JP2008049251A - Apparatus for removing nitrogen - Google Patents

Apparatus for removing nitrogen Download PDF

Info

Publication number
JP2008049251A
JP2008049251A JP2006227330A JP2006227330A JP2008049251A JP 2008049251 A JP2008049251 A JP 2008049251A JP 2006227330 A JP2006227330 A JP 2006227330A JP 2006227330 A JP2006227330 A JP 2006227330A JP 2008049251 A JP2008049251 A JP 2008049251A
Authority
JP
Japan
Prior art keywords
water
nitrogen
nitrification
denitrification
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006227330A
Other languages
Japanese (ja)
Inventor
Haruhiko Sumino
晴彦 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2006227330A priority Critical patent/JP2008049251A/en
Publication of JP2008049251A publication Critical patent/JP2008049251A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for removing nitrogen in which a DHS (Down-flow Hanging Sponge) reactor and a sulfur denitrification tank are combined and used, which has excellent nitrification capacity and in which organic matter and nitrogen can be removed continuously and easily. <P>SOLUTION: The apparatus 1 for removing nitrogen is provided mainly with: a nitrification reaction tank 2 in which residual organic matter contained in the secondarily treated water 3 of sewage is decomposed/removed and ammonia nitrogen is nitrified and converted into oxidized nitrogen; and the sulfur denitrification tank 6 for removing nitrogen gas 5 from the nitrified water 4 so that the organic matter contained in the secondarily treated water 3 of sewage can be removed and nitrification and denitrification can be performed continuously. The DHS reactor being one kind of water-sprinkling porous filter beds which is formed by using a spongy filter bed main body 8 consisting of a porous base stock is used as the nitrification reaction tank 2. The nitrified water 4 having a low C/N ratio can be discharged from the DHS reactor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、窒素除去装置に関するものであり、特に、有機物、アンモニア性窒素、及びリン等を含む下水二次処理水等の汚水を処理する所謂「高度処理」に利用可能な窒素除去装置に関するものである。   The present invention relates to a nitrogen removal apparatus, and more particularly to a nitrogen removal apparatus that can be used for so-called "high-level treatment" for treating sewage such as sewage secondary treated water containing organic matter, ammoniacal nitrogen, and phosphorus. It is.

従来から、一般家庭から排出される生活排水、或いは各種工場等から排出される産業廃水(排水)などの汚水は、河川に放流する前に、予めこれら汚水に含まれる有害物質等を除去する下水処理が行われる。しかしながら、通常の下水処理では、未だ有機物が残存していたり、アンモニア性窒素を主とする窒素化合物、或いはリン化合物が残っていることが多く、一般的な「下水処理」ではこれらを完全に除去することができないことが知られている。   Conventionally, sewage such as domestic wastewater discharged from ordinary households or industrial wastewater (drainage) discharged from various factories, etc. is sewage that removes harmful substances contained in these sewage in advance before discharging into rivers. Processing is performed. However, in ordinary sewage treatment, organic substances still remain, nitrogen compounds mainly composed of ammonia nitrogen, or phosphorus compounds often remain. In general “sewage treatment”, these are completely removed. It is known that you can't.

そして、これらのアンモニア性窒素等を多量に含む処理水を、河川や湖沼等の閉鎖性水域に放出することは、当該水域を富栄養化させることになり、水質汚染や生息する生物等の生態系の破壊を引き起こす可能性が高くなる。そこで、汚水等を好気性活性汚泥法によって一次的に処理した処理水を、さらに浄化する処理を行い、上述の有機物及びアンモニア性窒素等の除去をする高度処理が行われている。このとき、高度処理は、汚水に含まれる有機物を分解し、除去するとともに、アンモニア性窒素を酸化態窒素に硝化する硝化反応槽と、硝化された酸化態窒素を窒素ガスに変換する脱窒槽とによって二段階の処理が行われ、それぞれの槽において処理対象物が効率的に除去されている。   Release of treated water containing a large amount of ammonia nitrogen and the like to closed water areas such as rivers and lakes will eutrophicate the water areas, causing water pollution and ecology such as living organisms. The possibility of causing the destruction of the system is increased. Then, the advanced treatment which performs the process which further purifies the treated water which processed sewage etc. primarily by the aerobic activated sludge method, and removes the above-mentioned organic substance, ammonia nitrogen, etc. is performed. At this time, the advanced treatment decomposes and removes organic substances contained in the sewage, and also nitrifies a nitrification reaction tank that nitrifies ammoniacal nitrogen into oxidized nitrogen, and a denitrification tank that converts nitrified oxidized nitrogen into nitrogen gas, The two-stage processing is performed by the above, and the processing object is efficiently removed in each tank.

ここで、硝化反応槽は、その方式の違いによって二種類に大別することができ、具体的には生物膜法及び活性汚泥法に分類することができる。そして、生物膜法の例としては、例えば、回転板接触方式、接触曝気方式、散水ろ床方式などがあり、一方、活性汚泥法の例としては、例えば、長時間曝気方式、標準活性汚泥方式などが知られている。ここで、硝化処理のために利用される硝化反応槽の一部をなすろ材(ろ床)は、除去性能や除去条件等に応じて種々のものが開発されている。例えば、ポリマー加工ゼオライト、特殊木炭、及びポリエチレングリコールなどが知られている。しかしながら、これらのろ材は、一般に硝化反応で作用する微生物を、可能な限り高濃度で固着し続けることが求められ、また、種々の条件によってどのような態様或いは形態のものが有機物にとっても最善の分解作用を発揮するか否かについては明確でないことも多い。ここで、上記硝化反応槽において行われる一般的な反応は、下記の式(1)に示すように、アンモニア性窒素を酸化態窒素に転換することが行われている。

(1)NH + 2O → NO + HO + 2H
Here, the nitrification reaction tank can be roughly classified into two types depending on the difference in the method, and specifically, can be classified into a biofilm method and an activated sludge method. Examples of the biofilm method include, for example, a rotating plate contact method, a contact aeration method, a sprinkling filter method, and the like. On the other hand, examples of the activated sludge method include a long time aeration method and a standard activated sludge method. Etc. are known. Here, various types of filter media (filter beds) forming a part of the nitrification reaction tank used for nitrification have been developed according to the removal performance, the removal conditions, and the like. For example, polymer-processed zeolite, special charcoal, and polyethylene glycol are known. However, these filter media are generally required to keep microorganisms acting in the nitrification reaction at a concentration as high as possible, and any form or form is best for organic matter depending on various conditions. In many cases, it is not clear whether or not the decomposition action is exhibited. Here, as a general reaction performed in the nitrification reaction tank, as shown in the following formula (1), ammonia nitrogen is converted to oxidized nitrogen.

(1) NH 4 + + 2O 2 → NO 3 + H 2 O + 2H +

ここで、上記式(1)に示すように、アンモニア性窒素を酸化態窒素に転換するためには、酸素の存在が必要不可欠であり、一般的な浸漬型の硝化反応槽では、微生物が接触するろ床に対し、送風機によって強制的に水中に酸素(空気)を送るエアレーションを行い、微生物の働きを活性化させている。   Here, as shown in the above formula (1), the presence of oxygen is indispensable in order to convert ammoniacal nitrogen into oxidized nitrogen. In a general immersion type nitrification reaction tank, microorganisms are in contact with each other. Aerobic forcing oxygen (air) into the water by a blower is performed on the filter bed to activate the microorganisms.

これに対し、エアレーションを必要とせず、かつろ床に固着した微生物群の坦持を確実なものとすることが可能な硝化反応槽が提案されている。具体的に説明すると、多孔質性の素材(例えば、発泡ポリウレタン樹脂等)を用いたスポンジ状の物体を断面が三角形や四角形等の多角形状にカットし、カーテンのように吊下げ支持し、その上部から処理対象水(下水二次処理水等)を滴下し、ろ床の下端に設けられた排出口から処理水を回収するDHSリアクター(Down−flow Hanging Sponge Reactor)を硝化反応槽として用いるものが開発されている(例えば、特許文献1参照)。   On the other hand, there has been proposed a nitrification reaction tank that does not require aeration and that can reliably support a group of microorganisms adhered to a filter bed. More specifically, a sponge-like object using a porous material (for example, foamed polyurethane resin) is cut into a polygonal shape such as a triangle or a quadrilateral, and is supported by hanging like a curtain. A DHS reactor (Down-flow Hanging Sponge Reactor) is used as a nitrification reaction tank that drops treatment target water (sewage secondary treated water, etc.) from the upper part and collects treated water from a discharge port provided at the lower end of the filter bed. Has been developed (see, for example, Patent Document 1).

これによると、上部に設けられた導入口から導入(滴下)された処理対象水は、ろ床であるスポンジ状の物体の中を伝い、徐々に下方へと流れ落ちる。このとき、当該ろ床は多孔質性を有するため、その空隙の中に多くの空気(酸素)が進入しやすいため、流下の際に処理対象水は多くの空気(酸素)と接触する。その結果、従来の方式のような強制的(人為的)なエアレーションが不要となる。さらに、従来の方式と比べ、10倍以上の微生物濃度を有する微生物群を当該スポンジのろ床内に担持することができ、これにより、排出口から未処理の有機物が排出されることがほとんどない。   According to this, the water to be treated introduced (dropped) from the introduction port provided in the upper part travels through the sponge-like object that is the filter bed and gradually flows downward. At this time, since the filter bed has a porous property, a large amount of air (oxygen) easily enters the voids, so that the water to be treated comes into contact with a large amount of air (oxygen) when flowing down. As a result, forced (artificial) aeration as in the conventional method is not necessary. Furthermore, compared to the conventional method, a group of microorganisms having a microorganism concentration of 10 times or more can be supported in the filter bed of the sponge, whereby untreated organic matter is hardly discharged from the discharge port. .

一方、酸化態窒素を窒素ガスに転換し、処理対象水から窒素を除去するための脱窒槽としては、例えば、従属栄養型脱窒槽等を用いることができる。ここで、従属栄養型脱窒槽は、上記の硝化反応槽によって生成された硝化処理された硝化処理水に対して行われるものであり、主に下記の式(2)に示される反応が行われる。ここで、酸化態窒素を窒素ガスに転換するためには、下記式(2)に示すように、電子供与体としてメチルアルコールのような有機物を硝化処理水に添加する必要がある。また、その他の処理方法として、地下水や飲料水等を処理するために硫黄脱窒槽を利用するものを知られている。

(2)6NO + 5CHOH
→ 3N↑ + 5CO↑ + 7HO + 6OH
On the other hand, as a denitrification tank for converting oxidized nitrogen into nitrogen gas and removing nitrogen from the water to be treated, for example, a heterotrophic denitrification tank or the like can be used. Here, the heterotrophic denitrification tank is performed on the nitrified water that has been subjected to nitrification treatment generated by the above-described nitrification reaction tank, and the reaction mainly represented by the following formula (2) is performed. . Here, in order to convert the oxidized nitrogen into nitrogen gas, it is necessary to add an organic substance such as methyl alcohol to the nitrification water as an electron donor as shown in the following formula (2). In addition, as another treatment method, a method using a sulfur denitrification tank for treating groundwater, drinking water, or the like is known.

(2) 6NO 3 + 5CH 3 OH
→ 3N 2 ↑ + 5CO 2 ↑ + 7H 2 O + 6OH

特開平11−285696号公報JP-A-11-285696

しかしながら、上記した従属栄養型脱窒槽による脱窒処理の場合、その前段階として硝化反応槽によって処理された硝化処理水に対し、メチルアルコール等の有機物を添加する必要があった。すなわち、硝化反応槽において、一度、有機物を除去しているにもかかわらず、再び、窒素ガスを回収するために適量の有機物を加える必要があった。特に、有機物の供給が多過ぎた場合、酸化態窒素との反応によって消費されなかった有機物が余剰し、従属栄養型脱窒槽から排出される処理水に混在することになる。そのため、前段階の硝化反応槽による有機物の除去が無駄になることがあった。一方、有機物の供給が少なすぎた場合、該有機物を完全に消費したとしても、尚、酸化態窒素が残留することとなり、硝化処理水から窒素を完全に除去することができないことになる。そのため、従属栄養型脱窒槽の使用は、供給する有機物の量を厳密に設定する、或いはこれらを循環させる循環比の設定を適切に行う必要があった。   However, in the case of the denitrification treatment using the heterotrophic denitrification tank described above, it was necessary to add an organic substance such as methyl alcohol to the nitrification water treated by the nitrification reaction tank as a previous step. In other words, in the nitrification reaction tank, it was necessary to add an appropriate amount of organic matter again in order to recover nitrogen gas even though the organic matter was once removed. In particular, when there is too much supply of organic matter, the organic matter that has not been consumed due to the reaction with oxidized nitrogen is surplus and mixed in the treated water discharged from the heterotrophic denitrification tank. For this reason, removal of organic substances by the nitrification reaction tank in the previous stage may be wasted. On the other hand, when the supply of the organic matter is too small, even if the organic matter is completely consumed, oxidized nitrogen remains, and nitrogen cannot be completely removed from the nitrification water. For this reason, the use of heterotrophic denitrification tanks requires that the amount of organic matter to be supplied be set strictly or that the circulation ratio for circulating these be appropriately set.

一方、硫黄脱窒槽は、上述の従属栄養型脱窒槽のように有機物を供給する必要がなく硝化処理水の処理も比較的容易であった。しかしながら、係る硫黄脱窒槽は、前述したように、主として地下水や飲料水等の有機物/酸化態窒素の比(C/N比)が低い水質のものに主に用いられ、下水の二次処理水等の有機物の比率が比較的高い水質のものに適用されることはほとんどなかった。   On the other hand, the sulfur denitrification tank does not need to supply organic matter unlike the heterotrophic denitrification tank described above, and the treatment of nitrification water is relatively easy. However, as described above, the sulfur denitrification tank is mainly used for water having a low organic substance / oxidized nitrogen ratio (C / N ratio) such as groundwater and drinking water, and is a secondary treated water of sewage. It was rarely applied to water having a relatively high ratio of organic substances such as.

そこで、本発明は、上記実情に鑑み、硝化反応槽として、高い有機物除去性能を有するDHSリアクターを使用し、さらに脱窒槽として硫黄脱窒槽を使用し、これらを組合わせることにより、硝化性に優れ、かつ有機物や浮遊物質等の除去、及び窒素の除去を連続的、かつ容易に行うことが可能な窒素除去装置の提供を課題とするものである。   Therefore, in view of the above circumstances, the present invention uses a DHS reactor having a high organic matter removal performance as a nitrification reaction tank, and further uses a sulfur denitrification tank as a denitrification tank, and combines them to provide excellent nitrification properties. An object of the present invention is to provide a nitrogen removing apparatus capable of continuously and easily removing organic substances and suspended substances and removing nitrogen.

上記の課題を解決するため、本発明にかかる窒素除去装置は、「有機物及びアンモニア性窒素を含有する処理対象水を好気性微生物の分解作用及び硝化作用を利用し、前記有機物を分解及び除去、及び、前記アンモニア性窒素の酸化態窒素への硝化を実施する硝化反応槽と、前記硝化反応槽によって硝化された前記酸化態窒素を含有する硝化処理水に、電子供与体として機能する硫黄成分を主とする硫黄処理剤を接触させ、前記硝化処理水に含まれる前記酸化態窒素を窒素ガスに転換する脱窒処理を行う硫黄脱窒槽と」を主に具備して構成されている。   In order to solve the above-mentioned problem, the nitrogen removing apparatus according to the present invention uses a decomposition target and a nitrifying action of aerobic microorganisms to treat water containing organic matter and ammoniacal nitrogen to decompose and remove the organic matter. And a nitrification reaction tank for performing nitrification of the ammonia nitrogen to oxidized nitrogen, and a nitrification water containing the oxidized nitrogen nitrified by the nitrification reaction tank with a sulfur component that functions as an electron donor. And a sulfur denitrification tank for performing a denitrification treatment for contacting the main sulfur treatment agent and converting the oxidized nitrogen contained in the nitrification water into nitrogen gas.

したがって、本発明の窒素除去装置によれば、有機物及びアンモニア性窒素を含む処理対象水に対し、硝化処理を行う硝化反応槽と、該硝化反応槽を経て排出された硫黄脱窒槽とを組合わせることにより、有機物及び窒素の除去を比較的容易に行うことができる。これにより、従来の従属栄養型脱窒槽に比べ、酸化態窒素から窒素ガスへの転換処理を行う際に有機物を供給する必要がなく、これらの供給処理や供給する有機物量の循環比を調整するなどの煩雑な処理を行う必要がない。   Therefore, according to the nitrogen removing apparatus of the present invention, a nitrification reaction tank for performing nitrification treatment on water to be treated containing organic matter and ammonia nitrogen is combined with a sulfur denitrification tank discharged through the nitrification reaction tank. Thus, organic substances and nitrogen can be removed relatively easily. As a result, compared to conventional heterotrophic denitrification tanks, there is no need to supply organic substances when converting from oxidized nitrogen to nitrogen gas, and the circulation ratio of these supply processes and the amount of organic substances to be supplied is adjusted. It is not necessary to perform complicated processing such as.

さらに、本発明にかかる窒素除去装置は、上記構成に加え、「前記硝化反応槽は、前記処理対象水を導入する導入口、処理した前記硝化処理水を排出し、前記導入口の下方に設けられた排出口、及び前記好気性微生物を担持可能な複数の空隙を有する多孔質性素材によって形成され、前記導入口に吊下支持または充填され、前記導入口及び前記排出口の間を連結し、前記導入口から導入された前記処理対象水を前記排出口まで流下させることによって、前記有機物を分解及び除去するとともに、前記アンモニア性窒素から前記酸化態窒素へ転換させるための多孔質ろ床本体を備える散水型多孔質ろ床が利用される」ものであっても構わない。   Furthermore, the nitrogen removing apparatus according to the present invention has, in addition to the above configuration, “the nitrification reaction tank discharges the treated nitrification water and introduces the treated nitrification water, and is provided below the introduction port. Formed by a porous material having a plurality of voids capable of supporting the aerobic microorganisms, suspended or supported by the introduction port, and connecting between the introduction port and the discharge port. A porous filter main body for decomposing and removing the organic matter by flowing down the water to be treated introduced from the introduction port to the discharge port and converting the ammonia nitrogen to the oxidized nitrogen A watering-type porous filter bed equipped with "may be used."

したがって、本発明の窒素除去装置によれば、硝化処理を行う硝化反応槽として、散水型多孔質ろ床が利用される。ここで、散水型多孔質ろ床としては、前述したDHSリアクター等を用いることが可能である。これにより、硝化反応槽において、有機物をほぼ完全に除去することができ、また硝化率をほぼ100%にすることができる。その結果、硝化反応槽から排出される硝化処理水は、低C/N比のものとなるため、係る硝化処理水をそのまま硫黄脱窒槽に導入することができる。すなわち、従来は地下水等の高い水質の処理対象水(硝化処理水)のみしか処理することのできなかった硫黄脱窒槽に対し、下水二次処理水等の比較的有機物の多いものを硝化処理した硝化処理水であっても硫黄による脱窒処理を行うことが可能となる。   Therefore, according to the nitrogen removing apparatus of the present invention, a sprinkling porous filter bed is used as a nitrification reaction tank for performing nitrification treatment. Here, as the sprinkling porous filter bed, the above-described DHS reactor or the like can be used. Thereby, in the nitrification reaction tank, organic substances can be almost completely removed, and the nitrification rate can be almost 100%. As a result, since the nitrification water discharged from the nitrification reaction tank has a low C / N ratio, the nitrification water can be directly introduced into the sulfur denitrification tank. In other words, the sulfur denitrification tank, which was previously only capable of treating only high-quality treatment water (nitration water) such as groundwater, was nitrified with a relatively large amount of organic matter such as sewage secondary treated water. Even nitrification water can be denitrified with sulfur.

さらに、本発明の窒素除去装置によれば、上記構成に加え、「前記硝化反応槽及び前記硫黄脱窒槽の間に設けられ、前記硝化反応槽から排出される前記硝化処理水を前記硫黄脱窒槽に送液する送液ポンプをさらに具備し、前記硫黄脱窒槽は、下端近傍に設けられ、前記送液ポンプによって送液された前記硝化処理水を導入するための二次導入口、上端近傍にそれぞれ設けられ、脱窒処理によって発生した窒素ガスを排出する窒素ガス排出口、及び、前記脱窒処理後の処理水を排出する処理水排出口と、各々連結した脱窒処理空間が内部に形成された略筒形状の脱窒槽本体と、前記脱窒処理空間の少なくとも一部に充填され、前記硝化処理水に対して電子供与体として機能する前記硫黄系処理剤と」を具備して主に構成されている。   Furthermore, according to the nitrogen removing apparatus of the present invention, in addition to the above-described configuration, “the nitrification water provided between the nitrification reaction tank and the sulfur denitrification tank and discharged from the nitrification reaction tank is supplied to the sulfur denitrification tank. The sulfur denitrification tank is provided in the vicinity of the lower end, and is provided in the vicinity of the upper end of the secondary inlet for introducing the nitrification water fed by the liquid pump. A nitrogen gas discharge port that discharges nitrogen gas generated by the denitrification process and a treated water discharge port that discharges the treated water after the denitrification process and a denitrification treatment space connected to each other are formed inside. The substantially cylindrical denitrification tank main body, and the sulfur-based treatment agent that fills at least a part of the denitrification treatment space and functions as an electron donor for the nitrification water ”. It is configured.

したがって、本発明の窒素除去装置によれば、硝化反応槽から送液ポンプを介して送液される硝化処理水が硫黄脱窒槽の下端近傍の二次導入口から導入され、上端近傍に設けられた窒素ガス排出口或いは処理水排出口を通じてそれぞれ分離して排出される。ここで、硝化処理水は硫黄脱窒槽の下端から導入されているため、内部の脱窒処理空間に少なくとも一部が充填された電子供与体として機能する硫黄系処理剤とは必然的に接触することになる。これにより、下記の式(3)による反応でガスが発生する。

(3) NO +5/8S 2− + 1/8H

→ 1/2N↑ + 5/4SO 2− + 1/4H
Therefore, according to the nitrogen removing apparatus of the present invention, the nitrification water fed from the nitrification reaction tank via the liquid feed pump is introduced from the secondary inlet near the lower end of the sulfur denitrification tank and is provided near the upper end. The gas is discharged separately through the nitrogen gas outlet or the treated water outlet. Here, since the nitrification water is introduced from the lower end of the sulfur denitrification tank, the nitrification water necessarily comes into contact with the sulfur-based treatment agent functioning as an electron donor in which the internal denitrification treatment space is at least partially filled. It will be. Thereby, gas is generated by the reaction according to the following formula (3).

(3) NO 3 + 5 / 8S 2 O 3 2− + 1 / 8H 2 O

→ 1 / 2N 2 ↑ + 5 / 4SO 4 2- + 1 / 4H +

反応槽は、前記処理対象水を導入する導入口、処理した前記硝化処理水を排出し、前記導入口の下方に設けられた排出口、及び前記好気性微生物を担持可能な複数の空隙を有する多孔質性素材によって形成され、前記導入口及び前記排出口の間を連結し、前記導入口から導入された前記処理対象水を前記排出口まで滴下させることによって、前記有機物を分解処理するとともに、前記アンモニア性窒素の前記酸化態窒素へ転換させるためのろ床本体を備える散水型多孔質ろ床を用いる」ものであっても構わない。   The reaction tank has an inlet for introducing the water to be treated, an outlet for discharging the treated nitrification water, a discharge port provided below the inlet, and a plurality of voids capable of supporting the aerobic microorganisms. The organic material is decomposed by being formed of a porous material, connecting the inlet and the outlet, and dropping the treatment target water introduced from the inlet to the outlet, It is also possible to use a sprinkling porous filter bed having a filter bed main body for converting the ammonia nitrogen to the oxidized nitrogen.

ここで、硝化反応槽とは、下水二次処理水等の処理対象水に含まれるアンモニア性窒素を酸素及び微生物等の作用を利用して、硝酸イオン等の酸化態窒素に転換可能な反応を行うものである。ここで、硝化反応槽の方式等の詳細については、既に説明したため、省略するものの、例えば、散水ろ床方式のDHSリアクターを採用することが可能である。これにより、硝化反応槽の上部から導入された処理対象水は、DHSリアクターの一部としてカーテン状に吊下げ支持されたスポンジ状のろ床を伝搬して徐々に下方の排出口に到着する。これにより、導入口から導入され、滴下によって徐々に排出口まで到達した処理対象水は、多孔質性のろ床によって空気を多量に含むことになり、さらに微生物の作用によって含まれる有機物をほぼ完全に除去することができる。   Here, the nitrification reaction tank is a reaction capable of converting ammonia nitrogen contained in water to be treated such as secondary treated water of sewage into oxidized nitrogen such as nitrate ions using the action of oxygen and microorganisms. Is what you do. Here, since details of the method of the nitrification reaction tank and the like have already been described, for example, a sprinkling filter type DHS reactor can be employed, although omitted. Thereby, the water to be treated introduced from the upper part of the nitrification reaction tank propagates through the sponge-like filter bed suspended and supported in a curtain shape as a part of the DHS reactor, and gradually arrives at the lower discharge port. As a result, the water to be treated, introduced from the inlet and gradually reaching the outlet by dripping, contains a large amount of air due to the porous filter bed, and the organic matter contained by the action of microorganisms is almost completely contained. Can be removed.

本発明の効果として、上記に説明したように、硝化反応槽として、散水型多孔質ろ床の一種であるDHSリアクターを採用することにより、排出口から排出される硝化処理水は、有機物をほとんど有することがなく、高度な下水二次処理水等の処理を行うことが可能である。特に、従来の方式のように強制的に酸素(空気)を送るエアレーションの必要がなく、省エネルギー及び低コスト化を図ることができるようになる。   As an effect of the present invention, as described above, by adopting a DHS reactor which is a kind of sprinkling porous filter bed as a nitrification reaction tank, nitrification water discharged from the discharge port contains almost no organic matter. It is possible to perform treatment of advanced sewage secondary treated water or the like. In particular, there is no need for aeration forcibly sending oxygen (air) as in the conventional method, and energy saving and cost reduction can be achieved.

また、アンモニア性窒素の硝化反応もほぼ100%実施することができるため、硝化処理水には該アンモニア性窒素はほとんど含まれていない。そのため、係る低C/N比の硝化処理水を用いれば、シンプルかつ運転性に優れた硫黄脱窒槽による窒素除去が可能となる。その結果、係るDHSリアクターによる硝化反応槽及び硫黄脱窒槽を組合わせることにより、有機物の除去、アンモニア性窒素の硝化、及び酸化態窒素の窒素ガス化を連続的に行うことが可能となる。   Further, since the nitrification reaction of ammonia nitrogen can be carried out almost 100%, the nitrification water contains almost no ammonia nitrogen. Therefore, if the nitrification water having such a low C / N ratio is used, nitrogen can be removed by a sulfur denitrification tank that is simple and excellent in operability. As a result, by combining the nitrification reaction tank and the sulfur denitrification tank by the DHS reactor, it is possible to continuously perform the removal of organic substances, nitrification of ammonia nitrogen, and nitrogen gasification of oxidized nitrogen.

次に、本実施形態の窒素除去装置1について、図1及び図2に基づいて説明する。ここで、図1は本実施形態の窒素除去装置の概略構成を模式的に示す説明図であり、図2はろ床本体8の構成、及び硝化処理の概念を模式的に示した説明図である。ここで、本実施形態の窒素除去装置1は、処理対象水として、一般的な排水を好気性活性汚泥法で処理した浄化槽処理水に塩化アンモニウム及び炭酸水素ナトリウムを予め規定した量ずつ添加し、調整した下水二次処理水3を処理するものについて例示する。なお、窒素除去装置1には植種として活性汚泥を用いた。また、本実施形態の窒素除去装置1は、室温10℃〜20℃の温度範囲の元で処理されている。ここで、下水二次処理水3が本発明の処理対象水に相当する。   Next, the nitrogen removal apparatus 1 of this embodiment is demonstrated based on FIG.1 and FIG.2. Here, FIG. 1 is an explanatory view schematically showing the schematic configuration of the nitrogen removing apparatus of the present embodiment, and FIG. 2 is an explanatory view schematically showing the configuration of the filter bed body 8 and the concept of nitrification treatment. . Here, the nitrogen removing apparatus 1 of the present embodiment adds ammonium chloride and sodium hydrogen carbonate in predetermined amounts to the septic tank treated water obtained by treating general waste water by the aerobic activated sludge method as the treatment target water, It illustrates about what treats the adjusted sewage secondary treated water 3. FIG. In the nitrogen removal apparatus 1, activated sludge was used as seeding. Moreover, the nitrogen removal apparatus 1 of this embodiment is processed under the temperature range of room temperature 10 degreeC-20 degreeC. Here, the sewage secondary treated water 3 corresponds to the water to be treated of the present invention.

本実施形態の窒素除去装置1について詳述すると、図1に示すように、下水二次処理水3に含まれる有機物を分解し、除去するとともに、アンモニア性窒素を硝化し、酸化態窒素に転換するための硝化反応槽2と、硝化反応槽2によって処理された硝化処理水4から窒素ガス5を除去する硫黄脱窒槽6とを具備して主に構成されている。   The nitrogen removing apparatus 1 of the present embodiment will be described in detail. As shown in FIG. 1, organic substances contained in the sewage secondary treated water 3 are decomposed and removed, and ammonia nitrogen is nitrified and converted to oxidized nitrogen. And a sulfur denitrification tank 6 for removing nitrogen gas 5 from the nitrification water 4 treated in the nitrification reaction tank 2.

さらに、詳細に説明すると、硝化反応槽2は、下水二次処理水3を上部から導入する導入口7と、導入口7の一端と接続し、導入された下水二次処理水3を徐々に流下させるスポンジ状のろ床本体8と、ろ床本体8の下端近傍に設けられ、ろ床本体8を流下することによって下水二次処理水3に含まれる有機物が除去され、さらにアンモニア性窒素が酸化態窒素に転換された硝化処理水4を排出する排出口9とを主に具備して構成されている。ここで、ろ床本体8は、複数の空隙を有する発泡性ウレタン樹脂を材質として用い、断面多角形状(ここでは、三角形状)になるようにカットされた複数の三角柱スポンジ8a(断面積:0.50平方センチメートル、幅:20センチメートル、孔径:0.56ミリメートル)を利用し、これらを互いの上下の辺同士が僅かに離間した間隔を保って塩化ビニル樹脂板8bを接着し、カーテン状に配して構成されている(図2参照)。そして、ろ床本体8の上端10が導入口7と連結されることにより、該ろ床本体8は、導入口7に吊下支持された状態となる。その結果、スポンジ間隙容積が3.0リットル、全高165センチメートルのDHSリアクターが形成される。   More specifically, the nitrification reaction tank 2 is connected to an inlet 7 for introducing the sewage secondary treated water 3 from above and one end of the inlet 7, and gradually introduces the introduced sewage secondary treated water 3. A sponge-like filter bed main body 8 to be flowed down and provided near the lower end of the filter bed main body 8, by flowing down the filter bed main body 8, organic substances contained in the sewage secondary treated water 3 are removed, and ammonia nitrogen is further added. A discharge port 9 for discharging the nitrification water 4 converted into oxidized nitrogen is mainly provided. Here, the filter bed body 8 uses a foamed urethane resin having a plurality of voids as a material, and a plurality of triangular prism sponges 8a (cross-sectional area: 0) cut to have a polygonal cross section (here, a triangular shape). .50 square centimeters, width: 20 centimeters, hole diameter: 0.56 millimeters), and the vinyl chloride resin plate 8b is bonded to each other while maintaining a slight distance between the upper and lower sides of each other to form a curtain. (See FIG. 2). Then, the upper end 10 of the filter bed main body 8 is connected to the introduction port 7, so that the filter bed main body 8 is suspended and supported by the introduction port 7. As a result, a DHS reactor having a sponge gap volume of 3.0 liters and a total height of 165 centimeters is formed.

また、この発泡ウレタン樹脂は、軟らかい素材によって形成されているため、表面を押圧することによって、容易に潰れ、該押圧を解除することによって元の状態に容易に戻ることができるものである。なお、吊下支持されたろ床本体8に風などが当たり、ろ床本体8の下端11側が移動することを防ぐため、下端11の一部と排出口9との一部を連結し、風による移動を抑制するものであっても構わない(図示しない)。また、下水二次処理水3を導入口7に導くために、市販の送液ポンプ(図示しない)を備えるものであっても構わない。   Moreover, since this urethane foam resin is formed of a soft material, it can be easily crushed by pressing the surface and can easily return to its original state by releasing the pressing. In addition, in order to prevent wind etc. hitting the filter bed main body 8 supported by suspension and moving the lower end 11 side of the filter bed main body 8, a part of the lower end 11 and a part of the discharge port 9 are connected, and the wind It may be one that suppresses movement (not shown). Moreover, in order to guide the sewage secondary treated water 3 to the introduction port 7, a commercially available liquid feed pump (not shown) may be provided.

そのため、下水二次処理水3が上方から導入された場合、多孔質性(換言すれば、スポンジ状)のろ床本体8の内部に該下水二次処理水3が徐々に浸透するとともに、三角形状の骨格を伝いながら流下することになる(図2矢印A及び矢印B参照)。このとき、ゆっくりと流下する間に周囲の酸素Oと接触し、十分な酸素Oを内部に取込むことになる。そして、スポンジに予め付着されている好気性微生物12は、この下水二次処理水3と接触することによって、下水二次処理水3に含まれる残存有機物13を分解し、二酸化炭素や水などに転換させるとともに、アンモニア性窒素を前述の式(1)に従って酸化態窒素へ転換を図ることができる。   Therefore, when the sewage secondary treated water 3 is introduced from above, the sewage secondary treated water 3 gradually permeates into the inside of the porous (in other words, sponge-like) filter bed body 8, and the triangle It will flow down along the shape of the skeleton (see arrows A and B in FIG. 2). At this time, while slowly flowing down, it comes into contact with the surrounding oxygen O, and sufficient oxygen O is taken into the inside. And the aerobic microorganisms 12 previously attached to the sponge decompose the residual organic matter 13 contained in the sewage secondary treated water 3 by contacting with the sewage secondary treated water 3 to carbon dioxide or water. Along with the conversion, ammoniacal nitrogen can be converted to oxidized nitrogen according to the above formula (1).

一方、硫黄脱窒槽6は、硝化反応槽2によって処理された硝化処理水4を導入するための二次導入口14と、脱窒処理によって発生した窒素ガス5を排出するための窒素ガス排出口16と、脱窒処理された処理水17を外部に排出するための処理水排出口18との三カ所の入出口を備え、さらにそれぞれの入出口14,16,18と連結した脱窒処理空間19が内部に形成された略筒形状の脱窒槽本体20と、該脱窒処理空間19に充填される硫黄系処理剤21と、窒素ガス排出口16をガス配管22を介して連結され、発生した窒素ガス5をトラップし、硫黄脱窒槽6へ外部より酸素(空気)を入れないためのトラップ24とを具備して構成されている。また、硝化反応槽2と硫黄脱窒槽6との間には、処理された硝化処理水4を硫黄脱窒槽6の下端側から導入し、上端側から強制的に排出するための送液用の送液ポンプ25が取付けられている。   On the other hand, the sulfur denitrification tank 6 includes a secondary inlet 14 for introducing the nitrification water 4 treated by the nitrification reaction tank 2 and a nitrogen gas outlet for discharging the nitrogen gas 5 generated by the denitrification process. 16 and a denitrification treatment space provided with three entrances and exits of the treated water discharge port 18 for discharging the treated water 17 subjected to the denitrification treatment to the outside, and connected to the respective entrances 14, 16, and 18. The denitrification tank body 20 having a substantially cylindrical shape 19 formed therein, the sulfur-based treatment agent 21 filled in the denitrification treatment space 19, and the nitrogen gas discharge port 16 are connected via a gas pipe 22 to generate The nitrogen gas 5 is trapped and a trap 24 for preventing oxygen (air) from entering the sulfur denitrification tank 6 from the outside is provided. Moreover, between the nitrification reaction tank 2 and the sulfur denitrification tank 6, the treated nitrification water 4 is introduced from the lower end side of the sulfur denitrification tank 6, and is used for forcibly discharging from the upper end side. A liquid feed pump 25 is attached.

次に、本実施形態の窒素除去装置1を利用した下水二次処理水3の窒素除去の一例について説明する。はじめに、硝化反応槽2の導入口7から調整された下水二次処理水3を導入する。これにより、前述した作用によって、下水二次処理水3に含まれる有機物及びアンモニア性窒素が好気性微生物12の作用によって分解され、硝酸イオン等の酸化態窒素へ転換される。   Next, an example of nitrogen removal of the sewage secondary treated water 3 using the nitrogen removing apparatus 1 of the present embodiment will be described. First, the sewage secondary treated water 3 adjusted from the inlet 7 of the nitrification reaction tank 2 is introduced. Thereby, the organic substance and ammonia nitrogen contained in the sewage secondary treated water 3 are decomposed | disassembled by the effect | action of the aerobic microorganism 12, and it converts into oxidized nitrogen, such as a nitrate ion, by the effect | action mentioned above.

なお、本実施形態の窒素除去装置1の硝化反応槽2における下水二次処理水3の処理状況に係る流入(導入)前及び流出(排出)後の各測定値に表1に示す。ここで、この硝化反応槽2の運転開始から257日目までは、20mgN/L、258日目以降は40mgN/Lの割合で塩化アンモニウムを添加するものとした。また、HRT(水理学的滞留時間)は、運転開始から85日目までは2hr、一方、86日以降は1hrとなるようにした。さらに、運転開始から346日目までは、室温20℃、347日目から437日目は室温15℃になるように制御し、438日目以降は室温の制御を行わず冬季における温度(室温15℃以下)で実施を行った。   Table 1 shows the measured values before inflow (introduction) and after outflow (discharge) according to the treatment status of the sewage secondary treated water 3 in the nitrification reaction tank 2 of the nitrogen removing apparatus 1 of the present embodiment. Here, from the start of operation of the nitrification reaction tank 2 to the 257th day, ammonium chloride was added at a rate of 20 mgN / L and after the 258th day, 40 mgN / L. The HRT (hydraulic residence time) was 2 hr from the start of operation to the 85th day, and 1 hr after 86 days. Furthermore, from the start of operation to the 346th day, control is performed so that the room temperature is 20 ° C. and from the 347th day to the 437th day, the room temperature is 15 ° C., and after the 438th day, the room temperature is not controlled and the temperature in the winter season (room temperature 15 (Below ℃).

Figure 2008049251
Figure 2008049251

これによると、硝化反応槽2の排出口9から排出される硝化処理水4の全BODは、室温の際によらず1〜2mg/Lであることが示され、硝化処理水4の水質が極めて安定していることが確認された。また、表1によれば、平均BOD/CODcrが処理前の下水二次処理水3で0.33であるのに対し、硝化処理水4では0.14であることが示されてた。すなわち、硝化処理水4の中には、好気性微生物12による分解が困難な有機物のみが残存し、これらの好気性微生物12によって分解可能とされる有機物は当該硝化反応槽2でほとんど消費したことが示される。これにより、硝化処理水4に含まれる有機物の残存量は極めて低いことが確認された。   According to this, it is shown that the total BOD of the nitrification water 4 discharged from the discharge port 9 of the nitrification reaction tank 2 is 1 to 2 mg / L regardless of the room temperature, and the water quality of the nitrification water 4 is It was confirmed that it was extremely stable. Moreover, according to Table 1, it was shown that average BOD / CODcr is 0.33 in the sewage secondary treated water 3 before the treatment, whereas it is 0.14 in the nitrification treated water 4. That is, only the organic matter that is difficult to be decomposed by the aerobic microorganism 12 remains in the nitrification water 4, and the organic matter that can be decomposed by the aerobic microorganism 12 is almost consumed in the nitrification reaction tank 2. Is shown. Thereby, it was confirmed that the residual amount of the organic substance contained in the nitrification water 4 is extremely low.

また、下水二次処理水3の平均全窒素は、63mgN/Lであり、その内、アンモニア性窒素は35mgN/Lであった。そして、前述したように運転開始から258日目以降に塩化アンモニウムの添加量を倍にし、下水二次処理水3に含まれるアンモニア性窒素の含有率を増加させたものの、平均で3mgN/Lの値を示し、このアンモニア性窒素の除去率は90%以上の高い成績を示した。なお、アンモニア性窒素の除去率は硝化反応槽2の周囲の室温が変化しても、すなわち、冬季等の室温15℃以下の条件であってもほとんど変化することがなく、硝化反応槽2のろ床本体8に吸着した好気性微生物12の活動が15℃以下の低温であっても発揮できることが確認された。さらに、表1に示されるように、亜硝酸性窒素の存在はほとんど確認されず、硝酸性窒素として確認された。すなわち、アンモニア性窒素は完全に酸化していることを示している。これにより、導入口7から排出口9に流下する間にスポンジ状のろ床本体8の中で酸素と十分に接触し、好気性微生物12による分解反応が十分行われていることが示された。   Moreover, the average total nitrogen of the sewage secondary treated water 3 was 63 mgN / L, of which ammonia nitrogen was 35 mgN / L. And as mentioned above, the addition amount of ammonium chloride was doubled after the 258th day from the start of operation, and the content of ammoniacal nitrogen contained in the sewage secondary treated water 3 was increased, but an average of 3 mgN / L The ammonia nitrogen removal rate showed a high result of 90% or more. The removal rate of ammonia nitrogen hardly changes even when the room temperature around the nitrification reaction tank 2 changes, that is, even under conditions of room temperature of 15 ° C. or less in winter and the like. It was confirmed that the activity of the aerobic microorganisms 12 adsorbed on the filter bed main body 8 can be exhibited even at a low temperature of 15 ° C. or lower. Further, as shown in Table 1, the presence of nitrite nitrogen was hardly confirmed, and it was confirmed as nitrate nitrogen. That is, ammonia nitrogen is completely oxidized. As a result, it was shown that the decomposition reaction by the aerobic microorganisms 12 was sufficiently carried out in sufficient contact with oxygen in the sponge-like filter bed main body 8 while flowing down from the inlet 7 to the outlet 9. .

上記示したように、DHSリアクターを硝化反応槽2として採用することにより、強制的なエアレーションを必要とすることなく、ほとんど維持管理を行うことなく高い有機物除去性能と、アンモニア性窒素を硝酸性窒素(酸化態窒素)に酸化する優れた硝化性能とを具備することができる。その結果、排出口9から排出される硝化処理水4は、酸化態窒素に対して有機物がほとんど含有していない、すなわち、低C/N比の処理水とすることができる。そのため、後述する硫黄脱窒槽6による窒素除去の処理が可能となる。   As shown above, by adopting the DHS reactor as the nitrification reaction tank 2, there is no need for forced aeration, high organic substance removal performance with almost no maintenance, and ammonia nitrogen is nitrate nitrogen. And excellent nitrification performance for oxidation to (oxidized nitrogen). As a result, the nitrification-treated water 4 discharged from the discharge port 9 can be treated water with almost no organic matter contained in the oxidized nitrogen, that is, a low C / N ratio. Therefore, the nitrogen removal process by the sulfur denitrification tank 6 mentioned later becomes possible.

その後、送液ポンプ25を介して硫黄脱窒槽6の下端近傍の二次導入口14を通って脱窒処理空間19に硝化処理水4は送出される。ここで、脱窒処理空間19には、硝化処理水4に対し、電子を供与する電子供与体として機能する硫黄を主成分とする硫黄系処理剤21が充填されている。そして、下端近傍の二次導入口14から脱窒処理空間19に送られた硝化処理水4は、送液ポンプ25の送圧によって脱窒処理空間19の中をゆっくりと上方に押上げられる。このとき、硫黄系処理剤21と接触することにより、係る反応が脱窒処理空間19内で行われ、酸化態窒素(硝酸性窒素)と硫黄成分とが反応し、窒素ガス5が発生する。そして、発生した窒素ガス5を硫黄脱窒槽6の上端近傍に設けられた窒素ガス排出口16を通して外部に排出する。なお、窒素ガス排出口16から延設されたガス配管22の途中には発生した窒素ガス5をトラップし、硫黄脱窒槽6へ外部より空気(酸素を入れないためのトラップ24が設けられている。一方、硫黄によって窒素ガス5の除去された処理水17は、処理水排出口18を通して外部に排出される。ここで、排出される処理水17は、前述した硝化処理水4から窒素ガス5の成分が除去されたものであり、硫黄脱窒槽6において従来のように有機物等の添加がなされたものではない。そのため、安定した水質の処理水17として外部にそのまま排出しても特に問題がない。   Thereafter, the nitrification water 4 is delivered to the denitrification treatment space 19 through the secondary introduction port 14 near the lower end of the sulfur denitrification tank 6 via the liquid feed pump 25. Here, the denitrification treatment space 19 is filled with a sulfur-based treatment agent 21 mainly composed of sulfur that functions as an electron donor for donating electrons to the nitrification treated water 4. Then, the nitrification water 4 sent from the secondary inlet 14 near the lower end to the denitrification space 19 is slowly pushed upward in the denitrification space 19 by the pressure of the liquid feed pump 25. At this time, by contacting with the sulfur-based treatment agent 21, the reaction is performed in the denitrification treatment space 19, and the oxidized nitrogen (nitric nitrogen) and the sulfur component react to generate nitrogen gas 5. The generated nitrogen gas 5 is discharged to the outside through a nitrogen gas discharge port 16 provided in the vicinity of the upper end of the sulfur denitrification tank 6. In addition, the generated nitrogen gas 5 is trapped in the middle of the gas pipe 22 extended from the nitrogen gas discharge port 16, and air (a trap 24 for preventing oxygen from entering) is provided in the sulfur denitrification tank 6 from the outside. On the other hand, the treated water 17 from which the nitrogen gas 5 has been removed by sulfur is discharged to the outside through the treated water discharge port 18. Here, the discharged treated water 17 is discharged from the nitrification treated water 4 described above. In the sulfur denitrification tank 6, organic matter or the like has not been added as in the prior art, so there is a particular problem even if it is discharged as it is as the stable treated water 17 to the outside. Absent.

ここで、本発明の窒素除去装置1において処理可能な処理対象水(下水二次処理水3)の水温、pH、有機物濃度、及びアンモニア性窒素の濃度を例示すると、水温は10〜30℃、pHは7〜8.5の範囲のものを対象とすることができ、処理対象水に含まれる有機物濃度は、0〜50mgBOD/L、0〜100mgCODcr/L、アンモニア性窒素の濃度は100mgN/L以下のものとすることができる。なお、pHが上記規定の範囲に該当しない場合には、周知のpH調整剤を利用して係る範囲になるように調整することも可能である。   Here, when the water temperature, pH, organic substance concentration, and ammonia nitrogen concentration of the water to be treated (sewage secondary treated water 3) that can be treated in the nitrogen removing apparatus 1 of the present invention are exemplified, the water temperature is 10 to 30 ° C., The pH can be targeted in the range of 7 to 8.5, and the organic matter concentration contained in the water to be treated is 0 to 50 mg BOD / L, 0 to 100 mg CODcr / L, and the concentration of ammoniacal nitrogen is 100 mg N / L. It can be: In addition, when pH does not correspond to the said prescription | regulation range, it is also possible to adjust so that it may become the said range using a known pH adjuster.

そして、硝化反応槽2は、上記実施例において、HRTを1〜2hrの範囲にするものを示したが、全体の処理時間を考慮し、1〜3hrの範囲に設定することが好ましい。また、硫黄脱窒槽6の処理時間も同様に、処理時間及び窒素ガス6の除去率を考慮し、2〜10hrの範囲で設定されることが好適である。そして、硝化反応槽2から排出される硝化処理水4は、有機物濃度を3mgBOD/L以下にすることができ、さらに、アンモニア性窒素濃度も5mgN/L以下に抑えたものとすることができる。   And although the nitrification reaction tank 2 showed what made HRT into the range of 1-2 hr in the said Example, it considers the whole processing time and it is preferable to set it to the range of 1-3 hr. Similarly, the treatment time of the sulfur denitrification tank 6 is preferably set in the range of 2 to 10 hr in consideration of the treatment time and the removal rate of the nitrogen gas 6. And the nitrification process water 4 discharged | emitted from the nitrification reaction tank 2 can make organic substance density | concentration 3 mgBOD / L or less, and also can suppress ammonia nitrogen concentration to 5 mgN / L or less.

一方、硫黄脱窒槽6から排出される処理水17は、従来の従属栄養型脱窒槽のように電子供与体としての有機物を加える必要がないため、有機物濃度は変化することがなく、3mgBOD/L以下のままにすることができる。そして、硝化反応槽2によって転換された酸化態窒素(または、硝酸性窒素)の濃度とアンモニア性窒素濃度との合計を5mgN/L以下にすることができる。   On the other hand, the treated water 17 discharged from the sulfur denitrification tank 6 does not require the addition of an organic substance as an electron donor as in the conventional heterotrophic denitrification tank, so the organic substance concentration does not change, and 3 mg BOD / L You can leave it below. And the sum total of the density | concentration of the oxidized nitrogen (or nitrate nitrogen) and ammonia nitrogen density | concentration converted by the nitrification reaction tank 2 can be 5 mgN / L or less.

上記に説明したように、本実施形態の窒素除去装置1によれば、エアレーションの不要なDHSリアクターを硝化反応槽2として用い、低C/N比の硝化処理水4を排出することができ、さらに、低C/N比の処理対象水に適し、かつ脱窒処理を比較的簡易に行うことのできる硫黄脱窒槽6を用いることにより、下水二次処理水3の有機物除去、硝化、脱窒を連続的に行うことができる。これにより、従来に比べ、窒素除去装置1の操作及び管理の簡易化、及び窒素除去処理に要する維持コストを削減することができる。また、外部に排出される処理水17は、有機物及び窒素が除去されているため、排出先の河川や湖沼等が富栄養化することがなく、生態系や自然環境を破壊するおそれがない。   As described above, according to the nitrogen removing apparatus 1 of the present embodiment, a DHS reactor that does not require aeration can be used as the nitrification reaction tank 2, and the nitrification water 4 having a low C / N ratio can be discharged. Furthermore, by using a sulfur denitrification tank 6 that is suitable for water to be treated with a low C / N ratio and that can perform denitrification treatment relatively easily, organic matter removal, nitrification, and denitrification of the sewage secondary treated water 3 are performed. Can be performed continuously. Thereby, compared with the past, the operation and management of the nitrogen removing apparatus 1 can be simplified, and the maintenance cost required for the nitrogen removing process can be reduced. Moreover, since the organic matter and nitrogen are removed from the treated water 17 discharged to the outside, the discharge destination rivers and lakes are not eutrophied, and there is no possibility of destroying the ecosystem and the natural environment.

以上、本発明について好適な実施形態を挙げて説明したが、本発明はこれらの実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   The present invention has been described with reference to preferred embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention as described below. And design changes are possible.

すなわち、本実施形態の窒素除去装置において、DHSリアクターを硝化反応槽2として用いて説明したがこれに限定されるものではなく、硫黄脱窒槽6で処理可能な低C/Nの硝化処理水4を排出可能なものであれば特に限定されるものではない。しかしながら、低コスト及びエアレーション不要で安定した水質で下水二次処理水3を処理できるDHSリアクターが特に好適と思われる。また、本実施形態において、残存有機物を含む下水二次処理水3を処理するものを示したがこれに限定されるものではなく、その他有機物を含む処理水を処理するものであっても構わない。   That is, in the nitrogen removal apparatus of the present embodiment, the DHS reactor has been described as the nitrification reaction tank 2, but the present invention is not limited to this, and the low C / N nitrification water 4 that can be treated in the sulfur denitrification tank 6. If it can discharge | emit, it will not specifically limit. However, a DHS reactor that can treat the sewage secondary treated water 3 with a low cost and a stable water quality that does not require aeration seems to be particularly suitable. Moreover, in this embodiment, although what processed the sewage secondary treated water 3 containing a residual organic substance was shown, it is not limited to this, You may process the treated water containing another organic substance. .

また、本実施形態の窒素除去装置1において採用したDHSリアクターは、三角柱状のスポンジから形成されたろ床本体8を主として構成しているが、係るDHSリアクターのろ床本体8の形状、及びサイズ等は特に限定されない。処理対象水の種類、成分、HRT等に応じて適宜変更することが可能である。   Further, the DHS reactor employed in the nitrogen removing apparatus 1 of the present embodiment mainly comprises the filter bed main body 8 formed from a triangular prism-like sponge, but the shape, size, etc., of the filter bed main body 8 of such a DHS reactor, etc. Is not particularly limited. It can be appropriately changed according to the type, component, HRT, etc. of the water to be treated.

窒素除去装置の概略構成を模式的に示す説明図である。It is explanatory drawing which shows typically schematic structure of a nitrogen removal apparatus. ろ床本体の構成、及び硝化処理の概念を模式的に示した説明図である。It is explanatory drawing which showed typically the structure of the filter bed main body, and the concept of nitrification processing.

符号の説明Explanation of symbols

1 窒素除去装置
2 硝化反応槽(散水型多孔質ろ床)
3 下水二次処理水(処理対象水)
4 硝化処理水
5 窒素ガス
6 硫黄脱窒槽
7 導入口
8 ろ床本体
9 排出口
12 好気性微生物
13 残存有機物(有機物)
14 二次導入口
17 処理水
19 脱窒処理空間
20 脱窒槽本体
21 硫黄系処理剤
1 Nitrogen removal equipment 2 Nitrification reaction tank (sprinkling porous filter bed)
3 Sewage secondary treated water (treated water)
4 Nitrified water 5 Nitrogen gas 6 Sulfur denitrification tank 7 Inlet 8 Filter bed body 9 Outlet 12 Aerobic microorganism 13 Residual organic matter (organic matter)
14 Secondary inlet 17 Treated water 19 Denitrification treatment space 20 Denitrification tank body 21 Sulfur-based treatment agent

Claims (3)

有機物及びアンモニア性窒素を含有する処理対象水を好気性微生物の分解作用及び硝化作用を利用し、前記有機物を分解及び除去、及び、前記アンモニア性窒素の酸化態窒素への硝化を実施する硝化反応槽と、
前記硝化反応槽によって硝化された前記酸化態窒素を含有する硝化処理水に、電子供与体として機能する硫黄成分を主とする硫黄処理剤を接触させ、前記硝化処理水に含まれる前記酸化態窒素を窒素ガスに転換する脱窒処理を行う硫黄脱窒槽とを特徴とする窒素除去装置。
Nitrification reaction in which water to be treated containing organic matter and ammonia nitrogen is decomposed and removed by utilizing the decomposition and nitrification of aerobic microorganisms, and the nitrification of ammonia nitrogen to oxidized nitrogen is performed. A tank,
The oxidized nitrogen contained in the nitrified water is brought into contact with the nitrified water containing the oxidized nitrogen nitrified by the nitrification reaction tank, with a sulfur treating agent mainly comprising a sulfur component functioning as an electron donor. And a sulfur denitrification tank for performing a denitrification process for converting the gas into nitrogen gas.
前記硝化反応槽は、
前記処理対象水を導入する導入口、処理した前記硝化処理水を排出し、前記導入口の下方に設けられた排出口、及び前記好気性微生物を担持可能な複数の空隙を有する多孔質性素材によって形成され、前記導入口に吊下支持または充填され、前記導入口及び前記排出口の間を連結し、前記導入口から導入された前記処理対象水を前記排出口まで流下させることによって、前記有機物を分解及び除去するとともに、前記アンモニア性窒素から前記酸化態窒素へ転換させるための多孔質ろ床本体を備える散水型多孔質ろ床が利用されることを特徴とする請求項1に記載の窒素除去装置。
The nitrification reactor is
Porous material having a plurality of voids capable of supporting the aerobic microorganisms, an introduction port for introducing the treatment target water, a discharge port for discharging the treated nitrification water, and a discharge port provided below the introduction port The suspension port is supported by or filled in the introduction port, the connection between the introduction port and the discharge port, and the water to be treated introduced from the introduction port flows down to the discharge port, The sprinkling type porous filter bed having a porous filter bed main body for decomposing and removing organic substances and converting the ammoniacal nitrogen to the oxidized nitrogen is used. Nitrogen removal equipment.
前記硝化反応槽及び前記硫黄脱窒槽の間に設けられ、
前記硝化反応槽から排出される前記硝化処理水を前記硫黄脱窒槽に送液する送液ポンプをさらに具備し、
前記硫黄脱窒槽は、
下端近傍に設けられ、前記送液ポンプによって送液された前記硝化処理水を導入するための二次導入口、脱窒処理によって発生した窒素ガスを排出する窒素ガス排出口、及び、脱窒処理後の処理水を排出する処理水排出口とそれぞれ連結した脱窒処理空間が内部に形成された略筒形状の脱窒槽本体と、
前記脱窒処理空間の少なくとも一部に充填され、前記硝化処理水に対して電子供与体として機能する前記硫黄系処理剤と
をさらに具備することを特徴とする請求項1または請求項2に記載の窒素除去装置。
Provided between the nitrification reaction tank and the sulfur denitrification tank;
A liquid feed pump for feeding the nitrification water discharged from the nitrification reaction tank to the sulfur denitrification tank;
The sulfur denitrification tank is
A secondary inlet for introducing the nitrification water fed by the liquid pump, provided near the lower end, a nitrogen gas outlet for discharging nitrogen gas generated by the denitrification process, and a denitrification process A substantially denitrification tank main body having a denitrification treatment space connected to a treated water discharge port for discharging treated water afterwards,
The said sulfur type processing agent with which it fills at least one part of the said denitrification processing space, and functions as an electron donor with respect to the said nitrification water is further provided, The Claim 1 or Claim 2 characterized by the above-mentioned. Nitrogen removal equipment.
JP2006227330A 2006-08-24 2006-08-24 Apparatus for removing nitrogen Pending JP2008049251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227330A JP2008049251A (en) 2006-08-24 2006-08-24 Apparatus for removing nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227330A JP2008049251A (en) 2006-08-24 2006-08-24 Apparatus for removing nitrogen

Publications (1)

Publication Number Publication Date
JP2008049251A true JP2008049251A (en) 2008-03-06

Family

ID=39233784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227330A Pending JP2008049251A (en) 2006-08-24 2006-08-24 Apparatus for removing nitrogen

Country Status (1)

Country Link
JP (1) JP2008049251A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220075A (en) * 2008-03-18 2009-10-01 Chugoku Electric Power Co Inc:The Microorganism-immobilized carrier, biological nitrification and denitrification apparatus, and method for using the apparatus
JP2012024762A (en) * 2011-09-22 2012-02-09 Chugoku Electric Power Co Inc:The Microorganism-immobilized carrier, dhs reactor, biological nitrification and denitrification apparatus, and method for using the apparatus
JP2014200747A (en) * 2013-04-05 2014-10-27 株式会社東芝 Water treatment apparatus and water treatment method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889994A (en) * 1994-09-20 1996-04-09 Shinko Pantec Co Ltd Biological denitrifier
JPH10263578A (en) * 1997-03-27 1998-10-06 Tokyu Constr Co Ltd Cleaning zone, cleaning device and method for cleaning sewage
JPH11128958A (en) * 1997-10-31 1999-05-18 Hitachi Plant Eng & Constr Co Ltd Water denitrification treatment apparatus
JPH11285696A (en) * 1998-04-01 1999-10-19 Tokyu Constr Co Ltd Device and method for sewage treatment
JP2000005795A (en) * 1998-06-19 2000-01-11 Daiwa Kogyo Kk Water treatment device having denitrogen performance
JP2000061485A (en) * 1998-08-25 2000-02-29 Tokyu Constr Co Ltd Sewage treating facility
JP2002159993A (en) * 2000-11-27 2002-06-04 Nitchitsu Co Ltd Nitric acid removal treatment equipment
JP2003024985A (en) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd Dentrification apparatus and dentrification method
JP2005095758A (en) * 2003-09-24 2005-04-14 National Agriculture & Bio-Oriented Research Organization Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus
JP2006055812A (en) * 2004-08-23 2006-03-02 Aichi Prefecture Method for treating nutrient liquid cultivation drainage
JP2006122771A (en) * 2004-10-27 2006-05-18 Chuden Kankyo Technos Co Ltd Fluid treatment method and fluid treatment system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889994A (en) * 1994-09-20 1996-04-09 Shinko Pantec Co Ltd Biological denitrifier
JPH10263578A (en) * 1997-03-27 1998-10-06 Tokyu Constr Co Ltd Cleaning zone, cleaning device and method for cleaning sewage
JPH11128958A (en) * 1997-10-31 1999-05-18 Hitachi Plant Eng & Constr Co Ltd Water denitrification treatment apparatus
JPH11285696A (en) * 1998-04-01 1999-10-19 Tokyu Constr Co Ltd Device and method for sewage treatment
JP2000005795A (en) * 1998-06-19 2000-01-11 Daiwa Kogyo Kk Water treatment device having denitrogen performance
JP2000061485A (en) * 1998-08-25 2000-02-29 Tokyu Constr Co Ltd Sewage treating facility
JP2002159993A (en) * 2000-11-27 2002-06-04 Nitchitsu Co Ltd Nitric acid removal treatment equipment
JP2003024985A (en) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd Dentrification apparatus and dentrification method
JP2005095758A (en) * 2003-09-24 2005-04-14 National Agriculture & Bio-Oriented Research Organization Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus
JP2006055812A (en) * 2004-08-23 2006-03-02 Aichi Prefecture Method for treating nutrient liquid cultivation drainage
JP2006122771A (en) * 2004-10-27 2006-05-18 Chuden Kankyo Technos Co Ltd Fluid treatment method and fluid treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220075A (en) * 2008-03-18 2009-10-01 Chugoku Electric Power Co Inc:The Microorganism-immobilized carrier, biological nitrification and denitrification apparatus, and method for using the apparatus
JP2012024762A (en) * 2011-09-22 2012-02-09 Chugoku Electric Power Co Inc:The Microorganism-immobilized carrier, dhs reactor, biological nitrification and denitrification apparatus, and method for using the apparatus
JP2014200747A (en) * 2013-04-05 2014-10-27 株式会社東芝 Water treatment apparatus and water treatment method

Similar Documents

Publication Publication Date Title
Di Capua et al. Chemolithotrophic denitrification in biofilm reactors
JP6227509B2 (en) Waste water treatment apparatus and waste water treatment method
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP4625508B2 (en) Nitrate waste liquid treatment method and apparatus
KR20130043090A (en) Water treatment method and ultrapure water production method
JP4872171B2 (en) Biological denitrification equipment
JP5914964B2 (en) Ultrapure water production method
KR20160042774A (en) Wastewater treatment system improving T-N quality of effluent water through pre-treatment of reducing nitrogen in returning water from dehydration process at the digestion tank of community sewage disposal plant
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP4867098B2 (en) Biological denitrification method and apparatus
JP4017657B1 (en) Treatment method of wastewater containing organic matter
US8696892B2 (en) Apparatus for treating radioactive nitrate waste liquid
JP2016043281A (en) Purification method, and purification tank
JP4780553B2 (en) Water treatment method and apparatus for wastewater containing ammonia
JP2008049251A (en) Apparatus for removing nitrogen
JP2008296164A (en) Nitrogen removal method and apparatus
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
CN104276722A (en) Novel tail water upgrading system
WO2012128212A1 (en) Water treatment method and ultrapure water production method
Sekoulov et al. Application of biofiltration in the crude oil processing industry
JP4838872B2 (en) Water treatment apparatus and water treatment method
JP2004255269A (en) Denitrification method and denitrification apparatus
JP4614062B2 (en) Method and apparatus for treating ammonia in air
US20160023931A1 (en) Wastewater treatment method
JP3906344B2 (en) Waste water treatment apparatus and waste water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220