitrification method. It is possible to remove nitrogen from wastewater with a smaller facility than the conventional technology and at low cost.

本発明の一実施態様である汚水処理装置の概略構成を示す図である。It is a figure which shows the schematic structure of the sewage treatment apparatus which is one Embodiment of this invention. 好気槽の溶存酸素濃度と曝気ブロワのコストとの関係を示すグラフである。It is a graph which shows the relationship between the dissolved oxygen concentration of an aerobic tank and the cost of an aeration blower.

無酸素槽は溶存酸素のない状態で脱窒菌が硝酸態窒素や亜硝酸態窒素の酸素を利用するのを応用し、循環水中のこれらの酸化態窒素を窒素まで還元して水中の窒素を除去する槽である。槽内には攪拌機が設置され、通常酸素が溶け込まないような攪拌を行う。無酸素槽への流入水の溶存酸素濃度(DO)は本発明では0〜0.1mg/L、硝化液循環のある従来技術では硝化液循環水と流入水の混合水のDOは通常0.3〜1.5mg/L程度となる。好気槽は、好気状態で硝化菌がアンモニア態窒素を硝酸態窒素や亜硝酸態窒素に酸化する槽であり、槽内には通常散気装置が設けられている。この好気槽で硝化反応を効率よく行わせるために好気槽内には微生物固定化担体を内在させる。この微生物固定化担体は、硝化菌等を固定化した粒状物である。固定化する微生物は汚水処理設備で使用されているものをそのままあるいは馴養したものでよい。固定化は包括法あるいは表面への微生物の付着による方法が安価で好ましい。担体には、包括法の場合にはポリエチレングリコール、ポリアクリルアミド、ポリビニルアルコール等の合成高分子や寒天、カラギーナン、デンプン等の多糖類等が使用され、付着による場合は包括法素材の他にポリプロピレン、ポリエチレン、ポリビニルフォルマール、活性炭、無機材料等が使用される。粒径は1〜30mm程度、通常3〜10mm程度である。 The anoxic tank applies the use of nitrate nitrogen and nitrite nitrogen oxygen by denitrifying bacteria in the absence of dissolved oxygen, and reduces these oxidized nitrogens in circulating water to nitrogen to remove nitrogen in the water. It is a tank to be used. A stirrer is installed in the tank to stir so that oxygen does not normally dissolve. The dissolved oxygen concentration (DO) of the inflow water to the anoxic tank is 0 to 0.1 mg / L in the present invention, and the DO of the mixed water of the vitrified liquid circulating water and the inflow water is usually 0. It will be about 3 to 1.5 mg / L. The aerobic tank is a tank in which nitrifying bacteria oxidize ammonia nitrogen to nitrate nitrogen or nitrite nitrogen in an aerobic state, and an air diffuser is usually provided in the tank. In order to efficiently carry out the nitrification reaction in this aerobic tank, a microbial immobilization carrier is contained in the aerobic tank. This microbial-immobilized carrier is a granular substance on which nitrifying bacteria and the like are immobilized. The microorganisms to be immobilized may be those used in the sewage treatment facility as they are or those used in the sewage treatment facility. For immobilization, a comprehensive method or a method by adhering microorganisms to the surface is inexpensive and preferable. For the carrier, synthetic polymers such as polyethylene glycol, polyacrylamide, and polyvinyl alcohol and polysaccharides such as agar, carrageenan, and starch are used in the case of the comprehensive method, and polypropylene is used in addition to the comprehensive method material in the case of adhesion. Polyethylene, polyvinyl formal, activated charcoal, inorganic materials and the like are used. The particle size is about 1 to 30 mm, usually about 3 to 10 mm.

担体の添加率は、好気槽内の汚水に対し、真容量で0.5%〜10%が好ましく、1%〜7%がより好ましく、2%〜5%が更に好ましい。 The addition rate of the carrier is preferably 0.5% to 10%, more preferably 1% to 7%, and even more preferably 2% to 5% in terms of true volume with respect to the sewage in the aerobic tank.

好気槽のDOは1.0mg/L以上3.0mg/L以下とする。好気槽DOが1.0mg/L未満になると担体による硝化性能が著しく低下し、一方、3.0mg/Lを超えると、曝気コストの増加が著しくなるため、好ましくない。 The DO of the aerobic tank shall be 1.0 mg / L or more and 3.0 mg / L or less. If the aerobic tank DO is less than 1.0 mg / L, the nitrification performance by the carrier is significantly lowered, while if it exceeds 3.0 mg / L, the aeration cost is significantly increased, which is not preferable.

