JP3384951B2 - Biological water treatment method and equipment - Google Patents

Biological water treatment method and equipment

Info

Publication number
JP3384951B2
JP3384951B2 JP22831997A JP22831997A JP3384951B2 JP 3384951 B2 JP3384951 B2 JP 3384951B2 JP 22831997 A JP22831997 A JP 22831997A JP 22831997 A JP22831997 A JP 22831997A JP 3384951 B2 JP3384951 B2 JP 3384951B2
Authority
JP
Japan
Prior art keywords
anaerobic tank
phosphorus
tank
water
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22831997A
Other languages
Japanese (ja)
Other versions
JPH1157771A (en
Inventor
直樹 原
文智 木村
幹雄 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22831997A priority Critical patent/JP3384951B2/en
Publication of JPH1157771A publication Critical patent/JPH1157771A/en
Application granted granted Critical
Publication of JP3384951B2 publication Critical patent/JP3384951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、都市下水、産業排
水、水道原水などを生物学的に処理する生物学的水処理
方法及び設備に係わり、特に、流入水中のリンを安定に
除去するための生物学的水処理方法及び設備に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological water treatment method and equipment for biologically treating municipal wastewater, industrial wastewater, raw water for tap water, and the like, and in particular, for stably removing phosphorus in inflow water. Of biological water treatment method and equipment.

【0002】[0002]

【従来の技術】近年、湖沼、湾などの閉鎖性水域におい
て富栄養化が進行している。この原因になっているのが
窒素、リンの閉鎖性水域への流入であり、この流入低減
を早急に実施することが望まれる。下水処理場において
は、生活排水、工場排水などの下水に対し、活性汚泥法
と呼ばれる微生物処理によって、主に下水中の有機物を
除去している。しかし、流入下水中には、有機物の他に
放流水域の汚濁源となる窒素やリンが含まれている。こ
の内、下水中のリンは主にオルトリン酸(PO4−P)
として、窒素はアンモニア性窒素として流入する。これ
らのリン及び窒素が下水処理場で除去できずにそのまま
放流されると、これらを栄養源とする藻類が異常繁殖
し、水質汚濁につながる。そこで、下水処理場において
はリンが流出しないように極力除去せねばならない。こ
のため、有機物に加えてリンや窒素も除去可能な方式を
導入する下水処理場が増加している。リンを除去する物
理化学的な方法として、凝集法がある。凝集法は、原水
又は沈殿水に凝集剤を添加してリンを凝集沈殿させる方
式であり、効率のよいリン除去が可能である。しかし、
凝集法を適用するには、従来の活性汚泥設備とは別に凝
集沈殿設備を新規に設置せねばならない。このため、建
設コストの増大、敷地の確保難、凝集剤添加のランニン
グコストの増大など、実際に運用するまでに解決しなけ
ればならない問題が多い。このように実運転中の処理場
では、従来の活性汚泥法施設を利用したリン、窒素除去
法の使用が求められている。従来の活性汚泥法では、活
性汚泥菌体増殖時に下水中のリンを僅かに摂取するのみ
であり、富栄養化防止を目的としたリン除去は不可能で
ある。この活性汚泥プロセスの一施設である嫌気槽出口
に凝集剤を注入し、有機物とリンを同時除去する方法と
して、凝集剤添加活性汚泥法がある。凝集剤添加活性汚
泥法は、既存施設を利用できる利点を有するが、放流水
のリンを常に除去するには凝集剤を連続で注入せねばな
らず、ランニングコストが大幅に高くなる。又、活性汚
泥に凝集剤を注入すると汚泥発生量が増大し、その分、
汚泥処理コストも高くなる。更に、活性汚泥への凝集剤
添加は、生物相を変化させる危険性、放流水pHの低下
という問題もある。
2. Description of the Related Art In recent years, eutrophication has progressed in closed water areas such as lakes and marshes. The cause of this is the inflow of nitrogen and phosphorus into closed water areas, and it is desirable to immediately reduce this inflow. At the sewage treatment plant, sewage such as domestic wastewater and factory wastewater is mainly removed of organic substances in the sewage by a microbial treatment called an activated sludge method. However, the inflowing sewage contains, in addition to organic matter, nitrogen and phosphorus, which are pollution sources in the discharge area. Of these, phosphorus in sewage is mainly orthophosphoric acid (PO4-P).
As, nitrogen flows in as ammoniacal nitrogen. If these phosphorus and nitrogen cannot be removed at the sewage treatment plant and are discharged as they are, algae that use these as nutrient sources will proliferate abnormally, leading to water pollution. Therefore, at the sewage treatment plant, phosphorus must be removed as much as possible so that phosphorus does not flow out. For this reason, the number of sewage treatment plants introducing a system that can remove phosphorus and nitrogen in addition to organic substances is increasing. A flocculation method is a physicochemical method for removing phosphorus. The coagulation method is a method in which a coagulant is added to raw water or precipitation water to coagulate and precipitate phosphorus, and efficient phosphorus removal is possible. But,
In order to apply the coagulation method, a coagulation-sedimentation facility must be newly installed in addition to the conventional activated sludge facility. Therefore, there are many problems that must be solved before actual operation, such as an increase in construction cost, difficulty in securing a site, and an increase in running cost for adding a coagulant. As described above, in the treatment plant during actual operation, it is required to use the phosphorus and nitrogen removal method utilizing the conventional activated sludge method facility. The conventional activated sludge method only ingests a small amount of phosphorus in the sewage during the growth of the activated sludge cells, and cannot remove phosphorus for the purpose of preventing eutrophication. The coagulant-added activated sludge method is a method for injecting a coagulant into the outlet of an anaerobic tank, which is one of the facilities of this activated sludge process, to simultaneously remove organic matter and phosphorus. The coagulant-added activated sludge method has the advantage that existing facilities can be used, but the coagulant must be continuously injected in order to constantly remove the phosphorus in the effluent water, which significantly increases the running cost. Also, when coagulant is injected into activated sludge, the amount of sludge generated increases,
Sludge treatment costs also increase. Furthermore, the addition of a coagulant to activated sludge poses the problems of changing the biota and lowering the pH of discharged water.

