JPH07136687A - Operation control method for modified active sludge circulation process in low water temperature period - Google Patents

Operation control method for modified active sludge circulation process in low water temperature period

Info

Publication number
JPH07136687A
JPH07136687A JP28299593A JP28299593A JPH07136687A JP H07136687 A JPH07136687 A JP H07136687A JP 28299593 A JP28299593 A JP 28299593A JP 28299593 A JP28299593 A JP 28299593A JP H07136687 A JPH07136687 A JP H07136687A
Authority
JP
Japan
Prior art keywords
tank
anaerobic
aerobic
tanks
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28299593A
Other languages
Japanese (ja)
Inventor
Miyoko Kusumi
美代子 久住
Nobuyuki Wada
信行 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP28299593A priority Critical patent/JPH07136687A/en
Publication of JPH07136687A publication Critical patent/JPH07136687A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an operation control method for modified active sludge circulation process which improves nitration efficiency in an aerobic tank even in a low water temperature period and consequently heightens denitrification effect in an anaerobic tank. CONSTITUTION:In a modified active sludge circulation process comprising a step in which raw water is denitrified in an aerobic tanks 1a, 1b by denitrification bacteria, a step in which nitration is conducted through several stages of aerobic tanks 2a, 2b, 2c, 2d by nitration bacteria, and a step in which supernatant from solid-liquid separation in a sedimentation tank is discharged as treated water 11, single or multistage anaerobic-aerobic binary tanks 30a, 30b equipped with a agitation mechanism and an air diffusion pipe with an air capacity control valve are installed between the anaerobic tanks 1a, 1b and the aerobic tanks 2a-2d. A specimen of each tank is extracted to measure NOX-N concentration, and denitrification rate and nitration rate are calculated. In this way, the A:O ratio is determined, and the operation of an agitation mechanism on the side of the anaerobic tanks 1a, 1b and a sludge return ratio from the sedimentation tank to the anaerobic tanks 1a, 1b are controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低水温期に嫌気−好気活
性汚泥循環変法を用いて廃水中の有機物及び窒素を高効
率に除去する運転制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for highly efficiently removing organic matter and nitrogen in wastewater by using a modified anaerobic-aerobic activated sludge circulation method in a low water temperature period.

【0002】[0002]

【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されている。この富栄養化とは、水域中のN,P等
の栄養塩類の濃度が増大し、これらを栄養素とする生物
活動が活発となって生態系が変化することを指してい
る。特に湖沼等に生活排水とか工場廃水が大量に流入す
ると、上記の富栄養化が急速に進行することが知られて
いる。
2. Description of the Related Art Various methods have conventionally been proposed for efficiently removing organic matter in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative agents of eutrophication in closed water areas. . This eutrophication refers to an increase in the concentration of nutrient salts such as N, P in the water area, which activates biological activities using these nutrients as nutrients and changes the ecosystem. In particular, it is known that the above-mentioned eutrophication rapidly progresses when a large amount of domestic wastewater or industrial wastewater flows into lakes and the like.

【0003】近時、窒素の除去率を高めることが要求さ
れており、窒素に関する規制も厳しくなることが予想さ
れるので、これを除去することができる高度処理プロセ
スを採用する施設が増加するものと考えられる。
Recently, it has been required to increase the removal rate of nitrogen, and it is expected that the regulations on nitrogen will be stricter. Therefore, the number of facilities adopting an advanced treatment process capable of removing this will increase. it is conceivable that.

【0004】廃水中の窒素とかリンを除去する手段とし
て、物理化学的な方法及び生物学的方法が提案されてい
るが、物理化学的方法はコストが嵩む関係から普及して
いない現状にある。例えば物理化学的方法として実用化
されているリン除去方法に凝集沈澱及び晶析手段がある
が、この手段はコストや維持管理面で難点がある。
Although physicochemical methods and biological methods have been proposed as means for removing nitrogen and phosphorus in wastewater, physicochemical methods are not widely used because of the high cost. For example, a phosphorus removal method which has been put into practical use as a physicochemical method includes a coagulation precipitation method and a crystallization method, but this method has a drawback in terms of cost and maintenance.

【0005】一方、生物学的に窒素とリンを同時に除去
する方法として、従来の活性汚泥法の変法として嫌気−
好気活性汚泥法が注目されている。この嫌気−好気活性
汚泥法とは、例えば図3に示したように、生物反応槽を
溶存酸素(以下DOと略称)の存在しない嫌気槽1a,
1bとDOの存在する複数段の好気槽2a,2b,2c
とに仕切り、この嫌気槽1a,1bにより、流入する原
水3を無酸素状態下で撹拌機構10による撹拌を行って
活性汚泥中の脱窒菌による脱窒を行い、次に好気槽2
a,2b,2cの内方に配置した散気管4にブロワ5か
ら空気を供給することにより、エアレーションによる酸
素の存在下で活性汚泥による有機物の酸化分解と硝化菌
によるアンモニアの硝化を行う。そして最終段の好気槽
2cの硝化液を硝化液循環ポンプ6を用いて嫌気槽1a
に送り込むことにより、嫌気槽1a,1bの脱窒効果が
促進される。
On the other hand, as a biological biological method for simultaneously removing nitrogen and phosphorus, an anaerobic method is a modification of the conventional activated sludge method.
The aerobic activated sludge method is drawing attention. This anaerobic-aerobic activated sludge method is, for example, as shown in FIG. 3, a biological reaction tank is an anaerobic tank 1a in which dissolved oxygen (hereinafter abbreviated as DO) does not exist.
1b and multi-stage aerobic tanks 2a, 2b, 2c where DO exists
And the anaerobic tanks 1a and 1b are used to agitate the inflowing raw water 3 by an agitation mechanism 10 under anoxic conditions to denitrify by denitrifying bacteria in the activated sludge, and then the aerobic tank 2
By supplying air from the blower 5 to the air diffuser 4 arranged inside a, 2b, and 2c, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are performed in the presence of oxygen by aeration. Then, the nitrification solution in the last-stage aerobic tank 2c is transferred to the anaerobic tank 1a using the nitrification solution circulation pump 6.
By feeding the anaerobic tanks 1a and 1b, the denitrification effect is promoted.

【0006】上記硝化菌はDO濃度が低くなると活性が
低下するので、最終段の好気槽2cのDOを測定してD
O制御装置12によりブロワ5の駆動を制御しているの
が通例である。
Since the activity of the above nitrifying bacteria decreases as the DO concentration decreases, the DO of the final aerobic tank 2c is measured to obtain D
It is customary that the O controller 12 controls the drive of the blower 5.

