JP2005095758A - Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus - Google Patents

Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus Download PDF

Info

Publication number
JP2005095758A
JP2005095758A JP2003332479A JP2003332479A JP2005095758A JP 2005095758 A JP2005095758 A JP 2005095758A JP 2003332479 A JP2003332479 A JP 2003332479A JP 2003332479 A JP2003332479 A JP 2003332479A JP 2005095758 A JP2005095758 A JP 2005095758A
Authority
JP
Japan
Prior art keywords
phosphorus
nitrogen
magnesium hydroxide
tank
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003332479A
Other languages
Japanese (ja)
Inventor
Yasuo Tanaka
康男 田中
Atsushi Yatagai
敦 谷田貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nat Agric & Bio Oriented Res
Nitchitsu Co Ltd
National Agriculture and Bio Oriented Research Organization NARO
Original Assignee
Nat Agric & Bio Oriented Res
Nitchitsu Co Ltd
National Agriculture and Bio Oriented Research Organization NARO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Agric & Bio Oriented Res, Nitchitsu Co Ltd, National Agriculture and Bio Oriented Research Organization NARO filed Critical Nat Agric & Bio Oriented Res
Priority to JP2003332479A priority Critical patent/JP2005095758A/en
Publication of JP2005095758A publication Critical patent/JP2005095758A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method and an apparatus for treating the water containing inorganic-state nitrogen or phosphorus, in each of which nitrate nitrogen and nitrite nitrogen are removed/reduced by sulfur denitrification being a biological reaction, phosphoric acid and ammonia nitrogen are also reduced easily at the same time by the action of magnesium hydroxide and recovered for fertilizer etc. and the magnesium hydroxide is washed with citric acid so that the effect of magnesium hydroxide can be exhibited surely over a long period of time. <P>SOLUTION: The water containing inorganic-state nitrogen and phosphorus is made to pass through a single reaction tank 1 packed with a material 2 consisting of sulfur, calcium carbonate, magnesium hydroxide and, if necessary, a vermiculite-purified stone so that the inorganic-state nitrogen is removed/reduced and the phosphorus is recovered as magnesium ammonium phosphate or calcium phosphate. A magnesium hydroxide reaction tank is arranged for exhibiting the effect of the magnesium hydroxide surely over a long period of time so that the magnesium hydroxide is washed with citric acid in the magnesium hydroxide reaction tank. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、畜舎汚水処理水や浄化槽処理水、下水処理水、養殖漁業排水、食品加工廃水処理水等から、主として硫黄酸化細菌による硝酸性窒素及び亜硝酸性窒素の除去低減、即ち脱窒素と、マグネシウムとリン酸及びアンモニウムの反応に加え、カルシウムとリン酸の反応によるリン酸、アンモニア性窒素の回収低減による水質浄化及び廃水成分の資源化に用いられる無機態窒素・リン含有水の処理方法及び装置に関するものである。   The present invention relates to reduction of removal of nitrate nitrogen and nitrite nitrogen mainly by sulfur-oxidizing bacteria from livestock sewage treatment water, septic tank treatment water, sewage treatment water, aquaculture fishery wastewater, food processing wastewater treatment water, etc. In addition to the reaction of magnesium, phosphoric acid and ammonium, the treatment method of inorganic nitrogen / phosphorus containing water used for the purification of water by reducing the recovery of phosphoric acid and ammonia nitrogen by the reaction of calcium and phosphoric acid and the recycling of wastewater components And the apparatus.

有機炭素源を電子供与体として脱窒させる従属栄養性脱窒は、専用設備の導入・維持や運転に伴う多量の菌体汚泥処理等で管理が煩雑である。また、管理が比較的容易であるとされる生分解性プラスチックや脂肪酸等の固型基質による従属栄養性脱窒でも、経費面や長期的安定性の面で問題がある。   Heterotrophic denitrification in which organic carbon source is denitrified as an electron donor is complicated to manage due to the large amount of bacterial sludge treatment associated with the introduction / maintenance and operation of dedicated facilities. In addition, heterotrophic denitrification with solid substrates such as biodegradable plastics and fatty acids, which are considered to be relatively easy to manage, has problems in terms of cost and long-term stability.

これに対し、BOD/N比の低い条件において比較的高い脱窒効率を示し、さらには管理が容易である点から、独立栄養性菌である硫黄酸化細菌を用いた脱窒技術の実用化が近年各方面で研究されている。これは、鋼材硝酸洗浄排水の硫黄酸化細菌による脱窒処理に関する研究である(非特許文献1)。   On the other hand, denitrification technology using sulfur-oxidizing bacteria, which are autotrophic bacteria, has been put to practical use because it shows relatively high denitrification efficiency under conditions with a low BOD / N ratio and is easy to manage. In recent years, it has been studied in various fields. This is a study on denitrification treatment of steel material nitric acid cleaning wastewater with sulfur-oxidizing bacteria (Non-Patent Document 1).

また、広義の脱窒において地球温暖化ガスである亜酸化窒素の放出も懸念されているが、例えば亜酸化窒素発生の指摘されている水田土壌や畑地土壌で硫黄脱窒とpH調整を行うことで、有機物を唯一の電子供与体とする場合より、亜酸化窒素の発生が抑制される可能性が示されたとする報告もある(非特許文献2)。   In addition, there is concern about the release of nitrous oxide, a global warming gas, in the broad sense of denitrification. For example, sulfur denitrification and pH adjustment should be performed in paddy soil and upland soil where nitrous oxide generation has been pointed out. However, there is also a report that the possibility of the generation of nitrous oxide being suppressed compared to the case where an organic substance is the only electron donor (Non-patent Document 2).

さらに、硫黄酸化細菌を用いる脱窒では、脱窒基質として適用する物質が固体としては基本的には硫黄のみである。これは、現在では石油精製時に大量に得られる副産物で、従属栄養性脱窒に用いられるメタノールや固型脂肪酸、生分解性プラスチックのようにわざわざエネルギーを消費し化学合成する必要がない。   Further, in denitrification using sulfur-oxidizing bacteria, the substance applied as a denitrification substrate is basically only sulfur as a solid. This is a by-product that is currently obtained in large quantities during petroleum refining, and does not require both energy and chemical synthesis like methanol, solid fatty acids, and biodegradable plastics used for heterotrophic denitrification.

但し、硫黄酸化細菌を用いた脱窒においては、菌が硝酸から酸素をうばい、硫黄を酸化するため、硫酸が生成されるので、処理水の中和が必須であり、また、脱窒もpH7近辺で好適に行われるため、脱窒槽内のpHもほぼ中性に保つ必要がある。なお、硫酸は完全に中和すれば、日本の環境基準には抵触しない。   However, in denitrification using sulfur-oxidizing bacteria, since the bacteria absorb oxygen from nitric acid and oxidize sulfur, sulfuric acid is generated. Therefore, neutralization of treated water is essential, and denitrification is also pH 7 Since it is suitably performed in the vicinity, the pH in the denitrification tank needs to be kept almost neutral. If sulfuric acid is completely neutralized, it does not conflict with Japanese environmental standards.

