JPH05192688A - Anaerobic-aerobic activated sludge treating device using buffer tank - Google Patents

Anaerobic-aerobic activated sludge treating device using buffer tank

Info

Publication number
JPH05192688A
JPH05192688A JP743392A JP743392A JPH05192688A JP H05192688 A JPH05192688 A JP H05192688A JP 743392 A JP743392 A JP 743392A JP 743392 A JP743392 A JP 743392A JP H05192688 A JPH05192688 A JP H05192688A
Authority
JP
Japan
Prior art keywords
tank
anaerobic
aerobic
activated sludge
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP743392A
Other languages
Japanese (ja)
Inventor
Takahiro Konishi
隆裕 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP743392A priority Critical patent/JPH05192688A/en
Publication of JPH05192688A publication Critical patent/JPH05192688A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To provide the anaerobic-aerobic activated sludge treating device which removes the org. matter and nitrogen in waste water with high efficiency and takes the remedy for the load fluctuation arising from an increase in the inflow rate of the waste water into consideration as well. CONSTITUTION:The buffer tank 11 is provided in combination with an anaeration tank 2 and the waste water 9 is shunted to the buffer tank 11 and the anaeration tank 2 of the anaerobic-aerobic activated sludge treating device including a stage for denitrifying the waste water, such as sewage, by denitrifying bacteria in the anaeration tank 2, a stage for nitrifying ammonia nitrogen by nitrifying bacteria in an aeration tank 3, a stage for separating solid from the liquid in a final settling basin 4 and a stage for accelerating a denitrifying reaction by returning a part of the nitrifying liquid in the aeration tank 3 to the anaeration tank 2. On the other hand, an oxygen utilizing speedometer 18 and an oxygen utilizing speedometer 19 subtracting the oxygen utilizing speed by nitrification are installed in the aeration tank 3. A control means 14 which judges the progressing condition of the nitrification reaction of the aeration tank 3 by these two speedometers 18, 19 and determines the shunting ratio of the waste water to the buffer tank 11 and the anaeration tank 2 from the results of the judgment is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は緩衝槽を利用した嫌気−
好気活性汚泥処理装置に関し、特に負荷変動に対する対
策を充分に考慮した装置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to anaerobic use of a buffer tank.
The present invention relates to an aerobic activated sludge treatment device, and more particularly to a device that takes into consideration measures against load fluctuations.

【0002】[0002]

【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、富栄養化の原因物質と考えられ
ている窒素及びリンを除去する方法が種々提案されてい
る。この富栄養化とは、水域中のN,P等の栄養塩類の
濃度が増大し、これらを栄養素とする生物活動が活発と
なって生態系が変化することを指している。特に湖沼等
に生活排水とか工場廃水が大量に流入すると、上記の富
栄養化が急速に進行することが知られている。
2. Description of the Related Art Conventionally, various methods have been proposed for efficiently removing organic substances in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative substances of eutrophication. This eutrophication refers to an increase in the concentration of nutrient salts such as N and P in the water area, which activates biological activities using these nutrients as nutrients and changes the ecosystem. In particular, it is known that the above-mentioned eutrophication rapidly progresses when a large amount of domestic wastewater or industrial wastewater flows into lakes and the like.

【0003】廃水中から上記富栄養化の原因物質である
窒素とかリンを除去する手段として、物理化学的な方法
及び生物学的方法が提案されているが、物理化学的方法
はコストが嵩む関係から普及していない現状にある。例
えば物理化学的方法として実用化されているリン除去方
法に凝集沈澱及び晶析手段があるが、この手段はコスト
や維持管理面で難点がある。
Physicochemical and biological methods have been proposed as means for removing nitrogen and phosphorus, which are the causative substances of eutrophication, from wastewater, but the physicochemical method is costly. The current situation is that it has not spread. For example, a phosphorus removal method that has been put into practical use as a physicochemical method includes a coagulation precipitation method and a crystallization method, but this method has drawbacks in terms of cost and maintenance.

【0004】一方、生物学的に窒素とリンを同時に除去
する方法として、従来の標準活性汚泥法の変法として嫌
気−好気活性汚泥法が注目されている。(例えば水質汚
濁研究、第12巻,第7号 441−448,1989
を参照。) この嫌気−好気活性汚泥法とは、例えば図2に示したよ
うに、生物反応槽1を溶存酸素(Dissolved oxygen,D
Oと略称する)の存在しない嫌気槽2とDOの存在する
好気槽3とに仕切り、この嫌気槽2により、流入する廃
水9を無酸素状態下で活性汚泥中の脱窒菌による脱窒を
行い、次に好気槽3の内方に配置した散気管6にブロワ
7から空気を供給することにより、エアレーションによ
る酸素の存在下で活性汚泥による有機物の酸化分解と硝
化菌によるアンモニアの硝化を行う。次に好気槽3末端
の硝化液を硝化液循環ポンプ5を用いて嫌気槽2に送り
込むことにより、嫌気槽2の脱窒効果が促進される。
On the other hand, an anaerobic-aerobic activated sludge method has attracted attention as a method for biologically removing nitrogen and phosphorus simultaneously as a modification of the conventional standard activated sludge method. (For example, Water Pollution Research, Volume 12, No. 441-448, 1989.
See. ) This anaerobic-aerobic activated sludge method is, for example, as shown in FIG.
It is divided into an anaerobic tank 2 in which O is abbreviated) and an aerobic tank 3 in which DO is present, and this anaerobic tank 2 denitrifies the inflowing wastewater 9 by denitrifying bacteria in activated sludge under anoxic conditions. Then, by supplying air from the blower 7 to the air diffuser 6 arranged inside the aerobic tank 3, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria in the presence of oxygen by aeration. To do. Next, the nitrification solution at the end of the aerobic tank 3 is fed into the anaerobic tank 2 using the nitrification solution circulation pump 5, whereby the denitrification effect of the anaerobic tank 2 is promoted.

【0005】上記脱窒菌とは、嫌気条件下で硝酸呼吸に
よりN02−N及びN03−NをN2やNO2に還元する細
菌を指している。又、廃水中のリンは嫌気槽2内で放出
され、好気槽3内で活性汚泥に取り込まれて除去され
る。最終沈澱池4の上澄液8は、図外の消毒槽等を経由
してから放流され、該最終沈澱池4内に沈降した汚泥の
一部は余剰汚泥として図外の余剰汚泥処理装置に送り込
まれて処理される。
The above-mentioned denitrifying bacteria refer to bacteria that reduce N0 2 -N and N0 3 -N to N 2 and NO 2 by respiration of nitric acid under anaerobic conditions. Further, phosphorus in the wastewater is released in the anaerobic tank 2 and taken into the activated sludge in the aerobic tank 3 to be removed. The supernatant 8 of the final settling basin 4 is discharged after passing through a disinfection tank or the like not shown in the figure, and a part of the sludge settled in the final settling basin 4 is treated as excess sludge in an excess sludge treatment device not shown in the figure. It is sent and processed.

【0006】かかる嫌気−好気活性汚泥処理装置を用い
ることにより、通常の標準活性汚泥法で達成される有機
物除去効果と同程度の効果が得られる上、窒素とリンに
関しては活性汚泥法よりも高い除去率が達成される。
By using such an anaerobic-aerobic activated sludge treatment device, an effect comparable to the organic substance removal effect achieved by the usual standard activated sludge method can be obtained, and nitrogen and phosphorus are more effective than the activated sludge method. A high removal rate is achieved.

【0007】[0007]

【発明が解決しようとする課題】しかしながらこのよう
な従来の嫌気−好気活性汚泥処理装置を用いて廃水中の
有機物及び窒素を除去する手段では、該嫌気−好気活性
汚泥処理装置の制御が確立されているとは言えず、特に
負荷変動に対する対策が充分ではないという課題があっ
た。
However, in the means for removing organic matter and nitrogen in wastewater using such a conventional anaerobic-aerobic activated sludge treatment device, the control of the anaerobic-aerobic activated sludge treatment device is performed. It cannot be said that it has been established, and there is a problem that measures against load fluctuation are not sufficient.

【0008】即ち、嫌気−好気活性汚泥処理装置によっ
て効率的に窒素を除去するためには、嫌気槽における脱
窒と好気槽における硝化を最適な運転条件に保持するこ
とが要求され、特に窒素除去工程は硝化工程に影響され
る度合が高いため、良好な窒素除去を行うためには硝化
工程が良好に行われていることが必要である。又、前記
生物反応槽1への廃水流入量が急に増加した場合とか、
廃水の基質濃度が上昇した場合には、生物反応槽1の負
荷が急激に高くなってしまい、それに応じて廃水が完全
に処理されないまま流出したり、高負荷が原因で生じる
汚泥の膨化(バルキング)によって最終沈澱池1からの
汚泥の流出現象が起こる惧れが生じる。
That is, in order to efficiently remove nitrogen by the anaerobic-aerobic activated sludge treatment device, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under optimum operating conditions, Since the nitrogen removal step is highly affected by the nitrification step, it is necessary that the nitrification step is performed well in order to perform good nitrogen removal. In addition, when the amount of wastewater flowing into the biological reaction tank 1 suddenly increases,
When the substrate concentration of wastewater rises, the load on the bioreactor 1 increases sharply, and accordingly the wastewater flows out without being completely treated, or the sludge expands due to the high load (bulking). ), There is a fear that the sludge outflow phenomenon from the final settling tank 1 will occur.

【0009】このような負荷変動に対処するための抜本
的な対策はなされていないのが現状であり、上記の嫌気
槽2と好気槽3の運転条件確立とも合わせて廃水処理上
の課題となっている。
Under the present circumstances, no drastic measures have been taken to cope with such load fluctuations. In addition to the establishment of the operating conditions of the anaerobic tank 2 and the aerobic tank 3, there are problems in wastewater treatment. Is becoming

【0010】本発明は上記に鑑みてなされたものであ
り、上記脱窒工程と硝化工程の円滑化をはかるととも
に、負荷変動に対する対策をも充分に考慮した嫌気−好
気活性汚泥処理装置を提供することを目的とするもので
ある。
The present invention has been made in view of the above circumstances, and provides an anaerobic-aerobic activated sludge treatment device that facilitates the above-mentioned denitrification process and nitrification process and also takes into consideration measures against load fluctuations. The purpose is to do.

【0011】[0011]

【課題を解決するための手段】本発明は上記の目的を達
成するために、下水等の廃水を嫌気槽で脱窒細菌により
脱窒を行う工程と、好気槽で硝化細菌によりアンモニア
性窒素の硝化を行う工程と、沈澱槽で固液分離する工程
と、好気槽内の硝化液と沈澱槽内の汚泥の一部を嫌気槽
に還流して脱窒反応を促進する工程を含む嫌気−好気活
性汚泥処理装置において、前記嫌気槽に緩衝槽を併設し
て、廃水を該緩衝槽と嫌気槽に分流する一方、前記好気
槽に、酸素利用速度計及び硝化による酸素利用速度を差
し引いた酸素利用速度計とを配備し、両速度計により嫌
気−好気活性汚泥処理の進行に伴う好気槽の硝化反応の
進行状況を判断して、その判断結果から緩衝槽と嫌気槽
に対する廃水の分流比を決定する制御手段を具備した嫌
気−好気活性汚泥処理装置の構成にしてある。
In order to achieve the above object, the present invention provides a step of denitrifying wastewater such as sewage in an anaerobic tank with denitrifying bacteria, and ammonia nitrogen with nitrifying bacteria in an aerobic tank. Anaerobic process, which includes the step of performing nitrification of the solution, the step of solid-liquid separation in the settling tank, and the step of returning the nitrification solution in the aerobic tank and part of the sludge in the settling tank to the anaerobic tank to promote the denitrification reaction -In the aerobic activated sludge treatment device, a buffer tank is provided side by side with the anaerobic tank to divide wastewater into the buffer tank and the anaerobic tank, while the aerobic tank is provided with an oxygen utilization rate meter and an oxygen utilization rate by nitrification. With the oxygen utilization rate meter subtracted, the progress of the nitrification reaction of the aerobic tank along with the progress of anaerobic-aerobic activated sludge treatment is judged by both speed meters, and the judgment results for the buffer tank and the anaerobic tank Anaerobic-aerobic activated sludge with control means for determining the split ratio of wastewater Are you on the configuration of the management apparatus.

【0012】[0012]

【作用】かかる嫌気−好気活性汚泥処理装置によれば、
廃水が緩衝槽と嫌気槽に分流され、嫌気槽に流入した廃
水は脱窒細菌の作用に基づいて脱窒され、好気槽で曝気
が行われて硝化細菌の作用に基づいてアンモニア性窒素
の硝化が行われる。好気槽からの排出液は沈澱槽に流入
して固液分離され、沈澱槽の上澄液が放流される。又、
緩衝槽に流入した廃水は、廃水中に含まれている微生物
及び自然発生的な微生物が散気管から放散される空気に
よって好気的に作用して、これら微生物の作用に基づい
て廃水中の有機物がある程度分解されてから好気槽に流
入される。
[Operation] According to the anaerobic-aerobic activated sludge treatment device,
The wastewater is divided into a buffer tank and an anaerobic tank, the wastewater flowing into the anaerobic tank is denitrified based on the action of denitrifying bacteria, and aeration is performed in the aerobic tank. Nitrification is performed. The discharged liquid from the aerobic tank flows into the precipitation tank for solid-liquid separation, and the supernatant of the precipitation tank is discharged. or,
The wastewater flowing into the buffer tank aerobically acts on the microorganisms contained in the wastewater and naturally occurring microorganisms by the air emitted from the air diffuser, and the organic matter in the wastewater is based on the action of these microorganisms. Is decomposed to some extent and then introduced into the aerobic tank.

【0013】そして好気槽に付設した酸素利用速度計
と、硝化による酸素利用速度を差し引いた酸素利用速度
計から得られるデータに基づいて好気槽の硝化反応の進
行状況が判断され、この判断結果に基づいて制御手段に
より緩衝槽と嫌気槽に対する廃水の分流比が決定され
る。これに伴って脱窒工程と硝化工程の円滑化がはかれ
る上、緩衝槽の存在により活性汚泥に対する負荷が軽減
されてバルキングが防止されるという作用が得られる。
Then, the progress of the nitrification reaction in the aerobic tank is judged based on the data obtained from the oxygen utilization speed meter attached to the aerobic tank and the oxygen utilization speed meter subtracting the oxygen utilization rate from nitrification. Based on the result, the control means determines the diversion ratio of the waste water to the buffer tank and the anaerobic tank. Along with this, the denitrification process and the nitrification process are facilitated, and the presence of the buffer tank reduces the load on the activated sludge and prevents bulking.

【0014】[0014]

【実施例】以下、図1に基づいて本発明にかかる緩衝槽
を用いた嫌気−好気活性汚泥処理装置の一実施例を、前
記従来の構成部分と同一の構成部分に同一の符号を付し
て詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of an anaerobic-aerobic activated sludge treatment apparatus using a buffer tank according to the present invention will be described below with reference to FIG. Will be described in detail.

【0015】図1中の11は緩衝槽であり、この緩衝槽
11の内方には散気管12が配置され、この散気管12
に対して外部に配備したブロワ7から空気が供給され
る。2は溶存酸素(DO)の存在しない嫌気槽、3はD
Oの存在する好気槽であり、この好気槽3の内方には散
気管6,6,6が配置され、前記ブロワ7から空気が供
給される。
Reference numeral 11 in FIG. 1 denotes a buffer tank, and an air diffuser 12 is disposed inside the buffer tank 11.
The air is supplied from the blower 7 provided outside. 2 is an anaerobic tank without dissolved oxygen (DO), 3 is D
It is an aerobic tank in which O exists, and diffusers 6, 6, 6 are arranged inside the aerobic tank 3, and air is supplied from the blower 7.

【0016】4は沈澱槽としての最終沈澱池、5は好気
槽3内の硝化液の1部を嫌気槽2に還流する硝化液循環
ポンプ、13は最終沈澱池4内に沈降した汚泥の一部を
嫌気槽2に戻す汚泥返送ポンプである。
4 is a final settling tank as a settling tank, 5 is a nitrification solution circulation pump for returning a part of the nitrification solution in the aerobic tank 3 to the anaerobic tank 2, and 13 is sludge settling in the final settling tank 4. It is a sludge return pump that returns a part to the anaerobic tank 2.

【0017】14は制御手段としてのコントローラであ
り、下水等の廃水9の流入管路の中途に配設された流量
計15の検出した流入量データが上記コントローラ14
に入力されている。更に廃水9の流入管路の分岐点aか
ら管路16が分岐されていて、この管路16の中途に流
量調整バルブ17が配設されており、管路16の他端部
は嫌気槽2に連接されている。
Reference numeral 14 is a controller as a control means, and the inflow amount data detected by a flowmeter 15 disposed in the middle of the inflow conduit of wastewater 9 such as sewage is the controller 14 described above.
Has been entered in. Further, a pipe line 16 is branched from a branch point a of the inflow pipe line of the wastewater 9, a flow rate adjusting valve 17 is arranged in the middle of the pipe line 16, and the other end portion of the pipe line 16 has an anaerobic tank 2 Are connected to.

【0018】上記構成を要約すれば、緩衝槽11と嫌気
槽2とは併設されていて、廃水9は分岐点aから緩衝槽
11と嫌気槽2とに分流されるようになっている。この
分流比は、管路16に配設された流量調整バルブ17の
開度を前記コントローラ14からの出力信号によって適
宜調整することによって決定される。
To summarize the above construction, the buffer tank 11 and the anaerobic tank 2 are provided side by side, and the waste water 9 is divided into the buffer tank 11 and the anaerobic tank 2 from the branch point a. This diversion ratio is determined by appropriately adjusting the opening degree of the flow rate adjusting valve 17 arranged in the conduit 16 by the output signal from the controller 14.

【0019】更に好気槽3には、酸素利用速度計18
(rr計)と、硝化による酸素利用速度を差し引いた酸
素利用速度計19(ATU−rr計)が付設され、各速
度計18,19の検出した信号がコントローラ14に入
力されている。
Further, the aerobic tank 3 has an oxygen utilization speed meter 18
And (r r meter), the oxygen utilization rate meter 19 minus the oxygen utilization rate by nitrification (ATU-r r gauge) is attached, the detected signal of each speedometer 18 and 19 are input to the controller 14.

【0020】以下に本実施例の作用を説明する。先ず基
本的な動作を述べると、廃水9は流量計15によって流
量が検出された後、分岐点aで廃水の一部が管路16に
分流される。そして管路16から流量調整バルブ17を
介して嫌気槽2に流入した廃水は、この嫌気槽2内の脱
窒細菌の作用に基づいてNO3−N、NO2−Nイオンの
2への還元、即ち脱窒が行われる。この時に廃水中の
リンは嫌気槽2内で放出され、次段の好気槽3内におい
て、前段で放出された以上の量が活性汚泥に取り込まれ
て除去される。
The operation of this embodiment will be described below. First, the basic operation will be described. After the flow rate of the waste water 9 is detected by the flow meter 15, a part of the waste water is branched into the pipe line 16 at the branch point a. Then, the wastewater that has flowed into the anaerobic tank 2 from the pipe 16 via the flow rate adjusting valve 17 is converted into N 2 of NO 3 -N and NO 2 -N ions based on the action of the denitrifying bacteria in the anaerobic tank 2. Reduction, ie denitrification, takes place. At this time, phosphorus in the wastewater is released in the anaerobic tank 2, and in the aerobic tank 3 in the next stage, the amount larger than that released in the preceding stage is taken in and removed by the activated sludge.

【0021】他方で緩衝槽11に流入した廃水9は、廃
水中にもともと含まれている微生物及び自然発生的な微
生物が散気管12によって放散される空気によって好気
的に作用して、これらの微生物の作用に基づいて廃水中
の有機物が分解される。この緩衝槽11には好気槽3か
らの硝化液とか最終沈澱池4の汚泥等が還流されていな
いので、活性汚泥が高濃度の基質にさらされることがな
くなり、バルキングを抑制する上での効果が得られる。
On the other hand, the wastewater 9 that has flowed into the buffer tank 11 is aerobically acted upon by the air diffused by the air diffuser 12 so that the microorganisms and the naturally occurring microorganisms originally contained in the wastewater are aerated. Organic matter in wastewater is decomposed based on the action of microorganisms. Since the nitrification solution from the aerobic tank 3 and the sludge in the final settling tank 4 are not recirculated to the buffer tank 11, the activated sludge is not exposed to a high-concentration substrate and the bulking is suppressed. The effect is obtained.

【0022】次にこの緩衝槽11の被処理水は、管路2
1を介して嫌気槽2の被処理水とともに好気槽3に送り
込まれ、ブロワ7の駆動に伴って散気管6からのエアレ
ーションによる曝気が行われ、硝化細菌の作用に基づい
て酸素の存在下でアンモニア性窒素NH4−NのNO3
Nへの酸化、即ち硝化が行われる。従って好気槽3には
硝酸性窒素(NO3−N)を含む硝化液が得られる。こ
の好気槽3内の硝化液の1部は、硝化液循環ポンプ5に
よって嫌気槽2に還流され、嫌気槽2において脱窒が行
われる。
Next, the water to be treated in the buffer tank 11 is supplied to the conduit 2
1 is sent to the aerobic tank 3 together with the water to be treated in the anaerobic tank 2 through the 1, and aeration is performed by the aeration from the diffuser pipe 6 as the blower 7 is driven. In the presence of oxygen based on the action of nitrifying bacteria. And ammoniacal nitrogen NH 4 --N NO 3-
Oxidation to N, that is, nitrification is performed. Therefore, a nitrification solution containing nitrate nitrogen (NO 3 —N) is obtained in the aerobic tank 3. A part of the nitrification liquid in the aerobic tank 3 is returned to the anaerobic tank 2 by the nitrification liquid circulation pump 5, and denitrification is performed in the anaerobic tank 2.

【0023】好気槽3内の残りの被処理水は最終沈澱池
4に移行して固液分離され、最終沈澱池4に沈降した汚
泥の1部を汚泥返送ポンプ13により嫌気槽2に戻すこ
とにより、活性汚泥浮遊物であるMLSS(mixed liqu
or suspended solid)を高めることができる。残部の汚
泥は余剰汚泥として図外の余剰汚泥処理装置に送り込ま
れて処理され、最終沈澱池4の上澄液8は処理水として
放流される。
The remaining water to be treated in the aerobic tank 3 is transferred to the final settling tank 4 for solid-liquid separation, and a part of the sludge settled in the final settling tank 4 is returned to the anaerobic tank 2 by the sludge return pump 13. As a result, MLSS (mixed liqu
or suspended solid) can be increased. The remaining sludge is sent as surplus sludge to a surplus sludge treatment device (not shown) for treatment, and the supernatant 8 of the final settling tank 4 is discharged as treated water.

【0024】このような動作時において、指標として好
気槽3に付設した酸素利用速度計18(rr計)と、硝
化による酸素利用速度を差し引いた酸素利用速度計19
(ATU−rr計)から得られるデータが制御手段とし
てのコントローラ14に入力され、該コントローラ14
によって硝化反応の進行状況が判断される。この判断結
果に基づいて、コントローラ14の出力信号により流量
調整バルブ17の開度が自動制御されて、管路16を介
して嫌気槽2へ流入する廃水の流入量が決定される。
During such an operation, an oxygen utilization speed meter 18 (r r meter) attached to the aerobic tank 3 as an index and an oxygen utilization speed meter 19 obtained by subtracting the oxygen utilization speed due to nitrification.
Data obtained from (ATU-r r total) are input to the controller 14 as control means, the controller 14
The progress of the nitrification reaction is judged by. Based on this determination result, the opening degree of the flow rate adjusting valve 17 is automatically controlled by the output signal of the controller 14, and the inflow amount of the waste water flowing into the anaerobic tank 2 via the pipe line 16 is determined.

【0025】即ち、好気槽3における硝化反応の進行状
況は、酸素利用速度(oxygen utilization rate respir
ation,以下rrと略称する)と硝化抑制剤であるN−ア
リルチオ尿素(化学式C482S,以下ATUと略称
する)を添加して測定した酸素利用速度(以下ATU−
rと略称する)、換言すれば硝化による酸素利用速度
を差し引いた酸素利用速度との差から求めることができ
る。
That is, the progress of the nitrification reaction in the aerobic tank 3 is determined by the oxygen utilization rate respir.
cation, hereinafter abbreviated as r r ) and a nitrification inhibitor N-allylthiourea (chemical formula C 4 H 8 N 2 S, hereinafter abbreviated as ATU) were added to measure the oxygen utilization rate (hereinafter ATU-
(abbreviated as r r ), in other words, it can be obtained from the difference between the oxygen utilization rate obtained by subtracting the oxygen utilization rate due to nitrification.

【0026】上記の差を〔N〕とすると、 〔N〕=〔rr〕−〔ATU−rr〕・・・・・・・・・・(1) となる。[0026] When the difference between the between [N], [N] = [r r] - a [ATU-r r] .......... (1).

【0027】酸素利用速度rrとは、単位時間当たりに
利用された酸素濃度(mgO2/l・hr)であり、通常
の好気槽3の曝気が過剰になると汚泥が細分化し、曝気
不足になると有機物が処理水中に残存したり汚水が腐敗
する等の現象が生じて浄化能が劣化する。従って活性汚
泥を最適に管理するためには、活性汚泥の酸素利用速度
あるいはそれ以上の速度で酸素を供給する必要があるた
め、曝気の指標として用いられる。
The oxygen utilization rate r r is the oxygen concentration used per unit time (mgO 2 / l · hr), and when the aeration of the ordinary aerobic tank 3 becomes excessive, the sludge is fragmented and the aeration is insufficient. If so, phenomena such as organic matter remaining in the treated water and spoilage of sewage occur, and the purification performance deteriorates. Therefore, in order to optimally manage the activated sludge, it is necessary to supply oxygen at the oxygen utilization rate of the activated sludge or at a rate higher than that, which is used as an index of aeration.

【0028】上記〔N〕の値によって好気槽3の硝化速
度の増減を感知することができる。そして硝化速度が大
きい場合には、硝化液循環ポンプ5の作用に基づく好気
槽3から嫌気槽2に対する硝化液の還流量を多くし、そ
の結果、嫌気槽2における脱窒反応に必要とする水素供
与体が多くなるので、流量調整バルブ17の開度を大き
くして、管路16を経由して嫌気槽2に流入する廃水の
流量を増加させる。
An increase or decrease in the nitrification rate of the aerobic tank 3 can be detected by the value of the above [N]. When the nitrification rate is high, the flow rate of the nitrification solution from the aerobic tank 3 to the anaerobic tank 2 based on the action of the nitrification solution circulation pump 5 is increased, and as a result, it is necessary for the denitrification reaction in the anaerobic tank 2. Since the number of hydrogen donors increases, the opening degree of the flow rate adjusting valve 17 is increased to increase the flow rate of the waste water flowing into the anaerobic tank 2 via the conduit 16.

【0029】又、好気槽3の硝化速度が小さい場合に
は、嫌気槽2における脱窒反応に必要とする水素供与体
も少なくなるので、この場合には流量調整バルブ17の
開度を小さくして、嫌気槽2に流入する廃水の流量を減
少させる。
When the nitrification rate of the aerobic tank 3 is small, the hydrogen donor required for the denitrification reaction in the anaerobic tank 2 is also small. In this case, the opening of the flow rate adjusting valve 17 is small. Then, the flow rate of the wastewater flowing into the anaerobic tank 2 is reduced.

【0030】このように本実施例では、好気槽3の硝化
速度の大小に応じて廃水9を緩衝槽11と嫌気槽2とに
分流処理しているため、脱窒工程と硝化工程の円滑化を
はかることができる上、この緩衝槽11の存在によって
活性汚泥に対する負荷が軽減され、且つ活性汚泥が直接
高濃度の基質に触れないため、バルキングが防止される
という作用が得られる。
As described above, in this embodiment, since the wastewater 9 is divided into the buffer tank 11 and the anaerobic tank 2 in accordance with the nitrification rate of the aerobic tank 3, the denitrification process and the nitrification process are smoothly performed. The presence of the buffer tank 11 reduces the load on the activated sludge, and the activated sludge does not come into direct contact with the high-concentration substrate, so that bulking is prevented.

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明にか
かる緩衝槽を用いた嫌気−好気活性汚泥処理装置によれ
ば、廃水を嫌気槽と緩衝槽に分流するとともに好気槽に
付設した酸素利用速度計と、硝化による酸素利用速度を
差し引いた酸素利用速度計から得られるデータに基づい
て好気槽の硝化反応の進行状況が判断され、この判断結
果に基づいて廃水の分流比が決定されるようにしたの
で、脱窒工程と硝化工程の円滑化がはかれる上、廃水流
入量が急に増加した場合とか、廃水の基質濃度が上昇し
た場合にあっても嫌気槽及び好気槽の負荷が急激に高く
なることがなく、それに伴って廃水が未処理のまま流出
したり、高負荷が原因で生じる汚泥の膨化(バルキン
グ)による汚泥流出等の現象を防止することができる。
As described in detail above, according to the anaerobic-aerobic activated sludge treatment apparatus using the buffer tank according to the present invention, the wastewater is divided into the anaerobic tank and the buffer tank and attached to the aerobic tank. The progress status of the nitrification reaction in the aerobic tank is judged based on the data obtained from the oxygen utilization rate meter that has been used and the oxygen utilization rate meter from which the oxygen utilization rate from nitrification is subtracted, and the diversion ratio of the wastewater is determined based on this determination result. Since the decision was made, the denitrification process and the nitrification process can be facilitated, and even if the inflow of wastewater suddenly increases or the substrate concentration of wastewater rises, the anaerobic tank and aerobic tank Therefore, it is possible to prevent the wastewater from flowing out untreated and the sludge outflow due to the expansion of the sludge (bulking) caused by the high load.

【0032】従って本発明によれば、運転条件の確立と
ともに負荷変動に対する対策をも充分に考慮した嫌気−
好気活性汚泥処理装置を提供することができる。
Therefore, according to the present invention, the anaerobic condition in which the operation condition is established and the countermeasure against the load variation is sufficiently taken into consideration-
An aerobic activated sludge treatment device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的実施例を示す概要図。FIG. 1 is a schematic diagram showing a basic embodiment of the present invention.

【図2】従来の嫌気−好気活性汚泥処理装置の一例を示
す概要図。
FIG. 2 is a schematic diagram showing an example of a conventional anaerobic-aerobic activated sludge treatment device.

【符号の説明】[Explanation of symbols]

2…嫌気槽、3…好気槽、4…最終沈澱池(沈澱槽)、
5…硝化液循環ポンプ、6,12…散気管、7…ブロ
ワ、9…廃水、11…緩衝槽、13…汚泥返送ポンプ、
14…コントローラ(制御手段)、15…流量計、1
6,21…管路、18…酸素利用速度計、19…ATU
−rr計。
2 ... Anaerobic tank, 3 ... Aerobic tank, 4 ... Final sedimentation tank (sedimentation tank),
5 ... Nitrification solution circulation pump, 6, 12 ... Air diffuser, 7 ... Blower, 9 ... Waste water, 11 ... Buffer tank, 13 ... Sludge return pump,
14 ... Controller (control means), 15 ... Flowmeter, 1
6, 21 ... Pipe line, 18 ... Oxygen utilization speedometer, 19 ... ATU
-R r total.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下水等の廃水を嫌気槽で脱窒細菌により
脱窒を行う工程と、好気槽で硝化細菌によりアンモニア
性窒素の硝化を行う工程と、沈澱槽で固液分離する工程
と、好気槽内の硝化液と沈澱槽内の汚泥の一部を嫌気槽
に還流して脱窒反応を促進する工程を含む嫌気−好気活
性汚泥処理装置において、 前記嫌気槽に緩衝槽を併設して、廃水を該緩衝槽と嫌気
槽に分流する一方、前記好気槽に酸素利用速度計及び硝
化による酸素利用速度を差し引いた酸素利用速度計とを
配備し、両速度計により嫌気−好気活性汚泥処理の進行
に伴う好気槽の硝化反応の進行状況を判断して、その判
断結果から緩衝槽と嫌気槽に対する廃水の分流比を決定
する制御手段を具備したことを特徴とする、緩衝槽を用
いた嫌気−好気活性汚泥処理装置。
1. A step of denitrifying wastewater such as sewage with denitrifying bacteria in an anaerobic tank, a step of nitrifying ammoniacal nitrogen with nitrifying bacteria in an aerobic tank, and a step of solid-liquid separation in a precipitation tank. In the anaerobic-aerobic activated sludge treatment device, which includes a step of refluxing a nitrification solution in the aerobic tank and a part of the sludge in the precipitation tank to the anaerobic tank to accelerate the denitrification reaction, a buffer tank is provided in the anaerobic tank. Along with it, the wastewater is divided into the buffer tank and the anaerobic tank, while the aerobic tank is provided with an oxygen utilization speed meter and an oxygen utilization speedometer subtracting the oxygen utilization rate due to nitrification. It is characterized by comprising a control means for judging the progress of the nitrification reaction of the aerobic tank with the progress of the aerobic activated sludge treatment and determining the diversion ratio of the waste water to the buffer tank and the anaerobic tank from the judgment result. , Anaerobic-aerobic activated sludge treatment device using a buffer tank.
【請求項2】 上記緩衝槽は、内方に配置された散気管
から空気が放散される好気性槽である請求項1記載の緩
衝槽を用いた嫌気−好気活性汚泥処理装置。
2. The anaerobic-aerobic activated sludge treatment device using a buffer tank according to claim 1, wherein the buffer tank is an aerobic tank in which air is diffused from an air diffuser arranged inside.
JP743392A 1992-01-20 1992-01-20 Anaerobic-aerobic activated sludge treating device using buffer tank Pending JPH05192688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP743392A JPH05192688A (en) 1992-01-20 1992-01-20 Anaerobic-aerobic activated sludge treating device using buffer tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP743392A JPH05192688A (en) 1992-01-20 1992-01-20 Anaerobic-aerobic activated sludge treating device using buffer tank

Publications (1)

Publication Number Publication Date
JPH05192688A true JPH05192688A (en) 1993-08-03

Family

ID=11665736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP743392A Pending JPH05192688A (en) 1992-01-20 1992-01-20 Anaerobic-aerobic activated sludge treating device using buffer tank

Country Status (1)

Country Link
JP (1) JPH05192688A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831151A1 (en) * 1996-09-19 1998-03-25 LAR Analytik und Umweltmesstechnik GmbH Process and apparatus for measuring the nitrification-efficiency of activated sludge
JP2010247127A (en) * 2009-04-20 2010-11-04 Kobelco Eco-Maintenance Co Ltd Method of operating organic waste water treatment facility
CN106745744A (en) * 2016-12-31 2017-05-31 成都美富特膜科技有限公司 Sewage water treatment method and sewage disposal system
CN112320953A (en) * 2020-11-13 2021-02-05 山东泰山自迩环保科技有限公司 Separate aeration self-circulation two-stage denitrification integrated sewage treatment equipment and method
JP2021159792A (en) * 2020-03-30 2021-10-11 水ing株式会社 Biological treatment methods and equipment for organic wastewater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831151A1 (en) * 1996-09-19 1998-03-25 LAR Analytik und Umweltmesstechnik GmbH Process and apparatus for measuring the nitrification-efficiency of activated sludge
US6146896A (en) * 1996-09-19 2000-11-14 Lar Analytik Und Umweltmesstechnik Gmbh Method and apparatus for measuring the nitrification effectiveness of activated sludge
JP2010247127A (en) * 2009-04-20 2010-11-04 Kobelco Eco-Maintenance Co Ltd Method of operating organic waste water treatment facility
CN106745744A (en) * 2016-12-31 2017-05-31 成都美富特膜科技有限公司 Sewage water treatment method and sewage disposal system
CN106745744B (en) * 2016-12-31 2020-07-03 四川美富特生态科技有限责任公司 Sewage treatment method and sewage treatment system
JP2021159792A (en) * 2020-03-30 2021-10-11 水ing株式会社 Biological treatment methods and equipment for organic wastewater
CN112320953A (en) * 2020-11-13 2021-02-05 山东泰山自迩环保科技有限公司 Separate aeration self-circulation two-stage denitrification integrated sewage treatment equipment and method

Similar Documents

Publication Publication Date Title
JP4796631B2 (en) Method and system for nitrifying and denitrifying sewage
KR101125165B1 (en) Method and installation for the biological treatment of water using activated sludge and comprising aeration regulation
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
JP3269957B2 (en) How to remove nitrogen from wastewater
JP3379199B2 (en) Operation control method of activated sludge circulation method
JP3483081B2 (en) Organic wastewater treatment method and treatment device
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
KR100810960B1 (en) Economic nitrogen phosphorous which uses the to conventional activated sludge processand clear
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JPH05317884A (en) Anaerobic-aerobic activated sludge treating device
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP3782738B2 (en) Wastewater treatment method
JP2504248B2 (en) Sewage treatment equipment
JPH1094796A (en) Treatment of waste water and device therefor
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
JPH04110198U (en) Anaerobic/aerobic activated sludge treatment equipment
JP2006231206A (en) Waste water treatment method and equipment
KR20010091457A (en) A sewage treating method for improving the nitrogen removal and a sewage treating device for the same
JPH07275888A (en) Nitration accelerating method of activated sludge circulation modified method
JP2001029991A (en) Water treatment method
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process