JP4920017B2 - Control device and control method of phosphorus recovery device by crystallization - Google Patents

Control device and control method of phosphorus recovery device by crystallization Download PDF

Info

Publication number
JP4920017B2
JP4920017B2 JP2008238804A JP2008238804A JP4920017B2 JP 4920017 B2 JP4920017 B2 JP 4920017B2 JP 2008238804 A JP2008238804 A JP 2008238804A JP 2008238804 A JP2008238804 A JP 2008238804A JP 4920017 B2 JP4920017 B2 JP 4920017B2
Authority
JP
Japan
Prior art keywords
phosphoric acid
calculated
calcium
acid content
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008238804A
Other languages
Japanese (ja)
Other versions
JP2010069403A (en
Inventor
直樹 原
文智 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008238804A priority Critical patent/JP4920017B2/en
Priority to CN2009101707428A priority patent/CN101671011B/en
Publication of JP2010069403A publication Critical patent/JP2010069403A/en
Application granted granted Critical
Publication of JP4920017B2 publication Critical patent/JP4920017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control apparatus and a control method in a phosphorous recovery device by crystallization, with which the improvement of efficiency of recovering phosphoric acid is made possible by calculating a phosphoric acid content in surplus sludge, finding a phosphoric acid release rate from the phosphoric acid content and controlling an organic matter injection amount so that phosphoric acid release can be made the maximum. <P>SOLUTION: The control apparatus comprises: a phosphoric acid content calculating means 200 where a phosphoric acid content in surplus sludge is calculated from data measured by a water quality measuring instrument installed in an activated sludge process; a phosphoric acid release rate calculating means 11 where a phosphoric acid release rate in a precipitation tank is calculated from measured data including the phosphoric acid content calculated by the phosphoric acid calculating means 200 and surplus sludge concentration measured by a surplus sludge densitometer, and concentration of organic matter necessary for the release of phosphoric acid is calculated from the calculated phosphoric acid release rate; and an organic matter injection controlling means 13 controlling the injection amount of an organic matter injection machine 12 injecting organic matter into the precipitation tank so as to attain the concentration of organic matter calculated by the phosphoric acid release rate calculating means 11. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、活性汚泥プロセスの余剰汚泥に有機物を注入して沈殿槽に沈降滞留させ、沈殿槽の上澄み液を晶析槽に導いてカルシウムを添加し、りん酸カルシウムとして回収する晶析によるりん回収装置の制御装置及び制御方法に関する。   In the present invention, an organic substance is injected into surplus sludge of an activated sludge process and allowed to settle and settle in a sedimentation tank. The present invention relates to a control apparatus and control method for a recovery apparatus.

りんは、動植物に不可欠な栄養塩類であるが、地球上のりん鉱石の埋蔵量は有限であり、100年後には枯渇すると予測されている。そのため、りんの回収と再利用は重要な課題となっている。   Phosphorus is an essential nutrient for animals and plants, but the reserves of phosphate ore on the earth are limited and are expected to be depleted in 100 years. Therefore, the recovery and reuse of phosphorus has become an important issue.

動植物性の生活排水が流れる下水には、低濃度のりんが含まれているため、下水処理場の活性汚泥プロセスから排出される余剰汚泥や廃液から、りんを回収する技術の研究と実験が進められている。   Since sewage through which animal and vegetable domestic wastewater flows contains low concentrations of phosphorus, research and experiments on technology to recover phosphorus from excess sludge and wastewater discharged from the activated sludge process at sewage treatment plants are underway. It has been.

回収されたりん酸カルシウムが、肥料,食品添加物,試薬の他、様々の産業に利用可能であることから、溶解性のりん酸(PO4−P)にカルシウム(Ca)を添加して不溶性のりん酸カルシウムとして回収する方法(以下晶析りん回収法)について、種々の試みがなされている。   Since the recovered calcium phosphate can be used in various industries besides fertilizers, food additives, and reagents, it is insoluble by adding calcium (Ca) to soluble phosphoric acid (PO4-P). Various attempts have been made with respect to a method for recovering calcium phosphate (hereinafter, crystallization phosphorus recovery method).

例えば、活性汚泥プロセスの1つである嫌気好気法では、流入下水中に含まれる溶解性りんを、活性汚泥と呼ばれる微生物群内にポリりん酸として貯蔵して、下水中から除去している。従って、活性汚泥プロセスから引き抜いた余剰汚泥を沈殿槽で沈降させて固液分離し、余剰汚泥からりん酸を放出させた沈殿槽の上澄み液にカルシウムを添加することにより、りん酸カルシウムを回収することができる。このような、余剰汚泥を利用した晶析りん回収法では、余剰汚泥から、りん酸を十分に放出させるプロセスと、りん酸量に見合ったカルシウムを添加するプロセスの適切な運転が不可欠である。   For example, in the anaerobic aerobic method, which is one of the activated sludge processes, soluble phosphorus contained in the inflowing sewage is stored as polyphosphoric acid in a microorganism group called activated sludge and removed from the sewage. . Therefore, the excess sludge extracted from the activated sludge process is settled in a sedimentation tank and separated into solid and liquid, and calcium phosphate is recovered by adding calcium to the supernatant of the sedimentation tank from which the excess sludge has been released. be able to. In such a crystallization phosphorus recovery method using surplus sludge, an appropriate operation of a process of sufficiently releasing phosphoric acid from the surplus sludge and a process of adding calcium corresponding to the amount of phosphoric acid is indispensable.

余剰汚泥から、りん酸カルシウムを回収する従来の技術には、〔特許文献1〕に記載のように、有機性廃液の生物処理装置から排出される余剰汚泥の少なくとも一部を生物的に消化し、消化汚泥を可溶化する余剰汚泥処理手段と、余剰汚泥処理手段の液分を分離する固液分離手段と、固液分離手段からの分離水を脱リンする脱リン手段とを有し、脱リン手段からの処理水の一部を余剰汚泥処理手段へ返送する返送手段を備えた有機性廃液処理装置が提案されている。   Conventional techniques for recovering calcium phosphate from surplus sludge include biological digestion of at least a portion of surplus sludge discharged from a biological treatment apparatus for organic waste liquid as described in [Patent Document 1]. A surplus sludge treatment means for solubilizing digested sludge, a solid-liquid separation means for separating the liquid content of the surplus sludge treatment means, and a dephosphorization means for dephosphorizing the separated water from the solid-liquid separation means. An organic waste liquid treatment apparatus having a return means for returning a part of the treated water from the phosphorus means to the surplus sludge treatment means has been proposed.

又、りん含有排水に注入するカルシウムを制御する従来の技術には、〔特許文献2〕に記載のように、リン含有排水を反応晶析槽内に導入し、カルシウム化合物とアルカリ剤の少なくとも1つを添加し、りん酸カルシウムを含有する結晶種の流動床を形成しながらりん酸含有排水中のリンと結晶種とを接触させて、りん酸含有排水中のリンをりん酸カルシウム化合物として分離し、反応晶析槽内に導入されるリン含有排水の流量に応じて反応晶析槽内に注入するカルシウム化合物とアルカリ剤の少なくとも1つの量をフィードフォワード制御する晶析脱リン方法が提案されている。   In addition, as described in [Patent Document 2], a conventional technique for controlling calcium injected into phosphorus-containing wastewater introduces phosphorus-containing wastewater into a reaction crystallization tank, and at least one of a calcium compound and an alkali agent is introduced. The phosphorus in the phosphate-containing wastewater is brought into contact with the crystal seeds while forming a fluidized bed of crystal seeds containing calcium phosphate, and the phosphorus in the phosphate-containing wastewater is separated as a calcium phosphate compound. Then, a crystallization dephosphorization method is proposed in which feedforward control is performed on at least one of a calcium compound and an alkali agent injected into the reaction crystallization tank in accordance with the flow rate of the phosphorus-containing wastewater introduced into the reaction crystallization tank. ing.

特開2007−50387号公報JP 2007-50387 A 特開2003−190967号公報JP 2003-190967 A

流入下水中のりん酸量は、人間の社会活動,産業活動の影響を受け、また、時間,天候,季節などの自然界の影響を受けて大きく変動するため、活性汚泥プロセスから排出された余剰汚泥中のりん酸含有量も変動する。このため、余剰汚泥を沈殿槽で滞留した時のりん酸放出量は一定ではなく、沈殿槽におけるりん酸放出速度は、余剰汚泥中のりん酸含有量,余剰汚泥濃度,液中の有機物濃度に大きく依存する。   The amount of phosphoric acid in the influent sewage is affected by human social activities and industrial activities, and also fluctuates greatly under the influence of the natural world such as time, weather, season, etc., so excess sludge discharged from the activated sludge process The phosphoric acid content in it also varies. For this reason, the amount of phosphoric acid released when the excess sludge stays in the settling tank is not constant, and the rate of phosphoric acid released from the settling tank depends on the phosphoric acid content in the excess sludge, the excess sludge concentration, and the organic matter concentration in the liquid. It depends heavily.

よって、晶析法により余剰汚泥からりん酸を高効率で回収するには、上述したように、流入する余剰汚泥中のりん酸含有量を把握し、有機物を適正に注入してりん酸を適切に放出させる運転を実施する必要がある。   Therefore, in order to recover phosphoric acid from surplus sludge with high efficiency by the crystallization method, as described above, the phosphoric acid content in the surplus sludge that flows in is grasped, and organic substances are injected appropriately to appropriately add phosphoric acid. It is necessary to carry out the operation to be discharged.

〔特許文献1〕に記載の有機性廃液処理装置では、余剰汚泥から、りん酸を放出させる手段に関しては何ら記載が無く、余剰汚泥からりん酸を回収する装置の運転管理には適用できない。又、りん酸変動に対するカルシウム注入方法についても記載されていない。   In the organic waste liquid treatment apparatus described in [Patent Document 1], there is no description about means for releasing phosphoric acid from excess sludge, and it cannot be applied to operation management of an apparatus for recovering phosphoric acid from excess sludge. Further, there is no description about a calcium injection method for phosphate fluctuation.

一方、〔特許文献2〕には、りん含有排水の流量に応じて注入するカルシウム注入量をフィードフォワード制御する方法が提案されている。しかし、〔特許文献2〕に記載の晶析脱リン方法では、リン含有排水の流量に応じて制御をしているため、りん酸量が変動した場合は、りん酸量に見合った適正なカルシウムを注入できないという問題がある。   On the other hand, [Patent Document 2] proposes a method for feedforward control of the amount of calcium injected according to the flow rate of phosphorus-containing waste water. However, in the crystallization and dephosphorization method described in [Patent Document 2], since control is performed according to the flow rate of the phosphorus-containing wastewater, when the amount of phosphoric acid varies, an appropriate calcium commensurate with the amount of phosphoric acid. There is a problem that can not be injected.

このため、カルシウムの注入不足によるりん回収率の低下、逆に、カルシウム過剰注入による排水カルシウム残留が避けられない。特に、排水中に残留したカルシウムは、りん回収装置,バルブ,配管内に析出して悪影響を及ぼすだけでなく、水環境への悪影響も大きい。   For this reason, the phosphorus recovery rate decreases due to insufficient calcium injection, and conversely, residual calcium drainage due to excessive calcium injection is unavoidable. In particular, the calcium remaining in the wastewater not only has an adverse effect on the phosphorus recovery device, valve, and piping, but also has a significant adverse effect on the water environment.

このように、〔特許文献1〕,〔特許文献2〕に記載の従来の技術では、余剰汚泥からのりん回収には、りん酸放出とカルシウム注入の適正化が重要であるにも関わらず、何ら対応されていないため、余剰汚泥から、りん酸を回収する装置を適切に運用することはできないという問題がある。   Thus, in the conventional techniques described in [Patent Document 1] and [Patent Document 2], in order to recover phosphorus from excess sludge, despite the importance of phosphoric acid release and calcium injection optimization, Since nothing is supported, there is a problem that an apparatus for recovering phosphoric acid from excess sludge cannot be properly operated.

りん酸計測については、溶解性りん酸であれば、膜ろ過で汚泥を分離した後に計測する手法を自動化したセンサが実用化されつつある。しかし、余剰汚泥に含まれたりん酸量の計測については、余剰汚泥を乾燥させた後に、元素分析器などを使用してりん成分を計測するという手分析で計測せざるを得ないため、連続運転しているりん回収装置の運転に反映することは不可能であった。   With respect to phosphoric acid measurement, a sensor that has automated a method of measuring sludge after membrane separation is being put into practical use for soluble phosphoric acid. However, the amount of phosphoric acid contained in excess sludge must be measured manually by measuring the phosphorus component using an element analyzer after drying the excess sludge. It was impossible to reflect the operation of the operating phosphorus recovery system.

このように、りん回収効率を高く安定させるには、余剰汚泥から放出されるりん酸が最大となるように適正な有機物を注入し、放出されたりん酸に見合った適正なカルシウムを注入せねばならないが、従来の技術では実現できないという課題があった。   Thus, in order to stabilize the phosphorus recovery efficiency at a high level, it is necessary to inject an appropriate organic substance so as to maximize the phosphoric acid released from the excess sludge and to inject an appropriate calcium corresponding to the released phosphoric acid. However, there is a problem that it cannot be realized by the conventional technology.

本発明の目的は、余剰汚泥のりん酸含有量を演算し、りん酸含有量からりん酸放出速度を求めて、りん酸放出が最大となるように有機物注入量を制御することで、りん酸回収効率向上を可能とする晶析によるりん回収装置の制御装置及び制御方法を提供することにある。   The object of the present invention is to calculate the phosphoric acid content of excess sludge, obtain the phosphoric acid release rate from the phosphoric acid content, and control the amount of organic matter injected so that the phosphoric acid release is maximized. It is an object of the present invention to provide a control device and a control method for a phosphorus recovery device by crystallization that can improve recovery efficiency.

上記目的を達成するために、本発明は、活性汚泥プロセスの余剰汚泥を沈殿槽で沈降滞留させて、上澄み液を晶析槽に導き、カルシウムを添加してりん酸カルシウムとして回収するりん回収装置を制御するために、余剰汚泥中のりん酸含有量を演算するりん酸含有量演算手段と、りん酸放出速度を演算するりん酸放出速度演算手段と、沈殿槽へ注入する有機物量を制御する有機物注入制御手段と、晶析槽へ注入するカルシウム量を制御するカルシウム注入制御手段とを備え、りん酸放出速度演算手段は、りん酸含有量演算手段により演算されたりん酸含有量に基づいて有機物注入量設定値を演算し、この演算結果により有機物注入制御手段により沈殿槽へ注入する有機物量を制御するものである。   In order to achieve the above object, the present invention provides a phosphorus recovery apparatus in which surplus sludge from an activated sludge process is settled and retained in a settling tank, the supernatant liquid is guided to a crystallization tank, and calcium is added and recovered as calcium phosphate. In order to control the amount of phosphoric acid in the excess sludge, the phosphoric acid content calculating means for calculating the phosphoric acid content, the phosphoric acid releasing speed calculating means for calculating the phosphoric acid releasing speed, and the amount of organic substances injected into the precipitation tank are controlled. An organic substance injection control means and a calcium injection control means for controlling the amount of calcium injected into the crystallization tank, and the phosphoric acid release rate calculating means is based on the phosphoric acid content calculated by the phosphoric acid content calculating means. An organic material injection amount set value is calculated, and the organic material amount injected into the precipitation tank is controlled by the organic material injection control means based on the calculation result.

また、りん酸放出速度演算手段は、りん酸含有量演算手段により演算されたりん酸含有量に基づいてりん酸放濃度を演算し、演算されたりん酸濃度に基づいてカルシウム注入制御手段によりカルシウム注入量を制御するものである。   The phosphoric acid release rate calculating means calculates the phosphoric acid release concentration based on the phosphoric acid content calculated by the phosphoric acid content calculating means, and based on the calculated phosphoric acid concentration, the calcium injection control means calculates calcium. The amount to be injected is controlled.

本発明によれば、余剰汚泥に貯蔵されたりん酸の変動や、晶析槽に流入するりん酸の変動が発生しても、余剰汚泥から放出されるりん酸が最大となるように適正な有機物を注入でき、りん回収効率が安定かつ高効率でりんを回収できる。   According to the present invention, even if fluctuations in phosphoric acid stored in excess sludge and fluctuations in phosphoric acid flowing into the crystallization tank occur, it is appropriate to maximize the phosphoric acid released from the excess sludge. Organic matter can be injected, phosphorus recovery efficiency is stable and phosphorus can be recovered with high efficiency.

本発明の一実施例を図1から図4により説明する。図1は、本実施例の晶析によるりん回収装置の構成図である。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of a phosphorus recovery apparatus using crystallization according to the present embodiment.

図4に一例として示す活性汚泥プロセスから排出された余剰汚泥が流入する流路1には、余剰汚泥濃度計2,流量計20,流入調整ゲート3が順次接続され、流量調整ゲート3には流路6により沈殿槽4が接続されている。沈殿槽4には、濃縮汚泥の引き抜きを行うための流路7が接続されている。沈殿槽4は、流量計9が設けられた流路15により晶析槽5に接続されている。晶析槽5には排水のための流路16及びりん酸カルシウムを回収するための流路8が接続されている。   An excess sludge concentration meter 2, a flow meter 20, and an inflow adjustment gate 3 are sequentially connected to the flow path 1 into which surplus sludge discharged from the activated sludge process shown as an example in FIG. A sedimentation tank 4 is connected by a path 6. A flow path 7 for extracting concentrated sludge is connected to the settling tank 4. The sedimentation tank 4 is connected to the crystallization tank 5 by a flow path 15 provided with a flow meter 9. The crystallization tank 5 is connected with a flow path 16 for draining and a flow path 8 for collecting calcium phosphate.

余剰汚泥濃度計2は、りん酸含有量演算手段200に接続されたりん酸放出速度演算手段11に接続され、りん酸放出速度演算手段11は、流量計20から信号を入力し、有機物注入機12に制御信号を出力する有機物注入制御手段13、並びに流量計9から信号を入力し、カルシウム注入機10に制御信号を出力するカルシウム注入制御手段14に接続されている。カルシウム注入機10は、晶析槽5にカルシウムの注入を行う。   The surplus sludge concentration meter 2 is connected to the phosphoric acid release rate calculating means 11 connected to the phosphoric acid content calculating means 200, and the phosphoric acid release rate calculating means 11 receives a signal from the flow meter 20 and inputs an organic substance injection machine. 12 is connected to organic injection control means 13 for outputting a control signal to 12 and calcium injection control means 14 for inputting a signal from the flow meter 9 and outputting a control signal to the calcium injector 10. The calcium injector 10 injects calcium into the crystallization tank 5.

活性汚泥プロセスから排出され、流路1を流れる余剰汚泥は、沈殿槽4に流入する。余剰汚泥は、沈殿槽4に流入して沈降し、濃縮された余剰汚泥と汚泥を含まない上澄み液に分離される。有機物注入機12により沈殿槽4へ有機物を添加し、沈殿槽4内を酸素のない嫌気状態に維持すると、余剰汚泥内の微生物が貯蔵していたりん酸が液中に放出される。余剰汚泥を沈殿槽4に滞留させて固液分離された上澄み液には放出されたりん酸が溶解している。   Excess sludge discharged from the activated sludge process and flowing through the flow path 1 flows into the settling tank 4. The surplus sludge flows into the settling tank 4 and settles, and is separated into concentrated surplus sludge and a supernatant liquid that does not contain sludge. When an organic substance is added to the precipitation tank 4 by the organic substance injection machine 12 and the inside of the precipitation tank 4 is maintained in an anaerobic state without oxygen, phosphoric acid stored by microorganisms in excess sludge is released into the liquid. The released phosphoric acid is dissolved in the supernatant liquid that is solid-liquid separated by retaining the excess sludge in the settling tank 4.

沈殿槽4に沈殿した余剰汚泥は、流路7により濃縮汚泥として沈殿槽4から引き抜かれて処分される。濃縮汚泥の引き抜きは、一定量で連続的に行ってもよく、間欠的に行っても良い。流入した余剰汚泥の固形物量を演算して、演算された固形物量に基づいて濃縮汚泥の引き抜き量が決定される。   The excess sludge that has settled in the settling tank 4 is drawn out from the settling tank 4 as a concentrated sludge by the flow path 7 and disposed. Extraction of the concentrated sludge may be performed continuously in a constant amount or intermittently. The amount of excess sludge that has flowed in is calculated, and the amount of concentrated sludge withdrawn is determined based on the calculated amount of solid matter.

沈殿槽4から流出した上澄み液は、流路15により晶析槽5に送られ、カルシウム注入機10から注入されたカルシウムと混合されて、りん酸カルシウムを生成する。晶析槽5で生成したりん酸カルシウムは、流路8により連続的あるいは間欠的に晶析槽5から回収される。   The supernatant liquid flowing out of the precipitation tank 4 is sent to the crystallization tank 5 through the flow path 15 and mixed with calcium injected from the calcium injector 10 to generate calcium phosphate. The calcium phosphate produced in the crystallization tank 5 is collected from the crystallization tank 5 continuously or intermittently by the flow path 8.

りん酸含有量演算手段200は、下水処理場の活性汚泥プロセスに設置した水質計測器で計測されたデータから、後述する数6により余剰汚泥に貯蔵されたりん酸含有量を演算して、りん酸放出速度演算手段11に送信する。   The phosphoric acid content calculating means 200 calculates the phosphoric acid content stored in the surplus sludge from the data measured by the water quality measuring instrument installed in the activated sludge process of the sewage treatment plant, It transmits to the acid release rate calculation means 11.

りん酸放出速度演算手段11は、余剰汚泥濃度計2で計測された余剰汚泥濃度,余剰汚泥流量計20で計測された余剰汚泥濃流量などの計測データ、りん酸含有量などの演算結果、初期設定データを用いて、後述する数3により、沈殿槽4内のりん酸放出速度を演算する。この演算結果に基づいて、沈殿槽4への有機物注入量設定値を演算して、有機物注入制御手段13に送信する。有機物注入制御手段13は受信した有機物注入量設定値により、有機物注入機12を制御して沈殿槽4への有機物流入量を調節する。   The phosphoric acid release rate calculating means 11 is used to calculate measurement data such as the excess sludge concentration measured by the excess sludge concentration meter 2, the excess sludge flow rate measured by the excess sludge flow meter 20, the calculation result of the phosphoric acid content, etc. Using the setting data, the phosphoric acid release rate in the settling tank 4 is calculated by Equation 3 described later. Based on the calculation result, an organic material injection amount set value for the settling tank 4 is calculated and transmitted to the organic material injection control means 13. The organic substance injection control means 13 controls the organic substance injector 12 according to the received organic substance injection amount setting value to adjust the amount of organic substance flowing into the settling tank 4.

一方、りん酸放出速度演算手段11は、余剰汚泥濃度計2で計測された余剰汚泥濃度,りん酸含有量などのデータ,沈殿槽容積や演算用係数などの初期設定データを用いて、沈殿槽4で分離された上澄み液に含まれるりん酸量を演算し、カルシウム注入制御手段14に送信する。   On the other hand, the phosphoric acid release rate calculating means 11 uses the data such as the excess sludge concentration and the phosphoric acid content measured by the excess sludge concentration meter 2 and the initial setting data such as the precipitation tank volume and the calculation coefficient. The amount of phosphoric acid contained in the supernatant liquid separated in 4 is calculated and transmitted to the calcium injection control means 14.

カルシウム注入制御手段14は、受信したりん酸量と、流量計9で計測された晶析槽5への流入する上澄み液の流入流量からカルシウム注入量を演算して、演算結果をカルシウム注入機10に送信する。カルシウム注入機10は、注入弁の弁開度などを制御することにより、設定されたカルシウム注入量を晶析槽5に注入する。   The calcium injection control means 14 calculates the calcium injection amount from the received phosphoric acid amount and the inflow flow rate of the supernatant liquid flowing into the crystallization tank 5 measured by the flow meter 9, and the calculation result is calculated as the calcium injection machine 10. Send to. The calcium injector 10 injects the set calcium injection amount into the crystallization tank 5 by controlling the valve opening degree of the injection valve and the like.

図2は、本実施例のりん酸放出速度演算手段11の構成図である。図2に示すように、りん酸放出速度演算手段11は、主としてCPU111,入出力部100,メモリ112で構成される。   FIG. 2 is a block diagram of the phosphoric acid release rate calculating means 11 of this embodiment. As shown in FIG. 2, the phosphoric acid release rate calculating means 11 is mainly composed of a CPU 111, an input / output unit 100, and a memory 112.

メモリ112には、滞留時間演算114,目標とするりん酸放出速度演算115,りん酸放出に必要な有機物量演算116,りん酸放出量演算118などのプログラム群と、データベース113が格納されている。   The memory 112 stores a program group such as a residence time calculation 114, a target phosphoric acid release rate calculation 115, an organic substance amount calculation 116 necessary for phosphoric acid release, a phosphoric acid release amount calculation 118, and a database 113. .

入出力部100は、通信インタフェースであり、ネットワーク120を介して端末119,りん酸含有量演算手段200,余剰汚泥濃度計2,余剰汚泥流量計20,有機物注入制御手段13,カルシウム注入制御手段14と接続している。入出力部100を介して相互に送受信し、データベース113のデータを更新する。   The input / output unit 100 is a communication interface, and via a network 120, a terminal 119, a phosphoric acid content calculation unit 200, a surplus sludge concentration meter 2, a surplus sludge flow meter 20, an organic substance injection control unit 13, a calcium injection control unit 14 Connected. Data is transmitted / received to / from each other via the input / output unit 100 and the data in the database 113 is updated.

CPU111は、メモリ112に格納されたプログラム群を定周期あるいはイベント発生で実行し、りん酸含有量演算手段200で演算されたりん酸含有量データと、余剰汚泥濃度計2で計測された余剰汚泥濃度データ,余剰汚泥流量計20で計測された余剰汚泥流量データなどを入力として、沈殿槽4における有機物注入量とりん酸放出量を演算して、演算結果をそれぞれ有機物注入制御手段13,カルシウム注入制御手段14に送信する。   The CPU 111 executes the program group stored in the memory 112 at regular intervals or occurrence of an event, and the phosphoric acid content data calculated by the phosphoric acid content calculating means 200 and the excess sludge measured by the excess sludge concentration meter 2. Concentration data, surplus sludge flow rate data measured by the surplus sludge flow meter 20 and the like are input, and the amount of organic matter injected and the amount of phosphoric acid released in the settling tank 4 are calculated. It transmits to the control means 14.

図3は、りん酸放出速度演算手段11の演算フローを示す流れ図である。りん酸放出速度演算手段11のCPU111は、メモリ112のプログラムを例えば次のようなステップにて実行する。   FIG. 3 is a flowchart showing a calculation flow of the phosphoric acid release rate calculation means 11. The CPU 111 of the phosphoric acid release rate calculating means 11 executes the program in the memory 112 in the following steps, for example.

ステップS1では、データベース113から計測値,沈殿池容積や晶析槽容積などの装置構造、演算式の定数を読み出す。ステップS2では、滞留時間演算114のプログラムにより、例えば数1により、沈殿槽4に流入した余剰汚泥が滞留する時間を計算する。   In step S1, the measured values, the apparatus structure such as the sedimentation tank volume and the crystallization tank volume, and the constants of the arithmetic expression are read out from the database 113. In step S2, the time for which the excess sludge that has flowed into the settling tank 4 stays is calculated by, for example, Equation 1, using the program for the stay time calculation 114.

Figure 0004920017
Figure 0004920017

ここで、Tは滞留時間(h)、Fは余剰汚泥流量(m3/h)、Cは沈殿槽容積(m3)である。 Here, T is the residence time (h), F is the excess sludge flow rate (m 3 / h), and C is the sedimentation tank volume (m 3 ).

ステップS3では、目標とするりん酸放出速度演算115のプログラムにより、例えば数2により、余剰汚泥に貯蔵されているりん酸を放出させるのに必要な放出速度の目標値を計算する。SS(Susupended Solid)は、水中の浮遊固形物量のことで余剰汚泥量を表す。   In step S3, the target value of the release rate required to release the phosphoric acid stored in the excess sludge is calculated by the program of the target phosphate release rate calculation 115, for example, using Equation 2. SS (Susupended Solid) is the amount of suspended solids in water and represents the amount of excess sludge.

Figure 0004920017
Figure 0004920017

ここで、V1は目標とするりん酸放出速度(gP/m3/h)、Rはりん酸含有量(gP/gSS)、Xは余剰汚泥濃度(gSS/m3)、Tは滞留時間(h)である。 Here, V1 is the target phosphoric acid release rate (gP / m 3 / h), R is the phosphoric acid content (gP / gSS), X is the excess sludge concentration (gSS / m 3 ), and T is the residence time ( h).

ステップS4では、りん酸放出に必要な有機物量演算116のプログラムにより、例えば数3のりん酸放出速度式を使用して、数2で求めた目標とするりん酸放出速度を代入し、りん酸放出に必要な有機物濃度Aを算出する。COD(Chemical Oxygen Demand)は化学的酸素要求量のことで有機物量を表す。   In step S4, the target phosphoric acid release rate obtained in Equation 2 is substituted by using the phosphoric acid release rate equation (3), for example, according to the program of the organic substance amount calculation 116 necessary for phosphoric acid release, and phosphoric acid is obtained. The organic substance concentration A required for release is calculated. COD (Chemical Oxygen Demand) is a chemical oxygen demand and represents the amount of organic matter.

Figure 0004920017
Figure 0004920017

ここで、Vはりん酸放出速度(gP/m3/h)、qは最大比リン放出速度(gP/gSS/h)、Aは有機物濃度(gCOD/m3)、Rはりん酸含有量(gP/gSS)、Xは余剰汚泥濃度(微生物濃度)(gSS/m3)、Ksは有機物飽和定数(gCOD/m3)、Kppはポリリン酸含有量飽和定数(gP/gSS)である。定数Ksと定数Kppは、実験的に求めることができる。 Where V is the phosphate release rate (gP / m 3 / h), q is the maximum specific phosphorus release rate (gP / gSS / h), A is the organic substance concentration (gCOD / m 3 ), and R is the phosphate content. (GP / gSS), X is the excess sludge concentration (microorganism concentration) (gSS / m 3 ), Ks is the organic matter saturation constant (gCOD / m 3 ), and Kpp is the polyphosphoric acid content saturation constant (gP / gSS). The constant Ks and the constant Kpp can be obtained experimentally.

有機物濃度Aとりん酸放出速度Vの関係は、有機物濃度Aが増加するに従って、りん酸放出速度Vが増加し、やがて飽和するような曲線で示される。このため、数2で目標とするりん酸放出速度が計算されると、これに対応する有機物濃度Aを決めることができ、求められた有機物濃度となるように有機物注入機12が制御される。ここで、流入する余剰汚泥には、多くの場合、有機物はほとんど含まれていないため、求められた有機物濃度となるように制御している。   The relationship between the organic substance concentration A and the phosphoric acid release rate V is indicated by a curve in which the phosphoric acid release rate V increases as the organic substance concentration A increases and eventually becomes saturated. For this reason, when the target phosphoric acid release rate is calculated by Equation 2, the organic substance concentration A corresponding to this can be determined, and the organic substance injector 12 is controlled so as to obtain the obtained organic substance concentration. Here, in many cases, the surplus sludge that flows in contains almost no organic matter, and therefore, the concentration is controlled so as to obtain the required organic matter concentration.

ステップS5では、りん酸放出量演算118のプログラムにより、例えば数4により、沈殿槽4から流出するりん酸濃度を計算する。   In step S5, the concentration of phosphoric acid flowing out from the sedimentation tank 4 is calculated by the program of the phosphoric acid release amount calculation 118, for example, using Equation 4.

Figure 0004920017
Figure 0004920017

ここで、Piはりん酸濃度(gP/m3)、Rはりん酸含有量(gP/gSS)、Xは余剰汚泥濃度(微生物濃度)(gSS/m3)である。 Here, Pi is the phosphoric acid concentration (gP / m 3 ), R is the phosphoric acid content (gP / gSS), and X is the excess sludge concentration (microorganism concentration) (gSS / m 3 ).

ステップS6では、計算結果をデータベース113に保存する。   In step S6, the calculation result is stored in the database 113.

数3で計算された有機物量は有機物注入制御手段13に送られる。有機物注入制御手段13は有機物注入機12を制御して、沈殿槽4への有機物流入量を制御する。   The amount of organic matter calculated in Equation 3 is sent to the organic matter injection control means 13. The organic substance injection control means 13 controls the organic substance injector 12 to control the amount of organic substance flowing into the settling tank 4.

また、数4で計算されたりん酸濃度は、カルシウム注入制御手段14に送られる。カルシウム注入制御手段14は、例えば数5によりカルシウム注入率を計算し、カルシウム注入機10を制御して、晶析槽5へのカルシウム注入量を制御する。   Further, the phosphoric acid concentration calculated by the equation 4 is sent to the calcium injection control means 14. The calcium injection control means 14 calculates a calcium injection rate by, for example, Equation 5, and controls the calcium injector 10 to control the calcium injection amount into the crystallization tank 5.

Figure 0004920017
Figure 0004920017

ここで、Wはカルシウム注入率(gCa/m3)、Piはりん酸濃度(gP/m3)、K1,K2は係数である。係数K1,K2は、カルシウムとりんのモル比から設定した係数、或いは実験により確認された係数が用いられる。 Here, W is calcium infusion rate (gCa / m 3), Pi is phosphoric acid concentration (gP / m 3), K1 , K2 are coefficients. As the coefficients K1 and K2, a coefficient set from the molar ratio of calcium and phosphorus or a coefficient confirmed by experiments is used.

図4は、りん酸含有量演算手段200の構成図である。図4は、活性汚泥プロセスの1つである嫌気好気法に適用した一実施例である。   FIG. 4 is a block diagram of the phosphoric acid content calculating means 200. FIG. 4 shows an embodiment applied to the anaerobic aerobic method which is one of the activated sludge processes.

本実施例の活性汚泥プロセスは、図4に示すように、流入下水が流れる流路210が接続された嫌気槽203,嫌気槽203に隣接された好気槽204で構成される生物反応槽,生物反応槽に接続された最終沈殿池205,最終沈殿池205に接続され放流水を流す流路206,最終沈殿池205から嫌気槽203に返送汚泥を流すための流路207,余剰汚泥を抜き出すための流路208,嫌気槽203の出口に設置された水質計201,好気槽204の出口に設置された水質計202,水質計201,202に接続されたりん酸含有量演算手段200で構成される。   As shown in FIG. 4, the activated sludge process of the present embodiment is a biological reaction tank composed of an anaerobic tank 203 connected to a flow path 210 through which inflow sewage flows, and an aerobic tank 204 adjacent to the anaerobic tank 203, The final sedimentation basin 205 connected to the biological reaction tank, the flow path 206 connected to the final sedimentation basin 205 for flowing effluent water, the flow path 207 for flowing back sludge from the final sedimentation basin 205 to the anaerobic tank 203, and excess sludge are extracted. A water quality meter 201 installed at the outlet of the anaerobic tank 203, a water quality meter 202 installed at the outlet of the aerobic tank 204, and a phosphoric acid content calculating means 200 connected to the water quality meters 201, 202. Composed.

嫌気好気法は、嫌気槽203,好気槽204を有する生物反応槽,最終沈殿池205で構成される。都市下水や産業排水、及び雨水を含む流入下水は、最初沈殿池(図示せず)で、固形物が沈降除去され、有機物,りん,アンモニア性窒素などを含む上澄み液が、嫌気槽203へ流路210により流入下水として送られる。   The anaerobic aerobic method includes an anaerobic tank 203, a biological reaction tank having an aerobic tank 204, and a final sedimentation tank 205. Inflow sewage including municipal sewage, industrial wastewater, and rainwater is first settled and removed in a sedimentation basin (not shown), and a supernatant liquid containing organic matter, phosphorus, ammonia nitrogen, etc. flows to the anaerobic tank 203. It is sent as inflow sewage by the channel 210.

嫌気槽203は、溶存酸素が存在しない嫌気状態に維持され、活性汚泥から細胞内に貯蔵していたりん酸が液中に放出される。りん酸放出時に、活性汚泥は有機物を吸着し、細胞内に蓄積する。このため、嫌気槽203では、りんが増加し、有機物が減少する。   The anaerobic tank 203 is maintained in an anaerobic state where no dissolved oxygen is present, and the phosphoric acid stored in the cells from the activated sludge is released into the liquid. During the release of phosphoric acid, activated sludge adsorbs organic matter and accumulates in the cells. For this reason, in the anaerobic tank 203, phosphorus increases and organic matter decreases.

嫌気槽203の混合液は、好気槽204に導かれる。好気槽204には送風機から供給された空気を噴射し、混合液を攪拌するとともに活性汚泥中に酸素を供給する。好気状態において活性汚泥は、吸着した有機物及び混合液中の有機物を水と炭酸ガスに酸化分解する。また、混合液中のりん酸を細胞内に摂取する。りん酸摂取量は、通常、嫌気槽203で放出した以上の過剰摂取となるため、嫌気好気法のプロセス全体では液体中のりん酸が減少し、活性汚泥中のりん酸は増加する。好気槽204から流出して混合液は最終沈殿池205に導かれ、混合液中の活性汚泥が重力沈降する。上澄み液は、処理水として消毒殺菌後、河川や海洋に放流される。   The liquid mixture in the anaerobic tank 203 is guided to the aerobic tank 204. The aerobic tank 204 is sprayed with air supplied from a blower to stir the mixed solution and supply oxygen into the activated sludge. In an aerobic state, the activated sludge oxidizes and decomposes the adsorbed organic matter and the organic matter in the mixed solution into water and carbon dioxide. In addition, the phosphate in the mixed solution is taken into the cells. The amount of phosphoric acid intake is usually excessive in excess of that released in the anaerobic tank 203, so that the phosphoric acid in the liquid decreases and the phosphoric acid in the activated sludge increases throughout the anaerobic aerobic process. The mixed solution flows out from the aerobic tank 204 and is guided to the final sedimentation basin 205, and the activated sludge in the mixed solution is gravity settled. The supernatant liquid is discharged into rivers and oceans after being disinfected and sterilized as treated water.

沈殿した活性汚泥は高濃度となり、大部分を返送汚泥として流路207により嫌気槽203に戻される。嫌気槽203,好気槽204では、反応に対応して活性汚泥中の微生物が増殖し、活性汚泥濃度を増加させるが、この増殖分に相当する汚泥を余剰汚泥として流路208によりプロセス系外に排出する。余剰汚泥中に保持されているりん酸は、プロセス全体のりん除去量に相当する。   The precipitated activated sludge has a high concentration, and most of the activated sludge is returned to the anaerobic tank 203 through the flow path 207 as return sludge. In the anaerobic tank 203 and the aerobic tank 204, microorganisms in the activated sludge proliferate in response to the reaction and increase the activated sludge concentration. To discharge. The phosphoric acid retained in the excess sludge corresponds to the amount of phosphorus removed in the entire process.

活性汚泥のりん酸摂取,放出は、流入下水の水質や流量,プラントの運転条件、あるいは活性汚泥の管理条件で変化し、徐々に、あるいは突発的に変動する。   The intake and release of phosphoric acid in activated sludge varies depending on the quality and flow rate of influent sewage, plant operating conditions, or activated sludge management conditions, and fluctuates gradually or suddenly.

嫌気槽203出口には水質計201,好気槽204の出口には水質計202が配置され、りん酸濃度と活性汚泥濃度を計測する。りん酸含有量演算手段200は、水質計201,202で計測されたデータに基づいて、例えば数6により、活性汚泥中に貯蔵されるりん酸含有量を計算する。   A water quality meter 201 is arranged at the outlet of the anaerobic tank 203 and a water quality meter 202 is arranged at the outlet of the aerobic tank 204, and the phosphoric acid concentration and the activated sludge concentration are measured. The phosphoric acid content calculating means 200 calculates the phosphoric acid content stored in the activated sludge based on the data measured by the water quality meters 201 and 202 using, for example, Equation 6.

Figure 0004920017
Figure 0004920017

ここで、Rはりん酸含有量(gP/gSS)、P1は嫌気槽流出(末端)りん濃度(gP/m3)、S1は嫌気槽流出(末端)汚泥濃度(gSS/m3)、P2は好気槽流出(末端)りん濃度(gP/m3)、S2は好気槽流出(末端)汚泥濃度(gSS/m3)、δは微生物細胞リン含有率(gP/gSS)である。 Here, R is phosphoric acid content (gP / gSS), P1 is anaerobic tank outflow (terminal) phosphorus concentration (gP / m 3 ), S1 is an anaerobic tank outflow (terminal) sludge concentration (gSS / m 3 ), P2 Is the aerobic tank outflow (terminal) phosphorus concentration (gP / m 3 ), S2 is the aerobic tank outflow (terminal) sludge concentration (gSS / m 3 ), and δ is the microbial cell phosphorus content (gP / gSS).

活性汚泥プロセスの嫌気槽203の出口から好気槽204の出口におけるりん濃度の変化から、活性汚泥に貯蔵されたりん酸含有量Rは、余剰汚泥に含有されたりん酸含有量として使用する。本実施例では最終沈殿池205における反応を含めていないが、流路206からの放水量,流路208からの余剰汚泥に水質計を配置することにより、最終沈殿池205に滞留した活性汚泥中のりん酸含有量を計算しても良い。   The phosphoric acid content R stored in the activated sludge is used as the phosphoric acid content contained in the surplus sludge from the change in the phosphorus concentration at the outlet of the anaerobic tank 203 to the outlet of the aerobic tank 204 in the activated sludge process. In the present embodiment, the reaction in the final sedimentation basin 205 is not included, but the activated sludge staying in the final sedimentation basin 205 can be obtained by disposing the water quality meter on the amount of water discharged from the flow path 206 and surplus sludge from the flow path 208. The phosphoric acid content of may be calculated.

りん酸含有量演算手段200の計算の他の実施例として、活性汚泥プロセス全体をモデル化したプログラムを利用してりん酸含有量を演算しても良い。例えば、国際水環境協会(IWA)が発表している「活性汚泥モデル」などのモデルを適用して、流入条件(水量,有機物,リン,窒素,水温,アルカリ度,汚泥量など),施設仕様(土木寸法,槽分割,配管(循環,流入ステップ)など),操作量(返送量,余剰量,循環量,送風量),汚泥条件(汚泥濃度,汚泥沈降率),薬品添加量などを初期条件として、余剰汚泥のりん酸含有量を計算させても良い。   As another example of the calculation by the phosphoric acid content calculating means 200, the phosphoric acid content may be calculated using a program that models the entire activated sludge process. For example, by applying a model such as “activated sludge model” published by the International Water Environment Association (IWA), inflow conditions (water volume, organic matter, phosphorus, nitrogen, water temperature, alkalinity, sludge volume, etc.), facility specifications (Civil engineering dimensions, tank division, piping (circulation, inflow step, etc.)), operation amount (return amount, surplus amount, circulation amount, air flow rate), sludge conditions (sludge concentration, sludge settling rate), chemical addition amount, etc. As a condition, the phosphoric acid content of excess sludge may be calculated.

なお、本実施例では、下水処理場活性汚泥プロセスの余剰汚泥を原料とした適用例を説明したが、一般の事業所排水処理における活性汚泥プロセスに適用する場合でも、個別の情報内容や項目が異なるが、基本的な方式は全く同様に適用することができる。   In this example, an application example using surplus sludge from the activated sludge process of a sewage treatment plant as a raw material has been explained, but even when applied to an activated sludge process in general office wastewater treatment, individual information content and items are Although different, the basic scheme can be applied in exactly the same way.

本実施例によれば、余剰汚泥に貯蔵されたりん酸の変動や、晶析槽に流入するりん酸の変動が発生しても、安定かつ高効率でりんを回収できる。   According to this embodiment, even if fluctuations in phosphoric acid stored in excess sludge or fluctuations in phosphoric acid flowing into the crystallization tank occur, phosphorus can be recovered stably and with high efficiency.

また、カルシウム過剰注入を防止できるので、排水中の残留カルシウムを低減でき、カルシウム注入コスト抑制だけでなく水環境保全に大きく貢献できる。残留カルシウムの析出低減により、りん回収装置の延命化,ライフサイクルコスト低減にも繋がる。   In addition, since excessive calcium injection can be prevented, residual calcium in the wastewater can be reduced, which can greatly contribute to water environment conservation as well as the calcium injection cost control. By reducing the precipitation of residual calcium, the life of the phosphorus recovery device can be extended and the life cycle cost can be reduced.

また、安定してりん酸カルシウムを生成できるので、需要先に安定して供給できる体制を整えることができ、有用で有限な資源のリサイクルネットワークを構築できる。   In addition, since calcium phosphate can be stably produced, it is possible to establish a system that can be stably supplied to customers, and to build a useful and finite resource recycling network.

本発明の一実施例による晶析によるりん回収装置の制御方法の構成図。The block diagram of the control method of the phosphorus collection | recovery apparatus by crystallization by one Example of this invention. 本実施例のりん酸放出速度演算手段の構成図。The block diagram of the phosphoric acid release rate calculating means of a present Example. 本実施例のりん酸放出速度演算手段の演算フロー図。The calculation flow figure of the phosphoric acid release rate calculating means of a present Example. 本実施例のりん酸含有量演算手段の構成図。The block diagram of the phosphoric acid content calculating means of a present Example.

符号の説明Explanation of symbols

1,6,7,8,15,16,206,207,208,210 流路
2 余剰汚泥濃度計
4 沈殿槽
5 晶析槽
10 カルシウム注入機
11 りん酸放出速度演算手段
12 有機物注入機
13 有機物注入制御手段
14 カルシウム注入制御手段
100 入出力部
111 CPU
112 メモリ
113 データベース
114 滞留時間演算
115 目標とするりん酸放出速度演算
116 りん酸放出に必要な有機物量演算
118 りん酸放出量演算
119 端末
120 ネットワーク
200 りん酸含有量演算手段
201,202 水質計
203 嫌気槽
204 好気槽
205 最終沈殿池
1, 6, 7, 8, 15, 16, 206, 207, 208, 210 Channel 2 Excess sludge concentration meter 4 Sedimentation tank 5 Crystallization tank 10 Calcium injector 11 Phosphoric acid release rate calculating means 12 Organic substance injector 13 Organic substance Injection control means 14 Calcium injection control means 100 Input / output unit 111 CPU
112 Memory 113 Database 114 Residence time calculation 115 Target phosphoric acid release rate calculation 116 Organic substance amount calculation necessary for phosphoric acid release 118 Phosphoric acid release amount calculation 119 Terminal 120 Network 200 Phosphoric acid content calculation means 201, 202 Water quality meter 203 Anaerobic tank 204 Aerobic tank 205 Final sedimentation basin

Claims (6)

活性汚泥プロセスの余剰汚泥を酸素のない嫌気状態に維持した沈殿槽で沈降滞留させて、上澄み液を晶析槽に導き、カルシウムを添加してりん酸カルシウムとして回収するりん回収装置の制御装置であって、前記活性汚泥プロセスに設置した水質計測器で計測されたデータから余剰汚泥中のりん酸含有量を演算するりん酸含有量演算手段と、該りん酸含有量演算手段により演算されたりん酸含有量,余剰汚泥濃度計で計測された余剰汚泥濃度を含む計測データから前記沈殿槽内のりん酸放出速度を演算し、該演算されたりん酸放出速度からりん酸放出に必要な有機物濃度を算出するりん酸放出速度演算手段と、該りん酸放出速度演算手段により演算された有機物濃度となるように前記沈殿槽に有機物を注入する有機物注入機の注入量を制御する有機物注入制御手段を備えた晶析によるりん回収装置の制御装置。 In the control device of the phosphorus recovery device, the surplus sludge from the activated sludge process is settled and retained in a settling tank maintained in an oxygen-free anaerobic state , the supernatant liquid is guided to the crystallization tank, and calcium is added and recovered as calcium phosphate. A phosphoric acid content calculating means for calculating a phosphoric acid content in surplus sludge from data measured by a water quality measuring instrument installed in the activated sludge process, and a phosphoric acid content calculated by the phosphoric acid content calculating means. The phosphoric acid release rate in the settling tank is calculated from the measurement data including the acid content and the excess sludge concentration measured by the excess sludge concentration meter, and the organic substance concentration necessary for the phosphoric acid release is calculated from the calculated phosphate release rate. And controlling the injection amount of the organic substance injection device for injecting the organic substance into the precipitation tank so that the organic substance concentration calculated by the phosphoric acid release speed calculation means is obtained. Controller phosphorus recovery device according to crystallization with an organic substance injection control means. 前記晶析槽にカルシウムを注入するカルシウム注入機のカルシウム注入量を制御するカルシウム注入制御手段を具備し、前記りん酸含有量演算手段により演算されたりん酸含有量,余剰汚泥濃度計で計測された余剰汚泥濃度から前記沈殿槽から流出する上澄み液のりん酸濃度を算出し、前記カルシウム注入制御手段は、算出されたりん酸濃度に基づいてカルシウム注入量を算出して前記カルシウム注入機のカルシウム注入量を制御する請求項1に記載の晶析によるりん回収装置の制御装置。   A calcium injection control means for controlling the calcium injection amount of a calcium injection machine for injecting calcium into the crystallization tank is provided, and the phosphoric acid content calculated by the phosphoric acid content calculation means is measured by a surplus sludge concentration meter. Calculate the phosphoric acid concentration of the supernatant liquid flowing out from the settling tank from the excess sludge concentration, the calcium injection control means calculates the calcium injection amount based on the calculated phosphoric acid concentration, and calculates the calcium of the calcium injector The control device for the phosphorus recovery device by crystallization according to claim 1, which controls the injection amount. 前記りん酸含有量演算手段は、前記活性汚泥プロセスの嫌気槽で計測されたりん酸濃度と好気槽で計測された活性汚泥濃度から、前記余剰汚泥に蓄積されたりん酸含有量を演算する請求項1又は2に記載の晶析によるりん回収装置の制御装置。   The phosphoric acid content calculating means calculates the phosphoric acid content accumulated in the excess sludge from the phosphoric acid concentration measured in the anaerobic tank of the activated sludge process and the activated sludge concentration measured in the aerobic tank. The control apparatus of the phosphorus collection | recovery apparatus by the crystallization of Claim 1 or 2. りん酸含有量演算手段で、活性汚泥プロセスに設置した水質計測器で計測されたデータから酸素のない嫌気状態に維持した沈殿槽で沈降滞留させる余剰汚泥中のりん酸含有量を演算し、りん酸放出速度演算手段で、前記りん酸含有量演算手段により演算されたりん酸含有量,余剰汚泥濃度計で計測された余剰汚泥濃度を含む計測データから前記沈殿槽内のりん酸放出速度を演算し、該演算されたりん酸放出速度からりん酸放出に必要な有機物濃度を算出し、該りん酸放出速度演算手段により演算された有機物濃度となるように、有機物注入制御手段により前記沈殿槽に有機物を注入する有機物注入機の注入量を制御し、上澄み液を晶析槽に導き、カルシウムを添加してりん酸カルシウムとして回収する晶析によるりん回収装置の制御方法。 The phosphoric acid content calculation means calculates the phosphoric acid content in the surplus sludge that settles and stays in the settling tank maintained in an anaerobic state without oxygen from the data measured by the water quality meter installed in the activated sludge process. The acid release rate calculation means calculates the phosphate release rate in the settling tank from the measurement data including the phosphoric acid content calculated by the phosphoric acid content calculation means and the excess sludge concentration measured by the excess sludge concentration meter. Then, the organic substance concentration required for the phosphoric acid release is calculated from the calculated phosphoric acid release rate, and the organic substance injection control means puts the organic substance concentration in the precipitation tank so as to be the organic substance concentration calculated by the phosphoric acid release speed calculation means. A method for controlling a phosphorus recovery apparatus by crystallization, in which the injection amount of an organic substance injection machine for injecting organic substances is controlled, the supernatant liquid is guided to a crystallization tank, and calcium is added and recovered as calcium phosphate. 前記りん酸放出速度演算手段は、前記りん酸含有量演算手段により演算されたりん酸含有量に基づいて前記上澄み液のりん酸濃度を演算し、カルシウム注入制御手段で、前記演算されたりん酸濃度によりカルシウム注入機のカルシウム注入量を制御する請求項4に記載の晶析によるりん回収装置の制御方法。   The phosphoric acid release rate calculating means calculates the phosphoric acid concentration of the supernatant based on the phosphoric acid content calculated by the phosphoric acid content calculating means, and the calcium injection control means calculates the calculated phosphoric acid. The method for controlling a phosphorus recovery apparatus by crystallization according to claim 4, wherein the calcium injection amount of the calcium injector is controlled by the concentration. 前記りん酸含有量演算手段は、前記活性汚泥プロセスの嫌気槽で計測されたりん酸濃度と好気槽で計測された活性汚泥濃度から、前記余剰汚泥に蓄積されたりん酸含有量を演算する請求項4又は5に記載の晶析によるりん回収装置の制御方法。   The phosphoric acid content calculating means calculates the phosphoric acid content accumulated in the excess sludge from the phosphoric acid concentration measured in the anaerobic tank of the activated sludge process and the activated sludge concentration measured in the aerobic tank. The control method of the phosphorus collection | recovery apparatus by the crystallization of Claim 4 or 5.
JP2008238804A 2008-09-12 2008-09-18 Control device and control method of phosphorus recovery device by crystallization Active JP4920017B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008238804A JP4920017B2 (en) 2008-09-18 2008-09-18 Control device and control method of phosphorus recovery device by crystallization
CN2009101707428A CN101671011B (en) 2008-09-12 2009-09-09 Control device of recovery device using crystallization and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238804A JP4920017B2 (en) 2008-09-18 2008-09-18 Control device and control method of phosphorus recovery device by crystallization

Publications (2)

Publication Number Publication Date
JP2010069403A JP2010069403A (en) 2010-04-02
JP4920017B2 true JP4920017B2 (en) 2012-04-18

Family

ID=42201681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238804A Active JP4920017B2 (en) 2008-09-12 2008-09-18 Control device and control method of phosphorus recovery device by crystallization

Country Status (1)

Country Link
JP (1) JP4920017B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384951B2 (en) * 1997-08-25 2003-03-10 株式会社日立製作所 Biological water treatment method and equipment
JP3844347B2 (en) * 2002-11-18 2006-11-08 株式会社荏原製作所 Method and apparatus for removing and recovering phosphorus from organic wastewater
JP2007283223A (en) * 2006-04-18 2007-11-01 Nippon Steel Corp Method for recovering phosphorus from sludge

Also Published As

Publication number Publication date
JP2010069403A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
Larriba et al. Evaluation of the integration of P recovery, polyhydroxyalkanoate production and short cut nitrogen removal in a mainstream wastewater treatment process
Prieto et al. Development and start up of a gas-lift anaerobic membrane bioreactor (Gl-AnMBR) for conversion of sewage to energy, water and nutrients
Ekama et al. Biodegradability of activated sludge organics under anaerobic conditions
Tao et al. Three-stage treatment for nitrogen and phosphorus recovery from human urine: Hydrolysis, precipitation and vacuum stripping
Flores-Alsina et al. Assessment of sludge management strategies in wastewater treatment systems using a plant-wide approach
CN106495321B (en) Biological tank process optimization and operation control system and its control method
JP2009502494A (en) Method and apparatus for nitrogen enrichment (high nitrogen concentration) wastewater treatment in a continuous fractionation cycle biological reactor
Zhang et al. Recovery of ammonium nitrogen from human urine by an open-loop hollow fiber membrane contactor
JP4334317B2 (en) Sewage treatment system
WO2011119982A9 (en) Mainstream wastewater treatment
Sayi-Ucar et al. Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor
Perera et al. Control of nitrification/denitrification in an onsite two-chamber intermittently aerated membrane bioreactor with alkalinity and carbon addition: Model and experiment
Seco et al. Plant-wide modelling in wastewater treatment: showcasing experiences using the Biological Nutrient Removal Model
KR102041326B1 (en) Oxygen control system for activated sludge process using harmony search algorithm
JP4920016B2 (en) Control device and method of phosphorus recovery device by crystallization
Jørgensen et al. Wastewater treatment and concentration of phosphorus with the hybrid osmotic microfiltration bioreactor
CN110589969B (en) High-efficiency stable synchronous denitrification and dephosphorization device and method for sewage treatment plant
Jönsson et al. Hydrolysis of return sludge for production of easily biodegradable carbon: effect of pre-treatment, sludge age and temperature
JP4920017B2 (en) Control device and control method of phosphorus recovery device by crystallization
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP2005218939A (en) Method for treating nitrogen-containing waste liquid
KR101503643B1 (en) Phosphorus, Nitrogenous removal system and method with Modified Ludzack Ettinger effluent using the auto control method
Andersson Chan et al. Increased nitrogen removal in existing volumes at Sundet wastewater treatment plant, Växjö
CN105636912A (en) Automatic control advanced treatment system for removal of nitrogen and removal of phosphorus using electrical conductivity and operation method thereof in MSBR process
CN101671011B (en) Control device of recovery device using crystallization and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R151 Written notification of patent or utility model registration

Ref document number: 4920017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3