このため、中和には様々なアルカリ性物質が適用されるが、硫黄酸化細菌の増殖には無機の炭酸イオンが必須であることと穏やかな中和効果のために、炭酸カルシウムの適用が最も安価で実用的である。   For this reason, various alkaline substances are applied for neutralization, but the application of calcium carbonate is the cheapest because of the neutral neutralization effect required for the growth of sulfur-oxidizing bacteria and the mild neutralization effect. And practical.

そこで、本発明者の一人は、硫黄マトリクス中に炭酸カルシウムを必要量均質分散させる微生物活性能付与組成物及びその製造方法を開発し提案した(特許文献1)。これは、1つの資材で効率の良い脱窒と中和が容易に実現できる画期的な方法である。   Therefore, one of the inventors of the present invention has developed and proposed a composition for imparting microbial activity and a method for producing the same, in which a required amount of calcium carbonate is homogeneously dispersed in a sulfur matrix (Patent Document 1). This is an epoch-making method in which efficient denitrification and neutralization can be easily realized with one material.

ところで、いわゆる畜産廃水処理水には硝酸性窒素、亜硝酸性窒素だけでなく、アンモニア性窒素やリン酸が比較的高濃度で含まれる場合があり、高度処理においてはそれらのイオンの除去もしくは低減が望まれる。   By the way, so-called livestock wastewater treated water may contain not only nitrate nitrogen and nitrite nitrogen but also ammonia nitrogen and phosphoric acid at a relatively high concentration, and these ions are removed or reduced in advanced treatment. Is desired.

そのうち、リン酸及びアンモニア性窒素の除去回収方法としてリン酸マグネシウムアンモニウムを形成する方法が提案されている(特許文献2)。これは、水酸化マグネシウムも必要量添加し続ける管理項目の多い装置を適用しなければならず、既存の畜産廃水処理装置等との簡単な併用には不向きである。   Among them, as a method for removing and recovering phosphoric acid and ammonia nitrogen, a method of forming magnesium ammonium phosphate has been proposed (Patent Document 2). This requires application of a device with many management items to which a necessary amount of magnesium hydroxide is continuously added, and is not suitable for simple combined use with an existing livestock wastewater treatment device or the like.

また、窒素及びリンの同時除去方法としては種々の方法が提案されている(特許文献3〜5)。これらは、全てマグネシウム塩の適量添加やその他管理項目の多い複雑な装置であり、例えば畜産事業者への普及という点で難がある。なお、イオン交換や吸着による方法は除去材の寿命が短く、頻繁な交換を要するところから実用性に乏しい(特許文献6)。   Various methods for removing nitrogen and phosphorus simultaneously have been proposed (Patent Documents 3 to 5). These are all complex devices with many additions of magnesium salts and many other management items, and are difficult in terms of diffusion to livestock operators, for example. In addition, the method by ion exchange or adsorption has a short life of the removal material, and is not practical because it requires frequent exchange (Patent Document 6).

窒素及びリンの同時除去方法としては、上述した以外の方法も提案されている(特許文献7〜9)。然し、それらの方法はリンの回収再利用を目的としてはいない。
第35回日本水環境学会年会講演集、2001年3月、第196頁 第33回日本水環境学会年会講演集、1999年3月、第368頁 特開平11−285377号公報 特開2003−126887号公報 特開平8−141592号公報 特開平8−155485号、 特開平8−318293号公報 特開平11−239785号公報 特開平6−23390号公報 特開平7−241584号公報 特開平10−249385号公報
As methods for removing nitrogen and phosphorus simultaneously, methods other than those described above have also been proposed (Patent Documents 7 to 9). However, these methods are not intended to recover and reuse phosphorus.
The 35th Annual Meeting of the Japan Society on Water Environment, March 2001, p. 196 Proceedings of the 33rd Annual Meeting of Japan Society on Water Environment, March 1999, p. 368 JP-A-11-285377 JP 2003-126877 A JP-A-8-141582 JP-A-8-155485, JP-A-8-318293 JP-A-11-239785 JP-A-6-23390 Japanese Patent Laid-Open No. 7-241484 Japanese Patent Laid-Open No. 10-249385

本発明は、生物反応である硫黄脱窒により硝酸性窒素及び亜硝酸性窒素を除去低減するとともに、水酸化マグネシウムの作用によりリン酸及びアンモニア性窒素も同時且つ容易に低減、肥料用等として回収でき、しかもクエン酸洗浄により水酸化マグネシウムの効果を長期に亘り確実に発揮させることが可能な無機態窒素・リン含有水の処理方法及び装置を提供することを目的とする。   The present invention removes nitrate nitrogen and nitrite nitrogen by sulfur denitrification, which is a biological reaction, and simultaneously and easily reduces phosphoric acid and ammonia nitrogen by the action of magnesium hydroxide, recovered for fertilizers, etc. An object of the present invention is to provide a method and apparatus for treating inorganic nitrogen / phosphorus-containing water that can be used and that the effect of magnesium hydroxide can be reliably exhibited over a long period of time by washing with citric acid.

本発明の請求項1に係る無機態窒素・リン含有水の処理方法においては、無機態窒素・リン含有水を、硫黄、炭酸カルシウム及び水酸化マグネシウム、必要に応じて加えるバーミキュライト精石から成る資材を充填した単一の反応槽に通水し、無機態窒素の除去低減及びリン酸マグネシウムアンモニウム、リン酸カルシウムとしてリンの回収・低減をなすことを特徴とする。   In the method for treating inorganic nitrogen / phosphorus-containing water according to claim 1 of the present invention, a material comprising inorganic nitrogen / phosphorus-containing water, sulfur, calcium carbonate and magnesium hydroxide, and vermiculite refined stone as required. It is characterized in that water is passed through a single reaction tank filled with, and removal of inorganic nitrogen is reduced and phosphorus is recovered and reduced as magnesium ammonium phosphate and calcium phosphate.

本発明の請求項2に係る無機態窒素・リン含有水の処理方法においては、無機態窒素・リン含有水を、硫黄、炭酸カルシウム及び水酸化マグネシウム、必要に応じて加えるバーミキュライト精石から成る資材を充填した単一の反応槽に通水し、処理pH8〜9の範囲で無機態窒素の除去低減及びリン酸マグネシウムアンモニウム、リン酸カルシウムとしてリンの回収・低減をなすことを特徴とする。   In the method for treating inorganic nitrogen / phosphorus-containing water according to claim 2 of the present invention, a material comprising vermiculite fine stone to which inorganic nitrogen / phosphorus-containing water is added, sulfur, calcium carbonate and magnesium hydroxide as required. The water is passed through a single reaction tank filled with water, and the removal of inorganic nitrogen is reduced and phosphorus is recovered and reduced as magnesium ammonium phosphate and calcium phosphate within the range of treatment pH 8-9.

本発明の請求項3に係る無機態窒素・リン含有水の処理方法においては、無機態窒素・リン含有水を、硫黄及び炭酸カルシウムを中心とした脱窒反応槽に通水、硝酸及び亜硝酸性窒素を脱窒低減した後、塊状もしくは粒状の水酸化マグネシウム槽においてリン酸マグネシウムアンモニウム、リン酸カルシウムとしてアンモニア性窒素及びリンの回収・低減をなすことを特徴とする。   In the method for treating inorganic nitrogen / phosphorus-containing water according to claim 3 of the present invention, the inorganic nitrogen / phosphorus-containing water is passed through a denitrification reaction tank mainly composed of sulfur and calcium carbonate, nitric acid and nitrous acid. After denitrifying nitrogen, the ammonia nitrogen and phosphorus are recovered and reduced as magnesium ammonium phosphate and calcium phosphate in a lump or granular magnesium hydroxide tank.

本発明の請求項4に係る無機態窒素・リン含有水の処理方法においては、無機態窒素・リン含有水を、硫黄及び炭酸カルシウムを中心とした脱窒反応槽に通水、硝酸及び亜硝酸性窒素を脱窒低減した後、塊状もしくは粒状の水酸化マグネシウム槽において処理pHを8〜9とすることで、リン酸マグネシウムアンモニウム、リン酸カルシウムとしてアンモニア性窒素及びリンの回収・低減をなすことを特徴とする。   In the method for treating inorganic nitrogen / phosphorus-containing water according to claim 4 of the present invention, the inorganic nitrogen / phosphorus-containing water is passed through a denitrification reaction tank mainly composed of sulfur and calcium carbonate, and nitric acid and nitrous acid. After denitrifying and reducing nitrogenous nitrogen, it is possible to recover and reduce ammonia nitrogen and phosphorus as magnesium ammonium phosphate and calcium phosphate by setting the treatment pH to 8 to 9 in a bulk or granular magnesium hydroxide tank And

本発明の請求項5に係る無機態窒素・リン含有水の処理方法においては、請求項1または2に記載の単一の反応槽、または脱窒反応槽及び水酸化マグネシウム槽を散気管等により適宜に逆洗することで、脱窒等の反応維持、槽内の閉塞防止及びリン酸マグネシウムアンモニウム、リン酸カルシウムの容易な回収をなすことを特徴とする。   In the method for treating inorganic nitrogen / phosphorus-containing water according to claim 5 of the present invention, the single reaction tank according to claim 1 or 2, or the denitrification reaction tank and the magnesium hydroxide tank are provided by an air diffuser or the like. It is characterized by maintaining the reaction such as denitrification, preventing clogging in the tank, and easily collecting magnesium ammonium phosphate and calcium phosphate by backwashing appropriately.

本発明の請求項6に係る無機態窒素・リン含有水の処理方法においては、水酸化マグネシウム槽における塊状もしくは粒状の水酸化マグネシウム表面に生成する、逆洗等の物理的洗浄では除去の困難な付着物をクエン酸で適宜に洗浄することで、水酸化マグネシウム槽における処理pHを8〜9に維持し、リン酸マグネシウムアンモニウム、リン酸カルシウムとしてアンモニア性窒素及びリンの回収・低減を容易に継続できることを特徴とする。   In the method for treating inorganic nitrogen / phosphorus-containing water according to claim 6 of the present invention, it is difficult to remove by physical washing such as back washing, which is generated on the surface of massive magnesium hydroxide in a magnesium hydroxide tank. By appropriately washing the deposits with citric acid, the treatment pH in the magnesium hydroxide tank is maintained at 8-9, and the recovery and reduction of ammonium nitrogen and phosphorus as magnesium ammonium phosphate and calcium phosphate can be easily continued. Features.

本発明の請求項7に係る無機態窒素・リン含有水の処理装置においては、無機態窒素・リン含有水が請求項1または2に記載の単一の反応槽に供給されることで、生物反応である硫黄脱窒により硝酸性窒素及び亜硝酸性窒素の除去低減がなされるとともに、充填資材に含まれる水酸化マグネシウムによりリン酸マグネシウムアンモニウムとしてリン酸及びアンモニア性窒素の沈殿低減がなされ、同時に水酸化マグネシウムにより槽内が高pHとなることで、リン酸カルシウムの生成も促され、適宜の逆洗によりそれらの反応が維持されるとともに、生成したリン酸マグネシウムアンモニウムやリン酸カルシウムの回収が容易となることを特徴とする。   In the inorganic nitrogen / phosphorus-containing water treatment apparatus according to claim 7 of the present invention, the inorganic nitrogen / phosphorus-containing water is supplied to the single reaction tank according to claim 1 or 2 to The removal of nitrate nitrogen and nitrite nitrogen is reduced by sulfur denitrification, which is a reaction, and precipitation of phosphoric acid and ammonia nitrogen is reduced as magnesium ammonium phosphate by magnesium hydroxide contained in the filling material. Magnesium hydroxide has a high pH in the tank, which promotes the formation of calcium phosphate, maintains the reaction by appropriate backwashing, and facilitates recovery of the produced magnesium ammonium phosphate and calcium phosphate. It is characterized by.

本発明の請求項8に係る無機態窒素・リン含有水の処理装置においては、無機態窒素・リン含有水が硫黄及び炭酸カルシウムを中心とした脱窒反応槽に供給されることで、生物反応である硫黄脱窒により硝酸性窒素及び亜硝酸性窒素の除去低減がなされ、続いて水酸化マグネシウム槽における塊状もしくは粒状の水酸化マグネシウムによりリン酸マグネシウムアンモニウムとしてリン酸及びアンモニア性窒素の沈殿低減がなされ、同時に水酸化マグネシウムにより槽内が高pHとなることで、リン酸カルシウムの生成も促され、両槽に対する適宜の逆洗や水酸化マグネシウム槽への適宜のクエン酸洗浄によりそれらの反応が維持されるとともに、生成したリン酸マグネシウムアンモニウムやリン酸カルシウムの回収が容易となることを特徴する。   In the inorganic nitrogen / phosphorus-containing water treatment apparatus according to claim 8 of the present invention, the biological reaction is achieved by supplying the inorganic nitrogen / phosphorus-containing water to a denitrification reaction tank mainly composed of sulfur and calcium carbonate. Sulfur denitrification reduces the removal of nitrate nitrogen and nitrite nitrogen, and subsequently reduces the precipitation of phosphoric acid and ammonia nitrogen as magnesium ammonium phosphate by bulk or granular magnesium hydroxide in the magnesium hydroxide tank. At the same time, the formation of calcium phosphate is also promoted by the magnesium hydroxide having a high pH, and the reaction is maintained by appropriate backwashing for both tanks and appropriate citric acid washing for the magnesium hydroxide tank. In addition, it is easy to recover the produced magnesium ammonium phosphate and calcium phosphate. .

本発明に係る無機態窒素・リン含有水の処理方法及び装置に依れば、豚舎汚水等の畜産廃水処理水や浄化槽処理水のような硝酸性窒素、亜硝酸性窒素、アンモニア性窒素、リン酸の同時除去が望まれる被処理水の効果的な浄化に優れるだけでなく、色度の低減にも寄与する。   According to the method and apparatus for treating inorganic nitrogen / phosphorus-containing water according to the present invention, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, phosphorous such as swine sewage and other livestock wastewater treated water and septic tank treated water It not only excels in effective purification of water to be treated where simultaneous removal of acid is desired, but also contributes to reduction in chromaticity.

本発明に係る無機態窒素・リン含有水の処理方法は、無機態窒素・リン含有水を、硫黄、炭酸カルシウム及び水酸化マグネシウム、必要に応じて加えるバーミキュライト精石から成る資材を充填した単一の反応槽に通水し、無機態窒素の除去低減及びリン酸マグネシウムアンモニウム、リン酸カルシウムとしてリンの回収・低減をなすことを基本とする。   The method for treating inorganic nitrogen / phosphorus-containing water according to the present invention is a method of filling inorganic nitrogen / phosphorus-containing water with a material composed of sulfur, calcium carbonate and magnesium hydroxide, and vermiculite refined stone as required. Basically, the water is passed through the reaction tank, and the removal and reduction of inorganic nitrogen are reduced and phosphorus is recovered and reduced as magnesium ammonium phosphate and calcium phosphate.

但し、より確実にリンの回収・低減を意図する場合は、無機態窒素・リン含有水を、硫黄及び炭酸カルシウムを中心とした脱窒反応槽に通水し、硝酸及び亜硝酸性窒素を脱窒低減した後、塊状もしくは粒状の水酸化マグネシウム槽においてリン酸マグネシウムアンモニウム、リン酸カルシウムとしてアンモニア性窒素及びリンの回収・低減をなすことができる。また、良好な処理を維持するために、単一の反応槽、脱窒反応槽及び水酸化マグネシウム槽に適宜の逆洗やクエン酸による洗浄を施すことができる。   However, if it is intended to recover and reduce phosphorus more reliably, inorganic nitrogen and phosphorus-containing water are passed through a denitrification reaction tank centered on sulfur and calcium carbonate to remove nitric acid and nitrite nitrogen. After the nitrogen reduction, ammonia nitrogen and phosphorus can be recovered and reduced as magnesium ammonium phosphate and calcium phosphate in a massive or granular magnesium hydroxide tank. Moreover, in order to maintain a favorable process, the single reaction tank, a denitrification reaction tank, and a magnesium hydroxide tank can be appropriately backwashed or washed with citric acid.

この方法中で、硫黄、炭酸カルシウム及び水酸化マグネシウム、必要に応じて加えるバーミキュライト精石から成る資材としては、天然物、合成物にかかわらず、各々の粉末、細粒、塊状物を用いることができる。好ましくは、硫黄が可燃物であり、水酸化マグネシウム及びバーミキュライト精石が難燃化材料でもあるため、本発明者の一人が開発した硝酸性窒素脱窒基質を応用して形成した混合物(特開2000−343097号公報参照)を用いるとよい。   In this method, as a material consisting of sulfur, calcium carbonate and magnesium hydroxide, and vermiculite fine stone added as necessary, it is possible to use each powder, fine grain, and lump regardless of natural product or synthetic product. it can. Preferably, sulfur is a combustible material, and magnesium hydroxide and vermiculite concentrate are also flame retardant materials. Therefore, a mixture formed by applying a nitrate nitrogen denitrification substrate developed by one of the present inventors (JP-A 2000-343097) may be used.

また、硫黄及び炭酸カルシウムを中心とした脱窒反応槽には、上述した硝酸性窒素脱窒基質またはそれを応用した硫黄、炭酸カルシウム及び水酸化マグネシウムから成る混合物や硫黄と炭酸カルシウムを主とした混合物(特許文献1参照)を用いることが望ましいが、各々の粉末、細粒、塊状物を用いることもできる。   In addition, the denitrification reactor mainly composed of sulfur and calcium carbonate is mainly composed of the above-mentioned nitrate nitrogen denitrification substrate or a mixture composed of sulfur, calcium carbonate and magnesium hydroxide, and sulfur and calcium carbonate. Although it is desirable to use a mixture (see Patent Document 1), it is also possible to use individual powders, fine particles, and lumps.

更に、塊状もしくは粒状の水酸化マグネシウム槽には、塊状や粒状の水酸化マグネシウム、水酸化マグネシウムを含む岩石やブルーサイト等の粗砕物を用いることができる。   Further, in the massive or granular magnesium hydroxide tank, massive or granular magnesium hydroxide, rocks containing magnesium hydroxide, or crushed materials such as brucite can be used.

単一の反応槽としては、図1で示すような装置(実施例1)を用いることができる。図1中、符号1は反応槽、2は硫黄、炭酸カルシウム及び水酸化マグネシウムから成る資材、3は逆洗用のブロワー、4は散気管、5はサイホンブレーカーを示す。但し、この実施の形態に限定されるものではなく、処理方向は上向流でもよい。   As a single reaction tank, an apparatus (Example 1) as shown in FIG. 1 can be used. In FIG. 1, reference numeral 1 is a reaction tank, 2 is a material composed of sulfur, calcium carbonate and magnesium hydroxide, 3 is a backwash blower, 4 is a diffuser, and 5 is a siphon breaker. However, it is not limited to this embodiment, and the processing direction may be an upward flow.

更に、硫黄及び炭酸カルシウムを中心とした脱窒反応槽及び塊状もしくは粒状の水酸化マグネシウム槽としては、図2で示すような装置(実施例2)を用いることができる。図2中、符号1は脱窒反応槽、2は硫黄、炭酸カルシウム及び水酸化マグネシウムから成る資材、3は逆洗用のブロワー、4は散気管、5はサイホンブレーカー、6は水酸化マグネシウム槽、7は塊状もしくは粒状の水酸化マグネシウム、8は洗浄用クエン酸送液ポンプ、9は処理水排出バルブを示す。但し、この実施例においても、その形態に限定されるものではなく、処理方向は上向流でもよい。   Furthermore, as a denitrification reaction tank mainly composed of sulfur and calcium carbonate and a massive or granular magnesium hydroxide tank, an apparatus as shown in FIG. 2 (Example 2) can be used. In FIG. 2, reference numeral 1 is a denitrification reaction tank, 2 is a material composed of sulfur, calcium carbonate and magnesium hydroxide, 3 is a backwash blower, 4 is an air diffuser, 5 is a siphon breaker, and 6 is a magnesium hydroxide tank. 7 is a lump or granular magnesium hydroxide, 8 is a citric acid feeding pump for washing, and 9 is a treated water discharge valve. However, this embodiment is not limited to the form, and the processing direction may be an upward flow.

その装置中、バルブ9は処理水pHにより開放位置を変えることでリン酸を容易に低減・回収可能に備え付けられている。即ち、低位置のバルブを開放しても満足な処理性能が得られない場合には、より高位置のバルブを開放することから、リン酸やアンモニア性窒素の低減・回収を図ることができる。   In the apparatus, the valve 9 is provided so that phosphoric acid can be easily reduced and recovered by changing the open position with the treated water pH. That is, if satisfactory processing performance cannot be obtained even if the low-position valve is opened, the higher-position valve is opened, so that phosphoric acid and ammonia nitrogen can be reduced and recovered.

このように、本発明に係る無機態窒素・リン含有水の処理方法及び装置は、硝酸性窒素、亜硝酸性窒素の効率の良い低減除去のみならず、リン酸マグネシウムアンモニウム、リン酸カルシウムとしてリン酸、アンモニア性窒素の低減・回収にも寄与することから、それらを含む廃水の浄化に適する。また、リン酸マグネシウムアンモニウムやリン酸カルシウムは逆洗時の排液中に排出され、回収が容易であることから、農園芸用としてそれらの資源化にも寄与する。   Thus, the treatment method and apparatus for inorganic nitrogen / phosphorus-containing water according to the present invention is not only efficient reduction and removal of nitrate nitrogen and nitrite nitrogen, but also magnesium phosphate, phosphoric acid as calcium phosphate, As it contributes to the reduction and recovery of ammonia nitrogen, it is suitable for purification of wastewater containing them. In addition, magnesium ammonium phosphate and calcium phosphate are discharged into the drainage during backwashing and are easy to recover, contributing to the recycling of these resources for agriculture and horticulture.

上述した無機態窒素・リン含有水処理の有効性を確認するべく、本発明として図1の装置(実施例1)と図2の装置(実施例2)を作成し、嫌気性処理(UASB法)と好気性処理(散水ろ床法)の2段階処理を行った後の豚舎汚水(原水)を供試して試験を行った。   In order to confirm the effectiveness of the above-described inorganic nitrogen / phosphorus-containing water treatment, the apparatus of FIG. 1 (Example 1) and the apparatus of FIG. 2 (Example 2) are prepared as the present invention, and anaerobic treatment (UASB method). ) And aerobic treatment (water sprinkling filter method), the pig house sewage (raw water) after the two-stage treatment was tested and tested.

実施例1、2ともに、反応槽1としては容積:6リットルのものを備え付けた。実施例1には、資材2として炭酸カルシウム:35%、硫黄:35%、水酸化マグネシウム:20%、バーミキュライト精石:10%から成る粒径5〜20mmの資材:3リットルを適用し、表1に示す水質の原水をHRT(資材のみかけ容積あたり。以下、同様。)36時間で通水した。   In both Examples 1 and 2, the reaction vessel 1 was equipped with a volume of 6 liters. In Example 1, as a material 2, 3 liters of a material having a particle diameter of 5 to 20 mm composed of calcium carbonate: 35%, sulfur: 35%, magnesium hydroxide: 20%, vermiculite fine stone: 10% is applied. The raw water having the water quality shown in No. 1 was passed through in 36 hours by HRT (per material volume, the same applies hereinafter).

Figure 2005095758
Figure 2005095758

実施例2には、資材2として炭酸カルシウム:45%、硫黄:35%、水酸化マグネシウム:20%から成る粒径5〜20mmの資材:3リットルを反応槽1に充填してHRT36時間で通水を続け、リン酸除去性能が低下した際に粒径5〜10mmのブルーサイト粗砕物7:0.33Lを充填した槽6の使用を開始し、槽1からの流出水をHRT3〜4時間で通水した。槽6に通水した液の水質は、表2に示す通りである。   In Example 2, as a material 2, 3 liters of a material having a particle diameter of 5 to 20 mm composed of calcium carbonate: 45%, sulfur: 35%, magnesium hydroxide: 20% was filled in the reaction tank 1 and passed for 36 hours in HRT. When water was continued and phosphoric acid removal performance deteriorated, the use of tank 6 filled with Brusite crushed material 7: 0.33 L having a particle size of 5 to 10 mm was started, and the effluent from tank 1 was discharged for 3 to 4 hours in HRT. The water was passed through. The water quality of the liquid passed through the tank 6 is as shown in Table 2.

Figure 2005095758
Figure 2005095758

ブルーサイト粗砕物充填カラムのリン酸態リン除去率が低下した後には、資材7を適宜に2%クエン酸溶液に半日浸漬し、リン酸除去性能の回復を行なった。クエン酸洗浄の適宜実施を開始して以降に通水した液の水質は、表3に示す通りである。なお、実施例1、2ともにブロアー3による逆洗を適宜実施した。   After the phosphate phosphorus removal rate of the brucite coarsely packed column decreased, the material 7 was appropriately immersed in a 2% citric acid solution for half a day to recover the phosphate removal performance. Table 3 shows the water quality of the liquid that was passed after the citric acid washing was started appropriately. In both Examples 1 and 2, backwashing with the blower 3 was appropriately performed.

Figure 2005095758
Figure 2005095758

比較例としては、水酸化マグネシウムを含有せず、炭酸カルシウム54.5%と硫黄45.5%から成る粒径5〜20mmの資材:3リットルを容積:6リットルのカラムに充填し、HRT20〜33時間にて実施例1と同様の処理を行った。通水した液の水質は、表4に示す通りである。   As a comparative example, magnesium hydroxide is not contained, a material having a particle size of 5 to 20 mm and containing 54.5% calcium carbonate and 45.5% sulfur: 3 liters is packed in a 6 liter column, and HRT20 to The same treatment as in Example 1 was performed at 33 hours. The water quality of the liquid passed is as shown in Table 4.

Figure 2005095758
Figure 2005095758

試験の結果は、図3〜図6に示す通りであった。図3は、実施例1におけるリン酸態リンと酸化態窒素の除去率の変化を示す。図4は、実施例2のブルーサイト粗砕物充填カラムによるリン酸態リン除去率の変化を示す。図5は、リン酸除去性能の低下したブルーサイト粗砕物充填カラムを2%クエン酸で洗浄した際の性能回復を示す。また、図5ではアンモニア性窒素の除去性能を同時に示す。図6は、比較例におけるリン酸態リン除去性能を示す。   The test results were as shown in FIGS. FIG. 3 shows changes in the removal rate of phosphate phosphorus and oxidized nitrogen in Example 1. FIG. 4 shows changes in the phosphate phosphorus removal rate by the Brusite crushed material packed column of Example 2. FIG. 5 shows performance recovery when a Brusite Crude Packed column with reduced phosphoric acid removal performance was washed with 2% citric acid. FIG. 5 shows ammonia nitrogen removal performance at the same time. FIG. 6 shows the phosphate phosphorus removal performance in the comparative example.

比較例では、通水開始後10日目までは40〜60%のリン酸除去率が得られたが、その後はリン酸除去率が20%以下に低下した(図6参照)。これに対し、実施例1では約40日目まで90%以上の高い除去率で安定し、比較例に比して明らかに優った(図3参照)。   In the comparative example, a phosphoric acid removal rate of 40 to 60% was obtained until the 10th day after the start of water flow, but thereafter, the phosphoric acid removal rate decreased to 20% or less (see FIG. 6). In contrast, Example 1 was stable at a high removal rate of 90% or more until about the 40th day, and was clearly superior to the comparative example (see FIG. 3).

また、実施例1において90%以上のリン酸態リン除去率が維持された約40日目までは処理水のpHは8.3〜8.7と高い値であったが、脱窒は抑制されることなく、95%以上の酸化態窒素除去率が維持された(図3参照)。処理水のpHが8.0を下回ると、リン酸除去効果が低くなることから、処理水のpHはおよそ8〜9の範囲とすることが望ましい。   In Example 1, the pH of the treated water was as high as 8.3 to 8.7 until about 40th day when the phosphate removal rate of 90% or more was maintained, but denitrification was suppressed. Thus, the removal rate of oxide nitrogen of 95% or more was maintained (see FIG. 3). If the pH of the treated water is less than 8.0, the phosphoric acid removing effect is lowered, so the pH of the treated water is preferably in the range of about 8-9.

実施例2において、ブルーサイト粗砕物充填カラムは80%前後のリン酸態リン除去率を37日目まで維持した(図4参照)。   In Example 2, the Brucite crude product packed column maintained a phosphate phosphorus removal rate of around 80% until the 37th day (see FIG. 4).

リン酸態リン除去性能の低下したブルーサイト粗砕物充填カラムを2%クエン酸液で洗浄処理を行なうと(2日目および22日目に実施)、リン酸態リン除去性能が回復することが確認された(図5参照)。   When the Brusite crushed packed column with reduced phosphate phosphorus removal performance is washed with 2% citric acid solution (implemented on the 2nd and 22nd days), the phosphate phosphorus removal performance may be recovered. It was confirmed (see FIG. 5).

クエン酸を含む洗浄廃液は、活性汚泥法等の通常の生物処理によって処理することが可能である。アンモニア性窒素についても、最大25%程度除去されることが確認された。また、アンモニア性窒素の除去率の変動はリン酸態リン除去率の変化パターンと一致することから、アンモニア性窒素はリン酸マグネシウムアンモニウムとして除去されていることと推定される。   Washing waste liquid containing citric acid can be treated by ordinary biological treatment such as activated sludge method. It was confirmed that ammonia nitrogen was also removed by a maximum of about 25%. Moreover, since the fluctuation | variation of the removal rate of ammonia nitrogen corresponds with the change pattern of a phosphate phosphorus removal rate, it is estimated that ammonia nitrogen is removed as magnesium ammonium phosphate.

また、視覚による比較であるが、原水に比して実施例、比較例ともに色調の改善がなされていた。   Moreover, although it is a visual comparison, the color tone was improved in both the Examples and Comparative Examples compared to the raw water.

上述したリン酸の除去能力を維持させつつも、処理水のpHを調整したい場合には、例えば硫酸アルミニウムや二水石膏を混合することも考えられる。   In order to adjust the pH of the treated water while maintaining the above-described ability to remove phosphoric acid, for example, aluminum sulfate or dihydrate gypsum may be mixed.

なお、本発明は上述した実施(実施例1、2)の形態に限定されるものではない。   In addition, this invention is not limited to the form of the implementation (Example 1, 2) mentioned above.

本発明の実施例1に係る無機態窒素・リン含有水の処理装置を示す説明図である。It is explanatory drawing which shows the processing apparatus of inorganic nitrogen and phosphorus containing water which concerns on Example 1 of this invention. 本発明の実施例2に係る無機態窒素・リン含有水の処理装置を示す説明図である。It is explanatory drawing which shows the processing apparatus of the inorganic nitrogen and phosphorus containing water which concerns on Example 2 of this invention. 本発明の実施例1における酸化態窒素及びリン酸態リンの除去率の変化を示すグラフである。It is a graph which shows the change of the removal rate of oxidized nitrogen and phosphate phosphorus in Example 1 of this invention. 本発明の実施例2のブルーサイト粗砕物充填カラムによるリン酸態リンの除去率の変化を示すグラフである。It is a graph which shows the change of the removal rate of phosphate phosphorus by the brucite crushed material packed column of Example 2 of this invention. リン酸態リンの除去性能の低下したブルーサイト粗砕物充填カラムを2%クエン酸で洗浄した際の性能回復状況及びアンモニア態窒素の除去性能を示すグラフである。It is a graph which shows the performance recovery | restoration situation and the removal performance of ammonia nitrogen at the time of wash | cleaning the Brusite crushed material packed column with which the removal performance of phosphate phosphorus fell with 2% citric acid. 比較例におけるリン酸態リンの除去性能を示すグラフである。It is a graph which shows the removal performance of the phosphorous phosphorus in a comparative example.

符号の説明Explanation of symbols

1 反応槽
2 硫黄、炭酸カルシウム及び水酸化マグネシウムから成る資材
3 逆洗用ブロワー
4 散気管
5 サイホンブレーカー
6 水酸化マグネシウム槽
7 塊状もしくは粒状の水酸化マグネシウム
8 洗浄用クエン酸送液ポンプ
9 処理水排出バルブ
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Material which consists of sulfur, calcium carbonate, and magnesium hydroxide 3 Backwash blower 4 Air diffuser 5 Siphon breaker 6 Magnesium hydroxide tank 7 Lumped or granular magnesium hydroxide 8 Washing citric acid liquid feed pump 9 Treated water Discharge valve

Claims (8)

無機態窒素・リン含有水を、硫黄、炭酸カルシウム及び水酸化マグネシウム、必要に応じて加えるバーミキュライト精石から成る資材を充填した単一の反応槽に通水し、無機態窒素の除去低減及びリン酸マグネシウムアンモニウム、リン酸カルシウムとしてリンの回収・低減をなすことを特徴とする無機態窒素・リン含有水の処理方法。   Water containing inorganic nitrogen and phosphorus is passed through a single reaction tank filled with materials composed of sulfur, calcium carbonate and magnesium hydroxide, and vermiculite fine stone added as necessary, to reduce inorganic nitrogen and reduce phosphorus. A method for treating inorganic nitrogen / phosphorus-containing water, characterized in that phosphorus is recovered and reduced as magnesium ammonium phosphate and calcium phosphate. 無機態窒素・リン含有水を、硫黄、炭酸カルシウム及び水酸化マグネシウム、必要に応じて加えるバーミキュライト精石から成る資材を充填した単一の反応槽に通水し、処理pH8〜9の範囲で無機態窒素の除去低減及びリン酸マグネシウムアンモニウム、リン酸カルシウムとしてリンの回収・低減をなすことを特徴とする無機態窒素・リン含有水の処理方法。   Water containing inorganic nitrogen / phosphorus is passed through a single reaction tank filled with materials composed of vermiculite fine stone added with sulfur, calcium carbonate and magnesium hydroxide, if necessary, and treated with a pH of 8-9. A method for treating inorganic nitrogen / phosphorus-containing water, characterized in that removal of reduced nitrogen and recovery / reduction of phosphorus as magnesium ammonium phosphate and calcium phosphate are performed. 無機態窒素・リン含有水を、硫黄及び炭酸カルシウムを中心とした脱窒反応槽に通水し、硝酸及び亜硝酸性窒素を脱窒低減した後、塊状もしくは粒状の水酸化マグネシウム槽においてリン酸マグネシウムアンモニウム、リン酸カルシウムとしてアンモニア性窒素及びリンの回収・低減をなすことを特徴とする無機態窒素・リン含有水の処理方法。   Inorganic nitrogen / phosphorus-containing water is passed through a denitrification reactor centered on sulfur and calcium carbonate to reduce denitrification of nitric acid and nitrite nitrogen, and then phosphoric acid is used in a massive or granular magnesium hydroxide tank. A method for treating inorganic nitrogen / phosphorus-containing water, characterized by recovering and reducing ammonia nitrogen and phosphorus as magnesium ammonium and calcium phosphate. 無機態窒素・リン含有水を、硫黄及び炭酸カルシウムを中心とした脱窒反応槽に通水し、硝酸及び亜硝酸性窒素を脱窒低減した後、塊状もしくは粒状の水酸化マグネシウム槽において処理pHを8〜9とすることで、リン酸マグネシウムアンモニウム、リン酸カルシウムとしてアンモニア性窒素及びリンの回収・低減をなすことを特徴とする無機態窒素・リン含有水の処理方法。   Inorganic nitrogen / phosphorus-containing water is passed through a denitrification reactor mainly composed of sulfur and calcium carbonate to reduce denitrification of nitric acid and nitrite nitrogen, and then treated in a bulk or granular magnesium hydroxide tank. 8 to 9, a method for treating inorganic nitrogen / phosphorus-containing water, characterized by recovering and reducing ammonia nitrogen and phosphorus as magnesium ammonium phosphate and calcium phosphate. 請求項1または2に記載の単一の反応槽、または脱窒反応槽及び水酸化マグネシウム槽を散気管等により適宜逆洗することで、脱窒等の反応維持、槽内の閉塞防止及びリン酸マグネシウムアンモニウム、リン酸カルシウムの容易な回収をなすことを特徴とする請求項1〜4のいずれかに記載の無機態窒素・リン含有水の処理方法。   The single reaction tank according to claim 1, or the denitrification reaction tank and the magnesium hydroxide tank are appropriately backwashed with an air diffuser or the like to maintain the reaction such as denitrification, prevent clogging in the tank, and phosphorus The method for treating inorganic nitrogen / phosphorus-containing water according to any one of claims 1 to 4, wherein magnesium ammonium phosphate and calcium phosphate are easily recovered. 水酸化マグネシウム槽における塊状もしくは粒状の水酸化マグネシウム表面に生成する、逆洗等の物理的洗浄では除去の困難な付着物をクエン酸で適宜に洗浄することで、水酸化マグネシウム槽における処理pHを8〜9に維持し、リン酸マグネシウムアンモニウム、リン酸カルシウムとしてアンモニア性窒素及びリンの回収・低減を容易に継続できることを特徴とする請求項3または4に記載の無機態窒素・リン含有水の処理方法。   The treated pH in the magnesium hydroxide tank is appropriately washed with citric acid to remove deposits that are difficult to remove by physical washing such as backwashing, which are produced on the surface of the magnesium hydroxide tank. 5. The method for treating inorganic nitrogen / phosphorus-containing water according to claim 3, wherein the ammonia nitrogen and phosphorus can be easily and continuously recovered and reduced as magnesium ammonium phosphate and calcium phosphate. . 無機態窒素・リン含有水が請求項1または2に記載の単一の反応槽に供給されることで、生物反応である硫黄脱窒により硝酸性窒素及び亜硝酸性窒素の除去低減がなされるとともに、充填資材に含まれる水酸化マグネシウムによりリン酸マグネシウムアンモニウムとしてリン酸及びアンモニア性窒素の沈殿低減がなされ、同時に水酸化マグネシウムにより槽内が高pHとなることで、リン酸カルシウムの生成も促され、適宜の逆洗によりそれらの反応が維持されるとともに、生成したリン酸マグネシウムアンモニウムやリン酸カルシウムの回収が容易となることを特徴とする無機態窒素・リン含有水の処理装置。   By supplying the inorganic nitrogen / phosphorus-containing water to the single reaction tank according to claim 1 or 2, removal of nitrate nitrogen and nitrite nitrogen is reduced by sulfur denitrification which is a biological reaction. At the same time, the magnesium hydroxide contained in the filling material reduces the precipitation of phosphoric acid and ammoniacal nitrogen as magnesium ammonium phosphate, and at the same time, the magnesium hydroxide has a high pH in the tank, which promotes the formation of calcium phosphate. An inorganic nitrogen / phosphorus-containing water treatment apparatus characterized in that those reactions are maintained by appropriate backwashing and that the produced magnesium ammonium phosphate and calcium phosphate can be easily recovered. 無機態窒素・リン含有水が硫黄及び炭酸カルシウムを中心とした脱窒反応槽に供給されることで、生物反応である硫黄脱窒により硝酸性窒素及び亜硝酸性窒素の除去低減がなされ、続いて水酸化マグネシウム槽における塊状もしくは粒状の水酸化マグネシウムによりリン酸マグネシウムアンモニウムとしてリン酸及びアンモニア性窒素の沈殿低減がなされ、同時に水酸化マグネシウムにより槽内が高pHとなることで、リン酸カルシウムの生成も促され、両槽に対する適宜の逆洗や水酸化マグネシウム槽への適宜のクエン酸洗浄によりそれらの反応が維持されるとともに、生成したリン酸マグネシウムアンモニウムやリン酸カルシウムの回収が容易となることを特徴とする無機態窒素・リン含有水の処理装置

By supplying inorganic nitrogen / phosphorus-containing water to a denitrification reaction tank centered on sulfur and calcium carbonate, removal of nitrate nitrogen and nitrite nitrogen has been reduced by sulfur denitrification, which is a biological reaction. In addition, precipitation of phosphoric acid and ammonia nitrogen as magnesium ammonium phosphate is reduced by bulk or granular magnesium hydroxide in the magnesium hydroxide tank, and at the same time, the inside of the tank becomes high pH by magnesium hydroxide, so that calcium phosphate is also generated. The reaction is maintained by appropriate backwashing for both tanks and appropriate citric acid washing for the magnesium hydroxide tank, and recovery of the produced magnesium ammonium phosphate and calcium phosphate is facilitated. To treat water containing inorganic nitrogen and phosphorus.
JP2003332479A 2003-09-24 2003-09-24 Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus Pending JP2005095758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003332479A JP2005095758A (en) 2003-09-24 2003-09-24 Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003332479A JP2005095758A (en) 2003-09-24 2003-09-24 Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus

Publications (1)

Publication Number Publication Date
JP2005095758A true JP2005095758A (en) 2005-04-14

Family

ID=34460774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332479A Pending JP2005095758A (en) 2003-09-24 2003-09-24 Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus

Country Status (1)

Country Link
JP (1) JP2005095758A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136752A (en) * 2004-11-10 2006-06-01 National Agriculture & Bio-Oriented Research Organization Method for treating water containing suspended solid, inorganic-state nitrogen and phosphorus
JP2007319819A (en) * 2006-06-02 2007-12-13 Kansai Pgs Kk Phosphorus recovery method
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen
KR100836661B1 (en) 2007-06-11 2008-06-10 고려대학교 산학협력단 Porous media for autotrophic denitrification using sulfur
JP2014039924A (en) * 2012-07-24 2014-03-06 Daikin Ind Ltd Method for treating aqueous solution containing phosphoric acid ions
CN103723813A (en) * 2013-12-31 2014-04-16 浙江工业大学 MAP (Magnesium Ammonium Phosphate) sedimentation circulating system and method for treating wastewater containing ammonia
CN110217888A (en) * 2019-05-30 2019-09-10 深圳大学 A kind of the nitrosation-anaerobic ammoxidation processing unit and method of municipal sewage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100163A (en) * 1977-02-15 1978-09-01 Ebara Infilco Co Ltd Removing method for phosphates in liquid
JPS5771693A (en) * 1980-10-21 1982-05-04 Katayama Chem Works Co Ltd Method of removing phosphate ion contained in liquid
JPS61153191A (en) * 1984-12-26 1986-07-11 Ebara Infilco Co Ltd Catalytic dephosphorizer
JPH05169093A (en) * 1991-12-19 1993-07-09 Unitika Ltd Method for removing scale
JPH10309585A (en) * 1997-05-08 1998-11-24 Tamuraya:Kk Water quality purifying method
JP2001029963A (en) * 1999-07-26 2001-02-06 Sekisui Chem Co Ltd Apparatus for removing phosphate ions in wastewater and purification tank equipped therewith
JP2002119993A (en) * 2000-10-13 2002-04-23 National Agricultural Research Organization Method and apparatus for treating wastewater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100163A (en) * 1977-02-15 1978-09-01 Ebara Infilco Co Ltd Removing method for phosphates in liquid
JPS5771693A (en) * 1980-10-21 1982-05-04 Katayama Chem Works Co Ltd Method of removing phosphate ion contained in liquid
JPS61153191A (en) * 1984-12-26 1986-07-11 Ebara Infilco Co Ltd Catalytic dephosphorizer
JPH05169093A (en) * 1991-12-19 1993-07-09 Unitika Ltd Method for removing scale
JPH10309585A (en) * 1997-05-08 1998-11-24 Tamuraya:Kk Water quality purifying method
JP2001029963A (en) * 1999-07-26 2001-02-06 Sekisui Chem Co Ltd Apparatus for removing phosphate ions in wastewater and purification tank equipped therewith
JP2002119993A (en) * 2000-10-13 2002-04-23 National Agricultural Research Organization Method and apparatus for treating wastewater

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136752A (en) * 2004-11-10 2006-06-01 National Agriculture & Bio-Oriented Research Organization Method for treating water containing suspended solid, inorganic-state nitrogen and phosphorus
JP2007319819A (en) * 2006-06-02 2007-12-13 Kansai Pgs Kk Phosphorus recovery method
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen
KR100836661B1 (en) 2007-06-11 2008-06-10 고려대학교 산학협력단 Porous media for autotrophic denitrification using sulfur
JP2014039924A (en) * 2012-07-24 2014-03-06 Daikin Ind Ltd Method for treating aqueous solution containing phosphoric acid ions
JP2015033697A (en) * 2012-07-24 2015-02-19 ダイキン工業株式会社 Method for treating aqueous solution containing phosphoric acid ions
CN103723813A (en) * 2013-12-31 2014-04-16 浙江工业大学 MAP (Magnesium Ammonium Phosphate) sedimentation circulating system and method for treating wastewater containing ammonia
CN103723813B (en) * 2013-12-31 2015-08-05 浙江工业大学 A kind of MAP precipitates the method for the recycle system and Ammonia-Containing Wastewater Treatment
CN110217888A (en) * 2019-05-30 2019-09-10 深圳大学 A kind of the nitrosation-anaerobic ammoxidation processing unit and method of municipal sewage

Similar Documents

Publication Publication Date Title
CN109052641B (en) Coupling filler autotrophic denitrification biological filter and application
Huang et al. Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process
KR101299953B1 (en) A Method and Apparatus for treatment of livestock waste water using Bacteria Mineral Water process
JP2002166293A (en) Method to remove nitrogen and phosphor simultaneously from waste water
CN107176672A (en) A kind of ammonia nitrogen removal agent and preparation method thereof
JP2007283223A (en) Method for recovering phosphorus from sludge
JP4032199B2 (en) Nitrate nitrogen denitrification substrate
Vanotti et al. Removing and recovering nitrogen and phosphorus from animal manure
Zhong et al. How to select substrate for alleviating clogging in the subsurface flow constructed wetland?
JP2006055739A (en) Treating method of organic matter- and nitrogen-containing wastewater
JP2012232262A (en) Method for treating wastewater
EP3567012A1 (en) Method for operating a wastewater treatment plant for phosphorus treatment of effluent
CN101239751B (en) Method for treating high concentration ammonia nitrogen waste water
Kalyuzhnyi et al. Integrated mechanical, biological and physico-chemical treatment of liquid manure streams
JP2005095758A (en) Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus
JP3387244B2 (en) Anaerobic treatment method
KR100673831B1 (en) Treatment methods of swine wastewater, landfill leachate and night soil
KR100991403B1 (en) Wastewater treatment apparatus reducing a nasty smell and method thereof
KR100996283B1 (en) A porous sulfur-calcium carbonate foam including polymer and method for eliminating nitrate through sulfur-oxidation denitrification using the same
JP3955478B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
KR100890605B1 (en) Microorganism media for treatment of wastewater and its manufacturing method
KR100360561B1 (en) A treatment methods for organic sewage
JP4596533B2 (en) Wastewater treatment method
KR200413348Y1 (en) Removal reactor of Ammonia , phosphorous and solid in wastewater
Kalyuzhnyi et al. Sustainable treatment and reuse of diluted pig manure streams in Russia: From laboratory trials to full-scale implementation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601