図2は好気槽DOを横軸に、好気槽DOを3.0mg/Lにした場合の曝気ブロワ動力を「1」に設定した場合のブロワ動力の比の値を縦軸にとったグラフである。このとき、微好気槽のDOは1.0mg/Lとしている。図2に示す通り、DOが3.0mg/Lを超えると曝気ブロワ動力の増加が著しくなる。そのため、好気槽DOは3.0mg/L以下であることが好ましい。 In FIG. 2, the horizontal axis is the aerobic tank DO, and the vertical axis is the ratio of the aeration blower power when the aeration tank DO is set to 3.0 mg / L and the aeration blower power is set to “1”. It is a graph. At this time, the DO of the microaerobic tank is 1.0 mg / L. As shown in FIG. 2, when the DO exceeds 3.0 mg / L, the aeration blower power increases remarkably. Therefore, the aerobic tank DO is preferably 3.0 mg / L or less.

無酸素槽と好気槽の容積比は流入水質および担体投入量により異なるが4:1〜1:3程度、通常2:1〜1:2程度である。 The volume ratio between the oxygen-free tank and the aerobic tank varies depending on the inflow water quality and the amount of carrier input, but is about 4: 1 to 1: 3, and usually about 2: 1 to 1: 2.

微好気槽は、無酸素槽と好気槽の間に設置される、微生物固定担体を有さない槽で、DO濃度が好気槽と同等以下である槽である。この微好気槽にも散気装置が設けられるが、散気装置は槽内に旋回流を生じるよう片寄らせて設けるのがよい。微好気槽内には旋回流のための整流壁は設けてもよい。 The microaerobic tank is a tank that is installed between the anoxic tank and the aerobic tank and does not have a microbial fixation carrier, and has a DO concentration equal to or lower than that of the aerobic tank. An air diffuser is also provided in this microaerobic tank, but it is preferable that the air diffuser is provided in a offset manner so as to generate a swirling flow in the tank. A rectifying wall for swirling flow may be provided in the microaerobic tank.

微好気槽内のDOは好気槽と同等またはそれ以下であり、好ましくは1.0mg/L以下である。このDOはDO計のセンサー部のある深さのDOである。 The DO in the microaerobic tank is equal to or less than that of the aerobic tank, preferably 1.0 mg / L or less. This DO is a DO at a certain depth of the sensor unit of the DO meter.

このDOを測定するためのDO計はセンサー部を微好気槽水深の1/3以上に設置することが好ましい。次にこれを説明する。ここで、水深の1/3以上とは水深の浅い側を表している。 In the DO meter for measuring this DO, it is preferable to install the sensor unit at 1/3 or more of the water depth of the microaerobic tank. This will be described next. Here, 1/3 or more of the water depth represents the shallow side of the water depth.

特許文献3の実施例では、MLSSは2500mg/L、循環比(これは循環ラインと返送ラインとの合計と考えられるので総合循環比とする。)1.5であり、供試下水のT−N濃度(CTN)が30mg/Lである。そこで、返送ラインの返送比を0.5又は1、循環ラインの循環比を1又は0.5、α(流入窒素のうち、硝化に関わる窒素の割合)を0.61とすると(文献では0.7〜0.8という値が例示されるが、実際にはそれより低いことが多いため、前記下限値の9割弱とした)、β(微好気槽において脱窒される窒素量の流入窒素量に対する割合)は0.11と計算されて、表1のようになる。硝化液循環を停止したとすると、返送ラインの返送比が0.5で循環ラインの循環比が1の場合のβ増分は0.2になり、返送比が1で循環比が0.5の場合のβ増分は0.1になる。すなわち、硝化液循環を停止すると微好気槽で必要な脱窒割合が増加し、微好気槽での脱窒反応を促進するために、微好気槽のDO設定が非常に重要になることが分かる。 In the example of Patent Document 3, the MLSS is 2500 mg / L and the circulation ratio (this is considered to be the total of the circulation line and the return line, so it is regarded as the total circulation ratio), and the test sewage T- The N concentration ( CTN ) is 30 mg / L. Therefore, assuming that the return ratio of the return line is 0.5 or 1, the circulation ratio of the circulation line is 1 or 0.5, and α (the ratio of nitrogen related to nitrification to the inflow nitrogen) is 0.61 (0 in the literature). A value of .7 to 0.8 is exemplified, but in reality, it is often lower than that, so it is set to a little less than 90% of the lower limit value), β (the amount of nitrogen denitrified in the microaerobic tank). The ratio to the amount of inflow nitrogen) is calculated as 0.11 and is as shown in Table 1. Assuming that the nitrification liquid circulation is stopped, the β increment is 0.2 when the return ratio of the return line is 0.5 and the circulation ratio of the circulation line is 1, and the return ratio is 1 and the circulation ratio is 0.5. The β increment in the case is 0.1. That is, when the nitrification liquid circulation is stopped, the denitrification rate required in the microaerobic tank increases, and the DO setting of the microaerobic tank becomes very important in order to promote the denitrification reaction in the microaerobic tank. You can see that.

Figure 0006939724
Figure 0006939724

活性汚泥の脱窒速度を1.2[mgN/gMLSS/h](但し、BOD−SS負荷を0.12[kgBOD/kgMLSS/日]とする。)、活性汚泥の硝化速度を2.3[mgN/gMLSS/h]と仮定すると、DO計が設置される硝化ゾーンと底部の脱窒ゾーンの割合が硝化ゾーン0.34:脱窒ゾーン0.66となる。そこで、微好気槽の脱窒ゾーンをしっかり確保しようとした場合は、DO計を微好気槽水深の1/3以上の深さに設置する必要がある。もし、DOセンサー部を水深の1/3以下の深さに設置して制御を試みた場合は、水槽深部に持ち込まれるDOが多くなり、微好気槽において脱窒ゾーンを十分に確保(形成)できなくなるため、処理水質はT−Nが高くなり悪化する。 The denitrification rate of activated sludge is 1.2 [mgN / gMLSS / h] (however, the BOD-SS load is 0.12 [kgBOD / kgMLSS / day]), and the nitrification rate of activated sludge is 2.3 [. Assuming [mgN / gMLSS / h], the ratio of the nitrification zone in which the DO meter is installed to the denitrification zone at the bottom is 0.34 in the nitrification zone: 0.66 in the denitrification zone. Therefore, when trying to secure the denitrification zone of the microaerobic tank firmly, it is necessary to install the DO meter at a depth of 1/3 or more of the water depth of the microaerobic tank. If the DO sensor unit is installed at a depth of 1/3 or less of the water depth and control is attempted, more DO will be brought into the deep part of the water tank, and a sufficient denitrification zone will be secured (formed) in the microaerobic tank. ) Therefore, the quality of treated water deteriorates due to high TN.

上記の微好気槽における硝化ゾーンはDOが0.05〜1mg/Lの部位で、脱窒ゾーンは、DOが0.05mg/L未満の部位である。 The nitrification zone in the above microaerobic tank is a site having a DO of 0.05 to 1 mg / L, and the denitrification zone is a site having a DO of less than 0.05 mg / L.

硝化液循環を行う場合は、微好気槽での脱窒は硝化液循環が無い場合に比べて重要性が低下するのは上記の通りである。つまり、硝化液循環を行う場合は、微好気槽では脱窒よりも硝化に重きを置いて運転しても残存したNOx-Nは硝化液循環によって無酸素槽に送られ、そこで脱窒を行うことができる。したがって、硝化液循環が有る場合は、微好気槽では硝化量が多くなる、すなわち、硝化ゾーンが大きくなっても処理水質が悪化する懸念は少ない。 As described above, when nitrifying liquid circulation is performed, denitrification in the microaerobic tank is less important than when there is no nitrifying liquid circulation. In other words, when the nitrification liquid is circulated, the remaining NOx-N is sent to the oxygen-free tank by the nitrification liquid circulation even if the operation is performed with more emphasis on nitrification than denitrification in the microaerobic tank, where denitrification is performed. It can be carried out. Therefore, when there is nitrification liquid circulation, there is little concern that the amount of nitrification increases in the microaerobic tank, that is, the treated water quality deteriorates even if the nitrification zone becomes large.

表1を例に取ると、微好気槽での脱窒量は、循環ラインが有る場合は、無い場合の1/3〜1/2の脱窒量で良いので、脱窒ゾーンは0.22〜0.33で良く、硝化ゾーンの大きさを決定するために役立つDO計の位置は、循環ラインが無い場合に比べて、より深くて良い。 Taking Table 1 as an example, the denitrification amount in the microaerobic tank may be 1/3 to 1/2 of the denitrification amount when there is a circulation line and when there is no circulation line, so the denitrification zone is 0. It may be 22 to 0.33, and the position of the DO meter useful for determining the size of the nitrification zone may be deeper than in the absence of the circulation line.

微好気槽と好気槽の容積比は3:1〜1:3程度、好ましくは2:1〜1:2程度が適当である。 The volume ratio of the microaerobic tank to the aerobic tank is preferably about 3: 1 to 1: 3, preferably about 2: 1 to 1: 2.

好気槽の下流側には汚泥を沈殿させる沈澱池が設けられ、沈澱池の上澄は処理水として排出される。一方、沈降部分は一部は無酸素槽に返送され、一部は余剰汚泥として引抜かれる。本発明では、好気槽で生成した硝酸態窒素や亜硝酸態窒素は専らこの返送ラインを通って無酸素槽に返送され、そこで脱窒反応が行われる。返送量は、原水量に対する容積比で0.2〜2程度、好ましくは0.5〜1程度が適当である。 A settling pond for precipitating sludge is provided on the downstream side of the aerobic tank, and the supernatant of the settling pond is discharged as treated water. On the other hand, a part of the subsided part is returned to the oxygen-free tank, and a part is drawn out as excess sludge. In the present invention, nitrate nitrogen and nitrite nitrogen produced in the aerobic tank are returned exclusively to the oxygen-free tank through this return line, where the denitrification reaction is carried out. The amount returned is preferably about 0.2 to 2, preferably about 0.5 to 1, as a volume ratio to the amount of raw water.

返送汚泥は反応タンク内のMLSS濃度を所定の値に保つために返送されるもので、脱窒量を増加させるために、際限無く返送量を増加させることはできない。返送率は、あくまで設定された反応タンクMLSS濃度と最終沈殿池の濃縮汚泥濃度によって一意的に決められるもので、脱窒量の調整のために変化させることはできないものである。 The returned sludge is returned to keep the MLSS concentration in the reaction tank at a predetermined value, and the returned sludge cannot be increased endlessly in order to increase the denitrification amount. The return rate is uniquely determined by the set reaction tank MLSS concentration and the concentrated sludge concentration in the final settling basin, and cannot be changed to adjust the denitrification amount.

本発明の一実施態様である汚水処理装置を図1に示す。この装置は、無酸素槽1、微好気槽11、好気槽2、最終沈澱池3からなっている。無酸素槽1には大きなプロペラ型の攪拌機4が設けられている。微好気槽11は平板状の整流板12で2室に仕切られ、整流板12の上と下が両室間の通路になっている。そして、その一方の室には散気装置13が設けられ、この散気装置13からの曝気によって槽内水が旋回流を形成する。好気槽2にも散気装置5が設けられ、好気槽2内には微生物固定化担体15が投入されている。また、好気槽2の流出口にはスクリーン16が取り付けられている。 A sewage treatment apparatus according to an embodiment of the present invention is shown in FIG. This device includes an oxygen-free tank 1, a microaerobic tank 11, an aerobic tank 2, and a final settling pond 3. The oxygen-free tank 1 is provided with a large propeller-type stirrer 4. The microaerobic tank 11 is divided into two chambers by a flat plate-shaped straightening vane 12, and the upper and lower portions of the straightening vane 12 form a passage between the two chambers. Then, an air diffuser 13 is provided in one of the chambers, and the water in the tank forms a swirling flow by the aeration from the air diffuser 13. An air diffuser 5 is also provided in the aerobic tank 2, and the microorganism-immobilized carrier 15 is charged in the aerobic tank 2. A screen 16 is attached to the outlet of the aerobic tank 2.

汚水は、原水供給ライン6から無酸素槽1に流入して、そこから微好気槽11、好気槽2の順に流入する。好気槽2を出た流出水は最終沈澱池3に流入してそこで汚泥が沈殿し、上澄は処理水として処理水排出ライン7から排出される。一方、沈殿した汚泥は一部は返送汚泥ライン9を通って無酸素槽1に返送され、一部は余剰汚泥10として排出される。 The sewage flows into the oxygen-free tank 1 from the raw water supply line 6, and then flows into the slightly aerobic tank 11 and the aerobic tank 2 in this order. The effluent from the aerobic tank 2 flows into the final settling pond 3, where sludge is settled, and the supernatant is discharged from the treated water discharge line 7 as treated water. On the other hand, a part of the settled sludge is returned to the oxygen-free tank 1 through the return sludge line 9, and a part of the sludge is discharged as surplus sludge 10.

微好気槽11と好気槽2にはそれぞれDO計を備える。微好気槽11と好気槽2の散気装置13、5それぞれにつながる空気配管に流量調節弁を備え、流量調節弁の開度は各槽のDO計で制御される。曝気ブロワの吐出圧力を測定する圧力計を備え、曝気ブロワの運転周波数は圧力計で制御される。 The microaerobic tank 11 and the aerobic tank 2 are each provided with a DO meter. A flow rate control valve is provided in the air pipe connected to each of the air diffusers 13 and 5 of the microaerobic tank 11 and the aerobic tank 2, and the opening degree of the flow rate control valve is controlled by the DO meter of each tank. It is equipped with a pressure gauge that measures the discharge pressure of the aeration blower, and the operating frequency of the aeration blower is controlled by the pressure gauge.

表2に示す水質を有する都市下水の初沈越流水を、図1に示す処理装置を用いて300m/日の水量で処理した。 The initial overflow running water of urban sewage having the water quality shown in Table 2 was treated with a water volume of 300 m 3 / day using the treatment device shown in FIG.

Figure 0006939724
Figure 0006939724

[実施例1]
本発明のフローで、微好気槽DOを1.0mg/L、好気槽DOを3.0mg/Lで運転した。担体充填率は4.0%(真容積)とした。
得られた結果を表3に示す。表中の水槽容量、およびランコスは、実施例1を基準とした反応タンクの容量、およびプロセスランニングコストの相対値を表す。 好気槽DOを3.0mg/Lで運転した結果、曝気ブロワ動力を低くすることができ、加えて、循環ポンプを設置しなかったため、プロセスのランニングコストを低く抑えることができた。
[Example 1]
In the flow of the present invention, the slightly aerobic tank DO was operated at 1.0 mg / L and the aerobic tank DO was operated at 3.0 mg / L. The carrier filling rate was 4.0% (true volume).
The results obtained are shown in Table 3. The water tank capacity and Lancos in the table represent the relative values of the reaction tank capacity and the process running cost based on Example 1. As a result of operating the aerobic tank DO at 3.0 mg / L, the aeration blower power could be lowered, and in addition, since the circulation pump was not installed, the running cost of the process could be kept low.

[実施例2]
本発明のフローで、微好気槽DOを1.0mg/L、好気槽DOを1.0mg/Lで運転した。
得られた結果を表3に示す。
その結果、実施例1に比べて曝気ブロワコストを更に下げることができた。一方で同等の処理水質を確保するためには、担体充填率を4.2%にする必要があった。
[Example 2]
In the flow of the present invention, the slightly aerobic tank DO was operated at 1.0 mg / L and the aerobic tank DO was operated at 1.0 mg / L.
The results obtained are shown in Table 3.
As a result, the aeration blower cost could be further reduced as compared with Example 1. On the other hand, in order to secure the same treated water quality, it was necessary to set the carrier filling rate to 4.2%.

[比較例1]
本発明の構成に好気槽から無酸素槽への循環ラインと循環ポンプを追加した。循環比は1.5とした。
得られた結果を表3に示す。
好気槽DOが3.0mg/Lだったため、無酸素槽に流入する流入水のDOが1.5mg/Lとなり、脱窒反応に影響が出た。その結果、実施例1と同等の処理水質を得るために、無酸素槽の容量が1.5倍必要となった。処理水質は実施例と同等だった。循環比を上げることで脱窒量は増加するはずだったが、設備容量が大きくなった。
[Comparative Example 1]
A circulation line from an aerobic tank to an oxygen-free tank and a circulation pump were added to the configuration of the present invention. The circulation ratio was 1.5.
The results obtained are shown in Table 3.
Since the aerobic tank DO was 3.0 mg / L, the DO of the inflow water flowing into the anoxic tank was 1.5 mg / L, which affected the denitrification reaction. As a result, in order to obtain the same treated water quality as in Example 1, the capacity of the oxygen-free tank was 1.5 times larger. The treated water quality was similar to that of the examples. Increasing the circulation ratio should have increased the amount of denitrification, but the installed capacity has increased.

[比較例2]
本発明のフローで、微好気槽DOを1.0mg/L、好気槽DOを3.5mg/L、で運転した。
得られた結果を表3に示す。
担体添加率は若干減少したが、曝気ブロワの動力コストが増加した。
[Comparative Example 2]
In the flow of the present invention, the slightly aerobic tank DO was operated at 1.0 mg / L and the aerobic tank DO was operated at 3.5 mg / L.
The results obtained are shown in Table 3.
The carrier addition rate decreased slightly, but the power cost of the aeration blower increased.

[比較例3]
本発明のフローで、微好気槽DOを1.0mg/L、好気槽DOを4.0mg/L、で運転した。
得られた結果を表3に示す。
担体添加率は若干減少したが、曝気ブロワの動力コストが増加した。
[Comparative Example 3]
In the flow of the present invention, the slightly aerobic tank DO was operated at 1.0 mg / L and the aerobic tank DO was operated at 4.0 mg / L.
The results obtained are shown in Table 3.
The carrier addition rate decreased slightly, but the power cost of the aeration blower increased.

[比較例4]
本発明のフローから好気槽と担体を無くしたフローで、微好気槽DOを1.0mg/Lで運転した。
得られた結果を表3に示す。
好気槽が無くなり、微好気槽の設定DOのみになって設定DOが低くなったので曝気ブロワの動力コストは若干低下したが、担体が担っていた硝化能力を活性汚泥のみで担うことになるため、実施例と同等の水質を確保するために微好気槽容量が非常に大きくなった。
[Comparative Example 4]
The microaerobic tank DO was operated at 1.0 mg / L in a flow in which the aerobic tank and the carrier were removed from the flow of the present invention.
The results obtained are shown in Table 3.
Since the aerobic tank disappeared and only the slightly aerobic tank was set to the set DO, the power cost of the aeration blower was slightly reduced, but the nitrification capacity of the carrier was borne only by activated sludge. Therefore, the capacity of the microaerobic tank became very large in order to secure the same water quality as in the examples.

[比較例5]
本発明のフローで微好気槽DOを2.0mg/Lに設定して運転した。
得られた結果を表3に示す。
微好気槽の設定DOが高くなったので曝気ブロワの動力コストは若干増加し、微好気槽での脱窒量が減少して、処理水質はT−Nが高くなり悪化した。
[Comparative Example 5]
In the flow of the present invention, the microaerobic tank DO was set to 2.0 mg / L and operated.
The results obtained are shown in Table 3.
Since the setting DO of the microaerobic tank became high, the power cost of the aeration blower increased slightly, the amount of denitrification in the microaerobic tank decreased, and the treated water quality deteriorated due to the high TN.

Figure 0006939724
Figure 0006939724

本発明により、多量の硝化液を好気槽から無酸素槽に返送していた汚水処理設備において、この硝化液循環ラインを不要にでき、それに要する循環ポンプの電力が不要になるので、本発明は、無酸素槽と好気槽を有する汚水処理設備に広く利用することができる。 According to the present invention, in a sewage treatment facility in which a large amount of nitrifying liquid is returned from an aerobic tank to an oxygen-free tank, this nitrifying liquid circulation line can be eliminated, and the power of a circulation pump required for the circulation pump can be eliminated. Can be widely used in sewage treatment equipment having an oxygen-free tank and an aerobic tank.

1 無酸素槽
2 好気槽
3 最終沈殿池
4 攪拌機
5 散気装置
6 原水供給ライン
7 処理水排出ライン
9 返送汚泥ライン
10 余剰汚泥
11 微好気槽
12 整流板
13 散気装置
15 微生物固定化担体
16 スクリーン
1 Anoxic tank 2 Aerobic tank 3 Final settling basin 4 Stirrer 5 Air diffuser 6 Raw water supply line 7 Treated water discharge line 9 Return sludge line 10 Excess sludge 11 Slightly aerobic tank 12 Straightening plate 13 Air diffuser 15 Microorganism immobilization Carrier 16 screen

Claims (7)

無酸素槽、微好気槽及び好気槽とその後段に設置される沈澱池を少なくとも具備し、
該好気槽には硝化細菌を担持した微生物固定化担体が収容されており、該沈澱池から引き抜いた汚泥の少なくとも一部を該無酸素槽へ返送する汚水処理方法において、好気槽から無酸素槽へ硝化液を返送することなく、微好気槽の溶存酸素濃度は好気槽の溶存酸素濃度と同等又はそれ以下であり、好気槽の溶存酸素濃度が1.0mg/L以上3.0mg/L以下であることを特徴とする汚水処理方法。
It is equipped with at least an oxygen-free tank, a microaerobic tank, an aerobic tank, and a sedimentation pond installed in the subsequent stage.
The aerobic tank contains a microbial-immobilized carrier carrying nitrifying bacteria, and is absent from the aerobic tank in a sewage treatment method in which at least a part of sludge drawn from the sedimentation pond is returned to the anoxic tank. Without returning the nitrifying solution to the oxygen tank, the dissolved oxygen concentration in the microaerobic tank is equal to or less than the dissolved oxygen concentration in the aerobic tank, and the dissolved oxygen concentration in the aerobic tank is 1.0 mg / L or more 3 A sewage treatment method characterized by being 0.0 mg / L or less.
請求項1に記載の汚水処理方法であって、前記微好気槽に設置された散気装置からの散気によって生じる槽内の水流が旋回流であることを特徴とする汚水処理方法。 The sewage treatment method according to claim 1, wherein the water flow in the tank generated by the air diffuser from the air diffuser installed in the microaerobic tank is a swirling flow. 請求項1又は2に記載の汚水処理方法であって、前記微好気槽の溶存酸素濃度が1.0mg/L以下であることを特徴とする汚水処理方法。 The sewage treatment method according to claim 1 or 2, wherein the dissolved oxygen concentration in the microaerobic tank is 1.0 mg / L or less. 無酸素槽、微好気槽及び好気槽とその後段に設置される沈澱池を少なくとも具備し、
該好気槽には硝化細菌を担持した微生物固定化担体が収容されており、該沈澱池から引き抜いた汚泥の少なくとも一部を該無酸素槽へ返送する返送ラインが設けられている汚水処理装置において、好気槽から無酸素槽への硝化液の循環ラインがなく、微好気槽の溶存酸素濃度を好気槽の溶存酸素濃度と同等又はそれ以下とし、好気槽の溶存酸素濃度を1.0mg/L以上3.0mg/L以下とする制御機構を備えたことを特徴とする汚水処理装置。
It is equipped with at least an oxygen-free tank, a microaerobic tank, an aerobic tank, and a sedimentation pond installed in the subsequent stage.
The aerobic tank contains a microbial-immobilized carrier carrying nitrifying bacteria, and is provided with a return line for returning at least a part of the sludge drawn from the sedimentation pond to the oxygen-free tank. In, there is no circulation line of the nitrifying liquid from the aerobic tank to the anoxic tank, and the dissolved oxygen concentration in the microaerobic tank is set to be equal to or lower than the dissolved oxygen concentration in the aerobic tank, and the dissolved oxygen concentration in the aerobic tank is set to be equal to or lower than that in the aerobic tank. A sewage treatment device including a control mechanism for 1.0 mg / L or more and 3.0 mg / L or less.
請求項4に記載の汚水処理装置であって、前記微好気槽に設置された散気装置による散気によって生じる槽内の水流が旋回流とされることを特徴とする汚水処理装置。 The sewage treatment device according to claim 4, wherein the water flow in the tank generated by the air diffuser installed in the microaerobic tank is a swirling flow. 請求項4又は5に記載の汚水処理装置であって、前記微好気槽の溶存酸素濃度を1.0mg/L以下とする制御機構を備えたことを特徴とする汚水処理装置。 The sewage treatment device according to claim 4 or 5, further comprising a control mechanism for reducing the dissolved oxygen concentration of the microaerobic tank to 1.0 mg / L or less. 微好気槽にその水深の1/3以上の位置に溶存酸素濃度計が設置されていることを特徴とする請求項4乃至6のいずれかに記載された汚水処理装置。 The sewage treatment apparatus according to any one of claims 4 to 6, wherein a dissolved oxygen concentration meter is installed in a microaerobic tank at a position of 1/3 or more of the water depth.
JP2018131233A 2018-07-11 2018-07-11 Sewage treatment method and equipment Active JP6939724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018131233A JP6939724B2 (en) 2018-07-11 2018-07-11 Sewage treatment method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018131233A JP6939724B2 (en) 2018-07-11 2018-07-11 Sewage treatment method and equipment

Publications (2)

Publication Number Publication Date
JP2020006341A JP2020006341A (en) 2020-01-16
JP6939724B2 true JP6939724B2 (en) 2021-09-22

Family

ID=69149859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018131233A Active JP6939724B2 (en) 2018-07-11 2018-07-11 Sewage treatment method and equipment

Country Status (1)

Country Link
JP (1) JP6939724B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705068B1 (en) 2020-01-17 2020-06-03 住友化学株式会社 Positive electrode active material for all-solid-state lithium-ion battery, electrode and all-solid-state lithium-ion battery
CN111422985A (en) * 2020-04-09 2020-07-17 贵州省绿洲海环保有限责任公司 Unpowered distributed sewage treatment system
CN111559834A (en) * 2020-06-10 2020-08-21 华电水务科技股份有限公司 Synchronous denitrification coupling enhanced nitrification sewage treatment system and method
CN111675435A (en) * 2020-06-17 2020-09-18 江苏中车环保设备有限公司 Integrated sewage treatment equipment based on A/O-MBBR (anaerobic-anoxic-aerobic-moving bed biofilm reactor) process and sewage treatment method
CN113044969B (en) * 2021-03-30 2022-08-26 青岛万慧源环保科技有限公司 MBBR reactor and oil refining effluent disposal system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323393A (en) * 1995-05-31 1996-12-10 Meidensha Corp Water quality simulator for circulation type nitrification and denitirification method
JP3531481B2 (en) * 1998-06-29 2004-05-31 日立プラント建設株式会社 Wastewater treatment method and apparatus
JP2000279993A (en) * 1999-03-31 2000-10-10 Nkk Corp Waste water treatment and apparatus therefor
JP2000279992A (en) * 1999-03-31 2000-10-10 Nkk Corp Waste water treatment and apparatus therefor
CN103922472B (en) * 2014-04-14 2016-03-02 北京工业大学 The device and method of the denitrogenation of a kind of A/O process strengthening and biological deodorizing
JP2017013014A (en) * 2015-07-02 2017-01-19 株式会社東芝 Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system
JP6404999B2 (en) * 2017-06-07 2018-10-17 株式会社東芝 Organic wastewater treatment equipment

Also Published As

Publication number Publication date
JP2020006341A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6939724B2 (en) Sewage treatment method and equipment
KR101473050B1 (en) Method and device for removing biological nitrogen and support therefor
CN104944689B (en) Device for treating high ammonia-nitrogen wastewater and method thereof
US20060226068A1 (en) Water treatment
JP5606513B2 (en) Nitrogen / phosphorus removal treatment method and nitrogen / phosphorus removal treatment apparatus
CN103991958A (en) Method for upgrading and expanding sequencing batch biological pool by utilizing moving bed biofilm process
JP6532723B2 (en) Method and system for treating organic wastewater
CN104108834A (en) Method for carrying out nitrogen and phosphorus removal on municipal sewage
US20240059597A1 (en) Anaerobic ammonia oxidation treatment system for treating wastewater with high ammonia nitrogen and high cod
JPH0546279B2 (en)
AU2018331439B2 (en) Simultaneous nitrification/denitrification (SNDN) in sequencing batch reactor applications
JP2006136820A (en) Method for removing phosphorus and/or nitrogen from sewage
JP6774341B2 (en) Nitrogen removal system and nitrogen removal method
CN205990324U (en) A kind of Bardenpho denitrification dephosphorization apparatus based on MBBR
KR100839035B1 (en) Biological wastewater treatment apparatus using diffuser-mediated sludge flotation and treatment method using the same
JP3379199B2 (en) Operation control method of activated sludge circulation method
US6984317B2 (en) System for the treatment of soot-laden water
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JPH09253687A (en) Anaerobic and aerobic treatment apparatus for waste water
KR102052163B1 (en) Wastewater treatment apparatus and method
JPH1094796A (en) Treatment of waste water and device therefor
CN214004385U (en) Chemical wastewater treatment system
CN114684912B (en) Sewage treatment method for denitrification and heavy metal removal
KR0153211B1 (en) Method and equipment for sewage treatment
JP2000279993A (en) Waste water treatment and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6939724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150