JPH07275888A - Nitration accelerating method of activated sludge circulation modified method - Google Patents

Nitration accelerating method of activated sludge circulation modified method

Info

Publication number
JPH07275888A
JPH07275888A JP7237394A JP7237394A JPH07275888A JP H07275888 A JPH07275888 A JP H07275888A JP 7237394 A JP7237394 A JP 7237394A JP 7237394 A JP7237394 A JP 7237394A JP H07275888 A JPH07275888 A JP H07275888A
Authority
JP
Japan
Prior art keywords
tank
aerobic
nitrification
aerobic tank
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7237394A
Other languages
Japanese (ja)
Inventor
Miyoko Kusumi
美代子 久住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7237394A priority Critical patent/JPH07275888A/en
Publication of JPH07275888A publication Critical patent/JPH07275888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To enhance the nitration efficiency in an aerobic tank and the denitrification effect in an anaerobic tank in the nitration accelerating method of an activated sludge circulation modified method. CONSTITUTION:In an activated sludge circulation modified method containing a process denitrifying raw water 3 in an anaerobic tank l by denitrifying bacteria, a process performing nitration in an aerobic tank 2 by nitrifying bacteria and a process performing solid-liquid separation in a sedimentation tank 7 to discharge a supernatant soln. as treated water 11, a first pH meter 15 and a measuring device 16 measuring a value wherein the oxygen consumption speed accompanied by nitration reaction is subtracted from the total oxygen consumption speed are arranged to the first stage aerobic tank 2a among a plurality of aerobic tanks. A second pH meter 21 is arranged to the final stage aerobic tank 2d among the aerobic tanks and the nitration speed in the aerobic tank is estimated from the measured pH values of the respective aeration tanks and the oxygen consumption amt. based on nitration reaction and, corresponding to the estimated value, pH control by injecting alkali 25 into the initial and final stage aerobic tanks is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は嫌気−好気活性汚泥循環
変法を用いて廃水中の有機物及び窒素を高効率に除去す
るシステムにおける硝化促進方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for promoting nitrification in a system for highly efficiently removing organic matter and nitrogen in wastewater by using a modified anaerobic-aerobic activated sludge circulation method.

【0002】[0002]

【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されている。この富栄養化とは、水域中のN,P等
の栄養塩類の濃度が増大し、これらを栄養素とする生物
活動が活発となって生態系が変化することを指してい
る。特に湖沼等に生活排水とか工場廃水が大量に流入す
ると、上記の富栄養化が急速に進行することが知られて
いる。
2. Description of the Related Art Various methods have conventionally been proposed for efficiently removing organic matter in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative agents of eutrophication in closed water areas. . This eutrophication refers to an increase in the concentration of nutrient salts such as N, P in the water area, which activates biological activities using these nutrients as nutrients and changes the ecosystem. In particular, it is known that the above-mentioned eutrophication rapidly progresses when a large amount of domestic wastewater or industrial wastewater flows into lakes and the like.

【0003】近時、窒素の除去率を高めることが要求さ
れており、窒素に関する規制も厳しくなることが予想さ
れるので、これを除去することができる高度処理プロセ
スを採用する施設が増加するものと考えられる。
Recently, it has been required to increase the removal rate of nitrogen, and it is expected that the regulations on nitrogen will be stricter. Therefore, the number of facilities adopting an advanced treatment process capable of removing this will increase. it is conceivable that.

【0004】廃水中の窒素とかリンを除去する手段とし
て、物理化学的な方法及び生物学的方法が提案されてい
るが、物理化学的方法はコストが嵩む関係から普及して
いない現状にある。例えば物理化学的方法として実用化
されているリン除去方法に凝集沈澱及び晶析手段がある
が、この手段はコストや維持管理面で難点がある。
Although physicochemical methods and biological methods have been proposed as means for removing nitrogen and phosphorus in wastewater, physicochemical methods are not widely used because of the high cost. For example, a phosphorus removal method which has been put into practical use as a physicochemical method includes a coagulation precipitation method and a crystallization method, but this method has a drawback in terms of cost and maintenance.

【0005】一方、生物学的に窒素とリンを同時に除去
する方法として、従来の活性汚泥法の変法として嫌気−
好気活性汚泥法が注目されている。この嫌気−好気活性
汚泥法とは、例えば図2に示したように、生物反応槽を
溶存酸素(以下DOと略称)の存在しない嫌気槽1a,
1bとDOの存在する複数段の好気槽2a,2b,2c
とに仕切り、この嫌気槽1a,1bにより、流入する原
水3を無酸素状態下で撹拌機構10による撹拌を行って
活性汚泥中の脱窒菌による脱窒を行い、次に好気槽2
a,2b,2cの内方に配置した散気管4にブロワ5か
ら空気を供給することにより、エアレーションによる酸
素の存在下で活性汚泥による有機物の酸化分解と硝化菌
によるアンモニアの硝化を行う。そして最終段の好気槽
2cの硝化液を硝化液循環ポンプ6を用いて嫌気槽1a
に送り込むことにより、嫌気槽1a,1bの脱窒効果が
促進される。
On the other hand, as a biological biological method for simultaneously removing nitrogen and phosphorus, an anaerobic method is a modification of the conventional activated sludge method.
The aerobic activated sludge method is drawing attention. The anaerobic-aerobic activated sludge method is, for example, as shown in FIG. 2, a biological reaction tank is an anaerobic tank 1a in which dissolved oxygen (hereinafter abbreviated as DO) does not exist,
1b and multi-stage aerobic tanks 2a, 2b, 2c where DO exists
And the anaerobic tanks 1a and 1b are used to agitate the inflowing raw water 3 by an agitation mechanism 10 under anoxic conditions to denitrify by denitrifying bacteria in the activated sludge, and then the aerobic tank 2
By supplying air from the blower 5 to the air diffuser 4 arranged inside a, 2b, and 2c, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are performed in the presence of oxygen by aeration. Then, the nitrification solution in the last-stage aerobic tank 2c is transferred to the anaerobic tank 1a using the nitrification solution circulation pump 6.
By feeding the anaerobic tanks 1a and 1b, the denitrification effect of the anaerobic tanks 1a and 1b is promoted.

【0006】上記硝化菌はDO濃度が低くなると活性が
低下するので、最後段の好気槽2cのDOを測定してD
O制御装置12によりブロワ5の駆動を制御しているの
が通例である。
Since the activity of the above nitrifying bacteria decreases as the DO concentration decreases, the DO of the last aerobic tank 2c is measured and D
It is customary that the O controller 12 controls the drive of the blower 5.

【0007】前記脱窒菌とは、嫌気条件下で硝酸呼吸に
よりN02−N及びN03−NをN2やNO2に還元する細
菌を指している。又、原水中のリンは嫌気槽1a,1b
内で放出され、好気槽2a,2b,2c内で活性汚泥に
取り込まれて除去される。7は最終沈澱池であり、この
最終沈澱池7の上澄液は、処理水11として図外の消毒
槽等を経由してから放流され、該最終沈澱池7内に沈降
した汚泥の一部は汚泥返送ポンプ8により嫌気槽1aに
返送され、他の汚泥は余剰汚泥引抜ポンプ9から図外の
余剰汚泥処理装置に送り込まれて処理される。
The denitrifying bacterium is a bacterium that reduces N0 2 -N and N0 3 -N to N 2 and NO 2 by respiration of nitric acid under anaerobic conditions. Also, phosphorus in raw water is anaerobic tanks 1a and 1b.
It is released inside and is taken in and removed by the activated sludge in the aerobic tanks 2a, 2b and 2c. Reference numeral 7 denotes a final settling basin, and the supernatant of the final settling basin 7 is discharged as treated water 11 after passing through a disinfection tank or the like not shown in the figure, and a part of sludge settled in the final settling basin 7. Is returned to the anaerobic tank 1a by the sludge return pump 8, and other sludge is sent from the excess sludge drawing pump 9 to an excess sludge treatment device (not shown) for treatment.

【0008】かかる嫌気−好気活性汚泥処理方法を用い
ることにより、通常の標準活性汚泥法で達成される有機
物除去効果と同程度の効果が得られる上、窒素とリンに
関しては活性汚泥法よりも高い除去率が達成される。
By using such an anaerobic-aerobic activated sludge treatment method, the same effect as the organic substance removal effect achieved by the normal standard activated sludge method can be obtained, and nitrogen and phosphorus are more effective than the activated sludge method. A high removal rate is achieved.

【0009】[0009]

【発明が解決しようとする課題】しかしながらこのよう
な従来の活性汚泥循環変法の場合、効率的な運転制御方
法の確立が困難であり、特に好気槽における硝化効率
と、それに伴う嫌気槽における脱窒効果をともに充分に
高めることが困難であるという課題があった。
However, in the case of such a conventional activated sludge circulation modification method, it is difficult to establish an efficient operation control method. Particularly, in the aerobic tank, the nitrification efficiency and the anaerobic tank associated therewith are difficult to establish. There is a problem that it is difficult to sufficiently enhance the denitrification effect.

【0010】即ち、前記嫌気−好気活性汚泥法における
動作態様は、嫌気槽1a,1bにおける脱窒反応と、好
気槽2a,2b,2cにおける硝化反応とに大別するこ
とが出来るが、反応の律速となっているのは後者,即ち
硝化反応である。特に嫌気−好気活性汚泥処理法によっ
て効率的に窒素を除去するためには、嫌気槽における脱
窒と好気槽における硝化を最適な運転条件に保持するこ
とが要求される上、窒素除去工程は硝化工程に影響され
る度合が高いため、良好な窒素除去を行うためには硝化
工程が良好に行われていることが必要である。
That is, the operation mode in the anaerobic-aerobic activated sludge method can be roughly classified into a denitrification reaction in the anaerobic tanks 1a and 1b and a nitrification reaction in the aerobic tanks 2a, 2b and 2c. The latter, that is, the nitrification reaction, is the rate-determining reaction. In particular, in order to remove nitrogen efficiently by the anaerobic-aerobic activated sludge treatment method, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under the optimum operating conditions, and the nitrogen removing step. Is highly affected by the nitrification process, so that the nitrification process must be performed well in order to perform good nitrogen removal.

【0011】この硝化反応は、前記したように硝化菌に
よって引き起こされるが、この硝化菌の活性は、pH,
水温等の微妙な変化により容易に影響を受けることが知
られている。又、エアレーションの時間を十分にとるた
めに、標準活性汚泥法の場合よりも生物反応槽の容積を
2〜3倍にすることが必要であり、都市部等の用地確保
が困難な条件下での採用が難しいという問題がある。
This nitrification reaction is caused by the nitrifying bacteria as described above. The activity of the nitrifying bacteria is
It is known that it is easily affected by subtle changes such as water temperature. In addition, in order to obtain sufficient aeration time, it is necessary to increase the volume of the biological reaction tank by a factor of 2 to 3 compared with the standard activated sludge method, and under conditions where it is difficult to secure land for urban areas. There is a problem that it is difficult to adopt.

【0012】硝化が良好に進行している場合には、脱窒
反応の良否が窒素除去率を左右するので、高い窒素除去
率を維持するには硝化反応と脱窒反応のバランスを良好
に保持することが要求される。
When the nitrification progresses satisfactorily, the quality of the denitrification reaction affects the nitrogen removal rate. Therefore, in order to maintain a high nitrogen removal rate, a good balance between the nitrification reaction and the denitrification reaction should be maintained. Required to do so.

【0013】そこで本発明はこのような嫌気−好気活性
汚泥処理が有している課題を解消して、好気槽における
硝化速度を推定してpH制御により該好気槽における硝
化速度を高め、ひいては嫌気槽における脱窒反応を高め
ることができる運転活性汚泥循環変法の硝化速度方法を
提供することを目的とするものである。
Therefore, the present invention solves the problems of such anaerobic-aerobic activated sludge treatment, estimates the nitrification rate in the aerobic tank, and increases the nitrification rate in the aerobic tank by controlling the pH. Furthermore, it is an object of the present invention to provide a nitrification rate method which is a modified method of operating activated sludge circulation that can enhance the denitrification reaction in an anaerobic tank.

【0014】[0014]

【課題を解決するための手段】本発明は上記の目的を達
成するために、原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、複数段の好気槽で硝化細菌により硝化を行う
工程と、沈澱槽で固液分離して上澄液を処理水として放
流する工程とを含む活性汚泥循環変法処理において、上
記複数段の好気槽中の初段の好気槽に、第1のpH計と
全酸素消費速度から硝化反応に伴う酸素消費速度を差し
引いた値の計測器を設置するとともに、前記複数段の好
気槽中の終段の好気槽に第2のpH計を設置し、測定さ
れた各好気槽のpH値と硝化反応に基づく酸素消費量か
ら好気槽内の硝化速度を推定し、その値に応じて初段及
び終段の好気槽にアルカリを注入するpH制御を実施す
るようにした活性汚泥循環変法の硝化促進方法を提供す
る。
In order to achieve the above object, the present invention performs a step of denitrifying raw water with denitrifying bacteria in an anaerobic tank, and nitrifying with nitrifying bacteria in a plurality of aerobic tanks. In the modified activated sludge circulation process including the steps of solid-liquid separation in a settling tank and discharging the supernatant as treated water, the first aerobic tank in the first aerobic tank of the above plurality of aerobic tanks is And a measuring instrument for measuring the value obtained by subtracting the oxygen consumption rate associated with the nitrification reaction from the total oxygen consumption rate, and installing a second pH meter in the final aerobic tank of the multi-stage aerobic tank. The nitrification rate in the aerobic tank is estimated from the measured pH value of each aerobic tank and the oxygen consumption based on the nitrification reaction, and alkali is injected into the aerobic tank at the first and last stages according to the value. Provided is a method for promoting nitrification, which is a modified activated sludge circulation method, in which pH control is performed.

【0015】[0015]

【作用】かかる活性汚泥循環変法の硝化促進方法によれ
ば、原水が嫌気槽もしくは嫌気条件下で脱窒され、好気
槽もしくは好気条件下での曝気と硝化細菌の作用に基づ
く硝化が行われる一方、初段及び終段の好気槽からサン
プリングされた試料のpHが測定されるとともにATU
−Rr計によって硝化反応にかかる酸素消費速度〔Nt
−Rr〕が測定され、これにより好気槽の活性汚泥の硝
化に伴う実際の硝化速度を推定されて、各好気槽にアル
カリを注入するpH制御が実施される。
[Operation] According to the nitrification accelerating method of the modified activated sludge circulation method, the raw water is denitrified in the anaerobic tank or the anaerobic condition, and the aeration in the aerobic tank or the aerobic condition and the nitrification based on the effect of nitrifying bacteria While being performed, the pH of the sample sampled from the first and last aerobic tanks is measured and the ATU
-Rr meter measures oxygen consumption rate [Nt
-Rr] is measured, the actual nitrification rate associated with the nitrification of activated sludge in the aerobic tank is estimated, and pH control for injecting alkali into each aerobic tank is performed.

【0016】そして硝化反応を高めなければならない時
には、pH制御に基づいて初段の好気槽にアルカリを注
入してpH値を高め、硝化を促進する一方、硝化速度が
高くなった時には上記アルカリの注入を停止し、更に硝
化反応に伴うアルカリ度消費により終段の好気槽のpH
値が下がった時にはpH制御に基づいて終段の好気槽に
アルカリを注入してpH値を高くするという制御が行わ
れる。
When it is necessary to enhance the nitrification reaction, alkali is injected into the first-stage aerobic tank based on pH control to increase the pH value to promote nitrification, while when the nitrification rate increases, the alkali The pH of the aerobic tank at the final stage was stopped by stopping the injection and further consuming the alkalinity accompanying the nitrification reaction.
When the value decreases, the pH is controlled based on the pH control by injecting alkali into the final aerobic tank to raise the pH value.

【0017】特に好気槽の初段部分での硝化菌の活性の
低下に基づく好気槽全体として硝化反応の不安定化を防
止して、該好気槽での硝化反応が促進され、ひいては嫌
気槽における窒素除去率が向上するという作用が得られ
る。
Particularly, the destabilization of the nitrification reaction is prevented in the entire aerobic tank due to the decrease in the activity of the nitrifying bacteria in the first stage of the aerobic tank, the nitrification reaction in the aerobic tank is promoted, and by extension, anaerobic The effect of improving the nitrogen removal rate in the tank is obtained.

【0018】[0018]

【実施例】以下、図面に基づいて本発明にかかる活性汚
泥循環変法の運転制御方法の一実施例を、前記従来の構
成部分と同一の構成部分に同一の符号を付して詳述す
る。図1中の1a,1bは廃水の脱窒を行うための嫌気
槽、2a,2b,2c,2dは硝化を行うための複数段
の好気槽であり、この嫌気槽1a,1bと好気槽2a,
2b,2c,2dとは同一の生物反応槽を仕切板13で
区切って分割構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the operation control method of the modified activated sludge circulation method according to the present invention will be described in detail below with reference to the drawings, in which the same components as those of the conventional components are designated by the same reference numerals. . In FIG. 1, 1a and 1b are anaerobic tanks for denitrifying wastewater, and 2a, 2b, 2c and 2d are aerobic tanks having a plurality of stages for performing nitrification. The anaerobic tanks 1a, 1b and aerobic tanks are aerobic. Tank 2a,
The same biological reaction tanks as 2b, 2c and 2d are divided by a partition plate 13 and divided.

【0019】上記嫌気槽1a,1bには撹拌機構10,
10が配備され、好気槽2a,2b,2c,2d内には
エア吹出機構としての散気管4,4,4,4が配置さ
れ、外部に上記各散気管にエアを供給するためのブロワ
5が配備されている。6は硝化液循環ポンプである。
The anaerobic tanks 1a, 1b have a stirring mechanism 10,
10, air diffusers 4, 4, 4 and 4 as an air blowing mechanism are arranged in the aerobic tanks 2a, 2b, 2c and 2d, and a blower for supplying air to each of the above diffusers outside. 5 are deployed. 6 is a nitrification solution circulation pump.

【0020】上記好気槽2a,2b,2c,2d中の初
段の好気槽2aには、第1のpH計15とATU−Rr
計16が設置されており、この第1のpH計15で測定
されたpH値と、ATU−Rr計16で測定された値に
基づいて演算された〔Nt−Rr〕値17が制御機構1
8に入力される。そして該制御機構18の出力信号によ
り、上記好気槽2aのpH制御19が実施されて第1の
アルカリ注入ポンプ20の駆動により好気槽2aにアル
カリ25(NaOH)が注入される。
The first aerobic tank 2a in the aerobic tanks 2a, 2b, 2c and 2d has a first pH meter 15 and ATU-Rr.
A total 16 is installed, and the [Nt-Rr] value 17 calculated based on the pH value measured by the first pH meter 15 and the value measured by the ATU-Rr meter 16 is used as the control mechanism 1.
8 is input. Then, the pH control 19 of the aerobic tank 2a is performed by the output signal of the control mechanism 18, and the alkali 25 (NaOH) is injected into the aerobic tank 2a by driving the first alkali injection pump 20.

【0021】更に上記好気槽2a,2b,2c,2d中
の終段の好気槽2dには、第2のpH計21が設置され
ており、この第2のpH計21で測定されたpH値が制
御機構18に入力される。そして該制御機構18の出力
信号により、上記好気槽2dのpH制御22が実施され
て第2のアルカリ注入ポンプ23の駆動により好気槽2
dにアルカリ25(NaOH)が注入される。
Further, a second pH meter 21 is installed in the last-stage aerobic tank 2d of the aerobic tanks 2a, 2b, 2c, 2d, and the second pH meter 21 measures the pH. The pH value is input to the control mechanism 18. The pH signal 22 of the aerobic tank 2d is implemented by the output signal of the control mechanism 18, and the aerobic tank 2 is driven by driving the second alkali injection pump 23.
Alkali 25 (NaOH) is injected into d.

【0022】7は最終沈澱池であり、この最終沈澱池7
には撹拌機構14が配備されている。8は汚泥の一部を
嫌気槽1aに返送する汚泥返送ポンプ、9は他の汚泥を
図外の余剰汚泥処理装置に送り込む余剰汚泥引抜ポンプ
である。この余剰汚泥引抜ポンプには通常タイマーが付
設されていて、所定時間毎に余剰汚泥の引抜動作を行う
ように設定されている。
Reference numeral 7 is a final sedimentation pond, and this final sedimentation pond 7
A stirring mechanism 14 is provided in the. Reference numeral 8 is a sludge return pump for returning a part of the sludge to the anaerobic tank 1a, and reference numeral 9 is a surplus sludge drawing pump for sending another sludge to a surplus sludge treatment device (not shown). A timer is usually attached to the excess sludge removal pump, and the excess sludge removal pump is set to perform a removal operation of the excess sludge at every predetermined time.

【0023】本実施例では、活性汚泥循環変法に基づく
予備実験でのpH7とpH8における硝化速度の実測値
から、pH7では該実測値が0.68(mg−N/g・
ss・hr)であったのに対してpH8では0.93
(mg−N/g・ss・hr)であって、この結果から
被処理液のpHをpH8に制御した方が硝化速度が促進
されるという知見に基づいている。そこで上記したよう
に初段の好気槽2aと終段の好気槽2dに各々第1,第
2のpH計15,21を設置して該好気槽内でのpH制
御を実施することが主眼となっている。
In this example, from the measured values of the nitrification rate at pH 7 and pH 8 in the preliminary experiment based on the modified activated sludge circulation method, the measured value at pH 7 was 0.68 (mg-N / g.
It was 0.93 at pH 8 while it was ss · hr).
(Mg-N / g · ss · hr), and it is based on the finding that controlling the pH of the liquid to be treated to pH 8 accelerates the nitrification rate. Therefore, as described above, the first and second pH meters 15 and 21 are installed in the first-stage aerobic tank 2a and the last-stage aerobic tank 2d, respectively, to perform pH control in the aerobic tank. It is the main focus.

【0024】かかる装置の基本的作用は以下の通りであ
る。図1に示したように、先ず廃棄物としての原水3が
嫌気槽1a,1bへ流入し、水中にある撹拌機構10,
10の撹拌作用と脱窒細菌の作用に基づいて、NO3
N、NO2−NイオンのN2への還元、即ち脱窒が行われ
る次に原水3が好気槽2a,2b,2c,2dに流入し
て、ブロワ5の駆動に伴って散気管4,4,4,4から
のエアレーションによる曝気が行われ、硝化菌の作用に
基づいてアンモニア性窒素NH4−NのNO2−N又はN
3−Nへの酸化、即ち硝化が行われる。
The basic operation of such a device is as follows. As shown in FIG. 1, first, raw water 3 as waste flows into the anaerobic tanks 1a and 1b, and the stirring mechanism 10,
Based on the stirring action of 10 and the action of denitrifying bacteria, NO 3
Reduction of N, NO 2 —N ions to N 2 , that is, denitrification, is performed. Next, raw water 3 flows into aerobic tanks 2a, 2b, 2c, 2d, and air diffuser 4 is driven as blower 5 is driven. , 4, 4, 4 are aerated by aeration, and based on the action of nitrifying bacteria, ammoniacal nitrogen NH 4 -N is converted to NO 2 -N or N 2.
Oxidation to O 3 -N, that is, nitrification is performed.

【0025】従って硝化反応は硝化菌によるアンモニア
性窒素の酸化作用であり、硝化速度はアンモニア性窒素
の減少速度又はNOX−N(NO2−N+NO3−N)の
増加速度として表わすことができる。
[0025] Thus nitrification reaction is oxidation of ammonium nitrogen by nitrifying bacteria, nitrification rate can be expressed as an increase rate of decreasing speed or NO X -N ammoniacal nitrogen (NO 2 -N + NO 3 -N ) .

【0026】他方の脱窒反応は 2NO3 -+5(H2) → N2↑+2OH-+2H2O として表わすことができる。The other denitrification reaction can be expressed as 2NO 3 +5 (H 2 ) → N 2 ↑ + 2OH + 2H 2 O.

【0027】上記の作用時に、初段及び終段の好気槽2
a,2dからサンプリングされた試料のpH(水素イオ
ン濃度)が第1のpH計15と第2のpH計21で測定
されるとともにATU−Rr計16によって硝化反応に
かかる酸素消費速度〔Nt−Rr〕17が測定され、測
定された各pH値と〔Nt−Rr〕の値に基づいて好気
槽2aのpH制御19と好気槽2dのpH制御22が実
施される。
During the above operation, the aerobic tank 2 in the first and last stages
The pH (hydrogen ion concentration) of the sample sampled from a and 2d is measured by the first pH meter 15 and the second pH meter 21, and the ATU-Rr meter 16 measures the oxygen consumption rate [Nt- Rr] 17 is measured, and the pH control 19 of the aerobic tank 2a and the pH control 22 of the aerobic tank 2d are performed based on the measured pH values and the [Nt-Rr] value.

【0028】更に好気槽2dの硝化液が硝化液循環ポン
プ6を用いて嫌気槽1aに送り込まれることにより、該
嫌気槽での脱窒効果が促進される。特に廃水中のリンは
嫌気槽内で放出され、好気槽内で活性汚泥に取り込まれ
て除去される。
Further, the nitrification solution in the aerobic tank 2d is fed into the anaerobic tank 1a by using the nitrification solution circulation pump 6, whereby the denitrification effect in the anaerobic tank is promoted. Particularly, phosphorus in the wastewater is released in the anaerobic tank, and is taken into and removed by the activated sludge in the aerobic tank.

【0029】最終沈澱池7内に沈降した汚泥の一部は汚
泥返送ポンプ8により嫌気槽1aに返送され、他の汚泥
は余剰汚泥引抜ポンプ9により余剰汚泥処理装置に送り
込まれて処理される。最終沈澱池7の上澄液は処理水1
1として図外の消毒槽等を経由してから放流される。
A part of the sludge settled in the final settling basin 7 is returned to the anaerobic tank 1a by the sludge return pump 8, and the other sludge is sent to the excess sludge treatment device by the excess sludge drawing pump 9 for treatment. The supernatant of the final sedimentation tank 7 is treated water 1
It is discharged after passing through a disinfection tank (not shown) as No. 1.

【0030】上記のATU−Rr計16は、好気槽2に
おける硝化反応の進行状況をモニターするために用いら
れる。即ち、酸素利用速度(oxygen utilization rate
respiration,以下Rrと略称する)には有機物の酸化
分解の際に消費される酸素量と、活性汚泥の内生呼吸に
消費される酸素量及び硝化反応で消費される酸素量とが
含まれる。
The ATU-Rr meter 16 is used to monitor the progress of the nitrification reaction in the aerobic tank 2. That is, oxygen utilization rate
respiration (hereinafter abbreviated as Rr) includes the amount of oxygen consumed during oxidative decomposition of organic matter, the amount of oxygen consumed for endogenous respiration of activated sludge, and the amount of oxygen consumed for nitrification reaction.

【0031】この値は有機物の除去や内生呼吸による呼
吸速度、即ち、全酸素消費速度から硝化反応に伴う酸素
消費速度を差し引いた値として表わされる。従って硝化
反応の進行状況は、Rrと硝化抑制剤であるN−アリル
チオ尿素(化学式C48S,以下ATUと略称す
る)を添加して測定したRrの差(ATU−Rr)から
求めることができる。
This value is expressed as a respiratory rate due to removal of organic substances and endogenous respiration, that is, a value obtained by subtracting the oxygen consumption rate associated with the nitrification reaction from the total oxygen consumption rate. Therefore, the progress of the nitrification reaction is based on the difference (ATU-Rr) between Rr and Rr measured by adding N-allylthiourea (chemical formula C 4 H 8 N 2 S, hereinafter abbreviated as ATU), which is a nitrification inhibitor. You can ask.

【0032】上記の差を〔Nt−Rr〕とすると、 〔Nt−Rr〕=〔Rr〕−〔ATU−Rr〕・・・・・・・・・・
(1) となる。つまり〔Nt−Rr〕は硝化に伴う酸素消費速
度であり、この値が小さければ硝化反応が終了し、大き
ければ硝化反応が終了していないものと判断することが
できる。
If the above difference is [Nt-Rr], then [Nt-Rr] = [Rr]-[ATU-Rr] ...
(1) That is, [Nt-Rr] is the oxygen consumption rate associated with nitrification. If this value is small, it can be determined that the nitrification reaction has ended, and if it is large, the nitrification reaction has not ended.

【0033】上記〔Nt−Rr〕は硝化反応に基づく酸
素消費量を表すので、この値から好気槽2a内の硝化速
度を推定することが可能である。
Since the above [Nt-Rr] represents the oxygen consumption amount based on the nitrification reaction, it is possible to estimate the nitrification rate in the aerobic tank 2a from this value.

【0034】これら各測定装置で測定された値は制御機
構18に入力され、好気槽の容積及び水理学的滞留時間
等から理想的硝化速度を算出し、更に好気槽2aの活性
汚泥の硝化に伴う〔Nt−Rr〕17及びpH値とから
活性汚泥の実際の硝化速度を推定し、(1)式における
〔Nt−Rr〕の値が大きく、硝化反応を高めなければ
ならない時には、pH制御19に基づいて第1のアルカ
リ注入ポンプ20を稼働してアルカリ25を注入し、こ
れにより初段の好気槽2aのpH値を高くして硝化を促
進する一方、硝化の進行に伴ってpH値が低下してきた
場合にはより一層アルカリ25を注入する。
The values measured by these measuring devices are input to the control mechanism 18, the ideal nitrification rate is calculated from the volume of the aerobic tank and the hydraulic retention time, and the activated sludge of the aerobic tank 2a is calculated. The actual nitrification rate of activated sludge is estimated from [Nt-Rr] 17 and pH value accompanying nitrification, and when the value of [Nt-Rr] in the equation (1) is large and the nitrification reaction must be increased, Based on the control 19, the first alkali injection pump 20 is operated to inject the alkali 25, thereby increasing the pH value of the aerobic tank 2a at the first stage to promote nitrification, and at the same time, the pH is increased with the progress of nitrification. When the value has decreased, the alkali 25 is further injected.

【0035】又、硝化速度が高くなった時には好気槽2
aに対するアルカリ25の注入を停止し、硝化反応に伴
うアルカリ度消費により終段の好気槽2dのpH値が下
がった時には、pH制御22に基づいて第2のアルカリ
注入ポンプ23を稼働して終段の好気槽2dにアルカリ
25を注入して該好気槽2dのpH値を高くする。特に
放流水のpH値は5.8〜8.6の範囲にあるように規
定されているため、該pH値が5.8以下に下がった時
には直ちに終段の好気槽2dにアルカリ25を注入して
pH値を高めなければならない。
Further, when the nitrification rate becomes high, the aerobic tank 2
When the injection of the alkali 25 into a is stopped and the pH value of the final aerobic tank 2d decreases due to alkalinity consumption accompanying the nitrification reaction, the second alkali injection pump 23 is operated based on the pH control 22. The pH value of the aerobic tank 2d is increased by injecting the alkali 25 into the final aerobic tank 2d. Particularly, since the pH value of the discharged water is regulated to be in the range of 5.8 to 8.6, when the pH value falls below 5.8, the alkaline 25 is immediately added to the final aerobic tank 2d. It must be injected to raise the pH value.

【0036】更に高水温時とか薬剤添加により好気槽2
aへの流入アンモニア性窒素に対して促進しすぎた硝化
速度を調整するために、ブロワ5の送風量を適宜制御し
て、理想的硝化速度に調整することが可能である。又、
硝化液循環ポンプ6の作用に基づく好気槽2dから嫌気
槽1aに対する硝化液の返送量を多くし(実用上では2
00%まで)、液の循環比を高めることにより、窒素の
除去率を大きくすることができる。
Aerobic tank 2 at high water temperature or by adding chemicals
In order to adjust the nitrification rate that has been excessively promoted with respect to the inflowing ammoniacal nitrogen into a, it is possible to adjust the air flow rate of the blower 5 as appropriate to adjust to the ideal nitrification rate. or,
The amount of the nitrification solution returned from the aerobic tank 2d to the anaerobic tank 1a based on the action of the nitrification solution circulation pump 6 is increased (2 in practical use).
(Up to 00%), the nitrogen removal rate can be increased by increasing the liquid circulation ratio.

【0037】通常、活性汚泥処理装置に流入する下水等
の流入水においては、アンモニア性窒素のほとんどがそ
のままの形態で嫌気槽を通過する。このため、Rr計が
設置されている好気槽の最上流部ではアンモニア性窒素
の低下による硝化律速が起らない。この〔Nt−Rr〕
は水温が一定でかつアンモニア性窒素が3(mg/l)
以上存在すれば一定になることが知られている。従って
上記のようにATU−Rr計を設置して〔Nt−Rr〕
を計測することにより硝化活性の変化を直接検出するこ
とができる。
Usually, in the inflow water such as sewage flowing into the activated sludge treatment device, most of the ammonia nitrogen passes through the anaerobic tank in the same form. Therefore, nitrification rate control due to a decrease in ammonia nitrogen does not occur in the most upstream part of the aerobic tank in which the Rr meter is installed. This [Nt-Rr]
Has a constant water temperature and 3 (mg / l) ammoniacal nitrogen
It is known that if the above exists, it becomes constant. Therefore, install the ATU-Rr meter as described above [Nt-Rr].
The change in nitrification activity can be directly detected by measuring.

【0038】本実施例では、特に好気槽2a,2b,2
c,2d中の初段の好気槽2a部分での硝化菌の活性の
低下に基づく好気槽全体として硝化反応の不安定化が防
止され、該好気槽2a,2b,2c,2dでの硝化反応
が促進されるとともに嫌気槽1a,1bにおける窒素除
去率が向上するという作用が得られる。
In the present embodiment, particularly the aerobic tanks 2a, 2b, 2
Instability of nitrification reaction is prevented in the aerobic tank as a whole due to the decrease in the activity of nitrifying bacteria in the first-stage aerobic tank 2a portion of c, 2d, and in the aerobic tanks 2a, 2b, 2c, 2d The effect of promoting the nitrification reaction and improving the nitrogen removal rate in the anaerobic tanks 1a and 1b can be obtained.

【0039】[0039]

【発明の効果】以上詳細に説明したように、本発明にか
かる活性汚泥循環変法における硝化促進方法によれば、
原水が嫌気槽で脱窒され、好気槽での曝気と硝化細菌の
作用に基づく硝化が行われる一方、初段及び終段の各好
気槽からサンプリングされた試料のpHと硝化反応にか
かる酸素消費速度が測定され、これにより好気槽の活性
汚泥の実際の硝化速度を推定して、好気槽のpH制御を
実施することにより、硝化反応を高めなければならない
時には、初段の好気槽にアルカリを注入してpH値を高
める一方、硝化速度が高くなった時にはアルカリの注入
を停止し、硝化反応に伴うアルカリ度消費により終段の
好気槽のpH値が下がった時には終段の好気槽にアルカ
リを注入してpH値を高くするというpH制御が行わ
れ、特に年間を通して好気槽の初段部分での硝化菌の活
性の低下に基づく好気槽全体として硝化反応の不安定化
を防止して、該好気槽での硝化反応が促進される。
As described in detail above, according to the method for promoting nitrification in the modified activated sludge circulation method according to the present invention,
Raw water is denitrified in the anaerobic tank, and aeration in the aerobic tank and nitrification based on the action of nitrifying bacteria are performed.On the other hand, the pH of the samples sampled from the first and last aerobic tanks and oxygen involved in the nitrification reaction. When the consumption rate is measured, the actual nitrification rate of the activated sludge in the aerobic tank is estimated based on this, and the pH of the aerobic tank is controlled to enhance the nitrification reaction. While injecting alkali to increase the pH value, when the nitrification rate becomes high, the injection of alkali is stopped and when the pH value of the final aerobic tank decreases due to alkalinity consumption accompanying the nitrification reaction, PH control is carried out by injecting alkali into the aerobic tank to raise the pH value. Especially, the nitrification reaction is unstable throughout the year due to a decrease in the activity of nitrifying bacteria in the first stage of the aerobic tank. Aspiration Nitrification reaction in is promoted.

【0040】硝化反応が安定化されたことにより、標準
活性汚泥法に比して生物反応槽の容積を格別大きくする
必要がなくなり、都市部等の用地確保が困難な条件下で
の採用を可能とする利点がある。特に電力量とか硝化の
ための薬品投入量を減少することが出来て、コスト面で
も有利である。
Since the nitrification reaction is stabilized, there is no need to increase the volume of the biological reaction tank as compared with the standard activated sludge method, and it can be used under conditions where it is difficult to secure land for urban areas. There is an advantage to In particular, the amount of electric power and the amount of chemicals used for nitrification can be reduced, which is advantageous in terms of cost.

【0041】特に嫌気−好気活性汚泥処理法によって効
率的に窒素を除去するためには、嫌気槽における脱窒と
好気槽における硝化を最適な運転条件に保持することが
要求されるが、本実施例によって硝化反応が安定化され
るので、これに伴って嫌気槽における窒素除去率を向上
させることができる。
In order to remove nitrogen efficiently by the anaerobic-aerobic activated sludge treatment method, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under optimum operating conditions. Since the nitrification reaction is stabilized in this example, the nitrogen removal rate in the anaerobic tank can be improved accordingly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例にかかる活性汚泥循環変法の硝化促進
方法の一例を示す概要図。
FIG. 1 is a schematic diagram showing an example of a nitrification promoting method of a modified activated sludge circulation method according to the present embodiment.

【図2】従来の嫌気−好気活性汚泥処理の一例を示す概
要図。
FIG. 2 is a schematic diagram showing an example of conventional anaerobic-aerobic activated sludge treatment.

【符号の説明】[Explanation of symbols]

1a,1b…嫌気槽 2a,2b,2c,2d…好気槽 4…散気管 5…ブロワ 6…硝化液循環ポンプ 7…最終沈澱池 8…汚泥返送ポンプ 9…余剰汚泥引抜ポンプ 13…仕切板 15…第1のpH計 16…ATU−Rr計 18…制御機構 19,22…pH制御 20…第1のアルカリ注入ポンプ 21…第2のpH計 23…第2のアルカリ注入ポンプ 1a, 1b ... Anaerobic tank 2a, 2b, 2c, 2d ... Aerobic tank 4 ... Diffuser pipe 5 ... Blower 6 ... Nitrification liquid circulation pump 7 ... Final sedimentation tank 8 ... Sludge return pump 9 ... Excess sludge extraction pump 13 ... Partition plate 15 ... 1st pH meter 16 ... ATU-Rr meter 18 ... Control mechanism 19,22 ... pH control 20 ... 1st alkali injection pump 21 ... 2nd pH meter 23 ... 2nd alkali injection pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、複数段の好気槽で硝化細菌により硝化を行う
工程と、沈澱槽で固液分離して上澄液を処理水として放
流する工程とを含む活性汚泥循環変法処理において、 上記複数段の好気槽中の初段の好気槽に、第1のpH計
と全酸素消費速度から硝化反応に伴う酸素消費速度を差
し引いた値の計測器を設置するとともに、前記複数段の
好気槽中の終段の好気槽に第2のpH計を設置し、測定
された各好気槽のpH値と硝化反応に基づく酸素消費量
から好気槽内の硝化速度を推定し、その値に応じて初段
及び終段の好気槽にアルカリを注入するpH制御を実施
することを特徴とする活性汚泥循環変法の硝化促進方
法。
1. A step of denitrifying raw water with denitrifying bacteria in an anaerobic tank, a step of nitrifying with nitrifying bacteria in a plurality of aerobic tanks, and solid-liquid separation in a precipitation tank to treat a supernatant. In the modified activated sludge circulation method treatment including the step of discharging as water, the oxygen consumption rate accompanying the nitrification reaction is calculated from the first pH meter and the total oxygen consumption rate in the first-stage aerobic tank of the above-mentioned plurality of aerobic tanks. Is installed and a second pH meter is installed in the final aerobic tank of the multi-stage aerobic tank, and the measured pH value and nitrification reaction of each aerobic tank Based on oxygen consumption based on oxygen consumption, the nitrification rate in the aerobic tank is estimated, and the pH is controlled by injecting alkali into the aerobic tank at the first and last stages according to the value, and the modified sludge circulation method is characterized. Method for promoting nitrification in.
JP7237394A 1994-04-12 1994-04-12 Nitration accelerating method of activated sludge circulation modified method Pending JPH07275888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7237394A JPH07275888A (en) 1994-04-12 1994-04-12 Nitration accelerating method of activated sludge circulation modified method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7237394A JPH07275888A (en) 1994-04-12 1994-04-12 Nitration accelerating method of activated sludge circulation modified method

Publications (1)

Publication Number Publication Date
JPH07275888A true JPH07275888A (en) 1995-10-24

Family

ID=13487445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7237394A Pending JPH07275888A (en) 1994-04-12 1994-04-12 Nitration accelerating method of activated sludge circulation modified method

Country Status (1)

Country Link
JP (1) JPH07275888A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355880B1 (en) * 2000-03-31 2002-10-11 조현준 Purification disposal method and device of stock raising waste water
CN104761050A (en) * 2015-03-12 2015-07-08 山东省环科院环境科技有限公司 Method of quickly recovering nitrification function of active sludge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355880B1 (en) * 2000-03-31 2002-10-11 조현준 Purification disposal method and device of stock raising waste water
CN104761050A (en) * 2015-03-12 2015-07-08 山东省环科院环境科技有限公司 Method of quickly recovering nitrification function of active sludge

Similar Documents

Publication Publication Date Title
US9169142B2 (en) Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor
CN107487838B (en) Method and device for realizing efficient phosphorus removal of low-temperature sewage by domesticating special sludge structure through SBR (sequencing batch reactor)
JP4114128B2 (en) Waste water purification apparatus and method
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP3379199B2 (en) Operation control method of activated sludge circulation method
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JP3942488B2 (en) Control method and apparatus for intermittent aeration method
JPH07275888A (en) Nitration accelerating method of activated sludge circulation modified method
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
JPH08117789A (en) Operation control of two-stage activated sludge circulation variation
JP3376903B2 (en) Intermittent aeration activated sludge treatment method
JPH09174071A (en) Method for treating organic sewage and apparatus therefor
JP3782738B2 (en) Wastewater treatment method
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JP2005000715A (en) Method for controlling operation of aerating stirrer
JP3634403B2 (en) Denitrification and dephosphorization methods in oxidation ditch
JPH08117793A (en) Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method
JPH05253597A (en) Nitrification reaction control device in activated sludge treatment