【0007】前記脱窒菌とは、嫌気条件下で硝酸呼吸に
よりN02−N及びN03−NをN2やNO2に還元する細
菌を指している。又、原水中のリンは嫌気槽1a,1b
内で放出され、好気槽2a,2b,2c内で活性汚泥に
取り込まれて除去される。7は最終沈澱池であり、この
最終沈澱池7の上澄液は、処理水11として図外の消毒
槽等を経由してから放流され、該最終沈澱池7内に沈降
した汚泥の一部は汚泥返送ポンプ8により嫌気槽1aに
返送され、他の汚泥は余剰汚泥引抜ポンプ9から図外の
余剰汚泥処理装置に送り込まれて処理される。
The denitrifying bacterium is a bacterium that reduces N0 2 -N and N0 3 -N to N 2 and NO 2 by respiration of nitric acid under anaerobic conditions. Also, phosphorus in raw water is anaerobic tanks 1a and 1b.
It is released inside and is taken in and removed by the activated sludge in the aerobic tanks 2a, 2b and 2c. Reference numeral 7 denotes a final settling basin, and the supernatant of the final settling basin 7 is discharged as treated water 11 after passing through a disinfection tank or the like not shown in the figure, and a part of sludge settled in the final settling basin 7. Is returned to the anaerobic tank 1a by the sludge return pump 8, and other sludge is sent from the excess sludge drawing pump 9 to an excess sludge treatment device (not shown) for treatment.

【0008】かかる嫌気−好気活性汚泥処理方法を用い
ることにより、通常の標準活性汚泥法で達成される有機
物除去効果と同程度の効果が得られる上、窒素とリンに
関しては活性汚泥法よりも高い除去率が達成される。
By using such an anaerobic-aerobic activated sludge treatment method, the same effect as the organic substance removal effect achieved by the normal standard activated sludge method can be obtained, and nitrogen and phosphorus are more effective than the activated sludge method. A high removal rate is achieved.

【0009】[0009]

【発明が解決しようとする課題】しかしながらこのよう
な従来の嫌気−好気活性汚泥処理法の場合、効率的な運
転制御方法の確立が困難であり、特に冬季等の低水温期
において好気槽における硝化効率と、それに伴う嫌気槽
における脱窒効果をともに充分に高めることが困難であ
るという課題があった。
However, in the case of such a conventional anaerobic-aerobic activated sludge treatment method, it is difficult to establish an efficient operation control method, especially in a low water temperature period such as winter season. However, there is a problem that it is difficult to sufficiently enhance both the nitrification efficiency and the denitrification effect in the anaerobic tank.

【0010】即ち、前記嫌気−好気活性汚泥法における
動作態様は、嫌気槽1a,1bにおける脱窒反応と、好
気槽2a,2b,2cにおける硝化反応とに大別するこ
とが出来るが、反応の律速となっているのは後者,即ち
硝化反応である。特に嫌気−好気活性汚泥処理法によっ
て効率的に窒素を除去するためには、嫌気槽における脱
窒と好気槽における硝化を最適な運転条件に保持するこ
とが要求される上、窒素除去工程は硝化工程に影響され
る度合が高いため、良好な窒素除去を行うためには硝化
工程が良好に行われていることが必要である。
That is, the operation mode in the anaerobic-aerobic activated sludge method can be roughly classified into a denitrification reaction in the anaerobic tanks 1a and 1b and a nitrification reaction in the aerobic tanks 2a, 2b and 2c. The latter, that is, the nitrification reaction, is the rate-determining reaction. In particular, in order to remove nitrogen efficiently by the anaerobic-aerobic activated sludge treatment method, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under the optimum operating conditions, and the nitrogen removing step. Is highly affected by the nitrification process, so that the nitrification process must be performed well in order to perform good nitrogen removal.

【0011】この硝化反応は、前記したように硝化菌に
よって引き起こされるが、この硝化菌の活性は、pH,
水温等の微妙な変化により容易に影響を受けることが知
られている。又、エアレーションの時間を十分にとるた
めに、標準活性汚泥法の場合よりも生物反応槽の容積を
2〜3倍にすることが必要であり、都市部等の用地確保
が困難な条件下での採用が難しいという問題がある。
This nitrification reaction is caused by the nitrifying bacteria as described above. The activity of the nitrifying bacteria is
It is known that it is easily affected by subtle changes such as water temperature. In addition, in order to obtain sufficient aeration time, it is necessary to increase the volume of the biological reaction tank by a factor of 2 to 3 compared with the standard activated sludge method, and under conditions where it is difficult to secure land for urban areas. There is a problem that it is difficult to adopt.

【0012】硝化が良好に進行している場合には、脱窒
反応の良否が窒素除去率を左右するので、高い窒素除去
率を維持するには硝化反応と脱窒反応のバランスを良好
に保持することが要求される。又、好気槽2a,2b,
2c内でのDO濃度は、流入負荷変動とか水量に起因し
て常に変化している。
When the nitrification progresses satisfactorily, the quality of the denitrification reaction affects the nitrogen removal rate. Therefore, in order to maintain a high nitrogen removal rate, a good balance between the nitrification reaction and the denitrification reaction should be maintained. Required to do so. Also, the aerobic tanks 2a, 2b,
The DO concentration in 2c is constantly changing due to inflow load fluctuations and the amount of water.

【0013】特に効率的な窒素除去を行うための制御因
子としては、上記以外にもSRT(汚泥滞留時間),M
LSS(活性汚泥浮遊物濃度),DO(溶存酸素濃
度),pH,循環比,汚泥返送比,A:O比(嫌気槽と
好気槽の比率)等が考慮される。特に年間を通して安定
的に窒素除去を行うためには、低水温期における硝化効
率をいかに確保するかにかかっている。
In addition to the above, SRT (sludge retention time), M
LSS (active sludge suspended matter concentration), DO (dissolved oxygen concentration), pH, circulation ratio, sludge return ratio, A: O ratio (ratio of anaerobic tank and aerobic tank), etc. are considered. In particular, in order to stably remove nitrogen throughout the year, it depends on how to secure the nitrification efficiency in the low water temperature period.

【0014】そこで本発明はこのような嫌気−好気活性
汚泥処理が有している課題を解消して、特に低水温期に
おける硝化反応の低下を防止し、ひいては嫌気槽におけ
る脱窒反応を高めることができる運転活性汚泥循環変法
の運転制御方法を提供することを目的とするものであ
る。
Therefore, the present invention solves the problems of the anaerobic-aerobic activated sludge treatment, prevents the reduction of the nitrification reaction particularly in the low water temperature period, and enhances the denitrification reaction in the anaerobic tank. It is an object of the present invention to provide an operation control method of the modified activated sludge circulation method that can perform the operation.

【0015】[0015]

【課題を解決するための手段】本発明は上記の目的を達
成するために、原水を複数段の嫌気槽で脱窒細菌により
脱窒を行う工程と、複数段の好気槽で硝化細菌により硝
化を行う工程と、沈澱槽で固液分離して上澄液を処理水
として放流する工程と、該沈澱槽内の汚泥の一部を初段
の嫌気槽に返送する機構を含む活性汚泥循環変法処理に
おいて、上記嫌気槽と好気槽との間に、撹拌機構と風量
調整用バルブ付きの散気管をともに備えた単数段もしく
は複数段の嫌気−好気両用槽を配置し、各槽内の試料を
サンプリングしてNOX−N濃度を測定して、嫌気槽で
のNOX−N濃度の減少量と好気槽でのNOX−N濃度の
増加量から演算によって脱窒速度と硝化速度を求め、そ
の結果から嫌気−好気両用槽への風量調整バルブの開閉
制御を行ってA:O比を決定するとともに、嫌気槽側の
撹拌機構の駆動状態と沈澱槽から嫌気槽への汚泥返送比
とを制御するようにした運転制御方法を提供する。
In order to achieve the above object, the present invention comprises a step of denitrifying raw water with denitrifying bacteria in a multi-stage anaerobic tank, and a step of nitrifying bacteria in a multi-stage aerobic tank. Nitrogenation process, solid-liquid separation in the settling tank to discharge the supernatant liquid as treated water, and activated sludge circulation conversion including a mechanism to return a part of the sludge in the settling tank to the first anaerobic tank. In the method treatment, between the anaerobic tank and the aerobic tank, a single-stage or multiple-stage anaerobic-aerobic dual-use tank equipped with both a stirring mechanism and an air diffuser with an air flow adjusting valve is arranged. by measuring the NO X -N concentration of the sample was sampled, the denitrification rate by the arithmetic from the increase amount of NO X -N concentration at the reduction and aerobic tank of NO X -N concentration in the anaerobic tank and the nitrification The speed was calculated, and from the result, the air flow control valve for the anaerobic-aerobic tank was opened and closed to control A And it determines the O ratio, provides a driving control method to control the sludge return ratio to the anaerobic tank from the driving state of the anaerobic tank side of the stirring mechanism settling tank.

【0016】又、上記沈澱槽内に濁度計を配備して、処
理水のss濃度が設定値を超えない範囲内で且つ終段の
嫌気槽内でNOX−Nが残留しない程度に汚泥返送比を
決定する。
[0016] Also, by deploying turbidimeter to the sedimentation tank, the sludge to the extent that NO X -N anaerobic tank in and output stage to the extent that ss concentration in the treated water does not exceed the set value does not remain Determine the return ratio.

【0017】[0017]

【作用】かかる活性汚泥循環変法の運転制御方法によれ
ば、嫌気−好気両用槽を嫌気槽として使用するか好気槽
として使用するかによって嫌気槽と好気槽の比率である
A:O比を変化させ、このA:O比に基づいて決定され
た各好気槽の内方に配置した散気管にブロワから空気を
供給することにより、原水が嫌気槽もしくは嫌気条件下
で脱窒され、更に各好気槽でエアレーションによる酸素
の存在下で活性汚泥による有機物の酸化分解と硝化菌に
よるアンモニアの硝化が行われる。
According to the operation control method of the modified activated sludge circulation method, the ratio of the anaerobic tank to the aerobic tank depends on whether the anaerobic-aerobic tank is used as the anaerobic tank or the aerobic tank. By changing the O ratio and supplying air from the blower to the diffuser pipes located inside each aerobic tank determined based on this A: O ratio, the raw water is denitrified under the anaerobic tank or anaerobic conditions. Further, in each aerobic tank, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are performed in the presence of oxygen by aeration.

【0018】上記動作時に、各槽内の試料をサンプリン
グしてNOX−Nを測定し、硝化・脱窒速度演算装置に
より嫌気槽でのNOX−N濃度の減少量と好気槽でのN
X−N濃度の増加量から脱窒速度と硝化速度を演算
し、この脱窒速度と硝化速度との比から、前記A:O比
の制御と嫌気−好気両用槽内の撹拌機構の制御を行われ
る。更に最終沈澱池内に配備された濁度計の監視によ
り、処理水のss濃度が設定値を超えず、且つ最終の嫌
気槽内でNOX−Nが残留しない程度に嫌気槽に汚泥が
返送される。
At the time of the above operation, the sample in each tank is sampled to measure NO X -N, and the amount of decrease in NO X -N concentration in the anaerobic tank and that in the aerobic tank are measured by the nitrification / denitrification rate calculator. N
The denitrification rate and the nitrification rate are calculated from the increasing amount of the O X -N concentration, and the control of the A: O ratio and the stirring mechanism in the anaerobic-aerobic tank are calculated from the ratio between the denitrification rate and the nitrification rate. Controlled. Furthermore, by monitoring the turbidity meter installed in the final settling tank, the sludge was returned to the anaerobic tank to such an extent that the ss concentration of the treated water did not exceed the set value and NO X -N did not remain in the final anaerobic tank. It

【0019】従って原水の処理状態の変化に伴って生物
反応槽自体のA:O比と汚泥返送比を随時更新しながら
運転が継続されるという作用が得られる。
Therefore, it is possible to obtain the effect that the operation is continued while updating the A: O ratio and the sludge return ratio of the biological reaction tank itself as the raw water treatment state changes.

【0020】[0020]

【実施例】以下、図面に基づいて本発明にかかる低水温
期における活性汚泥循環変法の運転制御方法の具体例を
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific example of the operation control method of the modified activated sludge circulation method in the low water temperature period according to the present invention will be described below with reference to the drawings.

【0021】図2は本実施例に基づく実験装置の概要図
であり、表1は該実験装置を用いて実施した4系統の運
転条件に基づいて得られた硝化率(%)とT−N除去率
(総窒素除去率)を示している。
FIG. 2 is a schematic diagram of the experimental apparatus based on this example, and Table 1 shows the nitrification rate (%) and TN obtained based on the operating conditions of the four systems carried out using the experimental apparatus. The removal rate (total nitrogen removal rate) is shown.

【0022】[0022]

【表1】 [Table 1]

【0023】先ず図1に基づいて実験装置の構成と操作
について説明する。図中の1a,1bは廃水の脱窒を行
うための嫌気槽、2a,2b,2c,2dは硝化を行う
ための複数段の好気槽であり、この嫌気槽1a,1bと
好気槽2a,2b,2c,2dとは同一の生物反応槽を
仕切板13,13で区切って分割構成されている。
First, the construction and operation of the experimental apparatus will be described with reference to FIG. In the figure, 1a and 1b are anaerobic tanks for denitrifying wastewater, and 2a, 2b, 2c and 2d are aerobic tanks having a plurality of stages for nitrification. The anaerobic tanks 1a, 1b and aerobic tanks are shown. The same biological reaction tanks as 2a, 2b, 2c, and 2d are divided and configured by partition plates 13 and 13.

【0024】14は最初沈澱池、15は原水貯留槽であ
り、両槽には水位計16が配置されている。最初沈澱池
14には原水汲上げポンプP1が配備され、原水貯留槽
15には原水撹拌ポンプP2と原水供給ポンプP3とが配
備されている。
Reference numeral 14 is a first settling basin, 15 is a raw water storage tank, and water level gauges 16 are arranged in both tanks. Initially, the settling tank 14 is provided with a raw water pumping pump P 1 , and the raw water storage tank 15 is provided with a raw water stirring pump P 2 and a raw water supply pump P 3 .

【0025】上記嫌気槽1a,1bには、各々汚泥撹拌
ポンプP4,P4が配備されている。又、好気槽2a,2
b,2c,2d内にはエア吹出機構としての散気管4,
4,4,4が配置され、外部に上記散気管4,4,4,
4にエアを供給するためのブロワ5とバルブV1,V2
3,V4が配備されている。P5は硝化液循環ポンプで
ある。
Sludge agitation pumps P 4 and P 4 are provided in the anaerobic tanks 1a and 1b, respectively. Also, the aerobic tanks 2a, 2
b, 2c, and 2d have air diffusers 4 as an air blowing mechanism.
4, 4, 4 are arranged, and the air diffusers 4, 4, 4, are provided outside.
Blower 5 and the valve V 1, V 2 for supplying air to 4,
V 3 and V 4 are deployed. P 5 is a nitrification solution circulation pump.

【0026】7は最終沈澱池、17は処理水貯留槽、1
8は余剰汚泥貯留槽であり、最終沈澱池7には撹拌機構
19が配備され、処理水貯留槽17には水位計20が配
置されている。P6は余剰汚泥引抜ポンプ、P7は汚泥返
送ポンプ、P8は処理水排出ポンプであり、余剰汚泥引
抜ポンプP6にはタイマー21が付設されていて、所定
時間毎に余剰汚泥の引抜動作を行うように設定されてい
る。
Reference numeral 7 is a final settling tank, 17 is a treated water storage tank, 1
Reference numeral 8 denotes a surplus sludge storage tank, a stirring mechanism 19 is provided in the final settling tank 7, and a water level gauge 20 is arranged in the treated water storage tank 17. P 6 is a surplus sludge drawing pump, P 7 is a sludge returning pump, P 8 is a treated water discharge pump, and a timer 21 is attached to the surplus sludge drawing pump P 6 to draw out excess sludge at every predetermined time. Is set to do.

【0027】更に嫌気槽1bには酸化還元電位計22が
配置されており、好気槽2dには同様な酸化還元電位計
23とpH計25、DO計26及びアルカリ貯留槽24
とが配置されている。P9はアルカリ貯留槽24内のア
ルカリを好気槽2dに注入するための薬注ポンプであ
る。
Further, a redox potential meter 22 is arranged in the anaerobic tank 1b, and a similar redox potential meter 23, a pH meter 25, a DO meter 26 and an alkali storage tank 24 are arranged in the aerobic tank 2d.
And are arranged. P 9 is a chemical injection pump for injecting the alkali in the alkali storage tank 24 into the aerobic tank 2d.

【0028】かかる装置の基本的作用は以下の通りであ
る。先ず最初沈澱池14の原水が原水汲上げポンプP1
によって汲み上げられて原水貯留槽15に貯留される。
原水貯留槽15内の水位は水位計16によって監視され
て、原水汲上げポンプP1の駆動が制御されている。
The basic operation of such a device is as follows. First of all, the raw water in the settling basin 14 is the raw water pump P 1
Is pumped up and stored in the raw water storage tank 15.
The water level in the raw water storage tank 15 is monitored by a water level gauge 16 to control the drive of the raw water pumping pump P 1 .

【0029】原水撹拌ポンプP2によって撹拌された原
水は、原水供給ポンプP3の駆動に伴って嫌気槽1aか
ら嫌気槽1bへ流入し、汚泥撹拌ポンプP4,P4の撹拌
作用と脱窒細菌の作用に基づいて、NO3−N、NO2
NイオンのN2への還元、即ち脱窒が行われる。
The raw water stirred by the raw water stirring pump P 2 flows into the anaerobic tank 1b from the anaerobic tank 1a as the raw water supply pump P 3 is driven, and the sludge stirring pumps P 4 and P 4 are stirred and denitrified. based on the action of bacteria, NO 3 -N, NO 2 -
Reduction of N ions to N 2 , that is, denitrification, is performed.

【0030】次に原水は好気槽2a,2b,2c,2d
に流入してブロワ5の駆動に伴ってバルブV1,V2,V
3,V4を介して散気管4,4,4,4に供給される空気
のエアレーションによる曝気が行われ、硝化細菌の作用
に基づいてアンモニア性窒素NH4−NのNO2−N又は
NO3−Nへの酸化、即ち硝化が行われる。
Next, the raw water is aerobic tanks 2a, 2b, 2c, 2d.
Flow into the valve and the valves V 1 , V 2 , V
Aeration is performed by aeration of the air supplied to the air diffusing pipes 4 , 4 , 4 , 4 via 3 , V 4, and NO 2 -N or NO of ammonia nitrogen NH 4 -N is generated based on the action of nitrifying bacteria. Oxidation to 3- N, ie nitrification, takes place.

【0031】上記の作用時に、嫌気槽1bと好気槽2d
内の酸化還元電位が酸化還元電位計22,23によって
測定され、好気槽2d内のpHとDO濃度がpH計25
及びDO計26によって測定される。酸化還元電位は、
液の酸化力或は還元力の強さを知るための指標となるも
のであり、測定された酸化還元電位とpH値とから必要
に応じてアルカリ貯留槽に貯留されたアルカリが薬注ポ
ンプP9を介して好気槽2d内に注入される。
During the above operation, the anaerobic tank 1b and the aerobic tank 2d
The redox potential inside is measured by the redox potential meters 22 and 23, and the pH and DO concentration inside the aerobic tank 2d are measured by the pH meter 25.
And the DO meter 26. The redox potential is
It serves as an index for knowing the strength of the oxidizing power or reducing power of the liquid, and the alkali stored in the alkali storage tank is used as the chemical injection pump P if necessary from the measured redox potential and pH value. It is injected via 9 into the aerobic tank 2d.

【0032】更に好気槽2dの硝化液が硝化液循環ポン
プP5を用いて嫌気槽1aに送り込まれることにより、
該嫌気槽1a,1bの脱窒効果が促進される。特に廃水
中のリンは嫌気槽1a,1b内で放出され、好気槽2
a,2b,2c,2d内で活性汚泥に取り込まれて除去
される。
Further, the nitrification solution in the aerobic tank 2d is sent to the anaerobic tank 1a by using the nitrification solution circulation pump P 5 ,
The denitrification effect of the anaerobic tanks 1a and 1b is promoted. Particularly, phosphorus in the wastewater is released in the anaerobic tanks 1a and 1b, and
It is taken into and removed by the activated sludge in a, 2b, 2c and 2d.

【0033】好気槽2d内の余剰汚泥は、余剰汚泥引抜
ポンプP6により引き抜かれて余剰汚泥貯留槽18に一
旦貯留され、最終沈澱池7内に沈降した汚泥の一部は汚
泥返送ポンプP7により嫌気槽1aに返送される。更に
最終沈澱池7の上澄液は、処理水貯留槽17に貯留され
てから水位計20に監視された処理水排出ポンプP8
駆動に伴って処理水11として図外の消毒槽等を経由し
てから放流される。
The surplus sludge in the aerobic tank 2d is drawn by the surplus sludge drawing pump P 6 and temporarily stored in the surplus sludge storage tank 18, and part of the sludge settled in the final settling tank 7 is a sludge return pump P. It is returned to the anaerobic tank 1a by 7 . Further, the supernatant of the final settling basin 7 is stored in the treated water storage tank 17 and then the treated water discharge pump P 8 monitored by the water level gauge 20 is driven as treated water 11 into a disinfecting tank (not shown) or the like. It is released after passing through.

【0034】上記の如き生物学的窒素除去における硝
化,脱窒速度は水温によって大きく影響を受ける。即
ち、 KN=a1・exp(b1・T)・・・・・・・・・・・・・・・・・・(1) KDN=a2・exp(b2・T)・・・・・・・・・・・・・・・・・・(2) ここでKN:硝化速度(mg−N/g−MLSS・h
r) KDN:脱窒速度(mg−N/g−MLSS・hr) a,b:係数 T:水温(℃) 上記(1)(2)式から高水温期には低水温期に比して
硝化速度及び脱窒速度とも数倍速くなることが分かる。
例えばa1=0.1197、b1=0.1295、a2
0.2870、b2=0.0687として水温が15
℃,25℃の時のKNは夫々0.84,3.05mg−
N/g−MLSS・hrとなり、KDNは夫々0.80,
1.60mg−N/g−MLSS・hrとなる。
The nitrification and denitrification rates in biological nitrogen removal as described above are greatly affected by the water temperature. That is, K N = a 1 · exp (b 1 · T) ··· (1) K DN = a 2 · exp (b 2 · T) · (2) where K N : nitrification rate (mg-N / g-MLSS · h
r) K DN : Denitrification rate (mg-N / g-MLSS · hr) a, b: Coefficient T: Water temperature (° C) From the above equations (1) and (2), the high water temperature period is higher than the low water temperature period. It can be seen that both the nitrification rate and the denitrification rate are several times faster.
For example, a 1 = 0.1197, b 1 = 0.1295, a 2 =
0.2870, b 2 = 0.0687 and water temperature is 15
K N at ℃ and 25 ℃ are 0.84 and 3.05 mg-, respectively.
N / g-MLSS · hr, K DN is 0.80,
It is 1.60 mg-N / g-MLSS · hr.

【0035】上記の硝化とは硝化細菌の作用に基づいて
アンモニア性窒素NH4−NのNO2−N又はNO3−N
への酸化作用であり、硝化速度はアンモニア性窒素の減
少速度又はNOX−N(NO2−N+NO3−N)の増加
速度としてMichaelis-Menten型の式で実用上は0次反応
とみなせる。同様に脱窒速度もNOX−Nの減少として
実用上0次反応とみなせる。
The above-mentioned nitrification means NO 2 -N or NO 3 -N of ammoniacal nitrogen NH 4 -N based on the action of nitrifying bacteria.
Is an oxidation action on the nitrification rate can be regarded as practically zero-order reaction with Michaelis-Menten equation type as an increase rate of decreasing speed or NO X -N ammoniacal nitrogen (NO 2 -N + NO 3 -N ). Similarly denitrification rate also regarded as practically zero-order reaction as a reduction in the NO X -N.

【0036】特に硝化菌の増殖速度は水温が低いと小さ
く、低水温期では硝化菌を系内に保持するために必要な
SRTは長くなる。(微生物を利用した窒素及びリン除
去プロセスの評価に関する第1次報告書,昭和61年1
1月18日に日本下水道事業団技術評価委員会発行を参
照)。
Particularly, the growth rate of nitrifying bacteria is low when the water temperature is low, and the SRT required for keeping the nitrifying bacteria in the system becomes long in the low water temperature period. (1st report on evaluation of nitrogen and phosphorus removal process using microorganisms, 1986 1
See January 18, issued by Japan Sewage Works Agency Technical Evaluation Committee).

【0037】しかし脱窒速度は施設とか運転条件等によ
っても大きく異なり、更に効率的な窒素除去を行うため
の制御因子としては、前記したようにSRT,MLS
S,DO,pH,循環比,汚泥返送比,A:O比等を考
慮しなければならない。
However, the denitrification rate varies greatly depending on the facility and operating conditions, and as a control factor for more efficient nitrogen removal, as described above, SRT, MLS
S, DO, pH, circulation ratio, sludge return ratio, A: O ratio, etc. must be considered.

【0038】通常、低水温期での硝化効率を維持するた
めには、SRTを長くする必要があるが、SRT制御に
よって系を安定させるためには、通常SRT設定値の2
〜3倍の日数を要するため、時間レベルでの流入水の量
的,質的変化に対応することができない。必然的にSR
Tは固定的となり、通常は10日以上に設定される。
Normally, in order to maintain the nitrification efficiency in the low water temperature period, it is necessary to lengthen the SRT, but in order to stabilize the system by SRT control, the normal SRT set value of 2 is set.
Since it takes ~ 3 times the number of days, it is not possible to cope with the quantitative and qualitative changes of inflow water at the time level. Inevitably SR
T is fixed and is usually set to 10 days or more.

【0039】そこで本実施例の場合、活性汚泥循環変法
における前記A:O比及び汚泥返送比を制御することに
より、低水温期においても高い窒素除去率(T−N除去
率)を確保することを主眼としている。
Therefore, in the case of this embodiment, by controlling the A: O ratio and the sludge return ratio in the modified activated sludge circulation method, a high nitrogen removal rate (TN removal rate) is secured even in the low water temperature period. The main thing is that.

【0040】図2の例では反応槽が全部で6槽であるた
め、最初の1槽である1aのみを嫌気槽として他の5槽
を好気槽にすると、嫌気槽と好気槽の比率として表わさ
れるA:O比は1:6であり、1aと1bを嫌気槽にす
るとA:O比は1:3となる。そしてこの装置を4系統
製作して、平均水温が16℃の低水温期においてA:O
比を1:3と1:6とし、この時の汚泥返送比を50%
と100%とした時の硝化率とT−N除去率を測定した
結果が前記表1に示されている。尚、HRT(水理学的
滞留時間)は標準活性汚泥法の場合と同様に8時間と
し、硝化液の循環は前記硝化液循環ポンプP5を用いて
嫌気槽1aに送り込まれる返送汚泥のみとした。
In the example of FIG. 2, since the reaction tanks are 6 in total, if only the first 1a is an anaerobic tank and the other 5 are aerobic tanks, the ratio of the anaerobic tank to the aerobic tank is The A: O ratio expressed as is 1: 6, and when 1a and 1b are anaerobic tanks, the A: O ratio becomes 1: 3. And we made 4 lines of this equipment, and A: O in the low water temperature period when the average water temperature was 16 ℃.
The ratio is 1: 3 and 1: 6, and the sludge return ratio at this time is 50%
Table 1 shows the results of measuring the nitrification rate and the TN removal rate when the values were 100% and 100%. The HRT (hydraulic retention time) was set to 8 hours as in the case of the standard activated sludge method, and the nitrification solution was circulated only by returning sludge sent to the anaerobic tank 1a using the nitrification solution circulation pump P 5 . .

【0041】表1からA:O比を同一にした場合には、
汚泥返送比は大きい方が硝化率が高く(1系<2系,3
系<4系)、且つ汚泥返送比が同一の場合には、A:O
比は好気条件が長い方が硝化率が高い(1系<3系,2
系<4系)ことが分かる。しかしT−N除去率に関して
は、4系を除いて1〜3系では大きな差異がみられなか
った。
From Table 1, when the A: O ratio is the same,
The larger the sludge return ratio, the higher the nitrification rate (1 system <2 system, 3 system
System <4 system) and the sludge return ratio is the same, A: O
The ratio is higher when the aerobic conditions are longer (1 system <3 system, 2
It is understood that the system <4 system). However, regarding the T-N removal rate, no significant difference was observed among the 1 to 3 systems except the 4 system.

【0042】つまり高いT−N除去率を確保するために
は、高い硝化率を確保できるA:O比と汚泥返送比とを
設定する必要がある。汚泥返送比を高めることにより、
硝酸性窒素の循環量が増大し、反応槽全体のMLSS濃
度が高められてDO消費が促進される。しかし汚泥返送
量が増大すると、循環されるNOX−N量が増大して脱
窒が不十分となる可能性が生じて、最終沈澱池の負荷を
高めてしまう惧れがある。そこで任意の返送比において
硝化速度と脱窒速度の比率によりA:O比を決定し、且
つ返送比をも制御することが本願発明の主眼点となって
いる。
That is, in order to secure a high T-N removal rate, it is necessary to set an A: O ratio and a sludge return ratio which can secure a high nitrification rate. By increasing the sludge return ratio,
The circulation amount of nitrate nitrogen increases, and the MLSS concentration in the entire reaction tank is increased to promote DO consumption. However, sludge return amount increases, the NO X -N amount of circulated is increased possibility of denitrification becomes insufficient occurs, there is a possibility that would increase the load of the final sedimentation tank. Therefore, the main point of the present invention is to determine the A: O ratio based on the ratio between the nitrification rate and the denitrification rate at an arbitrary return ratio and also control the return ratio.

【0043】次に図1により本発明を適用した活性汚泥
循環変法の一実施例を説明する。本例では生物反応槽を
溶存酸素(DO)の存在しない嫌気槽1a,1bと、嫌
気−好気両用槽30a,30bと、DOの存在する複数
段の好気槽2a,2b,2c,2dとに仕切ったことに
より、生物反応槽自体を6区画以上(本例では8区画)
に分割されている。
Next, one embodiment of the activated sludge circulation modification method to which the present invention is applied will be described with reference to FIG. In this example, the biological reaction tanks are anaerobic tanks 1a and 1b in which dissolved oxygen (DO) does not exist, anaerobic-aerobic tanks 30a and 30b, and a plurality of aerobic tanks 2a, 2b, 2c and 2d in which DO exists. Due to the partitioning into 6 and more, the biological reaction tank itself has 6 or more compartments (8 compartments in this example)
Is divided into

【0044】そして嫌気槽1a,1bと嫌気−好気両用
槽30a,30b内にはそれぞれ撹拌機構10が配備さ
れ、嫌気−好気両用槽30a,30bと好気槽2a,2
b,2c,2d内には散気管4が配備されて、各散気管
にブロワ5から空気を供給するように構成されている。
尚、嫌気−好気両用槽30a,30bとブロワ5との間
には風量調整用のバルブV5,V6が取付けられている。
A stirring mechanism 10 is provided in each of the anaerobic tanks 1a and 1b and the anaerobic-aerobic tanks 30a and 30b, and the anaerobic-aerobic tanks 30a and 30b and the aerobic tanks 2a and 2 are provided.
Air diffusers 4 are provided in b, 2c and 2d, and air is supplied from a blower 5 to each air diffuser.
Incidentally, anaerobic - valves V 5, V 6 for the air volume adjustment is mounted between the aerobic dual tank 30a, and 30b and the blower 5.

【0045】上記の各槽にはサンプリング装置31が配
備されている。32はNOX−N測定装置、33は硝化
・脱窒速度演算装置、34はコントローラである。
A sampling device 31 is provided in each of the above tanks. 32 NO X -N measuring device, 33 is nitrification and denitrification rate calculating unit, 34 denotes a controller.

【0046】7は最終沈澱池であり、該最終沈澱池7内
には撹拌機構19と濁度計35が配備されており、この
濁度計35の測定した値がコントローラ34に入力され
ている。P7は汚泥返送ポンプである。
Reference numeral 7 denotes a final settling basin. A stirring mechanism 19 and a turbidity meter 35 are provided in the final settling basin 7, and the value measured by the turbidity meter 35 is input to the controller 34. . P 7 is a sludge return pump.

【0047】かかる実施例によれば、嫌気−好気両用槽
30a,30bを嫌気槽として使用するか好気槽として
使用するかにより、A:O比は当然異なる。即ち、反応
槽が全部で8槽であるため、最初の嫌気−好気両用槽3
0aを嫌気槽として他の5槽を好気槽にすると、A:O
比は3:5であり、30a,30bをともに嫌気槽にす
るとA:O比は1:1となる。又、両用槽30a,30
bをともに好気槽にすると、A:O比は1:3となる。
According to this embodiment, the A: O ratio naturally varies depending on whether the anaerobic-aerobic tanks 30a and 30b are used as anaerobic tanks or aerobic tanks. That is, since there are a total of eight reaction tanks, the first anaerobic-aerobic both-purpose tank 3
If 0a is an anaerobic tank and the other 5 tanks are aerobic tanks, A: O
The ratio is 3: 5, and if both 30a and 30b are anaerobic tanks, the A: O ratio will be 1: 1. Also, the dual-use tanks 30a, 30
If both b are aerobic tanks, the A: O ratio will be 1: 3.

【0048】上記の嫌気−好気両用槽30a,30bを
嫌気槽として使用するか、もしくは好気槽として使用す
るかは、コントローラ34の出力によって制御される風
量調整バルブV5,V6の開閉状態と撹拌機構10の駆動
状態により決定される。
[0048] The above anaerobic - is to use aerobic dual tank 30a, and 30b or as the anaerobic tank or the aerobic tank, the opening and closing of the air flow rate adjusting valves V 5, V 6, which is controlled by the output of the controller 34 It is determined by the state and the driving state of the stirring mechanism 10.

【0049】このようにしてA:O比を適宜に設定して
から、嫌気槽1a,1bに流入する原水3を先ず無酸素
状態下で撹拌機構10による撹拌を行って活性汚泥中の
脱窒菌による脱窒を行い、次にA:O比に基づいて決定
された各好気槽の内方に配置した散気管4にブロワ5か
ら空気を供給し、風量調整バルブV5,V6の開度を制御
することにより、各好気槽でエアレーションによる酸素
の存在下で活性汚泥による有機物の酸化分解と硝化菌に
よるアンモニアの硝化を行う。
After the A: O ratio is appropriately set in this way, the raw water 3 flowing into the anaerobic tanks 1a and 1b is first stirred by the stirring mechanism 10 under anoxic conditions to remove the denitrifying bacteria in the activated sludge. Then, air is supplied from the blower 5 to the diffuser pipe 4 arranged inside each aerobic tank determined based on the A: O ratio, and the air flow rate adjusting valves V 5 and V 6 are opened. By controlling the degree, the oxidative decomposition of organic matter by activated sludge and the nitrification of ammonia by nitrifying bacteria are carried out in the presence of oxygen by aeration in each aerobic tank.

【0050】又、最終沈澱池7の上澄液は、処理水11
として図外の消毒槽等を経由してから放流され、該最終
沈澱池7内に沈降した汚泥の一部は、汚泥返送ポンプP
7により嫌気槽1aに返送される。
The supernatant of the final sedimentation tank 7 is treated water 11
As a part of the sludge settled in the final settling tank 7 after being discharged after passing through a disinfection tank or the like outside the drawing, a sludge return pump P
It is returned to the anaerobic tank 1a by 7 .

【0051】上記動作時に、サンプリング装置31を用
いて最初の嫌気槽と最後の嫌気槽,更に最初の好気槽と
最後の好気槽内の試料をサンプリングして、この試料中
のNOX−NをNOX−N測定装置32により測定し、次
に硝化・脱窒速度演算装置33により、嫌気槽でのNO
X−N濃度の減少量と好気槽でのNOX−N濃度の増加量
をそれぞれ嫌気槽と好気槽の滞留時間で除すことによ
り、脱窒速度と硝化速度を演算する。
During the above operation, the sampling device 31 is used to sample the samples in the first anaerobic tank and the last anaerobic tank, and further in the first aerobic tank and the last aerobic tank, and NO x − in the sample is sampled. the N was measured by NO X -N measuring device 32, then the nitrification and denitrification rate calculation unit 33, NO in the anaerobic tank
The denitrification rate and the nitrification rate are calculated by dividing the decrease amount of the X- N concentration and the increase amount of the NOx-N concentration in the aerobic tank by the residence time in the anaerobic tank and the aerobic tank, respectively.

【0052】このようにして求められた脱窒速度と硝化
速度との比から、コントローラ34から風量調整バルブ
5,V6の開閉制御に基づくA:O比の制御と、嫌気−
好気両用槽30a,30b内の撹拌機構10の回転状態
の制御を行う。更に最終沈澱池7内に配備された濁度計
35により、処理水11のss濃度が設定値を超えない
範囲内で且つ最終の嫌気槽内でNOX−Nが残留しない
程度に汚泥返送ポンプP7の駆動制御を実施する。
From the ratio of the denitrification rate and the nitrification rate thus obtained, the controller 34 controls the A: O ratio based on the opening / closing control of the air flow rate adjusting valves V 5 and V 6 , and the anaerobic-
The rotation state of the stirring mechanism 10 in the aerobic tanks 30a and 30b is controlled. Further the final sedimentation tank 7 turbidimeter 35 deployed within and final sludge return pump to the extent that NO X -N does not remain in the anaerobic tank within which ss concentration in the treated water 11 does not exceed the set value The drive control of P 7 is performed.

【0053】従って本実施例では、原水3の処理状態の
変化に伴って生物反応槽のA:O比と汚泥返送比を随時
更新しながら運転を継続することが動作上の特徴となっ
ている。
Therefore, the present embodiment is characterized in that the operation is continued while the A: O ratio and the sludge return ratio of the biological reaction tank are updated as needed according to the change in the treatment state of the raw water 3. .

【0054】[0054]

【発明の効果】以上詳細に説明したように、本発明にか
かる活性汚泥循環変法の運転制御方法によれば、嫌気−
好気両用槽を嫌気槽として使用するか好気槽として使用
するかによってA/O比を変化させることができて、こ
のA:O比の制御と嫌気−好気両用槽内の撹拌機構の制
御及び最終沈澱池内における処理水のss濃度が設定値
を超えず、且つ最終の嫌気槽内でNOX−Nが残留しな
い程度に嫌気槽に汚泥を返送する制御を実施することに
より、A:O比に基づいて決定された各好気槽の内方に
配置した散気管にブロワから空気を供給することによ
り、原水が嫌気槽で脱窒され、各好気槽でエアレーショ
ンによる酸素の存在下で活性汚泥による有機物の酸化分
解と硝化菌によるアンモニアの硝化が行われ、好気槽全
体として硝化反応の不安定化を防止して該好気槽での硝
化反応が促進されるという効果が得られる。
As described in detail above, according to the operation control method of the modified activated sludge circulation method according to the present invention, anaerobic-
The A / O ratio can be changed depending on whether the aerobic / aerobic tank is used as an anaerobic tank or an aerobic tank. The A: O ratio can be controlled and the stirring mechanism in the anaerobic / aerobic tank can be changed. By controlling and returning the sludge to the anaerobic tank to such an extent that the ss concentration of the treated water in the final settling tank does not exceed the set value and NO X -N does not remain in the final anaerobic tank, A: By supplying air from the blower to the air diffuser tubes located inside each aerobic tank determined based on the O ratio, the raw water is denitrified in the anaerobic tank, and in the presence of oxygen due to aeration in each aerobic tank. Oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are carried out, and the effect of preventing destabilization of the nitrification reaction in the aerobic tank as a whole and promoting the nitrification reaction in the aerobic tank is obtained. To be

【0055】特に嫌気−好気活性汚泥処理法によって効
率的に窒素を除去するためには、嫌気槽における脱窒と
好気槽における硝化を最適な運転条件に保持することが
要求される上、窒素除去工程は硝化工程に影響される度
合が高いため、高い窒素除去率を維持するには硝化反応
と脱窒反応のバランスを良好に保持することが要求され
るものであるが、本発明では各槽内の試料をサンプリン
グしてNOX−Nを測定し、硝化・脱窒速度演算装置に
より嫌気槽でのNOX−N濃度の減少量と好気槽でのN
X−N濃度の増加量から脱窒速度と硝化速度を演算し
て、この脱窒速度と硝化速度との比から、前記A:O比
と汚泥返送量を制御しているため、冬季等の低水温期に
おいても好気槽における硝化効率と、それに伴う嫌気槽
における脱窒効果をともに高めることが可能となり、し
かも標準活性汚泥法の場合よりも生物反応槽の容積を2
〜3倍にする必要性をなくして、都市部等の用地確保が
困難な条件下での採用を可能にするという効果が得られ
る。
Particularly, in order to effectively remove nitrogen by the anaerobic-aerobic activated sludge treatment method, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under the optimum operating conditions. Since the nitrogen removal step is highly influenced by the nitrification step, it is required to maintain a good balance between the nitrification reaction and the denitrification reaction in order to maintain a high nitrogen removal rate. The samples in each tank are sampled to measure NO X -N, and the amount of NO X -N concentration decrease in the anaerobic tank and N in the aerobic tank are measured by the nitrification / denitrification rate calculator.
The denitrification rate and the nitrification rate are calculated from the increase in the O X -N concentration, and the A: O ratio and the sludge return rate are controlled from the ratio between the denitrification rate and the nitrification rate. It is possible to increase both the nitrification efficiency in the aerobic tank and the denitrification effect in the anaerobic tank even in the low water temperature period, and the volume of the biological reaction tank is 2 times larger than that of the standard activated sludge method.
There is an effect that it is possible to adopt it under a condition where it is difficult to secure a land such as an urban area, without having to increase the number of times to three times.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる活性汚泥循環変法の運転制御方
法の一実施例を示す概要図。
FIG. 1 is a schematic diagram showing an embodiment of an operation control method of a modified activated sludge circulation method according to the present invention.

【図2】本実施例に基づく実験装置を示す概要図。FIG. 2 is a schematic diagram showing an experimental device based on this example.

【図3】従来の嫌気−好気活性汚泥処理の一例を示す概
要図。
FIG. 3 is a schematic diagram showing an example of conventional anaerobic-aerobic activated sludge treatment.

【符号の説明】[Explanation of symbols]

1a,1b…嫌気槽 2a,2b,2c,2d…好気槽 4…散気管 5…ブロワ 13…仕切板 14…最初沈澱池 15…原水貯留存槽 16,20…水位計 17…処理水貯留槽 18…余剰汚泥貯留槽 22,23…酸化還元電位計 24…アルカリ貯留槽 25…pH計 26…DO計 30a,30b…嫌気−好気両用槽 31…サンプリング装置 32…NOX−N測定装置 33…硝化・脱窒速度演算装置 34…コントローラ 35…濁度計1a, 1b ... Anaerobic tank 2a, 2b, 2c, 2d ... Aerobic tank 4 ... Diffuser pipe 5 ... Blower 13 ... Partition plate 14 ... First settling tank 15 ... Raw water storage tank 16, 20 ... Water level gauge 17 ... Treated water storage Tank 18 ... Excess sludge storage tank 22, 23 ... Redox potential meter 24 ... Alkali storage tank 25 ... pH meter 26 ... DO meter 30a, 30b ... Anaerobic-aerobic both-use tank 31 ... Sampling device 32 ... NO X -N measuring device 33 ... Nitrification / denitrification rate calculator 34 ... Controller 35 ... Turbidimeter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原水を複数段の嫌気槽で脱窒細菌により
脱窒を行う工程と、複数段の好気槽で硝化細菌により硝
化を行う工程と、沈澱槽で固液分離して上澄液を処理水
として放流する工程と、該沈澱槽内の汚泥の一部を初段
の嫌気槽に返送する機構を含む活性汚泥循環変法処理に
おいて、 上記嫌気槽と好気槽との間に、撹拌機構と風量調整用バ
ルブ付きの散気管をともに備えた単数段もしくは複数段
の嫌気−好気両用槽を配置し、各槽内の試料をサンプリ
ングしてNOX−N濃度を測定して、嫌気槽でのNOX
N濃度の減少量と好気槽でのNOX−N濃度の増加量か
ら演算によって脱窒速度と硝化速度を求め、その結果か
ら嫌気−好気両用槽への風量調整バルブの開閉制御を行
ってA:O比を決定するとともに、嫌気槽側の撹拌機構
の駆動状態と沈澱槽から嫌気槽への汚泥返送比とを制御
することを特徴とする低水温期における活性汚泥循環変
法の運転制御方法。
1. A step of denitrifying raw water with denitrifying bacteria in a multi-stage anaerobic tank, a step of nitrifying with nitrifying bacteria in a multi-stage aerobic tank, and a solid-liquid separation in a settling tank to obtain a supernatant. In the activated sludge circulation modified process including a step of discharging the liquid as treated water and a mechanism for returning a part of the sludge in the settling tank to the first-stage anaerobic tank, between the anaerobic tank and the aerobic tank, A single-stage or multiple-stage anaerobic-aerobic both-use tank equipped with both a stirring mechanism and an air diffuser with a valve for adjusting the air flow rate is arranged, and a sample in each tank is sampled to measure the NO X -N concentration, NO X in anaerobic tank −
Seeking denitrification rate and the nitrification rate from the increase amount of NO X -N concentration at the reduction and aerobic tank of N concentration by calculation, the results from the anaerobic - performing opening and closing control of the air amount adjusting valve to the aerobic dual tank Of the activated sludge circulation method in the low water temperature period characterized by determining the A: O ratio and controlling the driving state of the stirring mechanism on the anaerobic tank side and the sludge return ratio from the settling tank to the anaerobic tank. Control method.
【請求項2】 前記沈澱槽内に濁度計を配備して、処理
水のss濃度が設定値を超えない範囲内で且つ終段の嫌
気槽内でNOX−Nが残留しない程度に汚泥返送比を決
定するようにした請求項1記載の低水温期における活性
汚泥循環変法の運転制御方法。
2. A deployed turbidimeter in the sedimentation tank, the sludge to the extent that NO X -N anaerobic tank in and output stage to the extent that ss concentration in the treated water does not exceed the set value does not remain The operation control method according to claim 1, wherein the return ratio is determined.
JP28299593A 1993-11-12 1993-11-12 Operation control method for modified active sludge circulation process in low water temperature period Pending JPH07136687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28299593A JPH07136687A (en) 1993-11-12 1993-11-12 Operation control method for modified active sludge circulation process in low water temperature period

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28299593A JPH07136687A (en) 1993-11-12 1993-11-12 Operation control method for modified active sludge circulation process in low water temperature period

Publications (1)

Publication Number Publication Date
JPH07136687A true JPH07136687A (en) 1995-05-30

Family

ID=17659854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28299593A Pending JPH07136687A (en) 1993-11-12 1993-11-12 Operation control method for modified active sludge circulation process in low water temperature period

Country Status (1)

Country Link
JP (1) JPH07136687A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218346A (en) * 2010-03-15 2011-11-04 Metawater Co Ltd Method and apparatus for treating wastewater
JP2012170883A (en) * 2011-02-21 2012-09-10 Sanki Eng Co Ltd Activated sludge treating apparatus and treating method
JP2013027810A (en) * 2011-07-28 2013-02-07 Kubota Corp Method for operation of aerobic and anaerobic reaction tank, and water treatment equipment
JP2015024369A (en) * 2013-07-26 2015-02-05 株式会社クボタ Aerobic-cum-anaerobic reaction tank and operation method of the same
JPWO2013133445A1 (en) * 2012-03-09 2015-07-30 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JPWO2013133443A1 (en) * 2012-03-09 2015-07-30 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JP2016190181A (en) * 2015-03-31 2016-11-10 株式会社日立製作所 Water treatment device
CN117285148A (en) * 2023-11-16 2023-12-26 北京华益德环境科技有限责任公司 Continuous flow aerobic granular sludge treatment device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218346A (en) * 2010-03-15 2011-11-04 Metawater Co Ltd Method and apparatus for treating wastewater
JP2012170883A (en) * 2011-02-21 2012-09-10 Sanki Eng Co Ltd Activated sludge treating apparatus and treating method
JP2013027810A (en) * 2011-07-28 2013-02-07 Kubota Corp Method for operation of aerobic and anaerobic reaction tank, and water treatment equipment
JPWO2013133445A1 (en) * 2012-03-09 2015-07-30 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JPWO2013133443A1 (en) * 2012-03-09 2015-07-30 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
US9522832B2 (en) 2012-03-09 2016-12-20 Metawater Co., Ltd. Wastewater treatment apparatus, wastewater treatment method, wastewater treatment system, control device, and control method
JP2015024369A (en) * 2013-07-26 2015-02-05 株式会社クボタ Aerobic-cum-anaerobic reaction tank and operation method of the same
JP2016190181A (en) * 2015-03-31 2016-11-10 株式会社日立製作所 Water treatment device
CN117285148A (en) * 2023-11-16 2023-12-26 北京华益德环境科技有限责任公司 Continuous flow aerobic granular sludge treatment device
CN117285148B (en) * 2023-11-16 2024-03-15 北京华益德环境科技有限责任公司 Continuous flow aerobic granular sludge treatment device

Similar Documents

Publication Publication Date Title
US8268173B2 (en) Controlled aeration of integrated fixed-film activated sludge bioreactor systems for the treatment of wastewater
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
KR100638158B1 (en) Sewage treatment system
CN101182074A (en) Real-time controlling method for denitrification by reinforced circulating type active sludge process
JP4995215B2 (en) Sewage treatment equipment
JP4298405B2 (en) Wastewater treatment method
KR20220024245A (en) Integrated control system for sewage treatment plant
KR20180117340A (en) The Sewage Disposal Systems
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
JP3379199B2 (en) Operation control method of activated sludge circulation method
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP3384951B2 (en) Biological water treatment method and equipment
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
KR100810960B1 (en) Economic nitrogen phosphorous which uses the to conventional activated sludge processand clear
JPH08117793A (en) Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method
JP2001009497A (en) Biological water treatment and equipment therefor
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
KR102239139B1 (en) water treatment method and apparatus for sequencing bath reactor using specific oxygen uptake rate of microbial
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus