JP2007283223A - Method for recovering phosphorus from sludge - Google Patents

Method for recovering phosphorus from sludge Download PDF

Info

Publication number
JP2007283223A
JP2007283223A JP2006114067A JP2006114067A JP2007283223A JP 2007283223 A JP2007283223 A JP 2007283223A JP 2006114067 A JP2006114067 A JP 2006114067A JP 2006114067 A JP2006114067 A JP 2006114067A JP 2007283223 A JP2007283223 A JP 2007283223A
Authority
JP
Japan
Prior art keywords
phosphorus
tank
sludge
release
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006114067A
Other languages
Japanese (ja)
Inventor
Osamu Miki
理 三木
Naoki Hirai
直樹 平井
Toshiro Kato
敏朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006114067A priority Critical patent/JP2007283223A/en
Publication of JP2007283223A publication Critical patent/JP2007283223A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for certainly recovering phosphorus with high efficiency by efficiently discharging phosphorus contained in the excess sludge formed from a biological dephosphorization process. <P>SOLUTION: In a biological dephosphorization process having an anaerobic tank and an aerobic tank, produced excess sludge is recovered as a slurry and, after the recovered phosphate type phosphorus (PO<SB>4</SB>-P) is discharged into slurry water, the slurry after discharge is concentrated to be separated into active sludge and phosphorus concentrated water and the phosphorus concentrated water after separation is charged in a fluidized bed filled with steel sludge to crystallize phosphorus component as calcium appatite to be recovered. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排水、下水などの生物学的水処理プロセスから発生する余剰汚泥中のりんを回収する方法に関する。   The present invention relates to a method for recovering phosphorus in excess sludge generated from biological water treatment processes such as waste water and sewage.

都市下水や産業排水に含まれるりんは、湖沼や海域の富栄養化原因物質の一つであり、環境保全の観点から、下水・排水からの効果的なりん除去技術が求められている。水からの除去に加えて、りんは、将来のりん資源の枯渇問題から、下水や排水の生物学的なりん除去プロセスから発生する汚泥からの回収技術が強く求められるようになってきた。
以下に背景技術を説明する。
Phosphorus contained in urban sewage and industrial wastewater is one of the eutrophication-causing substances in lakes and marine areas, and effective phosphorus removal technology from sewage and wastewater is required from the viewpoint of environmental conservation. In addition to removal from water, phosphorus has been strongly required to recover from sludge generated from the biological phosphorus removal process of sewage and wastewater due to the problem of depletion of phosphorus resources in the future.
The background art will be described below.

都市下水中の全りん濃度は、通常3〜5mg/L程度あり、下水中のりんを除去する方法として、 生物学的りん除去方法が盛んに実施されるようになってきている。すなわち、活性汚泥(微生物の集合体)中の一部の細菌群(以下、ポリりん酸蓄積細菌と述べる)は、嫌気条件下(溶存酸素も硝酸イオン等の結合態酸素もない状態)においてPO4-P(りん酸イオンに含まれるりんとして表示したもの。りん酸態りんと一般に呼称される。以下、同じ)としてりんを放出させると、好気条件下で、今度はPO4-Pを通常の活性汚泥と比較して過剰に摂取し、過剰に摂取したPO4-Pを細胞内でポリりん酸の顆粒として保持する。このような方式を採用すると下水の活性汚泥中のりん濃度は2質量%程度から最大6質量%程度に増大するといわれている。 The total phosphorus concentration in municipal sewage is usually about 3 to 5 mg / L, and biological phosphorus removal methods have been actively implemented as a method for removing phosphorus in sewage. That is, some bacterial groups (hereinafter referred to as polyphosphate-accumulating bacteria) in activated sludge (aggregates of microorganisms) are PO under anaerobic conditions (a state in which there is neither dissolved oxygen nor bound oxygen such as nitrate ions). When phosphorus is released as 4- P (indicated as phosphorus contained in phosphate ions, commonly referred to as phosphate phosphorus; the same shall apply hereinafter), PO 4 -P will normally be released under aerobic conditions. In comparison with activated sludge, the excess intake PO 4 -P is retained in the cells as polyphosphate granules. If such a system is adopted, it is said that the phosphorus concentration in the activated sludge of sewage increases from about 2% by mass to about 6% by mass at maximum.

本プロセスは、水中からのりん除去をはかるものであるが、完全に除去するというよりむしろ水中の溶存態のPO4-Pを、活性汚泥中にポリりん酸の顆粒として濃縮する技術である。本方法は、都市下水処理の分野で実用化が進んでいる。
以下に、本発明に関わる生物学的りん除去と余剰汚泥処理の従来方法について説明する。
Although this process is intended to remove phosphorus from water, it is a technique that concentrates PO 4 -P dissolved in water as granules of polyphosphoric acid in activated sludge rather than completely removing it. This method has been put into practical use in the field of municipal sewage treatment.
Below, the conventional method of biological phosphorus removal and excess sludge treatment according to the present invention will be described.

生物学的りん除去プロセスは、一般に最初沈殿池、反応槽(嫌気槽と好気槽)、最終沈澱池から構成されている(以下、AOプロセスと述べる)。また、りんと窒素を同時に除去する場合には最初沈殿池、反応槽(嫌気槽と無酸素槽と好気槽)、最終沈澱池から構成されている(以下、A2Oプロセスと述べる)。 The biological phosphorus removal process generally comprises a first sedimentation tank, a reaction tank (anaerobic tank and aerobic tank), and a final sedimentation tank (hereinafter referred to as AO process). Moreover, when removing phosphorus and nitrogen simultaneously, it comprises a first sedimentation tank, a reaction tank (anaerobic tank, anaerobic tank and aerobic tank), and a final sedimentation tank (hereinafter referred to as A 2 O process).

ここでは従来のA2Oプロセスを例として説明する(図1参照)。
最初沈殿池(2)は下水(1)中の粗大浮遊物を沈降除去し、反応槽での有機酸負荷を減じる。反応槽は、嫌気槽(4)、無酸素槽(5)と好気槽(6)からなりたっている。嫌気槽(4)では前述したように活性汚泥中のポリりん酸蓄積細菌がりんの吐き出しをおこなう。無酸素槽(5)には、好気槽(6)から硝化反応〔アンモニア態窒素(NH4-N)の酸化の結果、硝酸態窒素(NO3-N)が蓄積〕が進行した汚泥循環水(14)が返送される。無酸素槽(5)においては、この硝化液中の亜硝酸態窒素(NO2-N)並びにNO3-Nは、活性汚泥中の脱窒細菌により、下水中の有機酸との脱窒反応により、窒素ガスとして除去される。好気槽(6)では、活性汚泥中の硝化細菌によりNH4-Nの酸化(硝化反応)が行なわれる。この一部は、前述したように、無酸素槽(5)に循環される。ポリりん酸蓄積細菌は、無酸素槽(5)および好気槽(6)においてりんを過剰に摂取する。最終沈殿池(7)では、りんを過剰摂取した活性汚泥を沈降分離し、上澄液は処理水(8)として放流する。沈降分離された濃縮活性汚泥(19)は、その一部が余剰汚泥として引きぬかれ残りは返送汚泥(10)として、嫌気槽(4)に返送汚泥ポンプ(9)により返送される。余剰汚泥は、濃縮装置(20)(一般に遠心濃縮装置などの機械式濃縮装置が用いられる)によって濃縮された後、脱水機(21)によってさらに脱水を行い脱水汚泥(24)として、処分される。
Here, a conventional A 2 O process will be described as an example (see FIG. 1).
The first sedimentation basin (2) settles and removes coarse suspended solids in the sewage (1) and reduces the organic acid load in the reaction tank. The reaction tank comprises an anaerobic tank (4), an oxygen-free tank (5), and an aerobic tank (6). In the anaerobic tank (4), as mentioned above, polyphosphate-accumulating bacteria in activated sludge discharge phosphorus. In the anaerobic tank (5), sludge circulation in which the nitrification reaction (nitric nitrogen (NO 3 -N) accumulates as a result of oxidation of ammonia nitrogen (NH 4 -N)) progressed from the aerobic tank (6) Water (14) is returned. In the anaerobic tank (5), nitrite nitrogen (NO 2 -N) and NO 3 -N in this nitrification solution are denitrified with organic acids in sewage by denitrifying bacteria in activated sludge. Is removed as nitrogen gas. In the aerobic tank (6), oxidation of NH 4 -N (nitrification reaction) is performed by nitrifying bacteria in activated sludge. A part of this is circulated to the anoxic tank (5) as described above. Polyphosphate accumulating bacteria overdose phosphorus in the anoxic tank (5) and aerobic tank (6). In the final sedimentation basin (7), activated sludge excessively ingested with phosphorus is settled and the supernatant is discharged as treated water (8). The concentrated activated sludge (19) that has been separated by settling is partially removed as excess sludge, and the remainder is returned to the anaerobic tank (4) by the return sludge pump (9) as return sludge (10). Excess sludge is concentrated by a concentrator (20) (generally, a mechanical concentrator such as a centrifugal concentrator is used), then dehydrated by a dehydrator (21) and disposed as dehydrated sludge (24). .

しかし、このようなプロセスでは、余剰汚泥に含まれたりんが、前述した濃縮操作や脱水操作の過程で発生する濃縮分離水(20)や脱水ろ液(22)中にPO4−Pの形で再放出される場合がある。濃縮分離水(20)や脱水ろ液(22)は、汚泥処理から発生する返流水として下水(1)に戻されるため、りんが水処理系の中で循環してしまうこととなる。このようなりんの再放出を抑制するためには、濃縮や脱水の工程でアルミニウムや鉄系の凝集剤を添加する方法が効果的であるが、余剰汚泥量やその処理コストが増加してしまう。また、アルミニウムや鉄と結合したりんの場合、りんの再利用が困難となる。 However, in such a process, phosphorus contained in the excess sludge is in the form of PO 4 -P in the concentrated separated water (20) and dehydrated filtrate (22) generated during the above-described concentration and dehydration operations. May be released again. Since the concentrated separated water (20) and the dehydrated filtrate (22) are returned to the sewage (1) as return water generated from the sludge treatment, phosphorus is circulated in the water treatment system. In order to suppress such re-release of phosphorus, a method of adding aluminum or an iron-based flocculant in the concentration or dehydration process is effective, but the amount of excess sludge and its treatment cost increase. . Moreover, in the case of phosphorus combined with aluminum or iron, it becomes difficult to reuse phosphorus.

凝集剤を用いないりんの除去方法としては、晶析反応を利用したりんの除去法が公知である(例えば、非特許文献1、非特許文献2)。晶析反応は、りん鉱石などを核として用い、水中に溶存するりん酸イオン(PO4 3-)をカルシウムイオンと反応させ、不溶性のカルシウムヒドロキシアパタイトとしてりんを、りん鉱石上に成長させようとするものである。この反応は、下記の反応式(1)で表される。
5Ca2++3PO4 3-+OH- →Ca5(OH)(PO43 (1)
本反応式(1)から、PO4-Pの1モルを除去するためには、Ca2+が1.7モル必要なことがわかる。質量比でいえば、2.2倍となる。
As a method for removing phosphorus without using a flocculant, a method for removing phosphorus using a crystallization reaction is known (for example, Non-Patent Document 1 and Non-Patent Document 2). In the crystallization reaction, phosphate ore is used as a nucleus, phosphate ions (PO 4 3− ) dissolved in water are reacted with calcium ions, and phosphorus is grown as insoluble calcium hydroxyapatite on the phosphate ore. To do. This reaction is represented by the following reaction formula (1).
5Ca 2+ + 3PO 4 3- + OH → Ca 5 (OH) (PO 4 ) 3 (1)
From this reaction formula (1), it can be seen that 1.7 mol of Ca 2+ is required to remove 1 mol of PO 4 -P. In terms of mass ratio, it is 2.2 times.

しかし、りん鉱石などを核として用いたこのような晶析反応装置は、もともと、下水や排水に含まれる低濃度のりん除去を対象として考えられたもので、固定床方式のものが多く、閉塞しやすいなどの課題やコスト高の課題があるため、ほとんど普及してこなかった。
これに対して、近年、りんの有効活用の重要性が再認識され、生物学的脱りんプロセスから発生した余剰汚泥(りんを蓄積した汚泥)からりん回収をはかるさまざまな方法が提案されるようになってきた。
However, such crystallization reactors using phosphorus ore as the core were originally considered for removal of low-concentration phosphorus contained in sewage and wastewater, and many fixed-bed systems are obstructed. It has not been widely used because there are issues such as easy handling and high cost.
On the other hand, in recent years, the importance of effective utilization of phosphorus has been recognized again, and various methods for recovering phosphorus from surplus sludge (sludge with accumulated phosphorus) generated from biological dephosphorization processes will be proposed. It has become.

例えば、特許文献1は、余剰汚泥からPO4-Pを放出させ、PO4-Pを回収する提案である。りんを放出させる為に、余剰汚泥に最初沈殿池で沈降した汚泥を2〜20%程度添加し、嫌気条件とし、適当時間放置した後、汚泥とりん濃厚液を分離しようとするものである。最初沈殿池の沈殿汚泥を酸発酵させ、発酵産物中の有機酸を用いてもかまわないとしている。りんの回収方法としては、アルミニウムや鉄系の凝集剤を添加する方法やMAP法(りん酸マグネシウムアンモニウムとして回収する方法)が提案されている。 For example, Patent Document 1 is a proposal for releasing PO 4 -P from excess sludge and recovering PO 4 -P. In order to release phosphorus, about 2 to 20% of the sludge that first settled in the settling basin is added to the excess sludge, and after anaerobic conditions are allowed to stand for an appropriate period of time, the sludge and the concentrated phosphorus solution are separated. It is said that it is acceptable to first ferment the sedimentation sludge in the settling basin and use the organic acid in the fermentation product. As a method for recovering phosphorus, a method of adding an aluminum or iron-based flocculant or a MAP method (a method of recovering as magnesium ammonium phosphate) has been proposed.