【0003】一方、凝集剤を用いない生物学的な方法と
しては、活性汚泥プロセスの一施設である生物反応槽を
好気領域と嫌気領域に改造し、これらの領域を有効に組
み合わせた微生物反応槽としてリン除去を可能にした生
物学的リン除去法がある。活性汚泥は、酸素のない嫌気
状態では菌体内に蓄積しているポリリン酸をオルトリン
酸として放出し、次に、活性汚泥を好気状態にすると、
前段で放出した以上のオルトリン酸を摂取し、菌体内に
ポリリン酸として蓄積するため、流入水よりも好気槽出
口でリンは減少する。この生物学的リン除去法には、嫌
気−好気法(AO法)、嫌気−無酸素−好気法(A2O
法)などがあるが、嫌気状態でリンを放出する反応と、
好気槽でリンを摂取する反応という2つの工程を経由し
なければならない。したがって、リンに由来する水質汚
濁を防止するには、嫌気槽でオルトリン酸を良好に活性
汚泥から放出させ、好気槽でオルトリン酸を効率よく摂
取させる必要がある。
On the other hand, as a biological method which does not use a flocculant, a biological reaction tank which is one facility of an activated sludge process is remodeled into an aerobic region and an anaerobic region, and a microbial reaction in which these regions are effectively combined. There is a biological phosphorus removal method that enables phosphorus removal as a tank. Activated sludge releases polyphosphoric acid accumulated in the cells as orthophosphoric acid in an anaerobic state without oxygen, and when the activated sludge is made aerobic,
Ingesting more orthophosphoric acid released in the previous step and accumulating as polyphosphoric acid in the cells, phosphorus decreases at the aerobic tank outlet than influent water. This biological phosphorus removal method includes anaerobic-aerobic method (AO method), anaerobic-anoxic-aerobic method (A2O).
Method), but with a reaction that releases phosphorus in an anaerobic state,
It has to go through two steps: the reaction of ingesting phosphorus in the aerobic tank. Therefore, in order to prevent water pollution caused by phosphorus, it is necessary to release orthophosphoric acid from the activated sludge well in the anaerobic tank and efficiently ingest the orthophosphoric acid in the aerobic tank.

【0004】従来のリン除去方法として、特開昭63−
242392号公報に示されるように、流入水中のリン
に基づいて凝集剤を注入する方法、特開平3−2788
93号公報に示されるように、反応槽の酸化還元電位
(ORP)に基づいて添加する方法などの提案がある。
As a conventional phosphorus removing method, Japanese Patent Laid-Open No. 63-
As disclosed in Japanese Patent No. 242392, a method of injecting a flocculant based on phosphorus in inflow water, JP-A-3-2788
As disclosed in Japanese Patent Publication No. 93, there is a proposal such as a method of adding based on the oxidation-reduction potential (ORP) of a reaction tank.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記した従来
の生物学的リン除去法では、流入水中のリン濃度が高く
ても生物状態が正常であればリン除去が可能で、生物に
よるリン除去能力の低下時のみ補完的に凝集剤を注入す
べきである。
However, in the above-mentioned conventional biological phosphorus removal method, phosphorus can be removed if the biological state is normal even if the phosphorus concentration in the inflowing water is high, and the phosphorus removal ability by the organism is high. The coagulant should be injected complementally only when

【0006】更に、流入水中のリンに基づいて決定する
特開昭63−242392号公報においては、流入水中
のリンを計測して凝集剤を注入しているが、流入水中の
リンの値からは生物学的なリン除去プロセス処理後の放
流水リンを予測できない。例えば、流入水中のリンを直
接計測してそのリンで凝集剤を注入しても、放流水中の
リンが十分に除去されているにもかかわらず凝集剤を注
入する恐れがある。この場合、活性汚泥の生物に影響を
与え、正常な生物状態の悪化の可能性がある。又、流入
水中のリンが低くても、リン放出と摂取のバランスが崩
れれば放流水のリンは流入水よりも高くなることもあ
る。嫌気槽でリンを活性汚泥から良好に放出させ、つい
で好気槽でリンを効率よく摂取させるという生物の動作
が考慮されていないので、流入水中のリンに基づいて決
定する特開昭63−242392号公報の方法では、適
正な注入は不可能である。
Further, in Japanese Patent Laid-Open No. 63-242392, which determines based on the phosphorus in the inflow water, the phosphorus in the inflow water is measured and the coagulant is injected, but from the value of the phosphorus in the inflow water, Unpredictable effluent phosphorus after biological phosphorus removal process treatment. For example, even if the phosphorus in the inflow water is directly measured and the coagulant is injected with the phosphorus, the coagulant may be injected even though the phosphorus in the discharge water is sufficiently removed. In this case, the living matter of the activated sludge is affected, and there is a possibility that the normal living state is deteriorated. Even if the phosphorus content in the inflow water is low, the phosphorus content in the released water may be higher than that in the inflow water if the balance between phosphorus release and intake is upset. Since the behavior of the organism that releases phosphorus from the activated sludge well in the anaerobic tank and then efficiently ingests the phosphorus in the aerobic tank is not considered, the decision is made based on the phosphorus in the inflow water. Proper injection is impossible by the method of the gazette.

【0007】又、反応槽のORPに基づいて凝集剤を添
加する特開平3−278893号公報の方法は、ORP
値によって嫌気状態を維持する方式であるため、ORP
の計測値とリンの放出量とは相関が無く、嫌気状態が維
持できたとしても、その結果、生物学的なリン除去能力
を維持できるわけではない。下水処理場に流入する下水
は有機物やリン、窒素等の水質は勿論のこと、DO(di
ssolved oxygen)やpHも時々刻々変動している。OR
Pとは、pH、水温、DOの影響を受けて値が変化する
不安定な値であり、流入下水の変動に加え、風量制御、
返送汚泥制御などの運転条件によっても、当然、変動す
る。更に、電極の劣化よる長期的なデータ変動や異物の
付着などによる瞬間的な変動も発生する。このように、
ORP計測値によって生物学的リン除去プロセスを把握
することはできない。ましてやプロセス運転管理の適正
化に適用することはできない。以上のように、生物学的
リン除去法の運用においては、リンが嫌気槽で十分に放
出されることが前提であり、リン放出と摂取状態を把握
した運転が非常に重要であるにもかかわらず、従来、対
応がとれていなかった。
Further, the method of Japanese Patent Laid-Open No. 3-278893, in which a flocculant is added based on the ORP of the reaction tank, is the ORP.
ORP because it is a method to maintain the anaerobic state by the value
There is no correlation between the measured value of and the amount of released phosphorus, and even if the anaerobic state can be maintained, as a result, the biological phosphorus removal ability cannot be maintained. The sewage that flows into the sewage treatment plant is not only the water quality of organic matter, phosphorus, nitrogen, etc., but also DO (di
The ssolved oxygen) and pH are also changing every moment. OR
P is an unstable value whose value changes under the influence of pH, water temperature, and DO. In addition to fluctuation of inflow sewage, air flow control,
Naturally, it also varies depending on operating conditions such as control of returned sludge. In addition, long-term data fluctuations due to electrode deterioration and instantaneous fluctuations due to the adhesion of foreign matter also occur. in this way,
ORP measurements do not provide insight into the biological phosphorus removal process. Furthermore, it cannot be applied to the optimization of process operation management. As described above, in the operation of the biological phosphorus removal method, it is premised that phosphorus is sufficiently released in the anaerobic tank, and it is very important to operate while understanding the phosphorus release and intake state. In the past, there was no response.

【0008】本発明の目的は、リン除去効率を向上させ
ることのできる生物学的水処理方法及び設備を提供する
ことにある。
An object of the present invention is to provide a biological water treatment method and equipment capable of improving phosphorus removal efficiency.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明は、流入水中の溶解性リンを嫌気槽で放
出させ、後段の好気槽で過剰摂取してリンを除去する生
物学的水処理プロセスにおいて、前記嫌気槽に流入する
前記流入水の水量及び有機物濃度を計測し、この計測結
果に基づいて前記嫌気槽におけるリン放出速度を算出
し、このリン放出速度に基づいて前記嫌気槽における流
入水の嫌気槽滞留時間を算出し、この嫌気槽滞留時間に
基づいて前記嫌気槽の容積を調整する生物学的水処理方
法にしている。生物学的リン除去法ではリンが嫌気槽で
十分に放出されることが要件であり、このリン放出量は
嫌気槽における流入水の滞留時間に関係し、この滞留時
間を変えること、すなわち嫌気槽の容積を調整すること
によってリン放出量を制御できること、及び、リン放出
速度が流入水中の有機物濃度に比例することに着目し、
嫌気槽への流入水の水量と有機物濃度から嫌気槽のリン
放出速度を求め、このリン放出速度から算出した嫌気槽
滞留時間を基にリン放出量を維持されるように嫌気槽の
容積を変更している。これにより、リンが嫌気槽で十分
に放出され、生物学的リン除去法の運用が支障なく実施
できるようになり、放流水質を向上させることが可能に
なる。
In order to achieve the above object, the present invention is an organism in which soluble phosphorus in influent water is released in an anaerobic tank and is excessively ingested in a subsequent aerobic tank to remove phosphorus. In the biological water treatment process, the amount of water and the organic matter concentration of the inflow water flowing into the anaerobic tank are measured, the phosphorus release rate in the anaerobic tank is calculated based on the measurement result, and the phosphorus release rate is calculated based on the phosphorus release rate. The biological water treatment method is to calculate the anaerobic tank residence time of the inflow water in the anaerobic tank and adjust the volume of the anaerobic tank based on the anaerobic tank residence time. The biological phosphorus removal method requires that phosphorus is sufficiently released in the anaerobic tank, and this phosphorus release amount is related to the residence time of inflow water in the anaerobic tank, and it is necessary to change this residence time, that is, the anaerobic tank. Focusing on the fact that the amount of phosphorus released can be controlled by adjusting the volume of, and that the phosphorus release rate is proportional to the concentration of organic matter in the inflow water,
The phosphorus release rate of the anaerobic tank was calculated from the amount of water flowing into the anaerobic tank and the concentration of organic matter, and the volume of the anaerobic tank was changed so that the phosphorus release rate was maintained based on the anaerobic tank residence time calculated from this phosphorus release rate. is doing. As a result, phosphorus is sufficiently released in the anaerobic tank, the biological phosphorus removal method can be operated without any trouble, and the quality of discharged water can be improved.

【0010】又、上記の目的は、流入水中の溶解性リン
を嫌気槽で放出させ、後段の好気槽で過剰摂取してリン
を除去する生物学的水処理設備において、前記流入水が
前記嫌気槽に流入する水量を計測する流入水量計測手段
と、前記嫌気槽に流入する流入水の有機物の濃度を計測
する有機物計測手段と、該有機物計測手段の計測結果か
ら前記嫌気槽でのリン放出速度を演算するリン放出速度
演算手段と、該リン放出速度演算手段による演算結果を
基に前記嫌気槽の滞留時間を演算する滞留時間演算手段
と、該滞留時間演算手段の演算結果に基づいて前記嫌気
槽の容積を拡縮する嫌気槽容積調節手段を備えた生物学
的水処理設備によっても達成される。この構成によれ
ば、流入水量計測手段及び有機物計測手段によって嫌気
槽におけるリン放出速度の演算に必要な計測内容が求め
られ、リン放出速度演算手段で求めたリン放出速度を基
に滞留時間演算手段により嫌気槽における流入水の滞留
時間が算出される。この滞留時間の大小に応じて嫌気槽
容積調節手段により嫌気槽の容積が変更制御される。こ
れにより、嫌気槽で十分にリンが放出できるだけの滞留
時間が確保され、リン除去効率が向上できる結果、生物
学的リン除去法の運用が支障なく行えるようになり、良
質な放流水質が得られるようになる。
Further, the above-mentioned object is to release the soluble phosphorus in the inflowing water in the anaerobic tank and to ingest it excessively in the subsequent aerobic tank to remove phosphorus, and the inflowing water is Inflow water amount measuring means for measuring the amount of water flowing into the anaerobic tank, organic matter measuring means for measuring the concentration of organic matter in the inflow water flowing into the anaerobic tank, and phosphorus release in the anaerobic tank from the measurement result of the organic matter measuring means Phosphorus release rate calculation means for calculating the velocity, retention time calculation means for calculating the retention time of the anaerobic tank based on the calculation result by the phosphorus release rate calculation means, and based on the calculation result of the retention time calculation means It is also achieved by a biological water treatment facility provided with an anaerobic tank volume adjusting means for expanding or contracting the volume of the anaerobic tank. According to this configuration, the inflow water amount measuring means and the organic matter measuring means obtain the measurement contents necessary for the calculation of the phosphorus release rate in the anaerobic tank, and the residence time calculating means is based on the phosphorus release rate obtained by the phosphorus release rate calculating means. The residence time of the inflow water in the anaerobic tank is calculated by. The volume of the anaerobic tank is changed and controlled by the anaerobic tank volume adjusting means according to the size of the residence time. This ensures a sufficient residence time to release phosphorus in the anaerobic tank and improves the phosphorus removal efficiency.As a result, the operation of the biological phosphorus removal method can be performed without any problems, and high quality discharged water can be obtained. Like

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。流入下水中のリンはオルトリン酸
が殆どである。下水処理場は好気槽を必ず設置してお
り、この好気槽の前段を酸素無しの嫌気槽にすると、活
性汚泥に蓄積されているポリリン酸がオルトリン酸とし
て菌体内から放出される。オルトリン酸放出には、嫌気
状態を保つ必要がある。一方、好気槽においては、オル
トリン酸が活性汚泥に放出量以上に摂取され、ポリリン
酸として菌体内に再度蓄積される。従って、オルトリン
酸摂取には、前段の嫌気槽で十分なリン放出を起こすこ
とが不可欠である。放出が不十分なときは摂取も不十分
になり、結果的に放流水リン濃度が高くなる。このよう
に、嫌気槽と好気槽の組み合わせによって生物学的にリ
ンを除去できる。この結果、細胞合成に不可欠なリン源
の排出を防止でき、公共水位域におけるプランクトン等
の増殖を抑制し、水質汚染を抑制できる。したがって、
生物学的なリン除去能力の低下と回復を早期に把握する
ことが運転管理上重要である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. Most of the phosphorus in the inflowing sewage is orthophosphoric acid. An aerobic tank is always installed in the sewage treatment plant, and when the anterior stage of this aerobic tank is an anaerobic tank without oxygen, the polyphosphoric acid accumulated in the activated sludge is released from the cells as orthophosphoric acid. Anaerobic conditions must be maintained for orthophosphoric acid release. On the other hand, in the aerobic tank, orthophosphoric acid is ingested by activated sludge in an amount more than the amount released, and is accumulated again in the microbial cells as polyphosphoric acid. Therefore, ingesting orthophosphoric acid, it is essential to cause sufficient phosphorus release in the preceding anaerobic tank. If the release is insufficient, the intake will also be insufficient, resulting in a high concentration of phosphorus in the discharged water. In this way, phosphorus can be biologically removed by the combination of the anaerobic tank and the aerobic tank. As a result, it is possible to prevent the discharge of the phosphorus source that is indispensable for cell synthesis, suppress the growth of plankton and the like in the public water level area, and suppress the water pollution. Therefore,
It is important for operation management to grasp the deterioration and recovery of biological phosphorus removal capacity at an early stage.

【0012】本発明者らは、流入下水有機物濃度、嫌気
槽のリン放出量、リン摂取量とに密接な関係があり、流
入有機物濃度でリン放出量を表現できることを実験的に
見い出し、本発明に至った。すなわち、リン放出量は嫌
気槽の容積及び嫌気槽における流入水の滞留時間に比例
し、一方、滞留時間は嫌気槽の容積に比例して変化す
る。そこで、流入水有機物濃度に基づいてリン放出速度
を求め、このリン放出速度から嫌気槽滞留時間を求める
ことができる。嫌気槽滞留時間から嫌気槽容積を変更す
れば、リン放出量を制御できるために安定したリン放出
を維持でき、後段の過剰摂取と組み合わせて生物学的リ
ン除去能力を維持できるようになる。この詳細につい
て、以下に説明する。
The present inventors have experimentally found that the inflowing sewage organic matter concentration, the phosphorus release amount in the anaerobic tank, and the phosphorus intake amount are closely related to each other, and that the phosphorus release amount can be expressed by the inflowing organic matter concentration. Came to. That is, the amount of released phosphorus is proportional to the volume of the anaerobic tank and the retention time of the inflow water in the anaerobic tank, while the retention time changes in proportion to the volume of the anaerobic tank. Therefore, the phosphorus release rate can be obtained based on the concentration of organic matter in the inflow water, and the anaerobic tank residence time can be obtained from this phosphorus release rate. By changing the anaerobic tank volume from the anaerobic tank retention time, stable phosphorus release can be maintained because the phosphorus release amount can be controlled, and biological phosphorus removal ability can be maintained in combination with the excessive intake in the subsequent stage. The details will be described below.

【0013】図1は本発明の生物学的水処理方法が適用
された下水活性汚泥処理設備を示す。ここでは、嫌気槽
と好気槽からなる生物学的リン除去設備が示されてい
る。図中、11は流入下水10が供給される最初沈殿
池、12は送水管13を介して最初沈殿池11からの下
水が供給される第1嫌気槽、14は第1嫌気槽12に隣
接して設けられた第2嫌気槽、15は第2嫌気槽14に
隣接して設けられた好気槽である。第1嫌気槽12、第
2嫌気槽14及び好気槽15は全体が1つの槽として一
体的に構成されている。そして、第1嫌気槽12内には
機械攪拌設備16(第1の機械攪拌設備)が設置され、
第2嫌気槽14内には機械攪拌設備17(第2の機械攪
拌設備)及び散気管18が設置され、第2嫌気槽15内
には散気管19が設置されている。好気槽15には、水
処理された下水が供給される最終沈殿池20が接続され
ている。最終沈殿池20と第1嫌気槽12の間には、汚
泥返送管21が敷設されており、その途中には返送汚泥
設備22が設けられている。汚泥返送管21から分岐す
るようにして、汚泥排出管23が連結されており、その
途中には余剰汚泥設備24が設けられている。
FIG. 1 shows a sewage activated sludge treatment facility to which the biological water treatment method of the present invention is applied. Here, a biological phosphorus removal facility consisting of an anaerobic tank and an aerobic tank is shown. In the figure, 11 is a first settling tank to which the inflow sewage 10 is supplied, 12 is a first anaerobic tank to which sewage is supplied from the first settling tank 11 via a water supply pipe 13, and 14 is adjacent to the first anaerobic tank 12. The second anaerobic tank provided at 15 is an aerobic tank provided adjacent to the second anaerobic tank 14. The first anaerobic tank 12, the second anaerobic tank 14, and the aerobic tank 15 are integrally configured as one tank as a whole. Then, a mechanical stirring facility 16 (first mechanical stirring facility) is installed in the first anaerobic tank 12,
A mechanical stirring facility 17 (second mechanical stirring facility) and an air diffuser 18 are installed in the second anaerobic tank 14, and an air diffuser 19 is installed in the second anaerobic tank 15. To the aerobic tank 15, a final settling tank 20 to which the treated sewage is supplied is connected. A sludge return pipe 21 is laid between the final settling tank 20 and the first anaerobic tank 12, and a return sludge facility 22 is provided in the middle thereof. A sludge discharge pipe 23 is connected so as to branch from the sludge return pipe 21, and a surplus sludge facility 24 is provided in the middle thereof.

【0014】散気管18,19に空気を送るために空気
管33が設けられ、その入り側には空気を圧送するため
のブロア25が設けられている。このブロア25の出側
と散気管18との間には空気供給量を調節するための弁
26が配設されている。送水管13には、有機物濃度計
27及び流量計28が取り付けられ、好気槽15にはM
LSS計29が取り付けられている。このMLSS計2
9、有機物濃度計27、流量計28の各々には、リン放
出速度演算手段30が接続され、各検出信号が取り込ま
れる。リン放出速度演算手段30には滞留時間演算手段
31が接続され、この滞留時間演算手段31には風量制
御手段32が接続されている。この風量制御手段32に
よってブロア25及び弁26が制御される。
An air pipe 33 is provided for sending air to the air diffusers 18 and 19, and a blower 25 for sending air under pressure is provided on the inlet side thereof. A valve 26 for adjusting the air supply amount is arranged between the outlet side of the blower 25 and the air diffuser 18. An organic matter concentration meter 27 and a flow meter 28 are attached to the water supply pipe 13, and the aerobic tank 15 has M
An LSS meter 29 is attached. This MLSS total 2
9, a phosphorus release rate calculation means 30 is connected to each of the organic substance concentration meter 27 and the flow meter 28, and each detection signal is fetched. A retention time calculation means 31 is connected to the phosphorus release rate calculation means 30, and an air volume control means 32 is connected to the retention time calculation means 31. The blower 25 and the valve 26 are controlled by the air volume control means 32.

【0015】次に、以上の構成による水処理設備の動作
について説明する。家庭や工場から排出された流入下水
10は最初沈殿池11で粗大なゴミ、砂などの異物を沈
降させて除去する。最初沈殿池11から流出した下水
は、送水管13を介して第1嫌気槽12に導かれる。ま
た、第1嫌気槽12には、最終沈殿池20から汚泥返送
管21を介して返送汚泥(活性汚泥と称する微生物群)
が供給される。この第1嫌気槽12では、機械撹拌設備
16により流入下水10と返送汚泥とが撹拌混合され
る。第1嫌気槽12には曝気用の空気は送気せず、無酸
素の嫌気状態にされる。この嫌気状態において、活性汚
泥は体内に蓄積していたポリリン酸を加水分解し、オル
トリン酸(PO4−P)として下水中に放出する。又、
活性汚泥は、オルトリン酸放出と同時に有機物を吸着し
菌体内に蓄積する。この生物反応によって、第1嫌気槽
12ではリンが増加し、有機物が減少する。第2嫌気槽
14においては、弁26が閉の状態では嫌気槽として運
用され、弁26が開の状態ではブロワ25及び空気管3
3を介して送気された空気が散気管43によって散気す
るときには、好気槽として運用される。第2嫌気槽14
からの流出水は好気槽15に導かれる。好気槽15にお
いては、ブロワ25から空気管33を介して送気された
空気が散気管19から散気し、好気槽15内の下水と活
性汚泥からなる混合液を撹拌すると共に酸素を供給す
る。返送汚泥すなわち活性汚泥は、微生物の凝集した粒
径0.1〜1.0mm前後の塊(フロック)で、数十種
の微生物を含んでいる。好気槽15内の混合液の汚濁物
質は、酸素供給により活発化した活性汚泥の働きにより
処理される。例えば、活性汚泥は有機物を吸着し、供給
された空気中の酸素を吸収して有機物を酸化分解し、炭
酸ガスと水に分解する。又、活性汚泥は下水中のオルト
リン酸を摂取しポリリン酸として菌体内に蓄積し、アン
モニア性窒素(NH4−N)は硝酸性(NO3−N)あ
るいは亜硝酸性窒素(NO2−N)に酸化される。な
お、これら有機物、リン、アンモニア性窒素などの汚濁
物質の一部は活性汚泥の増殖にも利用される。活性汚泥
と下水の混合液は最終沈殿池20に導かれ、ここで活性
汚泥が重力沈降する。最終沈殿池20の上澄液は通常塩
素殺菌処理した後に、河川や海に放流される。一方、沈
殿した高濃度の活性汚泥は、その大部分が汚泥返送設備
22により返送汚泥として好気槽15に返送され、微生
物増殖分に相当する一部の活性汚泥は汚泥排出管23か
ら余剰汚泥として汚泥排出設備24で系外に排出し、脱
水や焼却等の汚泥処理工程を経て処理される。この活性
汚泥プロセスにおいて最終沈殿池20からの放流水は、
放流水域の溶存酸素を消費することがないほか、汚染を
進行させない水質であることを目的としており、この水
質確保のためには有機汚濁物質を除去し、栄養塩類であ
るリンを除去することが重要である。
Next, the operation of the water treatment facility having the above structure will be described. The inflow sewage 10 discharged from homes and factories is first settled in a settling tank 11 to remove foreign matters such as coarse dust and sand. The sewage that first flows out from the settling tank 11 is guided to the first anaerobic tank 12 via the water supply pipe 13. Further, in the first anaerobic tank 12, sludge returned from the final settling tank 20 through a sludge return pipe 21 (a group of microorganisms called activated sludge).
Is supplied. In the first anaerobic tank 12, the inflow sewage 10 and the returned sludge are agitated and mixed by the mechanical agitation equipment 16. Air for aeration is not sent to the first anaerobic tank 12, and the first anaerobic tank 12 is in an anoxic anaerobic state. In this anaerobic state, activated sludge hydrolyzes polyphosphoric acid accumulated in the body, and releases it as orthophosphoric acid (PO4-P) into sewage. or,
Activated sludge adsorbs organic matter at the same time as orthophosphoric acid is released and accumulates in the cells. By this biological reaction, phosphorus increases and organic matter decreases in the first anaerobic tank 12. In the second anaerobic tank 14, when the valve 26 is closed, it is operated as an anaerobic tank, and when the valve 26 is open, the blower 25 and the air pipe 3 are operated.
When the air sent through 3 is diffused by the diffuser pipe 43, it is operated as an aerobic tank. Second anaerobic tank 14
Effluent from the water is led to the aerobic tank 15. In the aerobic tank 15, the air sent from the blower 25 through the air pipe 33 diffuses from the air diffuser 19 to stir the mixed liquid of the sewage and the activated sludge in the aerobic tank 15 and generate oxygen. Supply. The returned sludge, that is, activated sludge, is a lump (floc) having a particle size of about 0.1 to 1.0 mm in which microorganisms are aggregated, and contains several tens of kinds of microorganisms. The pollutants of the mixed liquid in the aerobic tank 15 are processed by the action of activated sludge activated by oxygen supply. For example, activated sludge adsorbs organic matter, absorbs oxygen in the supplied air, oxidatively decomposes organic matter, and decomposes it into carbon dioxide gas and water. In addition, activated sludge ingests orthophosphoric acid in sewage and accumulates in the cells as polyphosphoric acid, and ammoniacal nitrogen (NH4-N) is oxidized to nitric acid (NO3-N) or nitrite nitrogen (NO2-N). To be done. In addition, some of these pollutants such as organic matter, phosphorus, and ammoniacal nitrogen are also utilized for the growth of activated sludge. The mixed liquid of activated sludge and sewage is guided to the final settling tank 20, where the activated sludge settles by gravity. The supernatant of the final settling tank 20 is usually sterilized by chlorine and then discharged into a river or the sea. On the other hand, most of the sedimented high-concentration activated sludge is returned to the aerobic tank 15 as return sludge by the sludge return facility 22, and a part of the activated sludge corresponding to the microbial growth is excess sludge from the sludge discharge pipe 23. As a result, the sludge is discharged to the outside of the system by the sludge discharge facility 24, and processed through a sludge treatment process such as dehydration and incineration. In this activated sludge process, the water discharged from the final settling tank 20 is
In addition to consuming dissolved oxygen in the effluent area, the purpose is to have a water quality that does not promote pollution.To secure this water quality, it is necessary to remove organic pollutants and remove nutrients such as phosphorus. is important.

【0016】第1嫌気槽12において、活性汚泥は嫌気
状態でオルトリン酸を放出するため、リンは第1嫌気槽
12入口よりも出口の方が高い。リン放出量が十分で有
れば次工程の第2嫌気槽14は好気槽として運用する。
この場合第2嫌気槽14、好気槽15において活性汚泥
は好気状態下で、第1嫌気槽12で放出した量以上のオ
ルトリン酸を菌体内に摂取するために、流入下水中より
も放流水のオルトリン酸が少なくなる。このような活性
汚泥の放出と過剰摂取によるリン除去方法を生物学的リ
ン除去法と呼ぶ。この生物学的リン除去法は、第1嫌気
槽12における嫌気条件下において、リンが十分に放出
されていることを前提としたプロセスであり、リン放出
が不十分であると好気条件のリン過剰摂取は進行しな
い。つまり、リン除去率の低下、更には放出リンがその
まま放流されてリンが逆に増加する恐れもある。リン放
出を阻害する要因として、有機物の低下がある。流入下
水中の有機物は自然界や生活環境によって変動し、有機
物が低下すると第1嫌気槽12のリン放出が進行せず、
リンの過剰摂取も発生しない。
In the first anaerobic tank 12, activated sludge releases orthophosphoric acid in an anaerobic state, so that phosphorus is higher at the outlet than at the first anaerobic tank 12 inlet. If the phosphorus release amount is sufficient, the second anaerobic tank 14 in the next step is operated as an aerobic tank.
In this case, the activated sludge in the second anaerobic tank 14 and the aerobic tank 15 is aerobically discharged, and in order to ingest more orthophosphoric acid than the amount released in the first anaerobic tank 12 into the microbial cells, it is discharged more than the inflowing sewage. Less orthophosphoric acid in water. Such a phosphorus removal method by releasing activated sludge and excessive intake is called a biological phosphorus removal method. This biological phosphorus removal method is a process on the assumption that phosphorus is sufficiently released under the anaerobic conditions in the first anaerobic tank 12, and if phosphorus release is insufficient, the phosphorus is aerobic. Overdose does not progress. In other words, there is a possibility that the phosphorus removal rate may decrease, and that the released phosphorus may be released as it is and the phosphorus may increase. As a factor that inhibits phosphorus release, there is a decrease in organic matter. Organic matter in the inflowing sewage fluctuates depending on the natural world and living environment, and when the organic matter decreases, phosphorus release from the first anaerobic tank 12 does not proceed,
There is no overdose of phosphorus.

【0017】有機物濃度計27では、最初沈殿池11の
出口あるいは嫌気槽12の入口に設置され、微生物反応
前の生物学的酸素消費量(BOD)又は化学的酸素消費
量(COD)を有機物濃度として計測する。一般に、流
入下水の有機物濃度は80〜150mg/l程度であ
る。リン放出速度演算手段30は、有機物濃度計27に
よる有機物濃度から嫌気槽リン放出速度及びリン除去率
を演算する。リン放出の大きな阻害要因は、流入下水の
有機物濃度である。リン放出速度演算手段30は、リン
放出速度を、例えば〔数1〕に示すような流入下水有機
物濃度とリン放出速度の関係式から算出する。この算出
結果は、滞留時間演算手段31へ送出される。
The organic matter concentration meter 27 is first installed at the exit of the sedimentation tank 11 or the entrance of the anaerobic tank 12, and the biological oxygen consumption (BOD) or the chemical oxygen consumption (COD) before the microbial reaction is measured as the organic matter concentration. To measure. Generally, the organic matter concentration of the inflowing sewage is about 80 to 150 mg / l. The phosphorus release rate calculation means 30 calculates the anaerobic tank phosphorus release rate and the phosphorus removal rate from the organic matter concentration measured by the organic matter concentration meter 27. A major inhibitor of phosphorus release is the organic matter concentration of the influent sewage. The phosphorus release rate calculation means 30 calculates the phosphorus release rate from the relational expression between the concentration of inflowing sewage organic matter and the phosphorus release rate as shown in, for example, [Equation 1]. The calculation result is sent to the residence time calculation means 31.

【数1】Pv=A・10**S (但し、Pvはリン放出速度、Sは有機物濃度、Aは係
数) 滞留時間演算手段31は、前記リン放出速度、流量計2
8で計測した流入流量、及びMLSS計29で計測した
汚泥濃度の各々に基づいて、リン放出量を所定値以上に
するための嫌気槽滞留時間を演算する。風量制御手段3
2は、滞留時間が第1嫌気槽12で確保できる場合には
弁26を開いて第2嫌気槽14に空気を送って好気条件
を生成し、第1嫌気槽12で滞留時間を確保できない場
合には弁26を閉じて第2嫌気槽14に嫌気条件を生成
する。これにより、嫌気槽容積を大きくなって滞留時間
が増え、リン放出量を確保することができる。
## EQU1 ## Pv = A.10 ** S (where Pv is the phosphorus release rate, S is the organic matter concentration, and A is the coefficient) The residence time calculation means 31 is the phosphorus release rate, the flowmeter 2
Based on each of the inflow flow rate measured in 8 and the sludge concentration measured by the MLSS meter 29, the anaerobic tank residence time for making the phosphorus release amount equal to or more than a predetermined value is calculated. Air volume control means 3
When the retention time can be secured in the first anaerobic tank 12, the valve 2 is opened to send air to the second anaerobic tank 14 to generate aerobic conditions, and the retention time cannot be secured in the first anaerobic tank 12. In this case, the valve 26 is closed to generate the anaerobic condition in the second anaerobic tank 14. As a result, the anaerobic tank volume is increased, the residence time is increased, and the phosphorus release amount can be secured.

【0018】図2は有機物濃度とリン放出の関係を示す
特性図であり、生物学的リン除去法の流入下水有機物濃
度とリン放出速度の関係を示している。リン放出速度が
小さいと、十分なリン放出に多くの時間を要することが
わかる。この事実をもとに、本発明者らは、流入下水有
機物濃度、嫌気槽のリン放出量、リン摂取量との間には
密接な関係があり、流入有機物濃度でリン放出量を表現
できることを実験的に見い出した。すなわち、流入下水
中の有機物濃度が高くなると、第1嫌気槽12における
リン放出速度も大きくなり、両者に相関性があることを
見出した。
FIG. 2 is a characteristic diagram showing the relationship between organic matter concentration and phosphorus release, and shows the relationship between influent sewage organic matter concentration and phosphorus release rate in the biological phosphorus removal method. It can be seen that when the phosphorus release rate is small, it takes a lot of time to release phosphorus sufficiently. Based on this fact, the present inventors have found that there is a close relationship between the influent sewage organic matter concentration, the anaerobic tank phosphorus release amount, and the phosphorus intake amount, and it is possible to express the phosphorus release amount by the influent organic matter concentration. Found experimentally. That is, it was found that the higher the concentration of organic matter in the inflowing sewage, the higher the phosphorus release rate in the first anaerobic tank 12, and there is a correlation between the two.

【0019】図3はリン放出量と摂取量の関係を示して
いる。図3から明らかなように、リン放出量と摂取量の
相関性は高く、リン放出量が多いほど摂取量も多くな
る。
FIG. 3 shows the relationship between phosphorus release and intake. As is clear from FIG. 3, the correlation between the phosphorus release amount and the intake amount is high, and the intake amount increases as the phosphorus release amount increases.

【0020】図4はリン放出量と過剰摂取量の関係を示
している。嫌気槽において、リン放出量が所定値(本実
施例では5mg/L)以上であれば過剰摂取が進み、リ
ン除去率が高くなる。嫌気槽におけるリン放出量が少な
いと、次工程を好気条件にしても摂取が進行せずリン除
去率は低下する。このように、生物学的リン除去法で
は、リン放出量を所定値以上に保つことが重要である。
FIG. 4 shows the relationship between phosphorus release and excess intake. In the anaerobic tank, if the phosphorus release amount is a predetermined value (5 mg / L in this example) or more, excessive intake proceeds and the phosphorus removal rate increases. When the amount of phosphorus released in the anaerobic tank is small, intake does not proceed even if the next step is aerobic, and the phosphorus removal rate decreases. As described above, in the biological phosphorus removal method, it is important to keep the amount of released phosphorus at a predetermined value or more.

【0021】なお、流入下水有機物濃度とリン放出速度
の関係式は予め実験により求めてもよい。又、例えば、
ディスプレイなどの表示手段を設けて画面上にデータな
どを数値やグラフで表示してもよい。或いは、数値のレ
ベルによってグラフィックシンボルの表示色を変化させ
てもよい。リン放出量が所定値以下の場合は警報音や音
声を発してもよい。
The relational expression between the concentration of inflowing sewage organic matter and the phosphorus release rate may be obtained in advance by experiments. Also, for example,
A display unit such as a display may be provided to display data or the like on the screen as numerical values or graphs. Alternatively, the display color of the graphic symbol may be changed depending on the numerical level. When the amount of released phosphorus is less than or equal to a predetermined value, an alarm sound or voice may be emitted.

【0022】[0022]

【発明の効果】本発明によれば、嫌気槽への流入水の水
量及び有機物濃度を計測し、この計測結果に基づいて前
記嫌気槽におけるリン放出速度を算出し、このリン放出
速度に基づいて前記嫌気槽における流入水の嫌気槽滞留
時間を算出し、更に、該嫌気槽滞留時間に基づいて前記
嫌気槽の容積を調節するようにしたので、活性汚泥処理
設備を有する水処理プラントにおける放流水質のリンの
上昇を早期に把握できる結果、生物学的リン除去プロセ
スの管理が効果的に行えるようになり、良質な放流水質
が得られるようになる。また、嫌気槽を2槽にし、第2
嫌気槽を滞留時間の算出結果に応じて嫌気条件又は好気
条件に設定することにより、嫌気槽を拡縮することがで
き、リン放出量を所定値に維持することが可能になる。
According to the present invention, the amount of water flowing into the anaerobic tank and the organic matter concentration are measured, the phosphorus release rate in the anaerobic tank is calculated based on the measurement result, and the phosphorus release rate is calculated based on the phosphorus release rate. The anaerobic tank residence time of the inflow water in the anaerobic tank was calculated, and the volume of the anaerobic tank was adjusted based on the anaerobic tank residence time. Therefore, the quality of the discharged water in a water treatment plant having an activated sludge treatment facility was calculated. As a result of the early understanding of the rise in phosphorus in water, the biological phosphorus removal process can be effectively controlled, and a high quality of discharged water can be obtained. Also, the anaerobic tank is changed to 2 tanks, and the second
By setting the anaerobic tank under the anaerobic condition or the aerobic condition according to the calculation result of the residence time, the anaerobic tank can be expanded or contracted, and the phosphorus release amount can be maintained at a predetermined value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の生物学的水処理方法が適用された下水
活性汚泥処理設備を示す。
FIG. 1 shows a sewage activated sludge treatment facility to which the biological water treatment method of the present invention is applied.

【図2】流入下水有機物とリン放出速度の関係を示す特
性図である。
FIG. 2 is a characteristic diagram showing the relationship between inflowing sewage organic matter and phosphorus release rate.

【図3】リン放出濃度とリン摂取濃度の関係を示す特性
図である。
FIG. 3 is a characteristic diagram showing a relationship between phosphorus release concentration and phosphorus intake concentration.

【図4】リン放出濃度とリン過剰摂取濃度の関係を示す
特性図である。
FIG. 4 is a characteristic diagram showing the relationship between phosphorus release concentration and phosphorus excessive intake concentration.

【符号の説明】[Explanation of symbols]

11 最初沈殿池 12 第1嫌気槽 14 第2嫌気槽 15 好気槽 16,17 機械撹拌設備 18,19 散気管 25 ブロワ 26 弁 27 有機物濃度計 28 流量計 29 MLSS計 30 リン放出速度演算手段 31 滞留時間演算手段 32 風量制御手段 33 空気管 11 First settling tank 12 First Anaerobic Tank 14 Second Anaerobic Tank 15 aerobic tank 16,17 Mechanical stirring equipment 18,19 Air diffuser 25 Blower 26 valves 27 Organic matter concentration meter 28 Flowmeter 29 MLSS meter 30 Phosphorus release rate calculation means 31 Residence time calculation means 32 Air volume control means 33 air tube

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−228319(JP,A) 特開 平8−117793(JP,A) 特開 平8−323393(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 C02F 3/28 - 3/34 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-9-228319 (JP, A) JP-A-8-117793 (JP, A) JP-A-8-323393 (JP, A) (58) Field (Int.Cl. 7 , DB name) C02F 3/12 C02F 3/28-3/34

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流入水中の溶解性リンを嫌気槽で放出さ
せ、後段の好気槽で過剰摂取してリンを除去する生物学
的水処理プロセスにおいて、前記嫌気槽に流入する前記
流入水の水量及び有機物濃度を計測し、この計測結果に
基づいて前記嫌気槽におけるリン放出速度を算出し、こ
のリン放出速度に基づいて前記嫌気槽における流入水の
嫌気槽滞留時間を算出し、この嫌気槽滞留時間に基づい
て前記嫌気槽の容積を調整することを特徴とする生物学
的水処理方法。
1. A biological water treatment process in which soluble phosphorus in influent water is released in an anaerobic tank and is excessively ingested in a subsequent aerobic tank to remove phosphorus, and the influent water flowing into the anaerobic tank is discharged. The amount of water and the concentration of organic matter are measured, the phosphorus release rate in the anaerobic tank is calculated based on the measurement result, and the anaerobic tank residence time of the inflow water in the anaerobic tank is calculated based on the phosphorus release rate. A biological water treatment method comprising adjusting the volume of the anaerobic tank based on the residence time.
【請求項2】 前記嫌気槽の容積調整は、前記嫌気槽が
小容積に設定した状態で前記嫌気槽滞留時間を確保でき
なくなったとき、前記嫌気槽の容積を拡大することを特
徴とする請求項1記載の生物学的水処理方法。
2. The volume of the anaerobic tank is adjusted so that the volume of the anaerobic tank is increased when the retention time of the anaerobic tank cannot be secured in a state where the anaerobic tank is set to a small volume. Item 2. The biological water treatment method according to Item 1.
【請求項3】 流入水中の溶解性リンを嫌気槽で放出さ
せ、後段の好気槽で過剰摂取してリンを除去する生物学
的水処理設備において、前記流入水が前記嫌気槽に流入
する水量を計測する流入水量計測手段と、前記嫌気槽に
流入する流入水の有機物の濃度を計測する有機物計測手
段と、該有機物計測手段の計測結果から前記嫌気槽での
リン放出速度を演算するリン放出速度演算手段と、該リ
ン放出速度演算手段による演算結果を基に前記嫌気槽の
滞留時間を演算する滞留時間演算手段と、該滞留時間演
算手段の演算結果に基づいて前記嫌気槽の容積を拡縮す
る嫌気槽容積調節手段を具備することを特徴とする生物
学的水処理設備。
3. A biological water treatment facility in which soluble phosphorus in influent water is released in an anaerobic tank and is excessively ingested in a subsequent aerobic tank to remove phosphorus, and the influent water flows into the anaerobic tank. Inflow water amount measuring means for measuring water amount, organic matter measuring means for measuring concentration of organic matter of inflow water flowing into the anaerobic tank, and phosphorus for calculating phosphorus release rate in the anaerobic tank from the measurement result of the organic matter measuring means. The release rate calculation means, the retention time calculation means for calculating the retention time of the anaerobic tank based on the calculation result by the phosphorus release rate calculation means, and the volume of the anaerobic tank based on the calculation result of the retention time calculation means A biological water treatment facility comprising an anaerobic tank volume adjusting means for expanding and contracting.
【請求項4】 前記嫌気槽容積調節手段は、前記嫌気槽
に設けられた散気管に空気を送る嫌気槽散気手段と、前
記滞留時間に基づいて前記嫌気槽散気手段を制御する風
量制御手段を具備することを特徴とする請求項3記載の
生物学的水処理設備。
4. The anaerobic tank volume adjusting means sends the air to an air diffuser provided in the anaerobic tank, and the air volume control for controlling the anaerobic tank aeration means based on the residence time. The biological water treatment facility according to claim 3, further comprising means.
【請求項5】 前記嫌気槽は、第1の機械攪拌設備を備
えた第1の嫌気槽と、第2の機械攪拌設備及び散気管を
備えた第2の嫌気槽とを連続配置して構成され、前記滞
留時間が前記第1の嫌気槽のみによって確保できる時に
は前記風量制御手段により前記第2の嫌気槽の前記散気
管に空気が供給され、前記滞留時間が確保できない時に
は前記風量制御手段による前記第2の嫌気槽への空気供
給が停止されることを特徴とする請求項4記載の生物学
的水処理設備。
5. The anaerobic tank is configured by continuously arranging a first anaerobic tank equipped with a first mechanical stirring facility and a second anaerobic tank equipped with a second mechanical stirring facility and an air diffusing pipe. When the residence time can be secured only by the first anaerobic tank, air is supplied to the air diffuser pipe of the second anaerobic tank by the air volume control means, and when the residence time cannot be secured, the air volume control means is used. The biological water treatment facility according to claim 4, wherein the air supply to the second anaerobic tank is stopped.
JP22831997A 1997-08-25 1997-08-25 Biological water treatment method and equipment Expired - Fee Related JP3384951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22831997A JP3384951B2 (en) 1997-08-25 1997-08-25 Biological water treatment method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22831997A JP3384951B2 (en) 1997-08-25 1997-08-25 Biological water treatment method and equipment

Publications (2)

Publication Number Publication Date
JPH1157771A JPH1157771A (en) 1999-03-02
JP3384951B2 true JP3384951B2 (en) 2003-03-10

Family

ID=16874592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22831997A Expired - Fee Related JP3384951B2 (en) 1997-08-25 1997-08-25 Biological water treatment method and equipment

Country Status (1)

Country Link
JP (1) JP3384951B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000859A (en) * 2005-05-24 2007-01-11 Toshiba Corp Phosphorous removal device in sewage disposal plant
JP5041698B2 (en) * 2005-11-24 2012-10-03 新日本製鐵株式会社 Sewage treatment method
JP4920016B2 (en) * 2008-09-12 2012-04-18 株式会社日立製作所 Control device and method of phosphorus recovery device by crystallization
JP4920017B2 (en) * 2008-09-18 2012-04-18 株式会社日立製作所 Control device and control method of phosphorus recovery device by crystallization
JP4995215B2 (en) * 2009-03-23 2012-08-08 前澤工業株式会社 Sewage treatment equipment
JP7158912B2 (en) * 2018-06-22 2022-10-24 株式会社東芝 Regulation compartment control device, regulation compartment control method, computer program and organic wastewater treatment system

Also Published As

Publication number Publication date
JPH1157771A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
KR101904985B1 (en) A water-purifying treatment device with renewable energy generation plant and using waste glass and artificial filter medium Manufactured by Method
JP4334317B2 (en) Sewage treatment system
CN112875859A (en) Sewage nitrogen and phosphorus removal control system based on AOA technology
JP4229999B2 (en) Biological nitrogen removal equipment
KR20090030397A (en) Apparatus for high rate removal of nitrogen and phosphorus from swtp/wwtp
CN110078213B (en) Device and method for strengthening stable operation of anaerobic ammonia oxidation treatment of municipal sewage by SBR/anaerobic baffle reactor
JP3384951B2 (en) Biological water treatment method and equipment
KR20180117340A (en) The Sewage Disposal Systems
CN114853172B (en) Continuous flow low-carbon denitrification process for domestic sewage with low carbon nitrogen ratio
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
JP3379199B2 (en) Operation control method of activated sludge circulation method
KR20150064574A (en) Energy-saving system for treatment of wastewater and method for control of the same
JP3707305B2 (en) Water treatment monitoring control method and apparatus
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
CN107986443A (en) A kind of whole process autotrophic denitrification method that big sewage is fluctuated suitable for COD/N
JPH0938683A (en) Biological water treating device
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JP3707526B2 (en) Waste water nitrification method and apparatus
US6706171B2 (en) Systems for treating wastewater in a series of filter-containing tanks
JP2003053375A (en) Device for controlling water quality
JPH11169887A (en) Flocculant injection control method in water treatment process and device therefor
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JPH0938682A (en) Biological water treatment
CN112340947A (en) Sewage nitrogen and phosphorus removal adjusting system and adjusting method thereof
JP4453287B2 (en) Sewage treatment method and sewage treatment control system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees