JPH05154496A - Controlling method for operation in anaerobic and aerobic activated sludge treating equipment - Google Patents
Controlling method for operation in anaerobic and aerobic activated sludge treating equipmentInfo
- Publication number
- JPH05154496A JPH05154496A JP32718291A JP32718291A JPH05154496A JP H05154496 A JPH05154496 A JP H05154496A JP 32718291 A JP32718291 A JP 32718291A JP 32718291 A JP32718291 A JP 32718291A JP H05154496 A JPH05154496 A JP H05154496A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- anaerobic
- aerobic
- concentration
- nitrification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は嫌気−好気活性汚泥処理
装置を用いて廃水中の有機物及び窒素を高効率に除去す
る運転制御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for removing organic matter and nitrogen in wastewater with high efficiency by using an anaerobic-aerobic activated sludge treatment device.
【0002】[0002]
【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、富栄養化の原因物質と考えられ
ている窒素及びリンを除去する方法が種々提案されてい
る。この富栄養化とは、水域中のN,P等の栄養塩類の
濃度が増大し、これらを栄養素とする生物活動が活発と
なって生態系が変化することを指している。特に湖沼等
に生活排水とか工場廃水が大量に流入すると、上記の富
栄養化が急速に進行することが知られている。2. Description of the Related Art Conventionally, various methods have been proposed for efficiently removing organic substances in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative substances of eutrophication. This eutrophication refers to an increase in the concentration of nutrient salts such as N and P in the water area, which activates biological activities using these nutrients as nutrients and changes the ecosystem. In particular, it is known that the above-mentioned eutrophication rapidly progresses when a large amount of domestic wastewater or industrial wastewater flows into lakes and the like.
【0003】廃水中の窒素とかリンを除去する手段とし
て、物理化学的な方法及び生物学的方法が提案されてい
るが、物理化学的方法はコストが嵩む関係から普及して
いない現状にある。例えば物理化学的方法として実用化
されているリン除去方法に凝集沈澱及び晶析手段がある
が、この手段はコストや維持管理面で難点がある。Although physicochemical methods and biological methods have been proposed as means for removing nitrogen and phosphorus in wastewater, physicochemical methods are not widely used because of the high cost. For example, a phosphorus removal method that has been put into practical use as a physicochemical method includes a coagulation precipitation method and a crystallization method, but this method has drawbacks in terms of cost and maintenance.
【0004】一方、生物学的に窒素とリンを同時に除去
する方法として、従来の活性汚泥法の変法として嫌気−
好気活性汚泥方法が注目されている。(例えば水質汚濁
研究、第12巻,第7号 441−448,1989を
参照。)この方法では、生物反応槽を嫌気槽と好気槽と
に仕切り、この嫌気槽に最初沈澱池流出水を導いて、無
酸素状態で活性汚泥中の脱窒菌による脱窒を行い、次に
好気槽でエアレーションによる曝気を行って、酸素の存
在下で活性汚泥による有機物の酸化分解と硝化菌による
アンモニアの硝化を行う。硝化液の一部は嫌気槽に循環
して脱窒を促進するために利用される。On the other hand, as a method for biologically removing nitrogen and phosphorus simultaneously, an anaerobic method is a modification of the conventional activated sludge method.
Aerobic activated sludge method is drawing attention. (See, for example, Water Pollution Research, Vol. 12, No. 7, 441-448, 1989.) In this method, the biological reaction tank is divided into an anaerobic tank and an aerobic tank, and the effluent water from the first settling tank is first divided into the anaerobic tank. Then, denitrifying by denitrifying bacteria in activated sludge in anoxic condition, and then aerating by aeration in an aerobic tank, oxidative decomposition of organic matter by activated sludge and ammonia by nitrifying bacteria in the presence of oxygen. Nitrification is performed. A part of the nitrification solution is circulated to the anaerobic tank and used for promoting denitrification.
【0005】かかる嫌気−好気活性汚泥処理方法を用い
ることにより、通常の活性汚泥法で達成される有機物除
去効果と同程度の効果が得られる上、窒素とリンに関し
ては活性汚泥法よりも高い除去率が達成される。By using such an anaerobic-aerobic activated sludge treatment method, an effect comparable to the organic matter removal effect achieved by the ordinary activated sludge method can be obtained, and nitrogen and phosphorus are higher than those by the activated sludge method. A removal rate is achieved.
【0006】[0006]
【発明が解決しようとする課題】しかしながらこのよう
な従来の嫌気−好気活性汚泥処理装置を用いて廃水中の
有機物及び窒素を除去する方法の場合、該嫌気−好気活
性汚泥処理装置の運転制御方法が充分に確立されている
とは言えず、処理効率及び精度を高めることが困難であ
るという課題があった。However, in the case of the method for removing organic matter and nitrogen in wastewater using such a conventional anaerobic-aerobic activated sludge treatment device, the operation of the anaerobic-aerobic activated sludge treatment device is performed. It cannot be said that the control method is sufficiently established, and there is a problem that it is difficult to improve processing efficiency and accuracy.
【0007】一般に有機性廃水を生物処理法を利用して
浄化するには、微生物の生存,増殖を適性に維持する環
境条件が必要である。そして上記の嫌気−好気活性汚泥
処理方法の主な制御因子として以下の6項目を挙げるこ
とができる。[0007] Generally, in order to purify organic wastewater using a biological treatment method, environmental conditions for maintaining the survival and growth of microorganisms appropriately are necessary. And the following 6 items can be mentioned as main control factors of the above anaerobic-aerobic activated sludge treatment method.
【0008】(1)汚泥平均滞留時間(sludge retenti
on time,以下SRTと略称する )。(1) Sludge average retention time (sludge retenti
on time, hereinafter abbreviated as SRT).
【0009】(2)活性汚泥浮遊物濃度(mixed liquor
suspended solid,以下MLSSと略称する)。(2) Concentration of suspended matter in activated sludge (mixed liquor
suspended solid, hereinafter abbreviated as MLSS).
【0010】(3)溶存酸素濃度(Dissolved oxygen,
以下DO濃度と略称する)。(3) Dissolved oxygen,
Hereinafter, abbreviated as DO concentration).
【0011】(4)水素イオン濃度(pH)。(4) Hydrogen ion concentration (pH).
【0012】(5)硝化液の還流比。(5) Reflux ratio of nitrification solution.
【0013】(6)嫌気槽と好気槽の容積比(以下A/
O比と略称する)。(6) Volume ratio of anaerobic tank and aerobic tank (hereinafter A /
Abbreviated as O ratio).
【0014】上記6項目の制御因子は一率に制御される
ことが多いため、流量の変動とか水質の変動等の処理状
態の変化に影響を受け易いという問題点がある。即ち、
嫌気−好気活性汚泥処理によって効率的に窒素を除去す
るためには、嫌気槽における脱窒と好気槽における硝化
を最適な運転条件に保持することが要求され、特に窒素
除去工程は硝化工程に影響される度合が高いため、良好
な窒素除去を行うためには硝化工程が良好に行われてい
ることが必要である。Since the control factors of the above six items are often controlled at a constant rate, there is a problem that they are easily affected by changes in the processing state such as changes in flow rate and changes in water quality. That is,
In order to remove nitrogen efficiently by anaerobic-aerobic activated sludge treatment, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under optimum operating conditions. Therefore, the nitrification step must be performed well in order to perform good nitrogen removal.
【0015】更に硝化細菌によるアンモニア性窒素の硝
化は、硝化槽のDO濃度に大きく依存することが知られ
ており、このDO濃度が2.0mg/l以上に上昇する
ことによってアンモニア性窒素の硝化がほぼ完了すると
言われている。Further, it is known that the nitrification of ammonia nitrogen by nitrifying bacteria greatly depends on the DO concentration in the nitrification tank, and when this DO concentration rises to 2.0 mg / l or more, the nitrification of ammonia nitrogen is performed. Is said to be almost complete.
【0016】又、上記全ての制御因子が硝化反応と脱窒
反応に影響を与えるが、特に(2)MLSS,(3)D
O濃度及び(5)硝化液の還流比の影響が大きい。ML
SSは通常生物処理反応槽内の微生物量の指標として用
いられ、反応槽内の浮遊物質を遠心分離とか濾過により
分離し、洗浄乾燥後の重量(mg/l)から求めること
ができる。通常MLSSは2000(mg/l)前後に
設定される。Further, all of the above-mentioned control factors affect the nitrification reaction and denitrification reaction, but in particular (2) MLSS and (3) D
The O concentration and (5) the reflux ratio of the nitrification solution have a large influence. ML
SS is usually used as an index of the amount of microorganisms in the biological treatment reaction tank, and can be determined from the weight (mg / l) after washing and drying after separating the suspended matter in the reaction tank by centrifugation or filtration. Normally, MLSS is set around 2000 (mg / l).
【0017】上記DO濃度は水中に溶解しているO2量
であり、このDO濃度が低下すると嫌気性菌が出現して
嫌気性呼吸が行われる。又、硝化細菌の増殖速度及びア
ンモニア性窒素の減少速度はDO濃度に大きく依存して
いる。この硝化細菌のアンモニア性窒素減少速度を
RL,最大硝化速度をRLmax(mgN/gss・hr)
とすると RL=RLmax・DO/(KO2’+DO)・・・・・・・・・・・・・・・・(1) (KO2’:DOの飽和定数,mg/l) となる。(1)式でKO2’の値は0.15〜0.42
(mg/l)、又は2.0(mg/l)等の値が報告さ
れているが、EPAの窒素除去プロセスデザインマニュ
アルでは、MLDO濃度が2mg/l程度に上昇する
と、アンモニア性窒素の硝化がほぼ完了することから、
1.3mg/lが用いられている。(単段式及び二段式
活性汚泥循環変法の技術資料,日本下水道事業団技術開
発部,下水道事業団業務普及協会,平成2年6月発行を
参照)。The above DO concentration is the amount of O 2 dissolved in water, and when this DO concentration decreases, anaerobic bacteria appear and anaerobic respiration is performed. Further, the growth rate of nitrifying bacteria and the reduction rate of ammonia nitrogen are largely dependent on the DO concentration. The ammonia nitrogen reduction rate of this nitrifying bacterium is R L , and the maximum nitrification rate is R Lmax (mgN / gss · hr)
Then, RL = RLmax · DO / (KO 2 '+ DO) (1) (KO 2 ': DO saturation constant, mg / l) .. In formula (1), the value of KO 2 'is 0.15 to 0.42
Although values such as (mg / l) or 2.0 (mg / l) have been reported, in the nitrogen removal process design manual of EPA, when the MLDO concentration rises to about 2 mg / l, nitrification of ammoniacal nitrogen occurs. Is almost complete,
1.3 mg / l is used. (Refer to the technical data of the single-stage type and the two-stage type activated sludge circulation modification method, the Japan Sewer Enterprises Technology Development Department, the Sewer Enterprises Business Extension Association, published in June 1990).
【0018】一方、硝化槽の出口におけるDO濃度が低
いと、処理水中にアンモニア性窒素が残存して硝化反応
により酸素が消費されるので、硝化槽の曝気量を高めて
も槽内のDO濃度が上昇せず、アンモニア性窒素がほぼ
なくなった時点でDO濃度が上昇する。しかし硝化液の
循環による硝化槽から脱窒槽への酸素供給に伴って、脱
窒槽における脱窒反応が阻害されることを考慮すると、
硝化槽のDO濃度が必要以上に高くならないように前記
制御因子を管理し、硝化反応のモニタリングを実施する
ことが重要である。On the other hand, if the DO concentration at the outlet of the nitrification tank is low, ammonia nitrogen remains in the treated water and oxygen is consumed by the nitrification reaction, so even if the aeration amount in the nitrification tank is increased, the DO concentration in the tank is increased. Does not rise, and the DO concentration rises when ammonia nitrogen is almost exhausted. However, considering that the denitrification reaction in the denitrification tank is hindered as oxygen is supplied from the nitrification tank to the denitrification tank by circulating the nitrification liquid,
It is important to manage the control factors and monitor the nitrification reaction so that the DO concentration in the nitrification tank does not become higher than necessary.
【0019】本発明は上記に鑑みてなされたものであ
り、上記の嫌気−好気活性汚泥処理方法の主な制御因子
を制御することにより、廃水中の有機物及び窒素を高効
率に除去する運転制御方法を提供することを目的とする
ものである。The present invention has been made in view of the above, and an operation for highly efficiently removing organic matter and nitrogen in wastewater by controlling the main control factors of the above anaerobic-aerobic activated sludge treatment method. It is intended to provide a control method.
【0020】[0020]
【課題を解決するための手段】上記の目的を達成するた
めに、下水等の廃水を嫌気槽で脱窒細菌により脱窒を行
う工程と、好気槽で硝化細菌によりアンモニア性窒素の
硝化を行う工程と、沈澱槽で固液分離し、沈降した汚泥
の一部を嫌気槽に戻すとともに残部を余剰汚泥処理装置
に送り込んで処理し、沈澱槽の上澄液を処理水として放
流する工程と、好気槽内の硝化液の一部を嫌気槽に還流
して脱窒反応を促進する工程を含む嫌気−好気活性汚泥
処理装置において、上記嫌気槽と好気槽に溶存酸素の濃
度計を配備するとともに、好気槽に硝化の進行状況を判
定するための酸素利用速度計を配備し、上記溶存酸素の
濃度計及び酸素利用速度計により、嫌気−好気活性汚泥
処理の進行に伴う溶存酸素の濃度及び酸素利用速度を検
出して好気槽の硝化反応の進行状況を判断し、その判断
結果から嫌気槽及び好気槽の活性汚泥浮遊物濃度、溶存
酸素濃度、硝化液の還流比を自動制御して、廃水中の有
機物及び窒素除去の効率化をはかるようにした嫌気−好
気活性汚泥処理装置の運転制御方法を提供する。[Means for Solving the Problems] In order to achieve the above object, a step of denitrifying wastewater such as sewage with denitrifying bacteria in an anaerobic tank, and nitrifying ammoniacal nitrogen with nitrifying bacteria in an aerobic tank. The steps of performing and solid-liquid separation in the settling tank, returning part of the settled sludge to the anaerobic tank and sending the rest to the excess sludge treatment device for processing, and discharging the supernatant of the settling tank as treated water. In an anaerobic-aerobic activated sludge treatment device including a step of refluxing a part of the nitrification liquid in the aerobic tank to the anaerobic tank to accelerate the denitrification reaction, the anaerobic tank and the aerobic tank have a concentration meter for dissolved oxygen. And an oxygen utilization rate meter for determining the progress of nitrification in the aerobic tank, and the progress of anaerobic-aerobic activated sludge treatment is performed by the concentration meter of dissolved oxygen and the oxygen utilization rate meter. The concentration of dissolved oxygen and the oxygen utilization rate are detected to detect the glass in the aerobic tank. The progress of the reaction is judged, and from the judgment results, the concentration of suspended solids in the anaerobic tank and aerobic tank, the dissolved oxygen concentration, and the reflux ratio of the nitrification solution are automatically controlled to improve the efficiency of removing organic matters and nitrogen in the wastewater. Provided is an operation control method for an anaerobic-aerobic activated sludge treatment device.
【0021】[0021]
【作用】かかる嫌気−好気活性汚泥処理装置の運転制御
方法によれば、廃水が先ず嫌気槽で脱窒され、次に好気
槽で曝気が行われ、硝化細菌の作用に基づいてアンモニ
ア性窒素の硝化が行われる。この好気槽内の硝化液の1
部は嫌気槽に還流されて嫌気槽での脱窒が促進される。
好気槽からの排出液は沈澱槽に流入して固液分離され、
沈降した汚泥の1部が再度嫌気槽に戻り、汚泥の残部は
余剰汚泥として処理されるとともに沈澱槽の上澄液は処
理水として放流される。According to the operation control method of the anaerobic-aerobic activated sludge treatment device, the wastewater is first denitrified in the anaerobic tank, and then aerated in the aerobic tank. Nitrification of nitrogen takes place. 1 of the nitrification liquid in this aerobic tank
The part is returned to the anaerobic tank to promote denitrification in the anaerobic tank.
The liquid discharged from the aerobic tank flows into the settling tank for solid-liquid separation,
A part of the settled sludge returns to the anaerobic tank again, the rest of the sludge is treated as excess sludge, and the supernatant of the settling tank is discharged as treated water.
【0022】上記処理時に、指標として嫌気槽と好気槽
に配備した溶存酸素の濃度計と、好気槽に配備した酸素
利用速度計から得られるデータに基づいて硝化反応の進
行状況が判断され、その判断結果から、嫌気槽及び好気
槽の活性汚泥浮遊物濃度、溶存酸素濃度、硝化液の還流
比が自動制御されて、廃水中の有機物及び窒素除去の効
率化をはかることが可能となる。At the time of the above treatment, the progress of the nitrification reaction is judged based on the data obtained from the dissolved oxygen concentration meter provided in the anaerobic tank and the aerobic tank as an index and the oxygen utilization rate meter installed in the aerobic tank. Based on the result of the judgment, the concentration of suspended solids in the anaerobic tank and the aerobic tank, the dissolved oxygen concentration, and the reflux ratio of the nitrification solution can be automatically controlled to improve the efficiency of removing organic matters and nitrogen in wastewater. Become.
【0023】[0023]
【実施例】以下、図面に基づいて本発明にかかる嫌気−
好気活性汚泥処理装置の運転制御方法の一実施例を説明
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The anaerobic of the present invention will be described below with reference to the drawings
An embodiment of the operation control method of the aerobic activated sludge treatment device will be described.
【0024】図1は本発明の基本的実施例を示す概要図
であって、1は廃水の脱窒を行うための嫌気槽、2は硝
化を行うための好気槽であり、この嫌気槽1と好気槽2
とは同一の生物反応槽を仕切板3で区切って構成されて
いる。嫌気槽1の内方底部に水中撹拌機4,4が配置さ
れている。又、好気槽2の底部にはエア吹出部材5,
5,5が配置され、外部にエア供給用のブロワ6が配備
されている。更にこの好気槽2には、硝化液の1部を嫌
気槽1に還流するための硝化液循環ポンプ7と返送管路
8とが配設されている。FIG. 1 is a schematic diagram showing a basic embodiment of the present invention. Reference numeral 1 is an anaerobic tank for denitrifying wastewater, and 2 is an aerobic tank for nitrification. 1 and aerobic tank 2
And the same biological reaction tank are divided by a partition plate 3. Underwater agitators 4 and 4 are arranged at the inner bottom of the anaerobic tank 1. Further, at the bottom of the aerobic tank 2, the air blowing member 5,
5, 5 are arranged, and a blower 6 for supplying air is provided outside. Further, the aerobic tank 2 is provided with a nitrification solution circulation pump 7 for returning a part of the nitrification solution to the anaerobic tank 1 and a return pipe line 8.
【0025】9は沈澱槽としての最終沈澱池であり、こ
の最終沈澱池9の底部から導出された管路10の中途部
に汚泥返送ポンプ11が配設されている。20は汚泥分
配槽であり、この汚泥分配槽20は1部の汚泥を再度嫌
気槽1に戻し、残部の汚泥を余剰汚泥23として図外の
余剰汚泥処理装置に送り込む機能を有している。Reference numeral 9 is a final settling tank as a settling tank, and a sludge return pump 11 is arranged in the middle of a pipe 10 extending from the bottom of the final settling tank 9. Reference numeral 20 denotes a sludge distribution tank. The sludge distribution tank 20 has a function of returning a part of sludge to the anaerobic tank 1 again and sending the remaining sludge as excess sludge 23 to an excess sludge treatment device (not shown).
【0026】更に本実施例では、上記嫌気槽1に溶存酸
素の濃度計12が配備され、好気槽2にも同様な溶存酸
素の濃度計13が配備されている。Further, in the present embodiment, the anaerobic tank 1 is provided with a dissolved oxygen concentration meter 12, and the aerobic tank 2 is also provided with a similar dissolved oxygen concentration meter 13.
【0027】更に好気槽2には、硝化の進行状況を判定
するための酸素利用速度計14が配備されている。15
は制御回路であり、上記溶存酸素の濃度計12,13及
び酸素利用速度計14の検知したデータが該制御回路1
5に入力され、これらの入力データに基づいて制御回路
15から前記硝化液循環ポンプ7,ブロワ6及び汚泥返
送ポンプ11に駆動信号が出力される。Further, the aerobic tank 2 is provided with an oxygen utilization speedometer 14 for judging the progress of nitrification. 15
Is a control circuit, and the data detected by the dissolved oxygen concentration meters 12 and 13 and the oxygen utilization speed meter 14 is the control circuit 1.
5, and a drive signal is output from the control circuit 15 to the nitrification solution circulation pump 7, the blower 6 and the sludge return pump 11 based on these input data.
【0028】かかる嫌気−好気活性汚泥処理装置の基本
的作用は以下の通りである。先ず廃棄物としての廃水2
1が嫌気槽1へ流入し、水中撹拌機4,4の撹拌作用と
脱窒細菌の作用に基づいてNO3−N、NO2−Nイオン
のN2への還元、即ち脱窒が行われる。次に廃水が好気
槽2に流入してブロワ6の駆動に伴ってエア吹出部材
5,5,5からのエアレーションによる曝気が行われ、
硝化細菌の作用に基づいてアンモニア性窒素NH4−N
のNO2−N又はNO3−Nへの酸化、即ち硝化が行われ
る。The basic operation of the anaerobic-aerobic activated sludge treatment device is as follows. First, waste water as waste 2
1 flows into the anaerobic tank 1, and NO 3 —N and NO 2 —N ions are reduced to N 2 , that is, denitrification is performed based on the stirring action of the water agitators 4 and 4 and the action of denitrifying bacteria. .. Next, the wastewater flows into the aerobic tank 2, and aeration by aeration from the air blowing members 5, 5, 5 is performed as the blower 6 is driven,
Based on the action of nitrifying bacteria, ammoniacal nitrogen NH 4 -N
Is oxidized to NO 2 —N or NO 3 —N, that is, nitrification is performed.
【0029】そして該好気槽2内の硝化液の1部は、硝
化液循環ポンプ7の作用により返送管路8から嫌気槽1
に還流され、脱窒に必要なNO3−N、NO2−N等が嫌
気槽1に供給される。Then, a part of the nitrification solution in the aerobic tank 2 is returned from the return pipe 8 to the anaerobic tank 1 by the action of the nitrification solution circulation pump 7.
NO 3 --N, NO 2 --N, etc. necessary for denitrification are supplied to the anaerobic tank 1.
【0030】好気槽2からの排出液は最終沈澱池9に流
入して固液分離されるとともに、沈降した汚泥の1部
は、管路10から汚泥返送ポンプ11を介して汚泥分配
槽20に返送され、この汚泥分配槽20により1部の汚
泥は廃水21とともに再度嫌気槽1に戻り、汚泥の残部
は余剰汚泥として図外の余剰汚泥処理装置に送り込まれ
て処理される。又、最終沈澱池9の上澄液22は処理水
として放流される。The liquid discharged from the aerobic tank 2 flows into the final settling basin 9 for solid-liquid separation, and a part of the sludge that has settled down is transferred from the pipeline 10 through the sludge return pump 11 to the sludge distribution tank 20. The sludge distribution tank 20 returns a part of the sludge to the anaerobic tank 1 together with the wastewater 21, and the rest of the sludge is sent to a surplus sludge treatment device (not shown) for treatment. Further, the supernatant liquid 22 of the final settling basin 9 is discharged as treated water.
【0031】本実施例ではこのような嫌気−好気活性汚
泥処理が進行している間に、指標として溶存酸素の濃度
計12,13及び酸素利用速度計14から得られるデー
タを利用して硝化反応の進行状況を判断し、その判断結
果から前記MLSS,DO濃度,硝化液の循環比を制御
することにより、廃水処理の効率化をはかることを主眼
としている。In the present embodiment, while such anaerobic-aerobic activated sludge treatment is in progress, nitrification is performed by using the data obtained from the dissolved oxygen concentration meters 12 and 13 and the oxygen utilization speed meter 14 as an index. The main purpose is to improve the efficiency of wastewater treatment by judging the progress of the reaction and controlling the MLSS and DO concentrations and the circulation ratio of the nitrification solution based on the judgment results.
【0032】即ち、前記好気槽2における硝化反応の進
行状況は、酸素利用速度(oxygen utilization rate re
spiration,以下rrと略称する)と硝化抑制剤であるN
−アリルチオ尿素(化学式C4H8N2S,以下ATUと
略称する)を添加して測定した酸素利用速度(以下AT
U−rrと略称する)の差から求めることができる。上
記の差を〔N−rr〕とすると、 〔N−rr〕=〔rr〕−〔ATU−rr〕・・・・・・・・・・(2) となる。That is, the progress of the nitrification reaction in the aerobic tank 2 is determined by the oxygen utilization rate re
(hereinafter, abbreviated as rr) and N which is a nitrification inhibitor
- allyl thiourea (formula C 4 H 8 N 2 S, hereinafter referred to as ATU) oxygen utilization rate (hereinafter, measured by the addition of AT
U-rr). When the above difference is [N-rr], [N-rr] = [rr]-[ATU-rr] (2)
【0033】酸素利用速度rrとは、単位時間当たりに
利用された酸素濃度(mgO2/l・hr)であり、通常
の好気槽2の曝気が過剰になると汚泥が細分化し、曝気
不足になると有機物が処理水中に残存したり汚水が腐敗
する等の現象が生じて浄化能が劣化する。従って活性汚
泥を最適に管理するためには、活性汚泥の酸素利用速度
あるいはそれ以上の速度で酸素を供給する必要があるた
め、曝気の指標として用いられる。The oxygen utilization rate rr is the oxygen concentration (mgO 2 / l · hr) utilized per unit time, and if the aeration of the ordinary aerobic tank 2 becomes excessive, the sludge will be fragmented and the aeration will be insufficient. If so, phenomena such as organic matter remaining in the treated water and spoilage of sewage occur, and the purification performance deteriorates. Therefore, in order to optimally manage the activated sludge, it is necessary to supply oxygen at the oxygen utilization rate of the activated sludge or at a rate higher than that, which is used as an index of aeration.
【0034】上記〔N−rr〕は硝化に伴う酸素利用速
度であり、従ってこの値が小さければ硝化反応が終了
し、この値が大きければ硝化反応がまだ終了していない
ものと判断することができる。そして〔N−rr〕の値
が大きく、硝化反応を高めなければならない時には、汚
泥分配槽20から嫌気槽1に戻す汚泥量を多くすること
によって活性汚泥浮遊物であるMLSSを高める。又、
好気槽2の酸素消費量が酸素供給量以上にならないよう
にエアレーションによる曝気量を高め、特に該好気槽2
出口でのDO濃度が2.0mg/l以上にならない程度
にブロワ6の駆動を調節することにより、硝化が促進さ
れる。The above [N-rr] is the oxygen utilization rate associated with nitrification. Therefore, if this value is small, it can be judged that the nitrification reaction has ended, and if this value is large, it can be judged that the nitrification reaction has not yet ended. it can. When the value of [N-rr] is large and the nitrification reaction must be enhanced, the amount of sludge returned from the sludge distribution tank 20 to the anaerobic tank 1 is increased to increase the MLSS, which is an activated sludge suspended matter. or,
The aeration amount by aeration is increased so that the oxygen consumption amount of the aerobic tank 2 does not exceed the oxygen supply amount.
Nitrification is promoted by adjusting the drive of the blower 6 so that the DO concentration at the outlet does not exceed 2.0 mg / l.
【0035】硝化が順調に行われている場合には、硝化
液循環ポンプ7の作用に基づく好気槽2から嫌気槽1に
対する硝化液の還流量を多くし(実用上では200%ま
で)、液の循環比を高めることにより、窒素の除去率を
大きくすることができる。When the nitrification is carried out smoothly, the reflux rate of the nitrification solution from the aerobic tank 2 to the anaerobic tank 1 based on the action of the nitrification solution circulation pump 7 is increased (up to 200% in practice), By increasing the circulation ratio of the liquid, the removal rate of nitrogen can be increased.
【0036】又、夜間等の低負荷時には〔N−rr〕の
値も極めて小さくなり、有機物の除去と硝化反応が完全
に終了してDO濃度が2.0mg/lをはるかに上回る
場合には、硝化液を嫌気槽1に還流することにより嫌気
槽1のDO濃度が高くなり、脱窒反応が阻害されて逆に
窒素除去率が低下する惧れがある。このような場合に
は、好気槽2における曝気量を低くするとともに硝化液
の循環量を低減するとか、MLSSの濃度を高く保持し
て嫌気槽1の溶存酸素の消費量を拡大することにより対
処可能であり、且つ上記両方の制御を実施することによ
って窒素除去率を高く維持することができる。The value of [N-rr] becomes extremely small at low load such as at night, and when the removal of organic substances and the nitrification reaction are completely completed and the DO concentration is much higher than 2.0 mg / l. By refluxing the nitrification liquid to the anaerobic tank 1, the DO concentration in the anaerobic tank 1 may be increased, and the denitrification reaction may be hindered, and the nitrogen removal rate may be decreased. In such a case, by reducing the aeration amount in the aerobic tank 2 and reducing the circulation amount of the nitrification solution, or by keeping the MLSS concentration high to increase the consumption amount of dissolved oxygen in the anaerobic tank 1. It is possible to cope with this, and the nitrogen removal rate can be maintained high by implementing both of the above controls.
【0037】[0037]
【発明の効果】以上詳細に説明したように、本発明にか
かる嫌気−好気活性汚泥処理装置の運転制御方法によれ
ば、指標として嫌気槽と好気槽に配備した溶存酸素の濃
度計及び好気槽に配備した酸素利用速度計から得られる
データに基づいて硝化反応の進行状況が判断され、その
判断結果から、嫌気槽及び好気槽の活性汚泥浮遊物濃
度、溶存酸素濃度、硝化液の還流比が自動制御されて、
廃水中の有機物及び窒素除去の効率化をはかることが出
来る。特に硝化に伴う酸素利用速度が小さければ硝化反
応が終了しており、この値が大きければ硝化反応がまだ
終了していないものと判断することができる。そして硝
化反応を高める場合には嫌気槽の活性汚泥浮遊物濃度を
高め、且つ好気槽の酸素消費量が酸素供給量以上になら
ないように曝気量を高めることにより硝化を促進するこ
とができる。又、硝化が順調に行われている場合には、
好気槽から嫌気槽に対する硝化液の循環比を高めること
により、窒素の除去率を大きくすることができる。As described above in detail, according to the operation control method of the anaerobic-aerobic activated sludge treatment device of the present invention, the dissolved oxygen concentration meter and the anaerobic tank provided in the anaerobic tank and the aerobic tank are used as indicators. The progress of the nitrification reaction is judged based on the data obtained from the oxygen utilization rate meter installed in the aerobic tank, and based on the judgment results, the concentration of suspended solids in the sludge of the anaerobic tank and the aerobic tank, the dissolved oxygen concentration, and the nitrification liquid. The reflux ratio of is automatically controlled,
It is possible to improve the efficiency of removing organic matters and nitrogen in wastewater. In particular, if the oxygen utilization rate accompanying nitrification is low, it can be judged that the nitrification reaction has ended, and if this value is large, it can be judged that the nitrification reaction has not ended. When enhancing the nitrification reaction, nitrification can be promoted by increasing the activated sludge suspended matter concentration in the anaerobic tank and increasing the aeration amount so that the oxygen consumption amount in the aerobic tank does not exceed the oxygen supply amount. Also, if nitrification is carried out smoothly,
By increasing the circulation ratio of the nitrification liquid from the aerobic tank to the anaerobic tank, the nitrogen removal rate can be increased.
【0038】従って本発明によれば、嫌気−好気活性汚
泥処理装置の運転制御方法を確立することにより、廃水
の処理効率及び精度を高められるという大きな効果を発
揮する。Therefore, according to the present invention, by establishing the operation control method of the anaerobic-aerobic activated sludge treatment device, the great effect that the treatment efficiency and accuracy of wastewater can be enhanced is exhibited.
【図1】本発明の基本的実施例を示す概要図。FIG. 1 is a schematic diagram showing a basic embodiment of the present invention.
【符号の説明】 1…嫌気槽、2…好気槽、4…水中撹拌機、5…エア吹
出部材、6…ブロワ、7…硝化液循環ポンプ、8…返送
管路、9…最終沈澱地、11…汚泥返送ポンプ、12,
13…(溶存酸素の)濃度計、14…酸素利用速度計、
15…制御回路、20…汚泥分配槽、21…廃水、22
…上澄液。[Explanation of Codes] 1 ... Anaerobic tank, 2 ... Aerobic tank, 4 ... Submersible agitator, 5 ... Air blowing member, 6 ... Blower, 7 ... Nitrification solution circulation pump, 8 ... Return pipe line, 9 ... Final sedimentation site , 11 ... Sludge return pump, 12,
13 ... (dissolved oxygen) concentration meter, 14 ... oxygen utilization rate meter,
15 ... Control circuit, 20 ... Sludge distribution tank, 21 ... Waste water, 22
… Supernatant.
Claims (1)
脱窒を行う工程と、好気槽で硝化細菌によりアンモニア
性窒素の硝化を行う工程と、沈澱槽で固液分離し、沈降
した汚泥の一部を嫌気槽に戻すとともに残部を余剰汚泥
処理装置に送り込んで処理し、沈澱槽の上澄液を処理水
として放流する工程と、好気槽内の硝化液の一部を嫌気
槽に還流して脱窒反応を促進する工程を含む嫌気−好気
活性汚泥処理装置において、 上記嫌気槽と好気槽に溶存酸素の濃度計を配備するとと
もに、好気槽に硝化の進行状況を判定するための酸素利
用速度計を配備し、上記溶存酸素の濃度計及び酸素利用
速度計により、嫌気−好気活性汚泥処理の進行に伴う溶
存酸素の濃度及び酸素利用速度を検出して好気槽の硝化
反応の進行状況を判断し、その判断結果から嫌気槽及び
好気槽の活性汚泥浮遊物濃度、溶存酸素濃度、硝化液の
還流比を自動制御して、廃水中の有機物及び窒素除去の
効率化をはかることを特徴とする嫌気−好気活性汚泥処
理装置の運転制御方法。1. A step of denitrifying wastewater such as sewage with denitrifying bacteria in an anaerobic tank, a step of nitrifying ammoniacal nitrogen with nitrifying bacteria in an aerobic tank, and solid-liquid separation and sedimentation in a settling tank. A part of the sludge is returned to the anaerobic tank and the rest is sent to an excess sludge treatment device for treatment, and the supernatant of the sedimentation tank is discharged as treated water, and part of the nitrification solution in the aerobic tank is anaerobic. In the anaerobic-aerobic activated sludge treatment device including the step of promoting the denitrification reaction by returning to the tank, the concentration of dissolved oxygen is installed in the anaerobic tank and the aerobic tank, and the progress of nitrification in the aerobic tank. An oxygen utilization rate meter for determining the concentration of oxygen is used to detect the concentration of dissolved oxygen and the rate of utilization of oxygen with the progress of anaerobic-aerobic activated sludge treatment by the dissolved oxygen concentration meter and the oxygen utilization rate meter. Judging the progress of the nitrification reaction in the air tank, and Anaerobic-aerobic activity characterized by automatically controlling the concentration of suspended sludge in the air tank and aerobic tank, the dissolved oxygen concentration, and the reflux ratio of the nitrification solution to improve the efficiency of removing organic matters and nitrogen in wastewater. Sludge treatment equipment operation control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32718291A JPH05154496A (en) | 1991-12-11 | 1991-12-11 | Controlling method for operation in anaerobic and aerobic activated sludge treating equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32718291A JPH05154496A (en) | 1991-12-11 | 1991-12-11 | Controlling method for operation in anaerobic and aerobic activated sludge treating equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05154496A true JPH05154496A (en) | 1993-06-22 |
Family
ID=18196228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32718291A Pending JPH05154496A (en) | 1991-12-11 | 1991-12-11 | Controlling method for operation in anaerobic and aerobic activated sludge treating equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05154496A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002292396A (en) * | 2001-03-30 | 2002-10-08 | Sumitomo Heavy Ind Ltd | Biological denitrification apparatus |
JP2010000467A (en) * | 2008-06-23 | 2010-01-07 | Jfe Engineering Corp | Sludge deposition prevention method |
JP2010269254A (en) * | 2009-05-22 | 2010-12-02 | Hitachi Ltd | Water treatment equipment |
CN108033561A (en) * | 2017-12-08 | 2018-05-15 | 绍兴水处理发展有限公司 | A kind of dyeing waste water denitrification process |
CN111233270A (en) * | 2020-02-13 | 2020-06-05 | 广州博芳环保科技股份有限公司 | Integrated sewage treatment method |
CN114772730A (en) * | 2022-04-19 | 2022-07-22 | 青岛思普润水处理股份有限公司 | BFM form-based CANON-MBBR strengthened AOA water treatment method and system |
CN114804339A (en) * | 2022-04-19 | 2022-07-29 | 青岛思普润水处理股份有限公司 | BFM form-based efficient AOA coupling anaerobic ammonia oxidation sewage treatment method and system |
-
1991
- 1991-12-11 JP JP32718291A patent/JPH05154496A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002292396A (en) * | 2001-03-30 | 2002-10-08 | Sumitomo Heavy Ind Ltd | Biological denitrification apparatus |
JP2010000467A (en) * | 2008-06-23 | 2010-01-07 | Jfe Engineering Corp | Sludge deposition prevention method |
JP2010269254A (en) * | 2009-05-22 | 2010-12-02 | Hitachi Ltd | Water treatment equipment |
CN108033561A (en) * | 2017-12-08 | 2018-05-15 | 绍兴水处理发展有限公司 | A kind of dyeing waste water denitrification process |
CN111233270A (en) * | 2020-02-13 | 2020-06-05 | 广州博芳环保科技股份有限公司 | Integrated sewage treatment method |
CN114772730A (en) * | 2022-04-19 | 2022-07-22 | 青岛思普润水处理股份有限公司 | BFM form-based CANON-MBBR strengthened AOA water treatment method and system |
CN114804339A (en) * | 2022-04-19 | 2022-07-29 | 青岛思普润水处理股份有限公司 | BFM form-based efficient AOA coupling anaerobic ammonia oxidation sewage treatment method and system |
CN114804339B (en) * | 2022-04-19 | 2023-08-22 | 青岛思普润水处理股份有限公司 | BFM-based efficient AOA coupling anaerobic ammonia oxidation sewage treatment method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5624562A (en) | Apparatus and treatment for wastewater | |
US5076928A (en) | Process for biological wastewater treatment | |
US7655142B2 (en) | Dynamic control of membrane bioreactor system | |
CN110451642A (en) | A kind of multistage O/A Anammox coupling denitrification nitrogen rejection facility and its application method | |
US20240059597A1 (en) | Anaerobic ammonia oxidation treatment system for treating wastewater with high ammonia nitrogen and high cod | |
JPH11156387A (en) | Wastewater treatment apparatus | |
JPH07100486A (en) | Method for treating drainage | |
JPH05154496A (en) | Controlling method for operation in anaerobic and aerobic activated sludge treating equipment | |
AU595177B2 (en) | Nitrification/denitrification of waste material | |
JPH0722757B2 (en) | Biological removal method of nitrogen and phosphorus and its treatment device | |
JPH07136687A (en) | Operation control method for modified active sludge circulation process in low water temperature period | |
JP3379199B2 (en) | Operation control method of activated sludge circulation method | |
JPH0724492A (en) | Method for controlling operation of activated sludge circulation change method | |
JPH1034185A (en) | Drainage treatment method | |
JPH0716595A (en) | Operation control method in modified method for circulating active sludge | |
JPH07148496A (en) | Method for controlling operation of modified process for circulation of activated sludge | |
JP2000325988A (en) | Waste water treatment system having sludge concentrating means | |
JPH09253687A (en) | Anaerobic and aerobic treatment apparatus for waste water | |
JPH05192688A (en) | Anaerobic-aerobic activated sludge treating device using buffer tank | |
JP2000325986A (en) | Waste water treatment apparatus having phosphorus removing process | |
JP2001087793A (en) | Method and apparatus for treating waste water | |
JP2000325992A (en) | Waste water treatment apparatus with sludge concentrating means | |
JP2000051892A (en) | Method and apparatus for nitrating waste water and activity detector | |
JPH0691292A (en) | Operation control method of aerobic-anaerobic active sludge treatment apparatus | |
JP3303475B2 (en) | Operation control method of activated sludge circulation method |