しかし、実際には最初沈殿池で沈降した汚泥や発酵産物は性状変化が激しく、これを余剰汚泥に一定割合で添加したとしても、PO4-Pを安定して放出させることは困難であると考えられる。また、最初沈殿池の沈殿汚泥は、下水に含まれる雑多な浮遊物の固まりであり、これには重金属類も含まれることから、回収したりんの性状も安定しないことが容易に推定される。 However, in fact, the sludge and fermentation products that settled in the first sedimentation basin have severe changes in properties, and even if this is added to the excess sludge at a certain rate, it is difficult to stably release PO 4 -P. Conceivable. In addition, the sedimentation sludge in the first sedimentation basin is a mass of miscellaneous suspended matter contained in the sewage, and since it contains heavy metals, it is easily estimated that the properties of the recovered phosphorus are not stable.

また、特許文献2も余剰汚泥からPO4-Pを放出させ、PO4-Pを回収する提案である。りんを放出させる為に、余剰汚泥に下水の一部を添加し、嫌気条件とする。その後、膜分離あるいは沈降分離により、汚泥とりん濃厚液を分離する。りんは、塩化カルシウム、消石灰等のカルシウム化合物を用い、pH=7.5〜9.0に維持し、りん酸カルシウムを形成し、沈降分離し回収する。具体的には、晶析槽を推奨しているが、特に充填材は必要とされておらず、スタート時にりん酸カルシウムの種結晶を50g/Lから200g/L用いればりん酸カルシウムの結晶が得やすいとされている。 Patent Document 2 is also a proposal for releasing PO 4 -P from excess sludge and recovering PO 4 -P. In order to release phosphorus, a part of the sewage is added to the excess sludge to make anaerobic conditions. Thereafter, the sludge and the phosphorus concentrate are separated by membrane separation or sedimentation separation. Phosphorus is obtained by using calcium compounds such as calcium chloride and slaked lime, maintaining pH = 7.5 to 9.0, forming calcium phosphate, separating and recovering. Specifically, although a crystallization tank is recommended, a filler is not particularly required, and if calcium phosphate seed crystals are used at 50 g / L to 200 g / L at the start, the calcium phosphate crystals It is said that it is easy to obtain.

しかし、実際の下水は性状変化が激しく、下水を余剰汚泥に一定割合で添加したとしても、PO4-Pを安定して放出させることは困難であると考えられる。また、下水には、重金属類もある程度含まれることから、回収したりんの性状も安定しないことが容易に推定される。晶析槽の運転方法も明確でなく、実際には微細な結晶が多数発生し、SS(suspended solid)として流出することが予想される。りん酸カルシウムの種結晶の粒径なども明示されておらず、このままでは適用は困難である。
水のリサイクル(応用編)、和田洋六、p15-p23、1992 高度処理施設設計マニュアル、日本下水道協会、平成6年 特願平7-44686号公報 特開平11-133931号広報
However, the actual sewage has a severe property change, and even if sewage is added to the excess sludge at a certain rate, it is considered difficult to stably release PO 4 -P. In addition, since sewage contains some heavy metals, it is easily estimated that the properties of the recovered phosphorus are not stable. The operation method of the crystallization tank is not clear, and in reality, a large number of fine crystals are generated and are expected to flow out as SS (suspended solid). The particle size of the calcium phosphate seed crystal is not specified, and application is difficult as it is.
Water recycling (applied), Yoroku Wada, p15-p23, 1992 Advanced treatment facility design manual, Japan Sewerage Association, 1994 Japanese Patent Application No. 7-44686 JP 11-133931

これまでに提案されてきた生物学的脱りんプロセスから発生する余剰汚泥からりんを回収する方法は、以下のような課題を有している。
第1にこれまでの方法は、余剰汚泥からのPO4-Pの放出条件が極めて不明確、抽象的である。
The methods for recovering phosphorus from excess sludge generated from biological dephosphorization processes that have been proposed so far have the following problems.
First, the conventional methods are very unclear and abstract in terms of the release conditions of PO 4 -P from excess sludge.

(1) 活性汚泥に含まれるPO4-Pをどの程度まで放出させるのか不明である。活性汚泥中には、活性汚泥の細胞が本来含有しているりんと下水中に元来PO4-Pとして存在し、汚泥に過剰にとりこまれ、ポリリン酸の顆粒として保持するりんがある。このどちらを対象とするのか明確でない。
(2) PO4-Pを放出するには、嫌気条件が必要とは明示されているものの、この嫌気条件がどの程度であれば、PO4-Pをどの程度放出できるのか明確でない。
(1) It is unknown how much PO 4 -P contained in activated sludge is released. In activated sludge, there are phosphorus originally contained in activated sludge cells and phosphorus originally present as PO 4 -P in the sewage, and excessively taken up by the sludge and retained as polyphosphoric acid granules. It is not clear which is the target.
(2) Although it is clearly stated that anaerobic conditions are necessary to release PO 4 -P, it is not clear how much PO 4 -P can be released under such anaerobic conditions.

(3) さらに、嫌気条件を達成する手段として、下水そのものや最初沈殿池の沈降汚泥あるいは汚泥などの発酵産物などを用いる方法が提示されているが、これらの物質は極めてその性状が不安定であるため、PO4-P放出に対して安定性がなく、実際には制御することが極めて難しい。添加物の量比だけを設定したとしても、嫌気条件やPO4-P放出量を正確に制御できるものではない。
(4) これまで提案されている手段では、下水中の重金属やその他の微量有機酸が回収物に含まれ、回収されたりんの純度が低下する。
(3) Furthermore, as a means to achieve anaerobic conditions, methods using sewage itself or fermentation products such as sedimentation sludge or sludge in the first sedimentation basin have been proposed, but the properties of these substances are extremely unstable. As such, it is not stable to PO 4 -P release and is actually very difficult to control. Even if only the amount ratio of the additive is set, the anaerobic condition and the amount of released PO 4 -P cannot be accurately controlled.
(4) In the means proposed so far, heavy metals and other trace organic acids in sewage are contained in the recovered material, and the purity of the recovered phosphorus is lowered.

したがって、従来の提案方法のままでは、生物学的脱りんプロセスから発生する余剰汚泥からPO4-Pを安定して放出することを制御することははきわめて困難である。 Therefore, it is extremely difficult to control the stable release of PO 4 -P from the excess sludge generated from the biological dephosphorization process with the conventional proposed method.

また、余剰汚泥からのPO4-Pの放出条件は、前段の生物学的りん除去プロセスの運転状態によって、大きく影響を受けることに留意する必要がある。すなわち、生物学的りん除去プロセスの反応槽は、嫌気槽と好気槽(いわゆるAO法)または嫌気槽と無酸素槽、好気槽(いわゆるA2O法)からなりたっている。いずれの方法においても、嫌気槽において、活性汚泥を嫌気性条件下におき、PO4-Pを放出させ、その後、好気槽においてPO4-Pを過剰に摂取させるが、いずれの生物学的りん除去プロセスにおいても、嫌気槽や好気槽の運転条件が余剰汚泥からのりん回収にとっても極めて重要であり、AO法とA2O法ではこの条件が異なってくる面がある。 In addition, it should be noted that the release conditions of PO 4 -P from excess sludge are greatly affected by the operating state of the biological phosphorus removal process in the previous stage. That is, the reaction tank of the biological phosphorus removal process consists of an anaerobic tank and an aerobic tank (so-called AO method) or an anaerobic tank and an anaerobic tank and an aerobic tank (so-called A 2 O method). In any method, activated sludge is placed under anaerobic conditions in an anaerobic tank to release PO 4 -P, and then PO 4 -P is excessively consumed in the aerobic tank. Also in the phosphorus removal process, the operating conditions of the anaerobic tank and the aerobic tank are extremely important for phosphorus recovery from the excess sludge, and the AO method and the A 2 O method have different aspects.

すなわち、
(1) A2O法、AO法とも嫌気槽での嫌気条件が十分に達成されていないと、嫌気槽からのPO4-Pの放出量が低下する。PO4-Pの放出が小さいと、好気槽でのPO4-Pの過剰摂取もおこらず、結果として、余剰汚泥に保有されるりん含有量が低下してしまう。したがって、A2O法、AO法とも嫌気槽での嫌気条件を十分に達成する必要がある。
That is,
(1) If the anaerobic conditions in the anaerobic tank are not sufficiently achieved in both the A 2 O method and the AO method, the amount of PO 4 -P released from the anaerobic tank decreases. If the release of PO 4 -P is small, excessive intake of PO 4 -P in the aerobic tank will not occur, and as a result, the phosphorus content held in the excess sludge will decrease. Therefore, it is necessary to sufficiently achieve the anaerobic conditions in the anaerobic tank in both the A 2 O method and the AO method.

(2) A2O法においては、好気槽において下水に含まれるNH4-NをNO3-Nまで酸化(硝化反応)する。しかし、過剰に曝気を行い、溶存酸素(DO)が大量に残留すると、りん放出槽における余剰汚泥からのPO4-Pの放出に影響を及ぼす。最終沈殿池において、沈降汚泥中のDOやNO3-Nは時間とともに減少するが、DOが高いと汚泥中のNO3-Nの残留量が高まる。最終沈殿池から発生する余剰汚泥中にNO3-N濃度が残れば残るほど、その後の嫌気条件の達成がより困難となり、りん放出槽における余剰汚泥からのPO4-Pの放出が抑制される。 (2) In the A 2 O method, NH 4 —N contained in sewage is oxidized to NO 3 —N (nitrification reaction) in an aerobic tank. However, if excessive aeration is performed and a large amount of dissolved oxygen (DO) remains, it will affect the release of PO 4 -P from excess sludge in the phosphorus release tank. In the final sedimentation basin, DO and NO 3 -N in the settled sludge decrease with time, but if the DO is high, the residual amount of NO 3 -N in the sludge increases. The more NO 3 -N concentration remains in the excess sludge generated from the final sedimentation basin, the more difficult it becomes to achieve the subsequent anaerobic conditions, and the release of PO 4 -P from the excess sludge in the phosphorus release tank is suppressed. .

(3) 一方、AO法の場合には、好気槽において硝化反応を抑制するのが一般的である。すなわち、このような場合、DOやNO3-Nが無いため、最終沈殿池における沈降汚泥の嫌気度が高まりやすく、この結果、最終沈殿池の上澄液中にPO4-Pが放出しやすくなり、処理水質が低下しやすくなる。また、同時に、最終沈殿池から発生する余剰汚泥中のりん含有量も低下する。 (3) On the other hand, in the case of the AO method, the nitrification reaction is generally suppressed in an aerobic tank. That is, in such a case, since there is no DO or NO 3 -N, the anaerobic degree of sedimentation sludge in the final sedimentation basin is likely to increase. As a result, PO 4 -P is easily released into the supernatant of the final sedimentation basin. The quality of treated water is likely to deteriorate. At the same time, the phosphorus content in the excess sludge generated from the final sedimentation basin also decreases.

したがって、AO法とA2O法では、余剰汚泥からのりんの回収を含めて考える場合、AO法とA2O法の運転条件を十分に考える必要がある。より具体的には好気槽において、両方法ともに硝化反応を促進することが必要であるが、一方で、過剰のDOが好気槽からの流出水に存在することは好ましくない。
りんを回収する晶析法についても、以下の課題がある。
Therefore, in the AO method and the A 2 O method, it is necessary to fully consider the operating conditions of the AO method and the A 2 O method when considering the recovery of phosphorus from excess sludge. More specifically, in both aerobic tanks, it is necessary for both methods to promote the nitrification reaction, but on the other hand, it is not preferable that excessive DO exists in the outflow water from the aerobic tank.
The crystallization method for recovering phosphorus also has the following problems.

すなわち、従来の考え方では、晶析反応が生じやすい領域(準安定域)に保つようにカルシウムイオンの添加量とpHを制御することが主眼となっている(非特許文献2)。これは反応式(1)で示されたPO4-Pとカルシウムイオンの化学反応が反応速度の律速となっていると考えているためと思われる。しかし、実際には、従来の固定床の場合などは、閉塞が生じやすく対策が困難(微細なSSの影響を受けやすいこと)、充填材が効率的でない(比表面積が小さく、反応効率が悪いこと)、充填材がりん鉱石の場合りんの枯渇と矛盾するが、他の充填材の場合コストが高いことなどの理由により、普及が妨げられていると考えられる。 That is, in the conventional way of thinking, the main purpose is to control the addition amount and pH of calcium ions so as to keep the region where the crystallization reaction is likely to occur (metastable region) (Non-patent Document 2). This is presumably because the chemical reaction between PO 4 -P and calcium ions represented by the reaction formula (1) is considered to be the rate-determining reaction rate. However, in the case of a conventional fixed bed or the like, in actuality, clogging is likely to occur and countermeasures are difficult (being easily affected by fine SS), and the filler is not efficient (the specific surface area is small and the reaction efficiency is poor). In the case where the filler is phosphate ore, it is inconsistent with phosphorus depletion, but in the case of other fillers, it is considered that the spread is hindered due to the high cost.

本発明は、生物学的りん除去プロセスから発生する余剰汚泥からりんを回収する際のこれまでの課題を解決し、りんを確実かつ高効率に回収する方法を提供することを目的とする。   An object of the present invention is to solve the conventional problems in recovering phosphorus from surplus sludge generated from a biological phosphorus removal process, and to provide a method for recovering phosphorus reliably and efficiently.

本発明者らは、上記の課題を解決するため検討を重ねた結果、以下の方法により、生物学的りん除去プロセスから発生する余剰汚泥からりんを安定して回収することに成功した。   As a result of repeated studies to solve the above problems, the present inventors have succeeded in stably recovering phosphorus from excess sludge generated from the biological phosphorus removal process by the following method.

本発明の要旨とするところは次の(1)〜(14)である。
(1)りんの回収方法において、嫌気槽と好気槽を有する生物学的脱りんプロセスにおいて、発生する余剰汚泥をスラリーとして回収し、当該回収した余剰汚泥からりん酸態りん(PO4-P)を前記スラリー水中に放出させた後、当該放出後のスラリーを濃縮して活性汚泥とりん濃縮水に分離し、当該分離後のりん濃縮水を鉄鋼スラグを充填した流動床に投入し、りん成分をカルシウムアパタイトとして晶析させて回収することを特徴とする。
The gist of the present invention is the following (1) to (14).
(1) In the method of recovering phosphorus, in the biological dephosphorization process having an anaerobic tank and an aerobic tank, the generated excess sludge is recovered as a slurry, and phosphate phosphorus (PO 4 -P) is recovered from the recovered excess sludge. ) In the slurry water, the slurry after the release is concentrated and separated into activated sludge and phosphorus concentrated water. The separated phosphorus concentrated water is put into a fluidized bed filled with steel slag, and phosphorus is added. The component is crystallized and recovered as calcium apatite.

(2)前記(1)に記載のりんの回収方法において、嫌気槽と好気槽を有する生物学的脱りんプロセスが、最初沈殿池、嫌気槽、好気槽、最終沈殿池からなるAOプロセス、または最初沈殿池、嫌気槽、無酸素槽、好気槽、最終沈殿池からなるA2Oプロセスであることを特徴とする。 (2) In the phosphorus recovery method according to (1), the biological dephosphorization process having an anaerobic tank and an aerobic tank is an AO process comprising an initial sedimentation tank, an anaerobic tank, an aerobic tank, and a final sedimentation tank. Or an A 2 O process comprising a first settling tank, an anaerobic tank, an oxygen-free tank, an aerobic tank, and a final settling tank.

(3)前記(1)又は(2)に記載のりんの回収方法において、前記スラリーとして回収する余剰汚泥が、好気槽中の活性汚泥、又は、最終沈殿池で沈降分離した活性汚泥であることを特徴とする。 (3) In the phosphorus recovery method according to (1) or (2), the excess sludge recovered as the slurry is activated sludge in an aerobic tank, or activated sludge that has settled and separated in a final sedimentation tank. It is characterized by that.

(4)前記(1)〜(3)のいずれか1項に記載のりんの回収方法において、前記余剰汚泥からのPO4-Pの放出をりん放出槽において行い、当該りん放出槽内の前記スラリー水のORP(酸化還元電位・銀/塩化銀電極基準)が−350mV(銀/塩化銀電極基準)以下、−400mV(銀/塩化銀電極基準)以上になるように余剰汚泥を攪拌し、PO4-Pの放出を促進することを特徴とする。 (4) In the phosphorus recovery method according to any one of (1) to (3), PO 4 -P is released from the excess sludge in a phosphorus release tank, and the phosphorus in the phosphorus release tank Stir the excess sludge so that the ORP (redox potential / silver / silver chloride electrode standard) of the slurry water is −350 mV (silver / silver chloride electrode standard) or less and −400 mV (silver / silver chloride electrode standard) or more. It is characterized by promoting the release of PO 4 -P.

(5)前記(1)〜(4)のいずれか1項に記載のりんの回収方法において、前記活性汚泥からのPO4-Pの放出をりん放出槽において行い、当該りん放出槽内の前記スラリー水のORP(酸化還元電位・銀/塩化銀電極基準)が−350mV(銀/塩化銀電極基準)以下、−400mV(銀/塩化銀電極基準)以上(すなわち、−400〜−350mVの範囲内)になるように、余剰汚泥に対して、有機酸、最初沈殿池沈降汚泥、嫌気槽の汚泥の少なくともいずれかを添加することを特徴とする。 (5) In the phosphorus recovery method according to any one of (1) to (4), PO 4 -P is released from the activated sludge in a phosphorus release tank, and the phosphorus in the phosphorus release tank The ORP (oxidation-reduction potential / silver / silver chloride electrode standard) of slurry water is −350 mV (silver / silver chloride electrode standard) or less, −400 mV (silver / silver chloride electrode standard) or more (that is, a range of −400 to −350 mV). The above is characterized in that at least one of organic acid, first sedimentation tank sedimentation sludge and anaerobic tank sludge is added to the surplus sludge.

(6)前記(5)に記載のりんの回収方法において、有機酸として酢酸または酢酸ナトリウムを用いることを特徴とする。
(7)前記(5)又は(6)に記載のりんの回収方法において、前記有機酸の添加量が、前記余剰汚泥から放出させるPO4-P量に対して4質量倍以上とすることを特徴とする。
(6) In the method for recovering phosphorus according to (5), acetic acid or sodium acetate is used as the organic acid.
(7) In the phosphorus recovery method according to (5) or (6), the amount of the organic acid added is 4 times or more the amount of PO 4 -P released from the excess sludge. Features.

(8)前記(1)〜(7)のいずれか1項に記載のりんの回収方法において、好気槽において下水中のNH4-NをNO3-Nまで生物学的に酸化し、残留するNH4-N濃度を0.1mg/L以上0.5mg/L以下とすることを特徴とする。
(9)前記(1)〜(8)のいずれか1項に記載のりんの回収方法において、前記余剰汚泥からのPO4-Pの放出をりん放出槽において行い、当該りん放出槽内の前記スラリー水のpHを7.5以上9以下に維持することを特徴とする。
(8) In the method for recovering phosphorus according to any one of (1) to (7), NH 4 —N in sewage is biologically oxidized to NO 3 —N in an aerobic tank, The NH 4 —N concentration is 0.1 mg / L or more and 0.5 mg / L or less.
(9) In the phosphorus recovery method according to any one of (1) to (8), PO 4 -P is released from the excess sludge in a phosphorus release tank, and the phosphorus in the phosphorus release tank The pH of the slurry water is maintained at 7.5 or more and 9 or less.

(10)前記(1)〜(9)のいずれか1項に記載のりんの回収方法において、前記流動床に充填する鉄鋼スラグとして、鉄鋼製造プロセスの副産物である高炉スラグ、転炉スラグの少なくともいずれかを用いることを特徴とする。
(11)前記(10)に記載のりんの回収方法において、前記鉄鋼スラグの粒径範囲が100μm以上300μm以下であることを特徴とする。
(10) In the phosphorus recovery method according to any one of (1) to (9), as the steel slag filled in the fluidized bed, at least of blast furnace slag and converter slag that are by-products of the steel manufacturing process. Any one of them is used.
(11) The phosphorus recovery method according to (10), wherein the steel slag has a particle size range of 100 μm to 300 μm.

(12)前記(1)〜(11)のいずれか1項に記載のりんの回収方法前記りん濃縮水に加えて、カルシウムイオン源も前記鉄鋼スラグを充填した流動床に投入することを特徴とする。
(13)前記(12)のりんの回収方法において、前記カルシウムイオン源が、塩化カルシウムであることを特徴とする。
(12) The method for recovering phosphorus according to any one of (1) to (11), wherein, in addition to the phosphorus concentrated water, a calcium ion source is also charged into a fluidized bed filled with the steel slag. To do.
(13) In the phosphorus recovery method of (12), the calcium ion source is calcium chloride.

(14)前記(12)又は(13)に記載のりんの回収方法において、前記りん濃縮水中に含まれるPO4-P量に対してカルシウムイオン量が、Ca/Pの質量比で2.2以上2.5以下となるように、前記カルシウムイオン源を前記流動床に投入することを特徴とする。 (14) In the phosphorus recovery method according to the above (12) or (13), the calcium ion amount is 2.2 by the mass ratio of Ca / P with respect to the PO 4 -P amount contained in the phosphorus concentrated water. The calcium ion source is charged into the fluidized bed so as to be 2.5 or less.

本発明により、生物学的脱りんプロセスから発生する余剰汚泥からりん酸態りん(PO4-P)を安定して確実に放出でき、このりんをカルシウムヒドロキシアパタイトとして安定して回収することができる。 According to the present invention, phosphate phosphorus (PO 4 -P) can be stably and reliably released from excess sludge generated from a biological dephosphorization process, and this phosphorus can be stably recovered as calcium hydroxyapatite. .

本発明のりんの回収方法では、嫌気槽と好気槽を有する生物学的脱りんプロセスにおいて、発生する余剰汚泥をスラリーとして回収し、当該回収した余剰汚泥からりん酸態りん(PO4-P)を前記スラリー水中に放出させた後、当該放出後のスラリーを濃縮して活性汚泥とりん濃縮水に分離し、当該分離後のりん濃縮水を、鉄鋼スラグを充填した流動床に投入し、りん成分をカルシウムアパタイトとして晶析させて回収することを特徴とする。 In the method for recovering phosphorus according to the present invention, surplus sludge generated in a biological dephosphorization process having an anaerobic tank and an aerobic tank is recovered as a slurry, and phosphate phosphorus (PO 4 -P) is recovered from the recovered excess sludge. ) Is discharged into the slurry water, and the slurry after the discharge is concentrated and separated into activated sludge and phosphorus concentrated water, and the separated phosphorus concentrated water is put into a fluidized bed filled with steel slag, The phosphorus component is crystallized and recovered as calcium apatite.

以下、具体的な実施形態について説明する。
嫌気槽と好気槽を有する生物学的脱りんプロセスとしては、最初沈殿池、嫌気槽、好気槽、最終沈殿池からなるAOプロセスまたは最初沈殿池、嫌気槽、無酸素槽、好気槽、最終沈殿池からなるA2Oプロセスであることが望ましい。
Hereinafter, specific embodiments will be described.
A biological dephosphorization process having an anaerobic tank and an aerobic tank includes an AO process comprising an initial settling tank, an anaerobic tank, an aerobic tank, and a final settling tank, or an initial settling tank, an anaerobic tank, an anaerobic tank, and an aerobic tank The A 2 O process consisting of a final sedimentation tank is desirable.

今回の発明では、余剰汚泥からのPO4-P放出に際しては、PO4-P以外の成分、例えば、重金属イオン、アンモニウムイオン、COD成分などの放出は最大限に抑制する。そして、余剰汚泥から放出させるPO4-Pは、あくまで、元来、下水中に含まれていたPO4-P、換言すれば、活性汚泥が通常保持している以上に過剰摂取し、ポリリン酸の顆粒として保持するりん化合物が分解、発生するPO4-Pである。 In the present invention, when releasing PO 4 -P from excess sludge, the release of components other than PO 4 -P, such as heavy metal ions, ammonium ions, and COD components, is suppressed to the maximum. Then, PO 4 -P be released from the excess sludge, hackers originally, PO 4 -P contained in sewage, in other words, to overdose than the activated sludge is normally held, polyphosphoric acid The phosphorus compound held as a granule is PO 4 -P which is decomposed and generated.

余剰汚泥から、PO4-Pを強制的に放出させる手法として、以下のような手段が公知である。
1)下水または最初沈殿池の沈降汚泥を添加し、嫌気条件下でりんを放出させる手法
2)塩酸や硫酸などの強酸であるいはNaOHなどの強アルカリで活性汚泥を溶解させる手法
3)オゾンなどの酸化剤を用いて活性汚泥を溶解させる手法
4)特殊な酵素あるいは微生物を用いて活性汚泥を溶解させる手法
5)高熱および/または高圧下で活性汚泥を溶解させる手法
The following means are known as a method for forcibly releasing PO 4 -P from excess sludge.
1) Addition of sewage or sedimentation sludge from the first sedimentation basin to release phosphorus under anaerobic conditions 2) Dissolution of activated sludge with strong acid such as hydrochloric acid or sulfuric acid or strong alkali such as NaOH 3) Ozone Method to dissolve activated sludge using oxidizing agent 4) Method to dissolve activated sludge using special enzyme or microorganism 5) Method to dissolve activated sludge under high heat and / or high pressure

しかし、1)を除き、このような方法の場合には、PO4-Pばかりでなく、活性汚泥から難分解のCOD成分や活性汚泥に吸着していた重金属イオンやアンモニウムイオンなども水中に溶解してしまう。この結果、たとえ、PO4-Pを晶析法などで選択的に回収しようとしても、PO4-P以外の成分も多く吸着し、回収するりんの純度が低下してしまうこととなる。 However, except for 1), in the case of such a method, not only PO 4 -P, but also the heavy metal ions and ammonium ions adsorbed on the activated sludge from the activated sludge are dissolved in the water. Resulting in. As a result, even if PO 4 -P is selectively recovered by a crystallization method or the like, many components other than PO 4 -P are adsorbed, and the purity of the recovered phosphorus is lowered.

したがって、本発明では、回収するりんとして、活性汚泥が下水処理の過程で過剰に摂取し、ポリリン酸の顆粒として保持するりん化合物を対象としており、活性汚泥の細胞そのものが元来有しているりん成分の放出まではおこなわないこと基本とする。   Therefore, in the present invention, as the phosphorus to be recovered, activated sludge is excessively consumed in the process of sewage treatment, and the phosphorus compound retained as polyphosphoric acid granules is targeted, and the activated sludge cells themselves originally have. The basic principle is not to release the phosphorus component.

以下、図2を用いて本発明を詳細に説明する。
図2の生物学的脱りんプロセスは、嫌気槽(4)と無酸素槽(5)、好気槽(6)からなる、いわゆるA2O法である。まず、嫌気槽(4)において、ORP計(15)のORP値を−270mV以下に制御した嫌気性条件下におき、活性汚泥から嫌気槽(4)におけるPO4-P濃度が10mg/L以上となるように放出させる。嫌気槽(4)における嫌気性条件を達成するために有機酸(33)、例えば酢酸などを用いることができる。PO4-Pを放出後、無酸素槽(5)、好気槽(6)において活性汚泥にPO4-Pを過剰に摂取させる。この場合、好気槽(6)の運転条件が余剰汚泥からのりん回収にとって極めて重要である。すなわち、A2O法においては、通常、好気槽(6)において曝気を行い、下水に含まれるNH4-NをNO3-Nまでほぼ完全に生物酸化(硝化反応)する。しかし、好気槽(6)において過剰に曝気を行い、DOが大量に残留すると、最終沈殿池(7)において、沈降汚泥(9)中のNO3-N及び/又はNO2-N(NOx-N)の残留量が高まる。したがって、好気槽(6)においてはDOを極力下げることが望ましい。
Hereinafter, the present invention will be described in detail with reference to FIG.
The biological dephosphorization process in FIG. 2 is a so-called A 2 O method comprising an anaerobic tank (4), an oxygen-free tank (5), and an aerobic tank (6). First, in the anaerobic tank (4), the ORP value of the ORP meter (15) is controlled to be -270 mV or less, and the PO 4 -P concentration in the anaerobic tank (4) from the activated sludge is 10 mg / L or more. To release. In order to achieve the anaerobic condition in the anaerobic tank (4), an organic acid (33) such as acetic acid can be used. After the release of PO 4 -P, the activated sludge is excessively ingested with PO 4 -P in the anaerobic tank (5) and the aerobic tank (6). In this case, the operating conditions of the aerobic tank (6) are extremely important for phosphorus recovery from excess sludge. That is, in the A 2 O method, aeration is usually performed in an aerobic tank (6), and NH 4 —N contained in sewage is almost completely biooxidized (nitrification reaction) to NO 3 —N. However, if aeration is excessively performed in the aerobic tank (6) and a large amount of DO remains, NO 3 -N and / or NO 2 -N (NOx in the settled sludge (9) in the final sedimentation basin (7). -N) Residual amount increases. Therefore, it is desirable to lower DO as much as possible in the aerobic tank (6).

このため、好気槽(6)にNH4-N濃度計(39)を設置し、流出水中のNH4-N濃度を連続的に測定し、NH4-N濃度がこの範囲におさまるように、NH4-N濃度計(39)によってブロワ(12)による曝気量を調整することが望ましい。NH4-N濃度計(39)によるNH4-N濃度は、0.1mg/L以上0.5mg/L以下が望ましい。NH4-N濃度を0.1mg/L未満としようとすると好気槽(6)のDOが上昇し、最終沈殿池(7)から発生する余剰汚泥(19)中にNOx-Nが過剰に残りやすい。また、NH4-N濃度が0.5g/L程度まで酸化されていれば、最終沈殿池(7)における沈降汚泥の嫌気度の高まり、りんの放出を抑制できる。 Therefore, established the aerobic tank NH 4 -N concentration meter (6) (39), the NH 4 -N concentration in the effluent to measure continuously, NH 4 -N concentration to fit this range It is desirable to adjust the amount of aeration by the blower (12) by the NH 4 -N concentration meter (39). NH 4 -N concentration by NH 4 -N concentration meter (39), 0.1 mg / L or more 0.5 mg / L or less. If the NH 4 -N concentration is set to less than 0.1 mg / L, DO in the aerobic tank (6) rises, and excessive NOx-N is contained in the excess sludge (19) generated from the final sedimentation basin (7). Easy to remain. Moreover, if the NH 4 —N concentration is oxidized to about 0.5 g / L, the anaerobic degree of the settled sludge in the final sedimentation basin (7) can be increased, and the release of phosphorus can be suppressed.

AO法の場合には、図2のA2O法から無酸素槽(5)をなくしたプロセスであり、好気槽(6)において硝化反応を抑制する(NH4-Nのままで残す)のが一般的であった。しかし、このように硝化反応を抑制した場合、好気槽(6)からの流出水にDOやNO3-Nがほとんど無いため、最終沈殿池(7)における沈降汚泥の嫌気度が極めて高まりやすく、この結果、最終沈殿池(7)の上澄液中にPO4-Pが放出しやすくなり、処理水質が低下する。また、同時に、最終沈殿池(7)から発生する余剰汚泥(19)中のりん含有量も低下する。 In the case of the AO method, it is a process in which the anaerobic tank (5) is eliminated from the A 2 O method of FIG. 2, and the nitrification reaction is suppressed in the aerobic tank (6) (remains as NH 4 -N). It was common. However, when the nitrification reaction is suppressed in this way, there is almost no DO or NO 3 -N in the effluent from the aerobic tank (6), so the anaerobic degree of the settled sludge in the final sedimentation basin (7) is extremely likely to increase. As a result, PO 4 -P is easily released into the supernatant of the final sedimentation basin (7), and the quality of the treated water is lowered. At the same time, the phosphorus content in the excess sludge (19) generated from the final sedimentation tank (7) also decreases.

したがって、りん回収を目指すためには、AO法においても好気槽(6)においてブロワ(12)による曝気により、下水に含まれるNH4-NをNO3-Nまで生物酸化(硝化反応)する。この場合にも、好気槽(6)に残留するNH4-N濃度を0.1mg/L以上0.5mg/L以下とすることが望ましい。具体的には、好気槽(6)にNH4-N濃度計(39)を設置し、流出水中のNH4-N濃度を連続的に測定し、NH4-N濃度この範囲におさまるようにブロワ(12)による好気槽(6)の曝気量を調整すればよい。NH4-N濃度が0.5mg/L程度まで酸化すれば、最終沈殿池(7)における沈降汚泥の嫌気度の高まりを抑制できる。NH4-N濃度を0.1mg/L未満としようとすると好気槽(6)のDOが上昇し、最終沈殿池(7)から発生する余剰汚泥(19)中にNOx-Nが過剰に残りやすい。 Therefore, in order to recover phosphorus, NH 4 -N contained in sewage is biologically oxidized (nitrification reaction) to NO 3 -N by aeration with a blower (12) in an aerobic tank (6) even in the AO method. . Also in this case, it is desirable that the NH 4 —N concentration remaining in the aerobic tank (6) is 0.1 mg / L or more and 0.5 mg / L or less. Specifically, NH 4 -N concentration meter (39) placed in the aerobic tank (6), continuously measuring the NH 4 -N concentration in the effluent, NH 4 -N concentration to fall within this range The aeration amount of the aerobic tank (6) by the blower (12) may be adjusted. If the NH 4 —N concentration is oxidized to about 0.5 mg / L, an increase in the anaerobic degree of the settled sludge in the final sedimentation basin (7) can be suppressed. If the NH 4 -N concentration is set to less than 0.1 mg / L, DO in the aerobic tank (6) rises, and excessive NOx-N is contained in the excess sludge (19) generated from the final sedimentation basin (7). Easy to remain.

次に、余剰汚泥(19)からのりんの回収は以下の手順で実施する。
まず、余剰汚泥(19)を回収してりん放出槽(25)に投入する。余剰汚泥(19)としては、通常、最終沈殿池(7)の沈降汚泥(9)を用いる。場合によっては、好気槽(6)の活性汚泥(31)を余剰汚泥と用いてもかまわない。いずれも、これらの活性汚泥は、PO4-Pを最大限に過剰摂取した状態にあるからである。これらの余剰汚泥は、水分を多量に含んでいるため、スラリーとして回収される。このスラリーはSS(Suspended Solid)成分と水(スラリー水とも言う)からなるが、余剰汚泥はSS成分に含まれる。尚、回収したスラリーは、必要に応じてSS成分の濃度を制御するため、水添加や更なる濃縮を適宜行うことができる。
Next, the recovery of phosphorus from excess sludge (19) is carried out according to the following procedure.
First, surplus sludge (19) is collected and put into a phosphorus release tank (25). As the excess sludge (19), the settling sludge (9) of the final settling basin (7) is usually used. In some cases, activated sludge (31) in the aerobic tank (6) may be used as excess sludge. This is because these activated sludges are in a state of excessive intake of PO 4 -P to the maximum extent. Since these excess sludge contains a large amount of moisture, it is recovered as a slurry. This slurry is composed of an SS (Suspended Solid) component and water (also referred to as slurry water), but excess sludge is contained in the SS component. In addition, since the collect | recovered slurry controls the density | concentration of SS component as needed, water addition and further concentration can be performed suitably.

本発明では、余剰汚泥を含有するスラリーをりん放出槽(25)に投入して、りん放出槽(25)内のスラリーの嫌気度を制御するため、りん放出槽(25)においてORP計(15)によりORP(銀/塩化銀電極基準)値を測定する。りん放出槽(25)のORP値が−350mV(銀/塩化銀電極基準)以下となるまでりん放出槽(25)内の余剰汚泥(19)(余剰汚泥を含むスラリー)をゆっくりと攪拌し、PO4-Pの放出を促進する。 In the present invention, in order to control the anaerobic degree of the slurry in the phosphorus release tank (25) by introducing the slurry containing excess sludge into the phosphorus release tank (25), an ORP meter (15 ) To measure the ORP (silver / silver chloride electrode reference) value. Slowly agitate the excess sludge (19) (slurry containing excess sludge) in the phosphorus release tank (25) until the ORP value in the phosphorus release tank (25) falls below -350 mV (silver / silver chloride electrode standard), Promotes the release of PO 4 -P.

この場合、りん放出槽(25)のORP計(15)のORP値を迅速に低下させる手段として、有機酸添加装置(33)から有機酸をりん放出槽(25)に添加すればよい。具体的には、まず、目標のりんの回収量は、好気槽(6)の活性汚泥と嫌気槽(4)の活性汚泥に含まれるりん含有量の差と対象とする余剰汚泥中の汚泥濃度の積算から求める。このりんをPO4-Pとして回収する場合、どの程度、有機酸を余剰汚泥に添加すれば、ほぼ全量回収できるか検討した結果、有機酸の添加量としては、回収目標PO4-P量に対して4質量倍以上添加すればよいことを実験的に確認した。 In this case, as a means for quickly reducing the ORP value of the ORP meter (15) of the phosphorus release tank (25), an organic acid may be added from the organic acid addition device (33) to the phosphorus release tank (25). Specifically, first, the target amount of phosphorus recovered is the difference between the phosphorus content in the activated sludge in the aerobic tank (6) and the activated sludge in the anaerobic tank (4) and the sludge in the surplus sludge that is the target. Obtained from concentration integration. When recovering this phosphorus as PO 4 -P, the amount of organic acid added to surplus sludge was examined to determine that almost the entire amount could be recovered. As a result, the amount of organic acid added was the recovery target PO 4 -P amount. On the other hand, it was experimentally confirmed that it should be added 4 times by mass or more.

図3は、りん放出槽(25)での回収目標のPO4-P濃度が40mg/Lの事例であるが、酢酸が200mg/Lでほぼ目標値を達成している。有機酸添加量の上限は特に定めないが、コストの増加を招くため、回収目標のPO4-P量に対して5質量倍以下で十分である。 FIG. 3 shows an example in which the PO 4 -P concentration of the recovery target in the phosphorus release tank (25) is 40 mg / L, and the target value is almost achieved at 200 mg / L for acetic acid. The upper limit of the amount of the organic acid added is not particularly defined, but it causes an increase in cost, so 5 mass times or less is sufficient for the recovery target PO 4 -P amount.

また、有機酸としては、酢酸または酢酸ナトリウムを用いることが望ましい。酢酸または酢酸ナトリウムは、汚泥からのりん放出に最も効果的であり、また、容易に純度の高いものを入手できる利点がある。   As the organic acid, it is desirable to use acetic acid or sodium acetate. Acetic acid or sodium acetate is most effective in releasing phosphorus from sludge and has the advantage that it can be easily obtained in high purity.

有機酸にかえて、生物学的脱りんプロセスの嫌気槽(4)の活性汚泥(32)を一部採取し、りん放出槽(25)に添加してもかまわない。しかし、生物学的脱りんプロセスの嫌気槽(4)の汚泥をりん放出槽(25)に添加する場合、生物学的脱りんプロセスの嫌気槽(4)のORP計(15)のORP値が−270mV以下、可能であれば−300mV以下に維持されていることが必要である。このような場合、嫌気槽(4)の汚泥を用いて、りん放出槽(25)のORP計(15)のORP値を−350mV以下とすることに効果が認められた。嫌気槽(4)の汚泥添加量は、余剰汚泥中、20V/V%(体積/体積%)以上50V/V%以下であることが望ましい。20V/V%未満ではりん放出槽(25)のORP計(15)のORP値の低下効果が小さく、50V/V%を越える場合は、回収するPO4-P量が半減してしまう。 Instead of the organic acid, a part of the activated sludge (32) in the anaerobic tank (4) of the biological dephosphorization process may be collected and added to the phosphorus release tank (25). However, when sludge from the anaerobic tank (4) of the biological dephosphorization process is added to the phosphorus release tank (25), the ORP value of the ORP meter (15) of the anaerobic tank (4) of the biological dephosphorization process is It is necessary to maintain −270 mV or less, and −300 mV or less if possible. In such a case, using the sludge in the anaerobic tank (4), it was confirmed that the ORP value of the ORP meter (15) in the phosphorus release tank (25) was -350 mV or less. The amount of sludge added to the anaerobic tank (4) is preferably 20 V / V% (volume / volume%) or more and 50 V / V% or less in the excess sludge. If it is less than 20 V / V%, the effect of lowering the ORP value of the ORP meter (15) of the phosphorus release tank (25) is small, and if it exceeds 50 V / V%, the amount of PO 4 -P recovered is halved.

また、最初沈殿池(2)の沈降汚泥(17)をりん放出槽(25)に添加してもかまわない。この場合、最初沈殿池(2)の沈降汚泥(17)の添加量は、最初沈殿池(2)の沈降汚泥(17)中の酢酸量を測定し、有機酸の添加量が回収目標のりん量に対して4質量倍以上を保てるように設定しておくことが望ましい。いずれの方法をとっても、りん放出槽(25)のORP計(15)のORP値が−350mV以下まで低下すれば、余剰汚泥(19)から目標とするPO4-Pの放出は完了したと判断できる。このりん放出槽(25)のORP計(15)のORP値の下限は、−400mV以上とすることが望ましい。これはりん放出槽(25)のORP計(15)のORP値が−400mVを超えて低下すると汚泥の腐敗が進み、硫化水素やアンモニアの発生が進行してしまうためである。 Moreover, the sedimentation sludge (17) of the first sedimentation basin (2) may be added to the phosphorus release tank (25). In this case, the amount of sedimentation sludge (17) in the first sedimentation basin (2) is measured by measuring the amount of acetic acid in the sedimentation sludge (17) in the first sedimentation basin (2), and the amount of organic acid added is the target of recovery. It is desirable to set it so that it can be kept at least 4 times the mass. Regardless of which method is used, if the ORP value of the ORP meter (15) in the phosphorus release tank (25) decreases to -350 mV or less, the target release of PO 4 -P from the excess sludge (19) is judged to have been completed. it can. The lower limit of the ORP value of the ORP meter (15) of the phosphorus release tank (25) is preferably set to -400 mV or more. This is because when the ORP value of the ORP meter (15) of the phosphorus release tank (25) falls below -400 mV, the sludge decays and the generation of hydrogen sulfide and ammonia proceeds.

また、りん放出槽(25)のpH計(30)のpH値は、余剰汚泥(19)を完全に死滅させないこと、ならびに、後段の晶析装置(27)の運転条件を考慮し、7.5以上9以下に維持する。すなわち、pH=7.5以上としてカルシウムアパタイトの生成を促進する、また、pH=9以下として、微細なカルシウムアパタイトの生成を抑制できる。さらに、pHが7.5以上9以下であれば、活性汚泥の機能の低下は見られない。   In addition, the pH value of the pH meter (30) of the phosphorus release tank (25) is set so that the excess sludge (19) is not completely killed and the operating conditions of the subsequent crystallizer (27) are taken into account. 5 to 9 is maintained. That is, the production of calcium apatite can be promoted at pH = 7.5 or more, and the production of fine calcium apatite can be suppressed at pH = 9 or less. Furthermore, if pH is 7.5 or more and 9 or less, the fall of the function of activated sludge is not seen.

りん放出槽(25)のORP計(15)のORP値が−350mV以下になったことを確認後、ポンプによって、汚泥濃縮装置(18)に活性汚泥を搬送し、汚泥濃縮装置(18)によって脱りん汚泥(28)とりん濃縮水(20)に固液分離する。   After confirming that the ORP value of the ORP meter (15) in the phosphorus release tank (25) is -350 mV or less, the activated sludge is transported to the sludge concentrator (18) by the pump, and the sludge concentrator (18) is used. Solid-liquid separation into dephosphorized sludge (28) and phosphorus concentrated water (20).

汚泥濃縮装置(18)としては、沈降分離タイプの濃縮装置、あるいは、遠心分離濃縮装置などの機械式濃縮装置、いずれであってもかまわない。さらに、続いて、このりん濃縮水(20)を晶析装置(27)にポンプによって搬送し、高濃度のPO4-Pをカルシウムアパタイトとして回収する。りん濃縮水(20)中にSSが高いと、晶析装置(27)のスラグ表面がSSで覆われ晶析反応が停止してしまうので、SS分除去のために、晶析装置(27)の前段に砂ろか装置や膜分離装置を設けてもかまわない。 The sludge concentrating device (18) may be either a sedimentation type concentrating device or a mechanical concentrating device such as a centrifugal concentrating device. Further, subsequently, this phosphorus concentrated water (20) is conveyed to the crystallizer (27) by a pump, and high concentration PO 4 -P is recovered as calcium apatite. If the SS is high in the phosphorous concentrate (20), the slag surface of the crystallizer (27) is covered with SS and the crystallization reaction stops, so the crystallizer (27) A sand filter device or a membrane separation device may be provided in the previous stage.

流動床からなる晶析装置(27)の詳細を図5に示す。
本発明の場合、晶析装置(27)には、製鐵所における鉄鋼製造プロセスから発生する鉄鋼スラグ(38)、すなわち、高炉徐冷スラグ、高炉水砕スラグ、高炉炉外水砕スラグ、製鋼スラグのうち1種または2種以上を用いる。高炉徐冷スラグ、高炉水砕スラグ、高炉炉外水砕スラグはいずれも製鐵所の高炉から発生するスラグである。高炉徐冷スラグとは、高炉から排出した溶融スラグをヤードなどに流し出してゆっくり冷却凝固させたものであり、結晶質である。高炉水砕スラグは、高炉から出た該溶融スラグに直接水を吹きかけて急冷凝固させたものであり、非晶質である。高炉炉外水砕スラグとは、該溶融したスラグを受滓鍋で高炉から離れた場所に運んで水砕したスラグである。従って一部に凝固がおきて結晶質となった部分を含む高炉水砕スラグである。製鋼スラグは、転炉スラグや予備処理スラグなどで結晶質である。
The details of the crystallizer (27) comprising a fluidized bed are shown in FIG.
In the case of the present invention, the crystallizer (27) includes steel slag (38) generated from the steel production process at the steelworks, that is, blast furnace slow-cooled slag, blast furnace water granulated slag, blast furnace water granulated slag, steelmaking One type or two or more types of slag are used. Blast furnace slow-cooled slag, blast furnace water granulated slag, and blast furnace water granulated slag are all slag generated from the blast furnace of the ironworks. Blast furnace slow-cooled slag is obtained by pouring molten slag discharged from the blast furnace into a yard or the like and slowly cooling and solidifying it, and is crystalline. Blast furnace granulated slag is obtained by spraying water directly on the molten slag from the blast furnace and rapidly solidifying it, and is amorphous. The ground granulated slag from the blast furnace is slag obtained by carrying the molten slag to a place away from the blast furnace with a receiving pan. Therefore, it is a blast furnace granulated slag including a part that has been partially solidified to become crystalline. Steelmaking slag is crystalline, such as converter slag and pretreatment slag.

これらは鉄鋼製造の過程で発生し、容易に安定した物が多量に得られる。また、このような高炉スラグや製鋼スラグは酸化カルシウム(CaO)を30〜50質量%含むため、水に浸漬したときにカルシウムイオンを放出するとともにややアルカリ性を示す。したがって、運転開始直後は、後述するようなカルシウムイオンの添加やpH制御用のアルカリ剤の添加量を減少させることができる。このような効果は、従来から用いられてきたりん鉱石などに期待することはできない。これらのスラグは単独で使用することも、任意に混合して利用することも可能である。   These are generated in the steel manufacturing process, and a large amount of easily stable products can be obtained. Moreover, since such blast furnace slag and steelmaking slag contain 30-50 mass% of calcium oxide (CaO), they are slightly alkaline while releasing calcium ions when immersed in water. Therefore, immediately after the start of operation, it is possible to reduce the amount of calcium ions and pH control alkaline agent as described later. Such an effect cannot be expected from phosphate ore that has been used in the past. These slags can be used alone or in any desired mixture.

本発明のりん除去の原理は、晶析反応である。流動床からなる晶析装置(27)に充填したスラグから放出されるカルシウムイオン、あるいは、外部から添加するカルシウムイオン源によるカルシウムイオン(34)と被処理水中のPO4-Pを鉄鋼スラグ(38)の表面で反応させ、カルシウムアパタイトとして回収する。 The principle of phosphorus removal of the present invention is a crystallization reaction. Calcium ions released from slag filled in a crystallizer (27) composed of a fluidized bed, or calcium ions (34) from a calcium ion source added from the outside and PO 4 -P in water to be treated are converted into steel slag (38 ) And is recovered as calcium apatite.

回収の際は、流動床に充填され、カルシウムアパタイトが表面に晶析している鉄鋼スラグ(38)そのもの(りん付着スラグと呼称する)を回収すれば良い鉄鋼スラグ(38)自体が肥料として活用されているため、りん肥料として、回収したりん付着スラグ(36)をそのまま有効活用することも可能である。   During recovery, the steel slag (38) itself, which is packed in a fluidized bed and crystallized with calcium apatite on the surface (referred to as phosphorus-attached slag), can be recovered and used as fertilizer. Therefore, it is possible to effectively utilize the collected phosphorus-attached slag (36) as it is as a fertilizer.

晶析装置(27)のpH計(30)のpH値は、反応式(1)で示されるように水酸イオンが除かれるため、徐々に低下する。このため、pH値を連続測定してpH計(30)のpH値が8以上9未満となるようにNaOHなどのアルカリ剤(29)で制御することが望ましい。しかし、本発明では、りん放出槽(25)において、既にpH値が7.5以上9以下に維持されているため、晶析装置(27)のpH制御を行うには至らない。従来法では、晶析装置(27)のpHを上昇させるためNaOHなどののアルカリ剤(29)を添加するが、注入箇所での局所的なpHの急激な上昇により微細なカルシウムアパタイトが大量に発生し、晶析装置(27)での閉塞をもたらしやすい。本発明では、そのようなトラブルを回避することができる。   The pH value of the pH meter (30) of the crystallizer (27) gradually decreases because the hydroxide ions are removed as shown in the reaction formula (1). For this reason, it is desirable that the pH value is continuously measured and controlled with an alkaline agent (29) such as NaOH so that the pH value of the pH meter (30) is 8 or more and less than 9. However, in the present invention, since the pH value is already maintained at 7.5 or more and 9 or less in the phosphorus release tank (25), the pH control of the crystallizer (27) cannot be performed. In the conventional method, an alkaline agent (29) such as NaOH is added to increase the pH of the crystallizer (27), but a large amount of fine calcium apatite is produced due to a local rapid increase in pH at the injection site. This is likely to cause clogging in the crystallizer (27). In the present invention, such troubles can be avoided.

また、晶析装置(27)にて、Ca5(OH)(PO43を生成させるためにはカルシウムイオン(34)を連続して供給する必要がある。カルシウムイオン(34)の必要量は、反応式(1)で示されるように、PO4-Pに対してカルシウムイオン(34)を、Ca/Pの質量比が2.2以上となるように添加することが望ましい。 Further, in the crystallizer (27), in order to generate Ca 5 (OH) (PO 4 ) 3 , it is necessary to supply continuously calcium ions (34). The required amount of calcium ions (34) is such that the calcium ions (34) with respect to PO 4 -P have a Ca / P mass ratio of 2.2 or more, as shown in reaction formula (1). It is desirable to add.

カルシウムアパタイトの生成を阻害する要因として過剰のCO3 2-の存在がある。これは、CO3 2-がカルシウムイオンと結合し、CaCO3を形成しやすく、カルシウムアパタイトの生成を阻害するためである。 The presence of excess CO 3 2− is a factor that inhibits the formation of calcium apatite. This is because CO 3 2− binds to calcium ions to easily form CaCO 3 and inhibits the formation of calcium apatite.

2O法では好気槽(6)において硝化反応を進めているため、H+が発生しやすく、これとCO3 2-が反応してH2CO3を形成した後、CO2として除去されるためである。したがって、A2O法の場合、Ca/Pの質量比は最大でも2.5以下で十分である。 In the A 2 O method, since the nitrification reaction is proceeding in the aerobic tank (6), H + is likely to be generated, and this reacts with CO 3 2− to form H 2 CO 3, which is then removed as CO 2. It is to be done. Therefore, in the case of the A 2 O method, the maximum Ca / P mass ratio is 2.5 or less.

一方、前段の生物学的脱りんプロセスがAO法の場合には、好気槽(6)において硝化反応を抑制するのが一般的であった。しかし、このような運転では、好気槽(6)においてCO3 2-が低減せず、カルシウムアパタイトの生成を阻害されやすい。さらに、最終沈殿池(7)の沈降汚泥(9)の嫌気度が高まりやすく、この結果、最終沈殿池(7)の上澄液中にPO4-Pが放出しやすくなり、処理水質が低下しやすくなる。また、同時に、最終沈殿池(7)から発生する沈降汚泥(9)中のりん含有量も低下する。これらの理由からAO法の場合においても好気槽(6)において硝化反応を促進することはりん回収の視点から必須の条件である。具体的には、好気槽(6)末端のNH4−N計(39)のNH4−N濃度が0.1mg/L以上0.5mg/L以下となるよう好気槽(6)をブロワー(12)で曝気すればよい。したがって、AO法の場合にも、硝化が十分に進行しているという条件下において、Ca/Pの質量比は2.5以下で十分である。 On the other hand, when the biological dephosphorization process in the previous stage is the AO method, the nitrification reaction is generally suppressed in the aerobic tank (6). However, in such an operation, CO 3 2− is not reduced in the aerobic tank (6), and the production of calcium apatite is easily inhibited. Furthermore, the anaerobic degree of the sedimentation sludge (9) in the final sedimentation basin (7) is likely to increase. As a result, PO 4 -P is easily released into the supernatant of the final sedimentation basin (7) and the quality of treated water is reduced. It becomes easy to do. At the same time, the phosphorus content in the sedimentation sludge (9) generated from the final sedimentation basin (7) also decreases. For these reasons, even in the case of the AO method, it is an essential condition from the viewpoint of phosphorus recovery to promote the nitrification reaction in the aerobic tank (6). Specifically, the aerobic tank (6) is adjusted so that the NH 4 -N concentration of the NH 4 -N meter (39) at the end of the aerobic tank (6) is 0.1 mg / L or more and 0.5 mg / L or less. It can be aerated with a blower (12). Therefore, even in the case of the AO method, a Ca / P mass ratio of 2.5 or less is sufficient under the condition that nitrification is sufficiently advanced.

晶析装置(27)に添加するカルシウムイオン源(34)としては、溶解性の高いCaCl2を用いればよい。このほか、Ca(OH)2、CaSO4、CaOを用いてもかまわないが、溶解度が小さく閉塞の原因となりやすい。 As the calcium ion source (34) added to the crystallizer (27), highly soluble CaCl 2 may be used. In addition, Ca (OH) 2 , CaSO 4 , and CaO may be used, but the solubility is small and it is likely to cause clogging.

りん濃縮水(20)と鉄鋼スラグ(38)の接触方法としては、鉄鋼スラグ(38)を充填した晶析装置(27)にりん濃縮水(20)を注いだ後、処理水(26)を汲み出すバッチ処理方法や、鉄鋼スラグ(38)を充填した晶析装置(27)の下端から上端へりん濃縮水(20)をポンプで通水しながら接触させる連続処理方法がある。この中では、晶析装置(27)に粒径の小さい鉄鋼スラグ(38)を充填した充填槽の下端から上方流でりん濃縮水(20)を通水し、鉄鋼スラグ(38)を膨張・流動させ、りん濃縮水(20)と効率的に接触させて、りんを除去する流動床方式が最も望ましい。   As a method of contacting the phosphorus-enriched water (20) and the steel slag (38), after pouring the phosphorus-enriched water (20) into the crystallizer (27) filled with the steel slag (38), the treated water (26) is used. There are a batch processing method for drawing out and a continuous processing method in which phosphorus concentrated water (20) is brought into contact with the crystallizer (27) filled with steel slag (38) from the lower end to the upper end while passing through a pump. In this, phosphorus concentrated water (20) was passed upward from the lower end of the filling tank filled with steel slag (38) with a small particle size in the crystallizer (27), and the steel slag (38) was expanded and expanded. Most preferred is a fluidized bed system that is fluidized and efficiently contacted with phosphorus concentrate (20) to remove phosphorus.

鉄鋼スラグ(38)の粒径は、りん濃縮水(20)との接触面積を大きくとれること、流動化が容易であるなどの視点から細粒ほど好ましい。特に、流動床の場合、一般に流動化させるためのエネルギーが課題となる。流動床型の反応槽の場合、処理された水を再度循環させ、担体の流動に用いる場合が多々ある。   The particle size of the steel slag (38) is preferably as fine as possible from the standpoint that the contact area with the phosphorus-enriched water (20) can be increased and fluidization is easy. In particular, in the case of a fluidized bed, energy for fluidization is generally a problem. In the case of a fluidized bed reactor, the treated water is often circulated again and used for the flow of the carrier.

しかし、鉄鋼スラグ(38)の場合には、製鉄所の副産物として細粒のものを安価に得ることができ、流動化エネルギーを小さくすることが容易にできる。もちろん、あまり細粒になりすぎると鉄鋼スラグ(38)自体が処理水とともに流出しやすくなる。そこで、発明者らは鋭意検討した結果、用いる鉄鋼スラグ(38)の粒径の範囲としては0.1mm以上0.3mm以下となることが望ましいことを知見した。すなわち、用いる鉄鋼スラグ(38)は、篩などの手段により0.1mm以上0.3mm以下の範囲に分級しておくことが好ましい。   However, in the case of steel slag (38), fine particles can be obtained at low cost as a by-product of the steel mill, and the fluidization energy can be easily reduced. Of course, if it becomes too fine, the steel slag (38) itself tends to flow out with the treated water. As a result of intensive studies, the inventors have found that the range of the particle size of the steel slag (38) to be used is preferably 0.1 mm or more and 0.3 mm or less. That is, the steel slag (38) to be used is preferably classified into a range of 0.1 mm to 0.3 mm by means such as a sieve.

また、りん濃縮水(20)の晶析装置(27)における線流速は、用いる鉄鋼スラグ(38)の粒径の範囲が0.1mm以上0.3mm以下の場合、5m/日以上15m/日以下に設定すればよい。線流速が5m/日に満たない場合、鉄鋼スラグ(38)が十分に膨張・流動せず、添加したカルシウムイオンとの混合が不十分となりやすく、晶析装置(27)の下部にカルシウムヒドロキシアパタイトが蓄積しやすくなる。一方、線流速は、15m/日以上となると生成したカルシウムヒドロキシアパタイトが鉄鋼スラグ(38)の表面に付着・成長しがたくなり、晶析装置(27)から流出しやすくなる。また、鉄鋼スラグ(38)そのものも晶析装置(27)から流出しやすくなる。したがって、りん濃縮水(20)の晶析装置(27)における線流速は、5m/日以上15m/日以下に設定すればよい。   The linear flow rate in the crystallizer (27) of the phosphorus concentrate (20) is 5 m / day or more and 15 m / day when the range of the particle size of the steel slag (38) used is 0.1 mm or more and 0.3 mm or less. The following should be set. When the linear flow velocity is less than 5 m / day, the steel slag (38) does not expand and flow sufficiently, and the mixing with the added calcium ions tends to be insufficient, and the calcium hydroxyapatite is formed below the crystallizer (27). Becomes easier to accumulate. On the other hand, when the linear flow rate is 15 m / day or more, the produced calcium hydroxyapatite is less likely to adhere to and grow on the surface of the steel slag (38), and easily flows out of the crystallizer (27). Also, the steel slag (38) itself tends to flow out of the crystallizer (27). Therefore, the linear flow velocity in the crystallizer (27) of the phosphorus-enriched water (20) may be set to 5 m / day or more and 15 m / day or less.

〔参考例1:有機酸添加とpH制御による余剰汚泥からのPO4-P放出促進〕
(実施例の前処理)
最初沈殿池(2)、嫌気槽(4)、無酸素槽(5)、好気槽(6)及び最終沈殿池(7)からなるA2Oプロセスから発生する余剰汚泥からの効率的なPO4-P放出方法を検討した(図2参照)。
[Reference Example 1: Promotion of PO 4 -P release from surplus sludge by addition of organic acid and pH control]
(Pretreatment of Example)
Efficient PO from excess sludge generated from A 2 O process consisting of first sedimentation tank (2), anaerobic tank (4), anoxic tank (5), aerobic tank (6) and final sedimentation tank (7) The 4- P release method was examined (see FIG. 2).

余剰汚泥としては、好気槽6のNH4-N濃度が0.2mg/Lと十分に硝化の進んだ好気槽(6)から引き抜いた活性汚泥(31)とした。また、好気槽(6)のDO濃度は、1mg/L前後であり、通常のDO管理値(1.5mg/L以上)よりは低めに維持されていた。 The surplus sludge was activated sludge (31) extracted from the aerobic tank (6) in which the NH 4 -N concentration in the aerobic tank 6 was 0.2 mg / L and nitrification was sufficiently advanced. The DO concentration in the aerobic tank (6) was around 1 mg / L, and was kept lower than the normal DO management value (1.5 mg / L or more).

好気槽(6)の活性汚泥(31)は、3.1〜3.3質量%のりん含有量があり、通常の活性汚泥が保持するりん含有量を2質量%すると、回収するPO4-P量は、汚泥に含有されるりんの平均1.2%に設定した。例えば、好気槽(6)の活性汚泥は、MLSS(Mixed liquor Suspended Solid)濃度が3500〜3700mg/Lの場合、42〜45mg/L程度のPO4-P放出濃度となると推定された。 The activated sludge (31) in the aerobic tank (6) has a phosphorus content of 3.1 to 3.3% by mass. When the phosphorus content held by normal activated sludge is 2% by mass, the recovered PO 4 -The amount of P was set to 1.2% of the average phosphorus contained in the sludge. For example, the activated sludge in the aerobic tank (6) is estimated to have a PO 4 -P release concentration of about 42 to 45 mg / L when the MLSS (Mixed liquor Suspended Solid) concentration is 3500 to 3700 mg / L.

りん放出槽(25)において、好気槽(6)から引き抜いた活性汚泥(31)を、攪拌しながら放置した。この結果、表1に示すように、4時間程度の放置では全くPO4-Pの放出は見られず、また、24時間後でもPO4-Pの放出は、1mg/L以下であった。 In the phosphorus release tank (25), the activated sludge (31) extracted from the aerobic tank (6) was left with stirring. As a result, as shown in Table 1, no release of PO 4 -P was observed after standing for about 4 hours, and the release of PO 4 -P was 1 mg / L or less even after 24 hours.

同時に、好気槽(6)から引き抜いた活性汚泥(31)をろ過し、NOx-N濃度を測定した。NOx-Nは、当初、4.36mg/L存在していたが、4時間後でも2.45mg/L、24時間後でも0.34mg/L残存していた。
これらの結果から、活性汚泥(31)中のNOx-Nの存在が、りん放出槽(25)におけるPO4-Pの放出を抑制したと考えられる。
At the same time, the activated sludge (31) extracted from the aerobic tank (6) was filtered, and the NOx-N concentration was measured. NOx-N was initially present at 4.36 mg / L, but remained at 2.45 mg / L after 4 hours and 0.34 mg / L after 24 hours.
From these results, it is considered that the presence of NOx-N in the activated sludge (31) suppressed the release of PO 4 -P in the phosphorus release tank (25).

Figure 2007283223
Figure 2007283223

そこで、活性汚泥(31)からNOx-Nを除くため、有機酸として、酢酸を選定し、200mg/余剰汚泥-Lとなるように酢酸(33)をりん放出槽(25)に添加し、酢酸によるPO4-Pの放出促進を検討した。 Therefore, in order to remove NOx-N from the activated sludge (31), acetic acid is selected as the organic acid, and acetic acid (33) is added to the phosphorus release tank (25) so as to be 200 mg / surplus sludge-L. The promotion of the release of PO 4 -P by selenium was examined.

表2はpH無制御で酢酸を添加した結果である。この結果、りん放出槽(25)のpH計(30)のpH値が1時間後に7.6から5まで低下し、活性汚泥の機能低下が見られ、りん放出槽(25)においてPO4-Pを水中に放出させる能力が低下し、24時間でも、目標の42〜45mg/L程度のPO4-P放出濃度には至らなかった。このように、りん放出槽(25)に有機酸を添加する操作のみでは、PO4-P放出促進効果は十分ではない。 Table 2 shows the results of adding acetic acid without pH control. As a result, it dropped to 5 from 7.6 pH value after 1 hour in pH meter (30) of phosphorus release tank (25), decreased function of activated sludge was observed, PO 4 in phosphate release tank (25) - The ability to release P into water decreased, and the target PO 4 -P release concentration of 42 to 45 mg / L was not reached even after 24 hours. Thus, the PO 4 -P release promoting effect is not sufficient only by adding the organic acid to the phosphorus release tank (25).

Figure 2007283223
Figure 2007283223

そこで、りん放出槽(25)に酢酸を添加してもpH計(30)のpH値が7.5以上に維持されるように、NaOH添加装置(34)からNaOH溶液を添加した。この結果を表3に示す。この結果、りん放出槽(25)のpH値が7.5のもとで酢酸を200mg/L添加した場合、24時間後、最大約49mg/Lの濃度のPO4-Pが得られた。これは事前に計算したりん放出濃度の数値とほぼ一致した。また、りん放出操作後の脱りん活性汚泥(28)中のりん濃度は、MLSSあたりの質量%で、2.0質量%まで低下していることも確認できた。
なお、酢酸のかわりに酢酸ナトリウムを用いれば、pHの急激な低下を防ぐことができるので、酢酸ナトリウムを溶解させ、添加してもかまわない。
Therefore, the NaOH solution was added from the NaOH addition device (34) so that the pH value of the pH meter (30) was maintained at 7.5 or more even when acetic acid was added to the phosphorus release tank (25). The results are shown in Table 3. As a result, when 200 mg / L of acetic acid was added while the pH value of the phosphorus release tank (25) was 7.5, PO 4 -P having a maximum concentration of about 49 mg / L was obtained after 24 hours. This is almost consistent with the previously calculated phosphorus release concentration. It was also confirmed that the phosphorus concentration in the dephosphorization activated sludge (28) after the phosphorus release operation was reduced to 2.0 mass% in terms of mass% per MLSS.
In addition, if sodium acetate is used instead of acetic acid, it is possible to prevent a rapid drop in pH, so sodium acetate may be dissolved and added.

Figure 2007283223
Figure 2007283223

さらに、図3に示すように、りん放出槽(25)のpH=7.5制御のもとで有機酸の添加量を40〜400mg/Lと変化させ、りん放出濃度を検討した。この結果、有機酸の添加量は、200mg/L程度で目標とするりん放出濃度を得ることができることが明らかになった。しかし、今回の汚泥は、NOx-Nを含有し、NOx-N(4.0mg/L)による酢酸の消費があるので、これを差し引く必要がある。すなわち、NOx-Nが存在すると、反応式(2)のようにりんの放出に必要な有機酸は直ちに分解されてしまうため、この分を差し引くものである。
8NO3 -+5CH3COOH → 4N2+10CO2+6H2O+8OH- (2)
差し引いた結果、りん放出に必要な正味の酢酸必要量は以下のように推定される。
(200mg-酢酸/L) − (4mg/L×2.7)=190mg-酢酸/L
これらの結果から、りん放出に必要な正味の酢酸必要量は、PO4-P量の約4倍であると考えられる。
Furthermore, as shown in FIG. 3, the amount of organic acid added was varied from 40 to 400 mg / L under the control of pH = 7.5 in the phosphorus release tank (25), and the phosphorus release concentration was examined. As a result, it became clear that the target phosphorus release concentration can be obtained when the amount of organic acid added is about 200 mg / L. However, this sludge contains NOx-N, and acetic acid is consumed by NOx-N (4.0 mg / L), so it is necessary to subtract this. That is, when NOx-N is present, the organic acid necessary for the release of phosphorus as shown in the reaction formula (2) is immediately decomposed, and this amount is subtracted.
8NO 3 - + 5CH 3 COOH → 4N 2 + 10CO 2 + 6H 2 O + 8OH - (2)
As a result of subtraction, the net amount of acetic acid required for phosphorus release is estimated as follows.
(200mg-acetic acid / L)-(4mg / L x 2.7) = 190mg-acetic acid / L
From these results, it is considered that the net amount of acetic acid required for phosphorus release is about 4 times the amount of PO 4 -P.

このように、余剰汚泥として、りん含有量の高い好気槽の活性汚泥(31)あるいは最終沈殿池(7)からの沈降汚泥(9)を選定し、りん放出槽(25)においてりん放出を検討する場合、汚泥中のNOx-Nの存在がPO4-Pの放出を大きく抑制する。このような場合、りん放出槽(25)において、活性汚泥(31)あるいは最終沈殿池沈降汚泥(9)に有機酸を(33)をpH制御のもとで添加する方策は、りん放出に極めて有効であると考えられる。 In this way, activated sludge (31) in the aerobic tank with a high phosphorus content or settled sludge (9) from the final sedimentation basin (7) is selected as the excess sludge, and phosphorus release in the phosphorus release tank (25) is selected. When considering, the presence of NOx-N in the sludge greatly suppresses the release of PO 4 -P. In such a case, in the phosphorus release tank (25), the method of adding the organic acid (33) to the activated sludge (31) or the final sedimentation basin settling sludge (9) under pH control is extremely effective for phosphorus release. It is considered effective.

〔参考例2:嫌気槽汚泥の添加によるPO4-P放出促進〕
(実施例の前処理)
最初沈殿池(2)、嫌気槽(4)、無酸素槽(5)、好気槽(6)及び最終沈殿池(7)からなるA2Oプロセスから発生する余剰汚泥からの効率的なPO4-P放出方法を検討した(図2参照)。
[Reference Example 2: Promotion of PO 4 -P release by addition of anaerobic tank sludge]
(Pretreatment of Example)
Efficient PO from excess sludge generated from A 2 O process consisting of first sedimentation tank (2), anaerobic tank (4), anoxic tank (5), aerobic tank (6) and final sedimentation tank (7) The 4- P release method was examined (see FIG. 2).

2Oプロセスの嫌気槽(4)は、ORP計(15)のORP値が−270mV以下に管理した。余剰汚泥としては、好気槽(6)のNH4-N濃度が0.2mg/Lと十分に硝化の進んだ好気槽(6)から引き抜いた活性汚泥(31)とした。また、好気槽(6)のDO濃度は、1mg/L前後であり、通常のDO管理値(1.5mg/L以上)よりは低めに維持されていた。 In the anaerobic tank (4) of the A 2 O process, the ORP value of the ORP meter (15) was controlled to −270 mV or less. The surplus sludge was activated sludge (31) extracted from the aerobic tank (6) in which the NH 4 -N concentration in the aerobic tank (6) was 0.2 mg / L and was sufficiently nitrified. The DO concentration in the aerobic tank (6) was around 1 mg / L, and was kept lower than the normal DO management value (1.5 mg / L or more).

好気槽(6)から引き抜いた活性汚泥(31)は、NOx-Nを4mg/L程度含有していた。このため、このままではりん放出槽(25)において短時間でPO4-Pを放出させることは極めて困難であった。そこで、嫌気槽(4)から活性汚泥(32)をひきぬき、好気槽(6)から引き抜いた活性汚泥(31)に対して50体積%添加とし、これを余剰汚泥とした。 The activated sludge (31) extracted from the aerobic tank (6) contained about 4 mg / L of NOx-N. For this reason, it has been extremely difficult to release PO 4 -P in the phosphorus release tank (25) in a short time. Therefore, the activated sludge (32) was removed from the anaerobic tank (4), and 50% by volume was added to the activated sludge (31) extracted from the aerobic tank (6), and this was used as excess sludge.

好気槽(6)の活性汚泥は、3.2質量%のりん含有量があり、嫌気槽(4)の活性汚泥(32)が2質量%であるため、余剰汚泥は余剰汚泥のMLSS濃度が2400mg/L、また、平均2.6質量%のりん含有量となった。通常の活性汚泥が保持するりん含有量は、2質量%とすると、回収対象のPO4-P量は、余剰汚泥に含有されるりんの0.6質量%となる。これらの結果から、りん放出槽(25)のPO4-P放出濃度は、24mg/L程度の濃度となると推定された。 The activated sludge in the aerobic tank (6) has a phosphorus content of 3.2% by mass and the activated sludge (32) in the anaerobic tank (4) is 2% by mass, so the excess sludge has an MLSS concentration of the excess sludge. Of 2400 mg / L and an average phosphorus content of 2.6% by mass. If the phosphorus content held by normal activated sludge is 2% by mass, the amount of PO 4 -P to be recovered is 0.6% by mass of phosphorus contained in the excess sludge. From these results, it was estimated that the PO 4 -P release concentration in the phosphorus release tank (25) was about 24 mg / L.

りん放出槽(25)でゆっくりと攪拌を行いながら、このりん放出槽(25)のORP計(15)のORP値とPO4-P濃度を測定した。この結果を図4に示す。PO4-P濃度は、24時間後にほぼ推定値に近い27mg/Lに達した。また、りん放出槽(25)のORP計(15)でのORP値は−30mVから−350mVまで低下した。 While slowly stirring in the phosphorus release tank (25), the ORP value and PO 4 -P concentration of the ORP meter (15) in this phosphorus release tank (25) were measured. The result is shown in FIG. The PO 4 -P concentration reached 27 mg / L, which was almost close to the estimated value after 24 hours. Moreover, the ORP value in the ORP meter (15) of the phosphorus release tank (25) decreased from -30 mV to -350 mV.

これらの結果から、嫌気槽(4)の汚泥を用いてもりん放出槽(25)のORP計(15)でのORP値を低下させPO4-Pの放出を促進することが可能であり、また、ORP計(15)のORP値により、りん放出槽(25)におけるPO4-Pの放出の状態を推定することが可能となる From these results, it is possible to reduce the ORP value in the ORP meter (15) of the phosphorus release tank (25) and promote the release of PO 4 -P even if the sludge of the anaerobic tank (4) is used. In addition, the state of PO 4 -P release in the phosphorus release tank (25) can be estimated from the ORP value of the ORP meter (15).

〔実施例1:鉄鋼スラグ充填流動床型晶析装置によるPO4-Pの回収〕
(前処理+晶析操作)
最初沈殿池(2)、嫌気槽(4)、無酸素槽(5)、好気槽(6)及び最終沈殿池(7)からなるA2Oプロセスから発生する余剰汚泥からの効率的なPO4-P放出と回収方法を検討した(図2、図5参照)。余剰汚泥としては、好気槽(6)のNH4-N濃度が0.1mg/Lと十分に硝化の進んだ好気槽(6)から引き抜いた活性汚泥(31)(余剰汚泥)とした。また、好気槽(6)のDO濃度は、1mg/L前後であり、通常のDO管理値(1.5mg/L以上)よりは低めに維持されていた。
[Example 1: Recovery of PO 4 -P by a fluidized bed crystallizer filled with steel slag]
(Pretreatment + crystallization operation)
Efficient PO from excess sludge generated from A 2 O process consisting of first sedimentation tank (2), anaerobic tank (4), anoxic tank (5), aerobic tank (6) and final sedimentation tank (7) 4- P release and recovery methods were examined (see FIGS. 2 and 5). The surplus sludge was activated sludge (31) (excess sludge) extracted from the aerobic tank (6) with sufficient NH 4 -N concentration of 0.1 mg / L in the aerobic tank (6). . The DO concentration in the aerobic tank (6) was around 1 mg / L, and was kept lower than the normal DO management value (1.5 mg / L or more).

好気槽(6)からの活性汚泥(31)をスラリーとしてりん放出槽(25)に投入した後、pH計(30)のpH値が8制御のもとで酢酸(33)を200mg/L添加し、りん放出槽(25)のORP計(15)でのORP値が−350mV以下になったことを確認後、ポンプによって、濃縮装置(18)に活性汚泥を含むスラリーを搬送し、汚泥濃縮装置(18)によって活性汚泥である脱りん汚泥(28)とりん濃縮水(20)に固液分離した。
この結果を表4に示す。
After the activated sludge (31) from the aerobic tank (6) is put into the phosphorus release tank (25) as a slurry, acetic acid (33) is 200 mg / L under the control of the pH value of the pH meter (30) of 8. After adding and confirming that the ORP value in the ORP meter (15) of the phosphorus release tank (25) is -350 mV or less, the slurry containing activated sludge is conveyed to the concentrator (18) by a pump, Solid-liquid separation was carried out into dephosphorized sludge (28) and phosphorus-enriched water (20) as activated sludge by a concentrator (18).
The results are shown in Table 4.

Figure 2007283223
Figure 2007283223

りん濃縮水(20)は、T-P、PO4-P濃度が、それぞれ41mg/L、38mg/Lであり、pHは約8.3であった。続いて、りん濃縮水(20)を晶析装置(27)にポンプによって通水した。 The phosphorus-concentrated water (20) had TP and PO 4 -P concentrations of 41 mg / L and 38 mg / L, respectively, and a pH of about 8.3. Subsequently, phosphorus-concentrated water (20) was passed through the crystallizer (27) by a pump.

晶析装置(27)の詳細図を図5に示す。
晶析装置(27)は、円筒型の流動床型反応装置であり、内部に鉄鋼スラグ(38)の1種である高炉水砕スラグ(粒径:0.10〜0.3mm)を充填した。りん濃縮水(20)を晶析装置(27)の下端より上方に向けて、流速が10m/hrの条件で通水した。また、カルシウムイオンとして、塩化カルシウムの水溶液(34)をCa/Pの質量比が2.2となるように、晶析装置(27)の下端より添加した。さらに、晶析装置(27)の上端のpH計(30)のpH値を測定し、pH値が8.5に維持されるように晶析装置(27)の下端よりNaOHを添加した。
A detailed view of the crystallizer (27) is shown in FIG.
The crystallizer (27) is a cylindrical fluidized bed reactor, and filled with granulated blast furnace slag (particle size: 0.10 to 0.3 mm), which is a kind of steel slag (38). The phosphorus-enriched water (20) was passed upward from the lower end of the crystallizer (27) at a flow rate of 10 m / hr. As calcium ions, an aqueous solution of calcium chloride (34) was added from the lower end of the crystallizer (27) so that the Ca / P mass ratio was 2.2. Further, the pH value of the pH meter (30) at the upper end of the crystallizer (27) was measured, and NaOH was added from the lower end of the crystallizer (27) so that the pH value was maintained at 8.5.

この結果、鉄鋼スラグ(38)を充填した流動床型晶析装置(27)の処理水(26)中のPO4-Pは、3mg/Lまで低下した。また、T-Pは7mg/L程度であり、処理水(26)へのカルシウムアパタイトの流出もかなり抑制できた。
この結果、りん濃縮水(20)中のPO4-Pのうち、約85%がカルシウムアパタイトとして回収できることが明らかとなった。
As a result, PO 4 -P in the treated water (26) of the fluidized bed crystallizer (27) filled with the steel slag (38) decreased to 3 mg / L. Moreover, TP was about 7 mg / L and the outflow of calcium apatite to the treated water (26) could be considerably suppressed.
As a result, it was revealed that about 85% of PO 4 -P in the concentrated phosphorus water (20) can be recovered as calcium apatite.

さらに、表5に回収したりん付着スラグ(36)の成分分析結果を示す。このように本発明法では、重金属成分の少ないりん化合物を得ることができ、肥料などへの適用が容易となる。   Furthermore, Table 5 shows the component analysis results of the phosphorus-attached slag (36) recovered. Thus, according to the method of the present invention, a phosphorus compound having a small amount of heavy metal components can be obtained, and application to fertilizers and the like becomes easy.

Figure 2007283223
Figure 2007283223

従来のA20法と汚泥処理の概略図である。It is a schematic diagram of a conventional A 2 0 method and sludge treatment. りん回収工程を組み込んだA20法の概略図である(本発明)。It is a schematic diagram of a phosphorus incorporating recovery process A 2 0 method (present invention). 余剰汚泥に添加した酢酸濃度と放出したPO4-P濃度の関係を示す図である。Is a diagram illustrating a PO 4 -P concentration relationship was released acetic acid concentrations added to excess sludge. 嫌気槽汚泥を添加した場合のりん放出槽のORPと放出したPO4-P濃度の関係を示す図である。It is a diagram phosphorus showing the relationship between PO 4 -P concentrations released ORP release tank when adding the anaerobic tank sludge. 流動床型の晶析装置を示す図である。It is a figure which shows the fluidized bed type crystallizer.

符号の説明Explanation of symbols

1:下水
2:最初沈殿池
3:最初沈殿池流出水
4:嫌気槽
5:無酸素槽(脱窒槽)
6:好気槽
7:最終沈殿池
8:処理水
9:最終沈殿池沈降汚泥
10:返送汚泥
11:水中攪拌機
12:ブロワー
13:汚泥循環ポンプ
14:汚泥循環水
15:ORP計
16:DO計
17:最初沈殿池沈降汚泥
18:汚泥濃縮装置
19:余剰汚泥
20:りん濃縮水
21:脱水機
22:脱水ろ液
23:濃縮汚泥
24:脱水汚泥
25:りん放出槽
26:晶析装置処理水
27:晶析装置
28:脱りん汚泥
29:NaOH添加装置
30:pH計
31:好気槽活性汚泥
32:嫌気槽活性汚泥
33:有機酸添加装置
34:カルシウム剤添加装置
35:りん除去水
36:りん付着スラグ
37:返送汚泥ポンプ
38:鉄鋼スラグ
39:NH4−N計
1: Sewage
2: First sedimentation basin
3: First settling basin effluent
4: Anaerobic tank
5: Anoxic tank (denitrification tank)
6: Aerobic tank
7: Final sedimentation basin
8: treated water
9: Final sedimentation basin sedimentation sludge
10: Return sludge
11: Underwater stirrer
12: Blower
13: Sludge circulation pump
14: Sludge circulation water
15: ORP meter
16: DO meter
17: First settling tank sludge
18: Sludge concentrator
19: Surplus sludge
20: Phosphorous concentrate
21: Dehydrator
22: Dehydrated filtrate
23: Concentrated sludge
24: Dehydrated sludge
25: Phosphorus release tank
26: Crystallizer treated water
27: Crystallizer
28: Dephosphorized sludge
29: NaOH addition device
30: pH meter
31: Aerobic tank activated sludge
32: Anaerobic tank activated sludge
33: Organic acid addition equipment
34: Calcium preparation equipment
35: Phosphorus removal water
36: Phosphorus adhesion slag
37: Return sludge pump
38: Steel slag
39: NH 4 -N meter

Claims (14)

嫌気槽と好気槽を有する生物学的脱りんプロセスにおいて、発生する余剰汚泥をスラリーとして回収し、当該回収した余剰汚泥からりん酸態りん(PO4-P)を前記スラリー水中に放出させた後、当該放出後のスラリーを濃縮して活性汚泥とりん濃縮水に分離し、当該分離後のりん濃縮水を鉄鋼スラグを充填した流動床に投入し、りん成分をカルシウムアパタイトとして晶析させて回収することを特徴とするりんの回収方法。 In a biological dephosphorization process having an anaerobic tank and an aerobic tank, the generated excess sludge was recovered as a slurry, and phosphate phosphorus (PO 4 -P) was released from the recovered excess sludge into the slurry water. Then, the slurry after the release is concentrated to separate activated sludge and phosphorus concentrated water, and the separated phosphorus concentrated water is put into a fluidized bed filled with steel slag to crystallize the phosphorus component as calcium apatite. A method for recovering phosphorus, comprising collecting the phosphorus. 嫌気槽と好気槽を有する生物学的脱りんプロセスが、最初沈殿池、嫌気槽、好気槽、最終沈殿池からなるAOプロセス、または最初沈殿池、嫌気槽、無酸素槽、好気槽、最終沈殿池からなるA2Oプロセスであることを特徴とする請求項1に記載のりんの回収方法。 A biological dephosphorization process having an anaerobic tank and an aerobic tank is an AO process comprising an initial settling tank, an anaerobic tank, an aerobic tank, and a final settling tank, or an initial settling tank, an anaerobic tank, an anaerobic tank, and an aerobic tank The method for recovering phosphorus according to claim 1, which is an A 2 O process comprising a final sedimentation tank. 前記スラリーとして回収する余剰汚泥が、好気槽中の活性汚泥、又は、最終沈殿池で沈降分離した活性汚泥であることを特徴とする請求項1又は2に記載のりんの回収方法。   The method for recovering phosphorus according to claim 1 or 2, wherein the excess sludge recovered as the slurry is activated sludge in an aerobic tank or activated sludge settled and separated in a final sedimentation tank. 前記余剰汚泥からのりん酸態りん(PO4−P)の放出をりん放出槽において行い、当該りん放出槽内の前記スラリー水のORP(酸化還元電位・銀/塩化銀電極基準)が−350mV(銀/塩化銀電極基準)以下、−400mV(銀/塩化銀電極基準)以上になるように余剰汚泥を攪拌し、りん酸態りん(PO4−P)の放出を促進することを特徴とする請求項1〜3のいずれか1項に記載のりんの回収方法。 Phosphate phosphorus (PO 4 -P) is released from the excess sludge in a phosphorus release tank, and the ORP (oxidation reduction potential / silver / silver chloride electrode standard) of the slurry water in the phosphorus release tank is −350 mV. (Silver / silver chloride electrode standard) Less than -400 mV (silver / silver chloride electrode standard) The excess sludge is agitated to promote the release of phosphorous phosphorus (PO 4 -P). The method for recovering phosphorus according to any one of claims 1 to 3. 前記活性汚泥からのりん酸態りん(PO4−P)の放出をりん放出槽において行い、当該りん放出槽内の前記スラリー水のORP(酸化還元電位・銀/塩化銀電極基準)が−350mV(銀/塩化銀電極基準)以下、−400mV(銀/塩化銀電極基準)以上になるように、余剰汚泥に対して、有機酸、最初沈殿池沈降汚泥、嫌気槽の汚泥の少なくともいずれかを添加することを特徴とする請求項1〜4のいずれか1項に記載のりんの回収方法。 Phosphate phosphate (PO 4 -P) is released from the activated sludge in a phosphorus release tank, and the ORP (oxidation reduction potential / silver / silver chloride electrode standard) of the slurry water in the phosphorus release tank is −350 mV. (Silver / silver chloride electrode standard) Less than -400 mV (silver / silver chloride electrode standard) or higher, at least one of organic acid, first sedimentation basin sediment sludge, anaerobic tank sludge with respect to surplus sludge The method for recovering phosphorus according to any one of claims 1 to 4, which is added. 有機酸として酢酸または酢酸ナトリウムを用いることを特徴とする請求項5に記載のりんの回収方法。   The method for recovering phosphorus according to claim 5, wherein acetic acid or sodium acetate is used as the organic acid. 前記有機酸の添加量が、前記余剰汚泥から放出させるりん酸態りん(PO4−P)の質量に対して4質量倍以上とすることを特徴とする請求項5又は6に記載のりんの回収方法。 The amount of the organic acid added is 4 mass times or more with respect to the mass of phosphoric acid phosphorus (PO 4 -P) released from the excess sludge. Collection method. 好気槽において下水中のNH4-NをNO3-Nまで生物学的に酸化し、残留するNH4-N濃度を0.1mg/L以上0.5mg/L以下とすることを特徴とする請求項1〜7のいずれか1項に記載のりんの回収方法。 It is characterized in that NH 4 -N in sewage is biologically oxidized to NO 3 -N in an aerobic tank, and the remaining NH 4 -N concentration is 0.1 mg / L or more and 0.5 mg / L or less. The method for recovering phosphorus according to any one of claims 1 to 7. 前記余剰汚泥からのりん酸態りん(PO4-P)の放出をりん放出槽において行い、当該りん放出槽内の前記スラリー水のpHを7.5以上9以下に維持することを特徴とする請求項1〜8のいずれか1項に記載のりんの回収方法。 Phosphorus phosphorus (PO 4 -P) is released from the excess sludge in a phosphorus release tank, and the pH of the slurry water in the phosphorus release tank is maintained at 7.5 or more and 9 or less. The method for recovering phosphorus according to any one of claims 1 to 8. 前記流動床に充填する鉄鋼スラグとして、鉄鋼製造プロセスの副産物である高炉スラグ、転炉スラグの少なくともいずれかを用いることを特徴とする請求項1〜9のいずれか1項に記載のりんの回収方法。   The recovery of phosphorus according to any one of claims 1 to 9, wherein at least one of a blast furnace slag and a converter slag, which are byproducts of a steel manufacturing process, is used as the steel slag to be filled in the fluidized bed. Method. 前記鉄鋼スラグの粒径範囲が100μm以上300μm以下であることを特徴とする請求項10に記載のりんの回収方法。   The method for recovering phosphorus according to claim 10, wherein a particle size range of the steel slag is 100 μm or more and 300 μm or less. 前記りん濃縮水に加えて、カルシウムイオン源も前記鉄鋼スラグを充填した流動床に投入することを特徴とする請求項1〜11のいずれか1項に記載のりんの回収方法。   The method for recovering phosphorus according to any one of claims 1 to 11, wherein a calcium ion source is also added to the fluidized bed filled with the steel slag in addition to the phosphorus concentrate. 前記カルシウムイオン源が、塩化カルシウムであることを特徴とする請求項12記載のりんの回収方法。   The method for recovering phosphorus according to claim 12, wherein the calcium ion source is calcium chloride. 前記りん濃縮水中に含まれるりん酸態りん(PO4-P)の量に対してカルシウムイオン量が、Ca/Pの質量比で2.2以上2.5以下となるように、前記カルシウムイオン源を前記流動床に投入することを特徴とする請求項12又は13に記載のりんの回収方法。 The calcium ions so that the amount of calcium ions is 2.2 to 2.5 in terms of the mass ratio of Ca / P with respect to the amount of phosphate phosphorus (PO 4 -P) contained in the phosphorus-enriched water. The method for recovering phosphorus according to claim 12 or 13, wherein a source is put into the fluidized bed.
JP2006114067A 2006-04-18 2006-04-18 Method for recovering phosphorus from sludge Pending JP2007283223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114067A JP2007283223A (en) 2006-04-18 2006-04-18 Method for recovering phosphorus from sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114067A JP2007283223A (en) 2006-04-18 2006-04-18 Method for recovering phosphorus from sludge

Publications (1)

Publication Number Publication Date
JP2007283223A true JP2007283223A (en) 2007-11-01

Family

ID=38755485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114067A Pending JP2007283223A (en) 2006-04-18 2006-04-18 Method for recovering phosphorus from sludge

Country Status (1)

Country Link
JP (1) JP2007283223A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055324A (en) * 2006-08-31 2008-03-13 Hitachi Housetec Co Ltd Sewage cleaning tank
JP2010064030A (en) * 2008-09-12 2010-03-25 Hitachi Ltd Device and method for controlling apparatus for recovering phosphorous by crystallization
JP2010069403A (en) * 2008-09-18 2010-04-02 Hitachi Ltd Control apparatus and control method in phosphorus recovery device by crystallization
CN101830553A (en) * 2010-05-19 2010-09-15 济南大学 Dephosphorizing crystal seed for sewage treatment and preparation method thereof
JP2010260015A (en) * 2009-05-08 2010-11-18 Yukio Yanagisawa Dephosphorizing material, dephosphorizing apparatus, and dephosphorizing by-product
WO2011139758A3 (en) * 2010-04-27 2012-04-05 Bcr Environmental, Llc Wastewater treatment apparatus to achieve class b biosolids using chlorine dioxide
JP5020397B1 (en) * 2011-06-28 2012-09-05 株式会社アサカ理研 Water treatment system and water treatment method
WO2013175423A1 (en) * 2012-05-23 2013-11-28 Wetox Limited Sludge treatment method
KR20160069040A (en) * 2014-12-05 2016-06-16 세종대학교산학협력단 Method for treating recycle water of wastewater treatment
CN110078332A (en) * 2019-05-13 2019-08-02 北京林业大学 A method of promoting excess sludge anaerobic fermentation and acid production using modified steel scoria
CN110921642A (en) * 2019-12-18 2020-03-27 瓮福(集团)有限责任公司 Method and device for treating phosphoric acid slurry by wet process
CN114291803A (en) * 2021-12-28 2022-04-08 常州市深水江边污水处理有限公司 Method for recovering phosphorus resources in municipal excess sludge
CN115304230A (en) * 2022-07-22 2022-11-08 重庆大学 Three-in-one method for sludge reduction, VFAs production and phosphorus recovery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279969A (en) * 1999-03-31 2000-10-10 Maezawa Ind Inc Waste water treatment device
JP2003053377A (en) * 2001-08-13 2003-02-25 Ebara Corp Method for treating organic waste water and treating device
JP2003053384A (en) * 2001-08-23 2003-02-25 Nippon Steel Corp Method for removing nitrogen and phosphorus from waste water and facility therefor
JP2004008865A (en) * 2002-06-04 2004-01-15 Jfe Engineering Kk Dephosphorization method and method of manufacturing melted and solidified product
JP2005313081A (en) * 2004-04-28 2005-11-10 Nishihara Environment Technology Inc Water treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279969A (en) * 1999-03-31 2000-10-10 Maezawa Ind Inc Waste water treatment device
JP2003053377A (en) * 2001-08-13 2003-02-25 Ebara Corp Method for treating organic waste water and treating device
JP2003053384A (en) * 2001-08-23 2003-02-25 Nippon Steel Corp Method for removing nitrogen and phosphorus from waste water and facility therefor
JP2004008865A (en) * 2002-06-04 2004-01-15 Jfe Engineering Kk Dephosphorization method and method of manufacturing melted and solidified product
JP2005313081A (en) * 2004-04-28 2005-11-10 Nishihara Environment Technology Inc Water treatment apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055324A (en) * 2006-08-31 2008-03-13 Hitachi Housetec Co Ltd Sewage cleaning tank
JP2010064030A (en) * 2008-09-12 2010-03-25 Hitachi Ltd Device and method for controlling apparatus for recovering phosphorous by crystallization
JP2010069403A (en) * 2008-09-18 2010-04-02 Hitachi Ltd Control apparatus and control method in phosphorus recovery device by crystallization
JP2010260015A (en) * 2009-05-08 2010-11-18 Yukio Yanagisawa Dephosphorizing material, dephosphorizing apparatus, and dephosphorizing by-product
WO2011139758A3 (en) * 2010-04-27 2012-04-05 Bcr Environmental, Llc Wastewater treatment apparatus to achieve class b biosolids using chlorine dioxide
US11485659B2 (en) 2010-04-27 2022-11-01 Bcr Environmental Corporation Wastewater treatment apparatus to achieve class B biosolids using chlorine dioxide
US10689274B2 (en) 2010-04-27 2020-06-23 Bcr Environmental Corporation Wastewater treatment apparatus to achieve class B biosolids using chlorine dioxide
CN101830553A (en) * 2010-05-19 2010-09-15 济南大学 Dephosphorizing crystal seed for sewage treatment and preparation method thereof
JP5020397B1 (en) * 2011-06-28 2012-09-05 株式会社アサカ理研 Water treatment system and water treatment method
US9637403B2 (en) 2012-05-23 2017-05-02 Wetox Limited Sludge treatment method
WO2013175423A1 (en) * 2012-05-23 2013-11-28 Wetox Limited Sludge treatment method
KR101646590B1 (en) * 2014-12-05 2016-08-10 세종대학교산학협력단 Method for treating recycle water of wastewater treatment
KR20160069040A (en) * 2014-12-05 2016-06-16 세종대학교산학협력단 Method for treating recycle water of wastewater treatment
CN110078332A (en) * 2019-05-13 2019-08-02 北京林业大学 A method of promoting excess sludge anaerobic fermentation and acid production using modified steel scoria
CN110078332B (en) * 2019-05-13 2021-07-27 北京林业大学 Method for promoting anaerobic fermentation of excess sludge to produce acid by using modified steel slag
CN110921642A (en) * 2019-12-18 2020-03-27 瓮福(集团)有限责任公司 Method and device for treating phosphoric acid slurry by wet process
CN110921642B (en) * 2019-12-18 2023-12-26 瓮福(集团)有限责任公司 Wet-process phosphoric acid slurry treatment method and device
CN114291803A (en) * 2021-12-28 2022-04-08 常州市深水江边污水处理有限公司 Method for recovering phosphorus resources in municipal excess sludge
CN115304230A (en) * 2022-07-22 2022-11-08 重庆大学 Three-in-one method for sludge reduction, VFAs production and phosphorus recovery
CN115304230B (en) * 2022-07-22 2023-07-14 重庆大学 Sludge reduction-VFAs production-phosphorus recovery three-in-one method

Similar Documents

Publication Publication Date Title
JP2007283223A (en) Method for recovering phosphorus from sludge
JP4925208B2 (en) Aerobic granule formation method, water treatment method and water treatment apparatus
JPH05169091A (en) Substrate of biomass for nitration, reactor for performing aerobic nitration of refuse by using said substrate and biological method for it, and method for removing nitrogen compound
Ma et al. Efficient phosphorus recovery by enhanced hydroxyapatite formation in a high loading anammox expanded bed reactor at 15° C
US10059610B2 (en) Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream using a granular sludge treatment system
CA1151323A (en) Process for the chemical removal of phosphorus compounds from waste water and process for the purification of waste water
Kalyuzhnyi et al. Integrated mechanical, biological and physico-chemical treatment of liquid manure streams
US20090314046A1 (en) Production of a high phosphorus fertilizer product
JP4685224B2 (en) Waste water treatment method and waste water treatment equipment
JP5900098B2 (en) Nitrogen and phosphorus removal apparatus and method
JP2716348B2 (en) Sewage return water treatment method
JP2000140891A (en) Method for recovering phosphorus in sludge and device therefor
JP2013119081A (en) Treatment method and treatment apparatus for phosphorus-containing wastewater
JP4153267B2 (en) Dephosphorization / ammonia removal method, ammonia fertilizer production method, and melt solidification method
JP4368159B2 (en) Method for treating wastewater containing phosphate
JPS6317513B2 (en)
JP2005095758A (en) Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus
WO2011048705A1 (en) Method of rapidly removing phosphorus, cod substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JP2006305555A (en) Apparatus and method for treating waste water
WO2007085039A1 (en) Biodegradation of organic compounds
JPH08155486A (en) Anaerobic treatment method for organic drainage
JPH08141591A (en) Treatment of organic waste water
JP2006122861A (en) Apparatus for treating organic waste water
JPS6342796A (en) Continuous activated sludge treatment of sewerage by using blast furnace granulated slag as carrier for immobilizing activated sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118