JPH0691292A - Operation control method of aerobic-anaerobic active sludge treatment apparatus - Google Patents
Operation control method of aerobic-anaerobic active sludge treatment apparatusInfo
- Publication number
- JPH0691292A JPH0691292A JP24435692A JP24435692A JPH0691292A JP H0691292 A JPH0691292 A JP H0691292A JP 24435692 A JP24435692 A JP 24435692A JP 24435692 A JP24435692 A JP 24435692A JP H0691292 A JPH0691292 A JP H0691292A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- tank
- anaerobic
- aerobic
- srt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は嫌気−好気活性汚泥処理
装置を用いて廃水中の有機物及び窒素を高効率に除去す
る運転制御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for removing organic matter and nitrogen in wastewater with high efficiency by using an anaerobic-aerobic activated sludge treatment device.
【0002】[0002]
【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、富栄養化の原因物質と考えられ
ている窒素及びリンを除去する方法が種々提案されてい
る。この富栄養化とは、水域中のN,P等の栄養塩類の
濃度が増大し、これらを栄養素とする生物活動が活発と
なって生態系が変化することを指している。特に湖沼等
に生活排水とか工場廃水が大量に流入すると、上記の富
栄養化が急速に進行することが知られている。2. Description of the Related Art Conventionally, various methods have been proposed for efficiently removing organic substances in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative substances of eutrophication. This eutrophication refers to an increase in the concentration of nutrient salts such as N, P in the water area, which activates biological activities using these nutrients as nutrients and changes the ecosystem. In particular, it is known that the above-mentioned eutrophication rapidly progresses when a large amount of domestic wastewater or industrial wastewater flows into lakes and the like.
【0003】廃水中の窒素とかリンを除去する手段とし
て、物理化学的な方法及び生物学的方法が提案されてい
るが、物理化学的方法はコストが嵩む関係から普及して
いない現状にある。例えば物理化学的方法として実用化
されているリン除去方法に凝集沈澱及び晶析手段がある
が、この手段はコストや維持管理面で難点がある。Although physicochemical methods and biological methods have been proposed as means for removing nitrogen and phosphorus in wastewater, physicochemical methods are not widely used because of the high cost. For example, a phosphorus removal method which has been put into practical use as a physicochemical method includes a coagulation precipitation method and a crystallization method, but this method has a drawback in terms of cost and maintenance.
【0004】一方、生物学的に窒素とリンを同時に除去
する方法として、従来の活性汚泥法の変法として嫌気−
好気活性汚泥方法が注目されている。(例えば水質汚濁
研究、第12巻,第7号 441−448,1989を
参照。)この方法では、生物反応槽を嫌気槽と好気槽と
に仕切り、溶存酸素が存在しない嫌気槽に最初沈澱池流
出水を導いて、無酸素状態で活性汚泥中の脱窒菌による
脱窒を行い、次に好気槽でエアレーションによる曝気を
行って、酸素の存在下で活性汚泥による有機物の酸化分
解と硝化菌によるアンモニアの硝化を行う。硝化液の一
部は嫌気槽に循環して脱窒を促進するために利用され
る。On the other hand, as a method for biologically removing nitrogen and phosphorus simultaneously, an anaerobic method is a modification of the conventional activated sludge method.
Aerobic activated sludge method is drawing attention. (See, for example, Water Pollution Research, Volume 12, No. 7, 441-448, 1989.) In this method, the biological reaction tank is divided into an anaerobic tank and an aerobic tank, and the anaerobic tank in which dissolved oxygen does not exist is first precipitated. The pond effluent is guided to denitrify by denitrifying bacteria in activated sludge in anoxic condition, and then aeration is performed by aeration in an aerobic tank to oxidize and nitrify organic matter by activated sludge in the presence of oxygen. Nitrification of ammonia by bacteria is performed. A part of the nitrification solution is circulated to the anaerobic tank and used for promoting denitrification.
【0005】かかる嫌気−好気活性汚泥処理方法を用い
ることにより、通常の活性汚泥法で達成される有機物除
去効果と同程度の効果が得られる上、窒素とリンに関し
ては活性汚泥法よりも高い除去率が達成される。By using such an anaerobic-aerobic activated sludge treatment method, an effect comparable to the organic matter removal effect achieved by the ordinary activated sludge method can be obtained, and nitrogen and phosphorus are higher than those by the activated sludge method. A removal rate is achieved.
【0006】[0006]
【発明が解決しようとする課題】しかしながらこのよう
な従来の嫌気−好気活性汚泥処理装置を用いて廃水中の
有機物及び窒素を除去する方法の場合、該嫌気−好気活
性汚泥処理装置の運転制御方法が充分に確立されている
とは言えず、処理効率及び精度を高めることが困難であ
るという課題があった。However, in the case of a method for removing organic matter and nitrogen in wastewater using such a conventional anaerobic-aerobic activated sludge treatment device, the operation of the anaerobic-aerobic activated sludge treatment device is performed. It cannot be said that the control method is well established, and there is a problem that it is difficult to improve processing efficiency and accuracy.
【0007】即ち、上記の嫌気−好気活性汚泥処理方法
の主な制御因子として以下の6項目を挙げることができ
る。That is, the following six items can be listed as the main control factors of the above-mentioned anaerobic-aerobic activated sludge treatment method.
【0008】(1)汚泥平均滞留時間(sludge retenti
on time,以下SRTと略称する ) (2)活性汚泥浮遊物濃度(mixed liquor suspended s
olid,以下MLSSと略称する) (3)溶存酸素濃度(Dissolved oxygen,以下DO濃度
と略称する) (4)水素イオン濃度(pH) (5)硝化液の還流比 (6)嫌気槽と好気槽の容積比(以下A/O比と略称す
る)。(1) Sludge average retention time (sludge retenti
on time, hereinafter abbreviated as SRT) (2) Concentration of suspended solids in activated sludge (mixed liquor suspended s)
solid (hereinafter abbreviated as MLSS) (3) Dissolved oxygen (hereinafter abbreviated as DO) (4) Hydrogen ion concentration (pH) (5) Nitrogen recirculation ratio (6) Anaerobic tank and aerobic Volume ratio of the tank (hereinafter abbreviated as A / O ratio).
【0009】上記6項目の制御因子は一率に制御される
ことが多いため、流量の変動とか水質の変動等の処理状
態の変化に影響を受け易いという問題点がある。即ち、
嫌気−好気活性汚泥処理によって効率的に窒素を除去す
るためには、嫌気槽における脱窒と好気槽における硝化
を最適な運転条件に保持することが要求され、特に窒素
除去工程は硝化工程に影響される度合が高いため、良好
な窒素除去を行うためには硝化工程が良好に行われてい
ることが必要である。Since the above six control factors are often controlled at a constant rate, there is a problem that they are easily affected by changes in the processing state such as changes in flow rate and changes in water quality. That is,
In order to effectively remove nitrogen by anaerobic-aerobic activated sludge treatment, it is necessary to maintain denitrification in an anaerobic tank and nitrification in an aerobic tank under optimal operating conditions. Therefore, the nitrification step must be performed well in order to perform good nitrogen removal.
【0010】上記の硝化は、亜硝酸菌及び硝酸菌の働き
によって進行する反応であるが、これら硝化細菌(亜硝
酸菌と硝酸菌の総称)の増殖速度は、BOD(生物化学
的に要求される酸素)分解菌に比較してかなり小さいた
め、循環式嫌気−好気活性汚泥法のようにBODの酸化
分解と硝化を同一の槽内で行う場合には、硝化細菌を系
内に保持するように、SRTを大きく保って運転が行わ
れている。The above-mentioned nitrification is a reaction that proceeds by the action of nitrite bacteria and nitric acid bacteria. The growth rate of these nitrifying bacteria (generally termed nitrite bacteria and nitric acid bacteria) is BOD (biochemically required). Oxygen), which is considerably smaller than that of decomposing bacteria, keeps nitrifying bacteria in the system when oxidative decomposition of BOD and nitrification are carried out in the same tank as in the circulating anaerobic-aerobic activated sludge method. As described above, the operation is performed while keeping the SRT large.
【0011】硝化細菌の保持に最低限必要なプロセスの
SRTは通常次式で表わされる。The SRT of the minimum process required for holding nitrifying bacteria is usually expressed by the following equation.
【0012】SRTC≧1/μ・・・・・・・・(1) SRTC:硝化細菌を系内に維持するために必要なSR
T(日) μ:硝化細菌の比増殖速度(1日) この硝化細菌の増殖速度は水温の影響を受け易く、低水
温期では硝化菌を系内に保持するためにはSRTが長く
なる。μの値としては、例えば(2)(3)式が提案さ
れている。SRT C ≧ 1 / μ ... (1) SRT C : SR necessary for maintaining nitrifying bacteria in the system
T (day) μ: Specific growth rate of nitrifying bacteria (1 day) The growth rate of this nitrifying bacterium is easily affected by the water temperature, and the SRT becomes long in order to keep the nitrifying bacterium in the system in the low water temperature period. As the value of μ, for example, equations (2) and (3) have been proposed.
【0013】 μ=0.062・exp{0.098(T−15)}・・・・・・・・(2) μ=0.11・exp{0.07(T−15)}・・・・・・・・・・・・(3) 上記の(2)式を用いて水温15℃と25℃における必
要SRTを求めると、それぞれ16.7日及び6.2日
となる。Μ = 0.062 · exp {0.098 (T-15)} ... (2) μ = 0.11 · exp {0.07 (T-15)} ... (3) When the required SRTs at water temperatures of 15 ° C and 25 ° C are calculated using the above equation (2), they are 16.7 days and 6.2 days, respectively.
【0014】他方で長すぎるSRTでは汚泥の自己分解
による窒素成分の溶出が懸念される。即ち、SRTを長
く保って運転すると、増殖速度の遅い糸状菌も増殖可能
な条件が整ってバルキングが発生したり放線菌によるス
カムが発生する場合がある。On the other hand, if the SRT is too long, there is concern that the nitrogen component may be eluted due to the self-decomposition of sludge. That is, if the SRT is kept operating for a long time, the filamentous fungi with a slow growth rate may be in a condition where they can grow, and bulking may occur or scum due to actinomycetes may occur.
【0015】嫌気−好気活性汚泥法では一般に長いSR
Tでプロセスが運転されるが、効率的な窒素除去を行う
には適切なSRTでプロセスが運転されていることが重
要である。しかし現状では一定のSRTで制御されるこ
とが多く、処理状況に合わせたSRT制御は行われてい
ない状況にある。In the anaerobic-aerobic activated sludge method, a long SR is generally used.
Although the process is run at T, it is important that the process is run at the proper SRT for efficient nitrogen removal. However, under the present circumstances, it is often controlled by a constant SRT, and the SRT control according to the processing situation is not performed.
【0016】本発明は上記に鑑みてなされたものであ
り、主として上記のSRTを最適な状態に制御すること
によって嫌気−好気活性汚泥処理装置の硝化と脱窒を促
進し、且つ総窒素除去率を高めることができる運転制御
方法を提供することを目的とするものである。The present invention has been made in view of the above, and mainly promotes nitrification and denitrification of an anaerobic-aerobic activated sludge treatment device by controlling the SRT to an optimum state, and removes total nitrogen. It is an object of the present invention to provide an operation control method capable of increasing the rate.
【0017】[0017]
【課題を解決するための手段】本発明は上記の目的を達
成するために、廃水を嫌気槽で脱窒細菌により脱窒を行
う工程と、好気槽で硝化細菌によりアンモニア性窒素の
硝化を行う工程と、最終沈澱池で固液分離し、沈降した
汚泥の一部を嫌気槽に戻すとともに残部を余剰汚泥処理
装置に送り込んで処理し、最終沈澱池の上澄液を処理水
として放流する工程と、好気槽内の硝化液の一部を嫌気
槽に還流して脱窒反応を促進する工程を含む嫌気−好気
活性汚泥処理装置において、上記嫌気−好気活性汚泥処
理装置を構成する反応槽の水温を測定し、且つ各反応槽
から採取したサンプリング液の総窒素濃度を測定すると
ともに窒素成分を分析して、予め実験的に求めた水温と
総窒素除去率との関係から必要とする汚泥平均滞留時間
(SRT)を計算し、被処理水の総窒素濃度が増加しな
いような汚泥平均滞留時間に制御して運転を行うように
した嫌気−好気活性汚泥処理装置の運転制御方法を提供
する。In order to achieve the above object, the present invention provides a step of denitrifying wastewater with denitrifying bacteria in an anaerobic tank, and nitrifying ammoniacal nitrogen with nitrifying bacteria in an aerobic tank. The steps of performing and solid-liquid separation in the final settling tank, returning part of the settled sludge to the anaerobic tank, sending the rest to the excess sludge treatment device for processing, and discharging the supernatant of the final settling tank as treated water. In the anaerobic-aerobic activated sludge treatment device, which comprises a step of refluxing a part of the nitrification liquid in the aerobic tank to the anaerobic bath to promote the denitrification reaction, a reaction constituting the anaerobic-aerobic activated sludge treatment device. Measure the water temperature of the tank, measure the total nitrogen concentration of the sampling liquid collected from each reaction tank, analyze the nitrogen components, and obtain it from the relationship between the water temperature and the total nitrogen removal rate obtained experimentally in advance. Calculate sludge average residence time (SRT) , Anaerobic and to perform operation by controlling the sludge average residence time such that the total nitrogen concentration of the processed water is not increased - to provide a method for controlling the operation of the aerobic activated sludge treatment apparatus.
【0018】更に上記最終沈澱池の底部から導出された
汚泥を、嫌気槽への汚泥返送バルブと余剰汚泥排出バル
ブが付設された汚泥分配槽に連結し、硝化状況に応じて
上記余剰汚泥排出バルブの開度を変化させて最終沈澱池
からの汚泥の引抜量を制御する運転制御方法を用いる。Further, the sludge derived from the bottom of the final settling basin is connected to a sludge return tank to an anaerobic tank and a sludge distribution tank provided with an excess sludge discharge valve, and the excess sludge discharge valve is connected depending on the nitrification situation. The operation control method of controlling the amount of sludge drawn out from the final settling tank by changing the opening degree of is used.
【0019】[0019]
【作用】かかる嫌気−好気活性汚泥処理装置の運転制御
方法によれば、原水が先ず嫌気槽で脱窒され、次に好気
槽で曝気が行われ、硝化細菌の作用に基づいてアンモニ
ア性窒素の硝化が行われる。この好気槽内の硝化液の1
部は嫌気槽に還流されて嫌気槽での脱窒が促進される。
好気槽からの排出液は沈澱槽に流入して固液分離され、
沈降した汚泥の1部が再度嫌気槽に戻り、汚泥の残部は
余剰汚泥として処理されるとともに沈澱槽の上澄液は処
理水として放流される。According to the operation control method of the anaerobic-aerobic activated sludge treatment device, the raw water is first denitrified in the anaerobic tank, and then aerated in the aerobic tank. Nitrification of nitrogen takes place. 1 of nitrification liquid in this aerobic tank
The part is returned to the anaerobic tank to promote denitrification in the anaerobic tank.
The liquid discharged from the aerobic tank flows into the settling tank for solid-liquid separation,
A part of the settled sludge returns to the anaerobic tank again, the rest of the sludge is treated as excess sludge, and the supernatant of the settling tank is discharged as treated water.
【0020】上記処理時に、指標として反応槽内の水温
が測定され、同時に嫌気槽と好気槽から液体がサンプリ
ングされて総窒素濃度(T−N濃度)が測定されるとと
もに窒素成分が分析され、予め実験的に求めた水温と総
窒素除去率との関係から必要とする汚泥平均滞留時間
(SRT)が求められ、被処理水の総窒素濃度が増加し
ないような汚泥平均滞留時間が設定されて運転が行われ
る。During the above treatment, the water temperature in the reaction tank is measured as an index, and at the same time, the liquid is sampled from the anaerobic tank and the aerobic tank to measure the total nitrogen concentration (TN concentration) and analyze the nitrogen component. The required average sludge retention time (SRT) is determined from the relationship between the water temperature and the total nitrogen removal rate that have been experimentally determined in advance, and the average sludge retention time is set so that the total nitrogen concentration of the treated water does not increase. Driving is performed.
【0021】更に嫌気槽への汚泥返送バルブと余剰汚泥
排出バルブが付設された汚泥分配槽に上記最終沈澱池の
底部から導出された汚泥を連結して、硝化状況に応じて
上記余剰汚泥排出バルブの開度を制御することにより硝
化と脱窒が促進され、嫌気−好気活性汚泥処理の処理効
率及び精度が高められる。Further, the sludge discharged from the bottom of the final settling tank is connected to a sludge distribution tank provided with a sludge return valve to the anaerobic tank and a surplus sludge discharge valve, and the surplus sludge discharge valve is connected depending on the nitrification situation. By controlling the opening degree of nitrification and denitrification, the treatment efficiency and accuracy of anaerobic-aerobic activated sludge treatment can be improved.
【0022】[0022]
【実施例】以下、図面に基づいて本発明にかかる嫌気−
好気活性汚泥処理装置の運転制御方法の一実施例を説明
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The anaerobic of the present invention will be described below with reference to the drawings.
An embodiment of the operation control method of the aerobic activated sludge treatment device will be described.
【0023】本実施例では嫌気−好気活性汚泥処理装置
を構成する反応槽の水温と総窒素濃度(一般にT−N濃
度と呼称されている)を測定するとともに窒素成分を分
析し、水温と総窒素除去率との関係から必要とするSR
Tを計算し、この総窒素濃度が増加しないようなSRT
に制御することで効率的,経済的な窒素除去を行うこと
を主眼としている。In this embodiment, the water temperature and the total nitrogen concentration (generally referred to as TN concentration) of the reaction tank constituting the anaerobic-aerobic activated sludge treatment device are measured, and the nitrogen component is analyzed to determine the water temperature. Required SR in relation to total nitrogen removal rate
SRT that calculates T and does not increase this total nitrogen concentration
The main goal is to control nitrogen efficiently and economically.
【0024】図2は本発明の準備段階として実施した実
験装置の概要図であって、1は原水調製槽,2は原水の
撹拌だけを行う嫌気槽,3a,3b,3cは好気槽,4
は最終沈澱池,5はブロワである。反応槽である嫌気槽
2及び好気槽3a,3b,3cは各7.5リットルで有
効容積が30リットルの完全混合槽が4槽直列に連結さ
れ、各槽間に水位差を持たせたことによって下流槽から
上流槽への逆流がないように配慮されている。FIG. 2 is a schematic diagram of an experimental apparatus carried out as a preparatory step of the present invention, in which 1 is a raw water preparation tank, 2 is an anaerobic tank for only stirring raw water, 3a, 3b and 3c are aerobic tanks, Four
Is the final sedimentation pond and 5 is a blower. The anaerobic tank 2 and the aerobic tanks 3a, 3b, and 3c, which are reaction tanks, are 7.5 liters each, and four complete mixing tanks each having an effective volume of 30 liters are connected in series to give a water level difference between the tanks. This ensures that there is no backflow from the downstream tank to the upstream tank.
【0025】好気槽3a,3b,3cの底部にはエア吹
出部材6,6,6が配置され、ブロワ5からエアが供給
される。最終沈澱池4は有効容積12リットルとし、こ
の最終沈澱池4にはモータM1を駆動源とする撹拌機構
が付設されている。Air blowing members 6, 6, 6 are arranged at the bottom of the aerobic tanks 3a, 3b, 3c, and air is supplied from the blower 5. The final sedimentation tank 4 has an effective volume of 12 liters, and the final sedimentation tank 4 is provided with a stirring mechanism using a motor M 1 as a drive source.
【0026】上記最終段の好気槽3cには、硝化液の1
部を嫌気槽2に還流するための硝化液循環ポンプP5と
返送管路7とが配設されている。P7は最終段の好気槽
3cから余剰汚泥を引抜くためのポンプである。又、最
終沈澱池4の底部から導出された管路8の中途部に嫌気
槽2へ汚泥を戻すためのの汚泥返送ポンプP6が配設さ
れている。In the last-stage aerobic tank 3c, 1
A nitrification solution circulation pump P 5 for returning the part to the anaerobic tank 2 and a return pipe 7 are provided. P 7 is a pump for withdrawing excess sludge from the final aerobic tank 3c. A sludge return pump P 6 for returning the sludge to the anaerobic tank 2 is arranged in the middle of the pipe 8 led out from the bottom of the final settling tank 4.
【0027】かかる実験装置によれば、先ず表1に示す
組成の濃厚原液を予め調製しておき、この原液をポンプ
P1を用いて原水調製槽1に入れ、更にポンプP2を用い
て水道水で200倍に希釈してBOD約200mg/l
の原水を連続的に調製する。According to such an experimental apparatus, a concentrated stock solution having the composition shown in Table 1 was first prepared in advance, this stock solution was put into the raw water preparation tank 1 using the pump P 1 , and further, the tap water was supplied using the pump P 2. BOD approx. 200 mg / l after diluting 200 times with water
The raw water of is prepared continuously.
【0028】[0028]
【表1】 [Table 1]
【0029】この原水をポンプP3によって嫌気槽2へ
流入させると、ポンプP4の撹拌作用と脱窒細菌の作用
に基づいてNO3−N、NO2−NイオンのN2への還
元、即ち脱窒が行われる。次に原水が嫌気槽2から三段
の好気槽3a,3b,3cに順次流入して、ブロワ5の
駆動に伴ってエア吹出部材6,6,6からのエアレーシ
ョンによる曝気が行われ、硝化細菌の作用に基づいてア
ンモニア性窒素NH4−NのNO2−N又はNO3−Nへ
の酸化、即ち硝化が行われる。反応槽での滞留時間(H
RT)は通常の都市型下水処理と同程度に6時間とし
た。When this raw water is caused to flow into the anaerobic tank 2 by the pump P 3 , the NO 3 --N and NO 2 --N ions are reduced to N 2 based on the stirring action of the pump P 4 and the action of denitrifying bacteria, That is, denitrification is performed. Next, the raw water sequentially flows from the anaerobic tank 2 into the three-stage aerobic tanks 3a, 3b, 3c, and the blower 5 is driven to perform aeration by aeration from the air blowing members 6, 6, 6 and nitrification. Oxidation of ammoniacal nitrogen NH 4 —N to NO 2 —N or NO 3 —N, that is, nitrification, is carried out based on the action of bacteria. Residence time in reaction tank (H
RT) was set to 6 hours, which is the same level as for ordinary urban sewage treatment.
【0030】そして最終段の好気槽3c内の硝化液の1
部は、硝化液循環ポンプP5の作用により返送管路7か
ら嫌気槽2に100%,つまり好気槽3cへの流入量と
同量が還流され、脱窒に必要なNO3−N、NO2−N等
が嫌気槽2に供給される。好気槽3cからの排出液は最
終沈澱池4に流入して固液分離され、沈降した汚泥の1
部は、管路8から汚泥返送ポンプP6を介して30%で
嫌気槽2に返送される。よって嫌気槽2への循環率は1
30%となる。最終沈澱池4での滞留時間は2.5時間
とした。この最終沈澱池4の上澄液9は処理水として放
流される。本実施例ではSRT(汚泥平均滞留時間)1
0日の系と20日の系との2系列を設定した。Then, one of the nitrification liquids in the final stage aerobic tank 3c
By the action of the nitrification solution circulation pump P 5 , 100% is returned to the anaerobic tank 2 from the return pipe 7, that is, the same amount as the inflow amount to the aerobic tank 3c is refluxed, and NO 3 -N necessary for denitrification, NO 2 —N or the like is supplied to the anaerobic tank 2. The effluent from the aerobic tank 3c flows into the final settling tank 4 where it is separated into solid and liquid, and 1
The part is returned from the pipeline 8 to the anaerobic tank 2 at 30% via the sludge return pump P 6 . Therefore, the circulation rate to the anaerobic tank 2 is 1
It will be 30%. The residence time in the final settling tank 4 was 2.5 hours. The supernatant 9 of this final settling basin 4 is discharged as treated water. In this embodiment, SRT (average sludge retention time) 1
Two series were set, a system on day 0 and a system on day 20.
【0031】そして汚泥の馴養が良好に進行して処理状
態が安定である時のSRT10日と20日の系における
水温と総窒素除去率の関係を図3に示す。図3によれ
ば、水温が23℃付近を境にして高水温期ではSRT1
0日の方がSRT20日よりも総窒素除去率が高く、逆
に23℃付近を境にして低水温期ではSRT20日の方
がSRT10日よりも総窒素除去率が高いことが確認さ
れた。FIG. 3 shows the relationship between the water temperature and the total nitrogen removal rate in the system of SRT 10 days and 20 days when the sludge acclimation progresses favorably and the treatment condition is stable. According to Fig. 3, when the water temperature is around 23 ° C, SRT1
It was confirmed that the total nitrogen removal rate on day 0 was higher than that on day SRT 20, and conversely, the total nitrogen removal rate on day 20 SRT was higher than that on day 10 SRT in the low water temperature period around 23 ° C.
【0032】上記高水温期における反応槽の窒素の組成
変化の例を図4,図5に示す。図4はSRT10日の系
における反応槽の窒素変化を示し、図5はSRT20日
の系における反応槽の窒素変化を示している。両図に示
したように、嫌気槽2ではNOX−N(NO2−N+NO
3−N)がほぼ完全に脱窒されており、好気槽3a,3
b,3cではアンモニア性窒素(NH4−N)が硝化あ
るいは微生物増殖のために順次減少し、これに代わって
NOX−Nが生成するが、SRT10日と20日ではそ
の生成量が異なっている。Examples of changes in the composition of nitrogen in the reaction tank during the high water temperature period are shown in FIGS. FIG. 4 shows the nitrogen change in the reaction tank in the system on SRT 10 days, and FIG. 5 shows the nitrogen change in the reaction tank in the system on SRT 20 days. As shown in both figures, the anaerobic tank 2 NO X -N (NO 2 -N + NO
3- N) is almost completely denitrified, and aerobic tanks 3a, 3
In b and 3c, ammoniacal nitrogen (NH 4 —N) gradually decreases due to nitrification or microbial growth, and NO x —N is produced in its place, but the production amount differs between 10 and 20 days of SRT. There is.
【0033】即ち、SRT10日の系では、好気槽3b
から処理水にかけて総窒素濃度はさほど変化していない
が、SRT20日の系では、好気槽3b,3cから処理
水にかけて総窒素濃度が徐々に増加している。その原因
として脱窒により有機成分が消費されたため、菌体維持
や増殖に必要な有機成分が不足して、自己分解により徐
々に溶出した窒素成分が硝化されたためと考えられる。
そのため、総窒素除去率ではSRT10日の方がSRT
20日の方よりも高くなっている。That is, in the system of SRT 10 days, the aerobic tank 3b
The total nitrogen concentration does not change so much from S. al. To the treated water, but in the system of SRT 20 days, the total nitrogen concentration gradually increases from the aerobic tanks 3b and 3c to the treated water. It is considered that the reason is that the organic component was consumed by denitrification, and the organic component required for cell maintenance and growth was insufficient, and the nitrogen component gradually eluted by autolysis was nitrified.
Therefore, in terms of total nitrogen removal rate, SRT 10 days is more SRT
It is higher than the 20th.
【0034】図1は以上の知見に基づいて本実施例の制
御方法を採り入れた嫌気−好気活性汚泥処理装置の概要
図である。即ち、2a,2bは原水の撹拌を行う嫌気槽
であり、この嫌気槽2a,2bの内方底部に水中撹拌機
10,10が配置されている。3a,3b,3cは好気
槽であり、この好気槽3a,3b,3cの底部にはエア
吹出部材6,6,6が配置され、ブロワ5からエアが供
給される。4は最終沈澱池であり、この最終沈澱池4に
はモータM1を駆動源とする撹拌機構が付設されてい
る。FIG. 1 is a schematic diagram of an anaerobic-aerobic activated sludge treatment device incorporating the control method of this embodiment based on the above findings. That is, 2a and 2b are anaerobic tanks that stir the raw water, and submersible agitators 10 and 10 are arranged at the inner bottoms of the anaerobic tanks 2a and 2b. 3a, 3b, 3c are aerobic tanks, and air blowing members 6, 6, 6 are arranged at the bottoms of the aerobic tanks 3a, 3b, 3c, and air is supplied from the blower 5. Reference numeral 4 denotes a final sedimentation tank, and the final sedimentation tank 4 is provided with a stirring mechanism having a motor M 1 as a drive source.
【0035】上記最終段の好気槽3cには、硝化液の1
部を嫌気槽2aに還流するための硝化液循環ポンプP5
と返送管路7とが配設されている。又、最終沈澱池4の
底部から導出された管路8の中途部に汚泥返送ポンプP
6が配設されており、該管路8は汚泥分配槽11に連結
されている。12は汚泥分配槽11から嫌気槽2aに汚
泥の1部を返送する汚泥返送バルブ,13は余剰汚泥排
出バルブである。In the last-stage aerobic tank 3c, 1
Solution circulation pump P 5 for returning the part to the anaerobic tank 2a
And a return conduit 7 are provided. In addition, a sludge return pump P is provided in the middle of the pipe 8 which is led out from the bottom of the final settling basin 4.
6 is provided, and the pipeline 8 is connected to a sludge distribution tank 11. Reference numeral 12 is a sludge return valve for returning a part of the sludge from the sludge distribution tank 11 to the anaerobic tank 2a, and 13 is a surplus sludge discharge valve.
【0036】上記の嫌気槽2aには水温計15が配備さ
れている。16は総窒素分析装置であり、この総窒素分
析装置16には反応槽を構成する各嫌気槽2a,2bと
好気槽3a,3b,3cから液体がサンプリングされる
ようにしてある。17は窒素成分分析装置、18は制御
装置であり、該制御装置18の制御ライン18aが前記
ブロワ5と余剰汚泥排出バルブ13に接続されてそれぞ
れ駆動信号が出力される。A water temperature gauge 15 is provided in the anaerobic tank 2a. Reference numeral 16 is a total nitrogen analyzer, and the total nitrogen analyzer 16 is adapted to sample the liquid from each of the anaerobic tanks 2a and 2b and the aerobic tanks 3a, 3b and 3c constituting the reaction tank. Reference numeral 17 is a nitrogen component analyzer, and 18 is a controller. A control line 18a of the controller 18 is connected to the blower 5 and the excess sludge discharge valve 13 to output drive signals.
【0037】かかる実施例によれば、基本的な動作とし
て、先ず原水が嫌気槽2a,2bへ流入し、水中撹拌機
10,10の撹拌作用と脱窒細菌の作用に基づいてNO
3−N、NO2−NイオンのN2への還元、即ち脱窒が行
われる。次に原水は好気槽3a,3b,3cに順次流入
してブロワ5の駆動に伴ってエア吹出部材6,6,6か
らのエアレーションによる曝気が行われ、硝化細菌の作
用に基づいてアンモニア性窒素NH4−NのNO2−N又
はNO3−Nへの酸化、即ち硝化が行われる。According to this embodiment, as a basic operation, first, raw water flows into the anaerobic tanks 2a, 2b, and NO is generated based on the stirring action of the submersible stirrers 10, 10 and the action of denitrifying bacteria.
3 -N, reduction to N 2 in the NO 2 -N ions, i.e. denitrification is performed. Next, the raw water sequentially flows into the aerobic tanks 3a, 3b, 3c, aeration is performed by aeration from the air blowing members 6, 6, 6 as the blower 5 is driven, and ammonia gas is generated based on the action of nitrifying bacteria. Oxidation of nitrogen NH 4 —N to NO 2 —N or NO 3 —N, ie nitrification, takes place.
【0038】そして最終段の好気槽3c内の硝化液の1
部は、硝化液循環ポンプP5の作用により返送管路7か
ら嫌気槽2aに還流され、脱窒に必要なNO3−N、N
O2−N等が嫌気槽2に供給される。好気槽3cからの
排出液は最終沈澱池4に流入して固液分離され、沈降し
た汚泥は管路8から汚泥返送ポンプP6を介して汚泥分
配槽11に達し、この汚泥分配槽11に付設された汚泥
返送バルブ12の操作によって汚泥の1部が嫌気槽2a
に返送される一方、余剰汚泥排出バルブ13の開閉に応
じて余剰の汚泥が汚泥分配槽11から引き抜かれ、図外
の余剰汚泥処理装置に送り込まれて処理される。尚、最
終沈澱池4の上澄液9は処理水として放流される。Then, one of the nitrification solutions in the aerobic tank 3c at the final stage is
The part is refluxed from the return pipe 7 to the anaerobic tank 2a by the action of the nitrification solution circulation pump P 5 , and NO 3 -N, N necessary for denitrification are supplied.
O 2 —N or the like is supplied to the anaerobic tank 2. The effluent from the aerobic tank 3c flows into the final settling tank 4 for solid-liquid separation, and the sludge that has settled reaches the sludge distribution tank 11 from the pipeline 8 via the sludge return pump P 6 , and this sludge distribution tank 11 A part of the sludge is removed from the anaerobic tank 2a by operating the sludge return valve 12 attached to the
On the other hand, the excess sludge is extracted from the sludge distribution tank 11 according to the opening and closing of the excess sludge discharge valve 13 and is sent to an excess sludge treatment device (not shown) for treatment. The supernatant 9 of the final settling tank 4 is discharged as treated water.
【0039】そして本実施例ではこのような嫌気−好気
活性汚泥処理が進行している間に、指標として反応槽を
構成する各嫌気槽2a,2bと好気槽3a,3b,3c
から液体がサンプリングされて総窒素分析装置16に送
り込まれ、総窒素濃度(T−N濃度)が測定されるとと
もに次段の窒素成分分析装置17によって各窒素成分が
分析される。この窒素成分分析装置17としては通常イ
オンクロマトグラフィーが用いられる。In the present embodiment, while such anaerobic-aerobic activated sludge treatment is in progress, the anaerobic tanks 2a and 2b and the aerobic tanks 3a, 3b and 3c which constitute the reaction tank as an index are in progress.
The liquid is sampled from the above and sent to the total nitrogen analyzer 16, the total nitrogen concentration (TN concentration) is measured, and each nitrogen component is analyzed by the nitrogen component analyzer 17 in the next stage. Ion chromatography is usually used as the nitrogen component analyzer 17.
【0040】制御装置18には、嫌気槽2aに配備され
た水温計15で検出した原水の水温と分析された窒素成
分とが入力され、この制御装置18によって前記図3に
示したSRTの相違による水温と総窒素除去率との関係
から必要とするSRTを求め、このSRTに基づいて運
転を制御するとともに、好気処理の過程で総窒素濃度が
上昇しないようにブロワ5の駆動と余剰汚泥排出バルブ
13の開度を制御する信号を発する。The controller 18 is supplied with the water temperature of the raw water detected by the water thermometer 15 provided in the anaerobic tank 2a and the analyzed nitrogen component, and the controller 18 makes a difference between the SRTs shown in FIG. The required SRT is calculated from the relationship between the water temperature and the total nitrogen removal rate by the control, the operation is controlled based on this SRT, and the drive of the blower 5 and the excess sludge are prevented so that the total nitrogen concentration does not rise during the aerobic treatment process. A signal for controlling the opening degree of the discharge valve 13 is emitted.
【0041】通常好気槽3a,3b,3cの曝気量を高
めることにより硝化が促進され、硝化が順調に行われて
いる場合には、好気槽3cから嫌気槽2aに対する硝化
液の循環比を高めることにより、窒素の除去率を大きく
することができる。Normally, the nitrification is promoted by increasing the aeration amount of the aerobic tanks 3a, 3b and 3c, and when the nitrification is carried out smoothly, the circulation ratio of the nitrification liquid from the aerobic tank 3c to the anaerobic tank 2a. It is possible to increase the removal rate of nitrogen by increasing.
【0042】そして分析された窒素成分中にNOX−N
以外のアンモニア性窒素や有機性窒素が残存して硝化が
不十分な場合には、余剰汚泥排出バルブ13の開度を小
さくして汚泥分配槽11からの汚泥引き抜き量を抑え、
SRTを大きく設定して硝化と脱窒を促進する。Then, NO x --N is contained in the analyzed nitrogen component.
When ammonia nitrogen other than the above and organic nitrogen remain and nitrification is insufficient, the opening degree of the excess sludge discharge valve 13 is reduced to suppress the amount of sludge drawn out from the sludge distribution tank 11,
Set a large SRT to promote nitrification and denitrification.
【0043】従って本実施例によれば主として運転時に
おける最適なSRTを設定することが可能となり、嫌気
−好気活性汚泥処理の処理効率及び精度を高めることが
できる。Therefore, according to this embodiment, it is possible to set the optimum SRT mainly during operation, and it is possible to improve the treatment efficiency and accuracy of the anaerobic-aerobic activated sludge treatment.
【0044】[0044]
【発明の効果】以上詳細に説明したように、本発明にか
かる嫌気−好気活性汚泥処理装置の運転制御方法によれ
ば、指標として反応槽内の水温と総窒素濃度を測定する
とともに窒素成分が分析され、実験的に求めた水温と総
窒素除去率との関係から必要とする汚泥平均滞留時間
(SRT)が求めることにより、被処理水の総窒素濃度
が増加しないような汚泥平均滞留時間が設定され、これ
に基づいて効率的な窒素除去を可能とした運転を行うこ
とができる。特に長いSRTでの運転に伴うバルキング
とか放線菌によるスカムの発生が抑制されるという効果
が得られる。As described in detail above, according to the operation control method of the anaerobic-aerobic activated sludge treatment device according to the present invention, the water temperature and the total nitrogen concentration in the reaction tank are measured as indexes and the nitrogen component is also measured. Is analyzed and the required average sludge retention time (SRT) is calculated from the relationship between the experimentally determined water temperature and the total nitrogen removal rate. Is set, and based on this, the operation that enables efficient nitrogen removal can be performed. Particularly, it is possible to obtain an effect that the occurrence of scum due to actinomycetes and bulking associated with long SRT operation is suppressed.
【0045】更に汚泥分配槽に最終沈澱池の底部から導
出された汚泥を連結して、硝化状況に応じて上記余剰汚
泥排出バルブの開度を制御することにより、硝化と脱窒
を促進することがてきる。従って本発明によれば、嫌気
−好気活性汚泥処理装置の運転制御方法が確立されて、
廃水の処理効率及び精度を高められるという大きな効果
を発揮する。Further, by connecting the sludge derived from the bottom of the final settling tank to the sludge distribution tank and controlling the opening of the surplus sludge discharge valve according to the nitrification situation, nitrification and denitrification are promoted. Comes. Therefore, according to the present invention, the operation control method of the anaerobic-aerobic activated sludge treatment device is established,
It has a great effect that the treatment efficiency and accuracy of wastewater can be improved.
【図1】本発明の基本的実施例を示す概要図。FIG. 1 is a schematic diagram showing a basic embodiment of the present invention.
【図2】本発明の準備段階として実施した実験装置の概
要図。FIG. 2 is a schematic diagram of an experimental device implemented as a preparatory step of the present invention.
【図3】SRTの相違による水温と総窒素除去率との関
係を示すグラフ。FIG. 3 is a graph showing the relationship between water temperature and total nitrogen removal rate depending on the difference in SRT.
【図4】SRT10日の系における反応槽の窒素変化を
示すグラフ。FIG. 4 is a graph showing the change in nitrogen in the reaction vessel in the system on SRT 10 days.
【図5】SRT20日の系における反応槽の窒素変化を
示すグラフ。FIG. 5 is a graph showing changes in nitrogen in the reaction vessel in the system on SRT 20 days.
2a,2b…嫌気槽 3a,3b,3c…好気槽 4…最終沈澱池 5…ブロワ 6…エア吹出部材 7…返送管路 10…水中撹拌機 11…汚泥分配槽 12…汚泥返送バルブ 13…余剰汚泥排出バルブ 16…総窒素分析装置 17…窒素成分分析装置 18…制御装置 2a, 2b ... Anaerobic tank 3a, 3b, 3c ... Aerobic tank 4 ... Final sedimentation tank 5 ... Blower 6 ... Air blowing member 7 ... Return pipe line 10 ... Underwater agitator 11 ... Sludge distribution tank 12 ... Sludge return valve 13 ... Excess sludge discharge valve 16 ... Total nitrogen analyzer 17 ... Nitrogen component analyzer 18 ... Control device
Claims (2)
う工程と、好気槽で硝化細菌によりアンモニア性窒素の
硝化を行う工程と、最終沈澱池で固液分離し、沈降した
汚泥の一部を嫌気槽に戻すとともに残部を余剰汚泥処理
装置に送り込んで処理し、最終沈澱池の上澄液を処理水
として放流する工程と、好気槽内の硝化液の一部を嫌気
槽に還流して脱窒反応を促進する工程を含む嫌気−好気
活性汚泥処理装置において、 上記嫌気−好気活性汚泥処理装置を構成する反応槽の水
温を測定し、且つ各反応槽から採取したサンプリング液
の総窒素濃度を測定するとともに窒素成分を分析して、
予め実験的に求めた水温と総窒素除去率との関係から必
要とする汚泥平均滞留時間(SRT)を計算し、被処理
水の総窒素濃度が増加しないような汚泥平均滞留時間に
制御して運転を行うことを特徴とする嫌気−好気活性汚
泥処理装置の運転制御方法。1. A step of denitrifying waste water with denitrifying bacteria in an anaerobic tank, a step of nitrifying ammoniacal nitrogen with nitrifying bacteria in an aerobic tank, and a sludge which is solid-liquid separated and sedimented in a final sedimentation tank. Part of the water is returned to the anaerobic tank and the rest is sent to the excess sludge treatment device for treatment, and the supernatant of the final sedimentation tank is discharged as treated water, and part of the nitrification liquid in the aerobic tank is returned to the anaerobic tank. In the anaerobic-aerobic activated sludge treatment device including a step of accelerating the denitrification reaction, the water temperature of the reaction tank constituting the anaerobic-aerobic activated sludge treatment device is measured, and the sampling liquid collected from each reaction tank The total nitrogen concentration of
Calculate the required average sludge retention time (SRT) from the relationship between the water temperature and the total nitrogen removal rate, which were experimentally obtained in advance, and control the average sludge average retention time so that the total nitrogen concentration of the treated water does not increase. An operation control method for an anaerobic-aerobic activated sludge treatment device, which is characterized by performing an operation.
泥を、嫌気槽への汚泥返送バルブと余剰汚泥排出バルブ
が付設された汚泥分配槽に連結し、硝化状況に応じて上
記余剰汚泥排出バルブの開度を変化させて最終沈澱池か
らの汚泥の引抜量を制御することを特徴とする請求項1
記載の嫌気−好気活性汚泥処理装置の運転制御方法。2. The sludge discharged from the bottom of the final settling basin is connected to a sludge distribution tank equipped with a sludge return valve to an anaerobic tank and an excess sludge discharge valve, and the excess sludge is discharged depending on the nitrification situation. The amount of sludge drawn from the final settling tank is controlled by changing the opening of the valve.
An anaerobic-aerobic activated sludge treatment device operation control method as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24435692A JPH0691292A (en) | 1992-09-14 | 1992-09-14 | Operation control method of aerobic-anaerobic active sludge treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24435692A JPH0691292A (en) | 1992-09-14 | 1992-09-14 | Operation control method of aerobic-anaerobic active sludge treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0691292A true JPH0691292A (en) | 1994-04-05 |
Family
ID=17117485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24435692A Pending JPH0691292A (en) | 1992-09-14 | 1992-09-14 | Operation control method of aerobic-anaerobic active sludge treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0691292A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1011922A3 (en) * | 1998-05-19 | 2000-03-07 | Aquafin N V | Method for treatment of waste water |
JP2001104979A (en) * | 1999-10-13 | 2001-04-17 | Meidensha Corp | Wastewater treatment method |
JP2012200705A (en) * | 2011-03-28 | 2012-10-22 | Swing Corp | Nitrogen-containing wastewater treatment method and apparatus |
JP2015024411A (en) * | 2014-10-31 | 2015-02-05 | メタウォーター株式会社 | Sewage treatment system |
JP2018079402A (en) * | 2016-11-14 | 2018-05-24 | 株式会社日水コン | Sewage treatment system and sewage treatment method |
-
1992
- 1992-09-14 JP JP24435692A patent/JPH0691292A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1011922A3 (en) * | 1998-05-19 | 2000-03-07 | Aquafin N V | Method for treatment of waste water |
JP2001104979A (en) * | 1999-10-13 | 2001-04-17 | Meidensha Corp | Wastewater treatment method |
JP2012200705A (en) * | 2011-03-28 | 2012-10-22 | Swing Corp | Nitrogen-containing wastewater treatment method and apparatus |
JP2015024411A (en) * | 2014-10-31 | 2015-02-05 | メタウォーター株式会社 | Sewage treatment system |
JP2018079402A (en) * | 2016-11-14 | 2018-05-24 | 株式会社日水コン | Sewage treatment system and sewage treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5076928A (en) | Process for biological wastewater treatment | |
US5611927A (en) | System for removing nutrients from wastewater | |
EP1012121A1 (en) | Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater | |
US5525231A (en) | Method of operating a sequencing batch reactor | |
JP4302341B2 (en) | Biological nitrogen removal method and apparatus | |
JPH11156387A (en) | Wastewater treatment apparatus | |
JP3351149B2 (en) | Simultaneous removal of nitrogen and phosphorus from wastewater. | |
CA2300719A1 (en) | Membrane supported biofilm process | |
KR20000065883A (en) | A Process for Treatment of Wastewater Using Intermittently Aerated Membrane Bioreactor | |
JPH0691292A (en) | Operation control method of aerobic-anaerobic active sludge treatment apparatus | |
JP3271521B2 (en) | Wastewater nitrogen removal method and apparatus | |
JPH0722757B2 (en) | Biological removal method of nitrogen and phosphorus and its treatment device | |
JPS6254075B2 (en) | ||
JPH0724492A (en) | Method for controlling operation of activated sludge circulation change method | |
JPH0716595A (en) | Operation control method in modified method for circulating active sludge | |
JP2008018377A (en) | Intermittent biological treatment method | |
Evans et al. | Performance of a pilot-scale high rate algal pond system treating abattoir wastewater in rural South Australia: nitrification and denitrification | |
JPH05154496A (en) | Controlling method for operation in anaerobic and aerobic activated sludge treating equipment | |
KR0177912B1 (en) | Biological and chemical circulation advanced treatment system of wastewater using integrated reaction tank and water quality control tank | |
KR100415437B1 (en) | Advanced sludge reaeration process improving denitrification rate for nutrient removal | |
JPH07148496A (en) | Method for controlling operation of modified process for circulation of activated sludge | |
KR0129831B1 (en) | A process for sewage treatment wsing denitrification and dephosphorization | |
KR960011888B1 (en) | Method and apparatus for biological treatment of waste water including nitrogen and phosphorus | |
JPS6222678B2 (en) | ||
JP3608256B2 (en) | Operation control method for circulating nitrification denitrification |