JP4780553B2 - Water treatment method and apparatus for wastewater containing ammonia - Google Patents

Water treatment method and apparatus for wastewater containing ammonia Download PDF

Info

Publication number
JP4780553B2
JP4780553B2 JP2005176270A JP2005176270A JP4780553B2 JP 4780553 B2 JP4780553 B2 JP 4780553B2 JP 2005176270 A JP2005176270 A JP 2005176270A JP 2005176270 A JP2005176270 A JP 2005176270A JP 4780553 B2 JP4780553 B2 JP 4780553B2
Authority
JP
Japan
Prior art keywords
reaction tank
denitrification
water
ammonia
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005176270A
Other languages
Japanese (ja)
Other versions
JP2006346580A (en
Inventor
典子 吉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2005176270A priority Critical patent/JP4780553B2/en
Publication of JP2006346580A publication Critical patent/JP2006346580A/en
Application granted granted Critical
Publication of JP4780553B2 publication Critical patent/JP4780553B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、アンモニアを含有する排水(原水)を脱窒処理する水処理方法及びその装置、さらに詳しくは、ポリビニルアルコール(PVA)ゲル担体を利用したアンモニア含有排水の水処理方法及びその装置に関するものである。   The present invention relates to a water treatment method and apparatus for denitrifying wastewater (raw water) containing ammonia, and more particularly to a water treatment method and apparatus for ammonia-containing wastewater using a polyvinyl alcohol (PVA) gel carrier. It is.

一般に、下水道、し尿、ごみの最終処分場浸出水、各種産業排水等、排水中のアンモニアの低減が必要な用途は、非常に多い。   In general, there are many applications that require reduction of ammonia in wastewater, such as sewage, human waste, leachate for final disposal of garbage, and various industrial wastewater.

従来、アンモニア低減を目的とする排水処理技術には、各種の物理化学的処理や生物的処理技術が検討され、使用されてきている。一般的に、アンモニアの低減は、最終的には安全な窒素ガスに転換したうえで大気中に放散することが行なわれる。しかし、これらの多くの場合、転換速度が遅すぎて反応槽が巨大で設備コストが嵩んだり、逆に転換速度は大きいが外部から与える必要のあるエネルギー・資源量が多大でランニングコストが過大であったりと、満足できるものがない状況である。   Conventionally, various physicochemical treatments and biological treatment techniques have been studied and used as wastewater treatment techniques for the purpose of ammonia reduction. In general, ammonia is reduced by finally converting to safe nitrogen gas and then releasing it into the atmosphere. However, in many of these cases, the conversion speed is too slow and the reaction tank is huge, increasing the equipment cost. Even so, there is nothing that can be satisfied.

そのような状況の中でも、生物的な硝化・脱窒法が最も多用されている。この場合、アンモニア含有排水は、好気的条件で処理され、自栄養性細菌である亜硝酸菌(代表種として、Nitrosomonas)によって亜硝酸に転換された後に、同じく自栄養性細菌である硝酸菌(代表種として、Nitrobacter)によって硝酸に転換される。その後、嫌気的条件で処理されて、有機物を水素供与体とする他栄養性脱窒細菌によって硝酸が窒素ガスに転換される。このプロセスは、現在最も広く利用されているが、硝化の段階で多量の酸素が消費されることから、曝気動力が過大になること、脱窒の段階で水素供与体としてのメタノール等の有機物の添加量が過大になること等のランニングコスト上に問題がある外、硝化・脱窒の転換速度も小さいため、設備コスト上にも問題がある。   Among such situations, biological nitrification and denitrification methods are most frequently used. In this case, ammonia-containing wastewater is treated under aerobic conditions, converted to nitrite by nitrite bacteria (typically Nitrosomonas), which is also an autotrophic bacterium, and then nitrate bacteria that is also an autotrophic bacterium. It is converted to nitric acid by (typically Nitrobacter). After that, it is treated under anaerobic conditions, and nitric acid is converted into nitrogen gas by other vegetative denitrifying bacteria using organic matter as a hydrogen donor. This process is most widely used at present, but a large amount of oxygen is consumed in the nitrification stage, resulting in excessive aeration power, and the use of organic substances such as methanol as a hydrogen donor in the denitrification stage. In addition to the problem of running costs such as an excessive amount of addition, the conversion rate of nitrification / denitrification is low, so there is also a problem in equipment costs.

このような状況から、永年高効率の生物的な窒素除去法の開発が望まれていたところへ、嫌気性アンモニア酸化法:Anaerobic Ammonium Oxidation:anammox法と呼ばれる高効率プロセスが提案され、各方面で実用化が盛んに進められている。このプロセスでは、原水中のアンモニアの約半分だけが亜硝酸まで酸化され、この亜硝酸と残りのアンモニアがほゞ同量、嫌気条件の脱窒反応槽へ供給され、自栄養性のanammox菌により、アンモニアが水素供与体、亜硝酸が水素受容体となる脱窒反応が起こされ、両者が窒素ガスに転換されて除去される。   Under such circumstances, a highly efficient process called Anaerobic Ammonium Oxidation: anammox method has been proposed, where development of a highly efficient biological nitrogen removal method has been desired for many years. Practical application is actively promoted. In this process, only about half of the ammonia in the raw water is oxidized to nitrous acid, and this nitrous acid and the remaining ammonia are supplied to the denitrification reactor in an anaerobic condition by the autotrophic anammox bacteria. Then, a denitrification reaction in which ammonia becomes a hydrogen donor and nitrous acid becomes a hydrogen acceptor occurs, and both are converted to nitrogen gas and removed.

このanammox菌による脱窒反応の化学量論式は、下記(1)式に示されるように提案され、実験的にも確認されている。 The stoichiometric formula of the denitrification reaction by this anammox bacterium has been proposed as shown in the following formula (1) and has been confirmed experimentally.

1.0NH +1.32NO +0.066HCO+0.13H
1.02N+0.26NO +0.066CH0.50.15+2.03HO …(1)
ところで、anammox微生物は嫌気性菌であり、増殖速度が非常に遅い。このため、反応槽から菌体の流出防止策として、フロック化、自己造粒法、担体の利用等が考えられている。担体には、たくさんの種類があるが、生物的水処理において実績のあるポリビニルアルコール(PVA)ゲル担体を利用した場合、担体表面だけでなく、担体内部まで菌体が入り込み、増殖することよって、担体の利用効率を高めることができる。
1.0 NH 4 + +1.32 NO 2 +0.066 HCO 3 + 0.13H + =
1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O (1)
By the way, anammox microorganisms are anaerobic bacteria and have a very slow growth rate. For this reason, as a measure for preventing the bacterial cells from flowing out of the reaction tank, flocking, self-granulating method, utilization of a carrier and the like are considered. There are many types of carriers, but when a polyvinyl alcohol (PVA) gel carrier that has a proven record in biological water treatment is used, not only the surface of the carrier but also the inside of the carrier enters and grows, The utilization efficiency of the carrier can be increased.

ここで、従来、嫌気性アンモニア酸化法(anammox法)により原水を生物脱窒する方法に関わる先行特許文献には、つぎのようなものがある。
特開2003−53385号公報 特許文献1には、アンモニア性窒素を含む原水を亜硝酸性窒素の存在下に、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒微生物の作用により生物脱窒するに当たり、脱窒微生物を高分子ゲル材料を用いて包括固定して、脱窒反応槽内に高い活性を保った状態で高濃度に保持することにより安定かつ効率的な脱窒処理を行なう生物脱窒装置が開示されている。 特開2001−170681号公報 特許文献2には、アンモニア、リン含有廃水処理方法及びその装置が開示されており、第3工程反応槽において、第2工程反応槽の処理水を嫌気状態の下で微生物群と接触させ、液相中のアンモニア成分と亜硝酸成分とを窒素ガスに変換して、廃水中に含まれるアンモニアを除去している。 特開2001−170684号公報 特許文献3には、アンモニア含有廃水処理方法及びその装置が開示されており、第1工程反応槽において、系外から導入したアンモニア含有廃水を好気状態の下で微生物群と接触させて、液相中に含まれるアンモニア成分を亜硝酸に酸化し、この第1工程反応槽の処理水を、第2工程反応槽において、嫌気状態の下で微生物群と接触させて、液相中に含まれるアンモニア成分と亜硝酸成分とを窒素ガスに変換することが記載されている。
Heretofore, prior patent documents related to a method for biologically denitrifying raw water by an anaerobic ammonia oxidation method (anammox method) include the following.
Japanese Patent Laid-Open No. 2003-53385 discloses a denitrification process in which raw water containing ammonia nitrogen is used in the presence of nitrite nitrogen, ammonia nitrogen is used as an electron donor, and nitrite nitrogen is used as an electron acceptor. When biologically denitrifying by the action of microorganisms, the denitrifying microorganisms are comprehensively fixed using a polymer gel material, and kept at a high concentration while maintaining high activity in the denitrification reaction tank, which is stable and efficient. A biological denitrification apparatus for performing a denitrification process is disclosed. Japanese Patent Application Laid-Open No. 2001-170681 discloses an ammonia and phosphorus-containing wastewater treatment method and an apparatus thereof. In the third step reaction tank, the treated water in the second step reaction tank is subjected to anaerobic conditions. Ammonia components and nitrous acid components in the liquid phase are converted into nitrogen gas by contacting with a microorganism group, and ammonia contained in the wastewater is removed. Japanese Patent Application Laid-Open No. 2001-170684 discloses an ammonia-containing wastewater treatment method and an apparatus therefor, in which the ammonia-containing wastewater introduced from outside the system in a first step reaction tank is subjected to microorganisms in an aerobic state. The ammonia component contained in the liquid phase is oxidized to nitrous acid in contact with the group, and the treated water in the first step reaction tank is brought into contact with the microorganism group in the second step reaction tank under anaerobic conditions. It describes that an ammonia component and a nitrous acid component contained in a liquid phase are converted into nitrogen gas.

上記の特許文献1〜3に記載の発明では、嫌気性アンモニア酸化法(anammox法)の脱窒反応槽内で、anammox菌をポリビニルアルコール(PVA)ゲル担体で保持することが開示されているが、特許文献1〜3に記載の従来法によれば、いずれの場合も、脱窒反応槽の運転状況によっては、担体表面にバイオフィルム(微生物膜)が形成されることよって、担体内部に菌体が入りにくい状態となり、担体の利点が生かせない場合があるという問題があった。   In the inventions described in the above Patent Documents 1 to 3, it is disclosed that anammox bacteria are held by a polyvinyl alcohol (PVA) gel carrier in an anaerobic ammonia oxidation method (anammox method) denitrification reaction tank. According to the conventional methods described in Patent Documents 1 to 3, in any case, depending on the operation status of the denitrification reaction tank, a biofilm (microorganism film) is formed on the surface of the carrier, so There is a problem that the body is difficult to enter and the advantages of the carrier may not be utilized.

本発明の目的は、上記の従来技術の問題を解決し、嫌気性アンモニア酸化法(anammox法)により原水を生物脱窒する方法において、担体表面へのバイオフィルム(微生物膜)の形成を抑制することができて、PVAゲル担体の表面付近だけでなく、担体内部まで菌体が入り込み、増殖することよって、担体の利用効率を高めることができて、高効率な窒素除去を果たし得る、アンモニア含有排水の水処理方法及びその装置を提供しようとすることにある。   An object of the present invention is to solve the above-mentioned problems of the prior art and suppress the formation of a biofilm (microorganism film) on the surface of a carrier in a method of biological denitrification of raw water by an anaerobic ammonia oxidation method (anammox method). It can be used not only near the surface of the PVA gel carrier but also inside the carrier to grow and increase the use efficiency of the carrier, which can achieve highly efficient nitrogen removal. An object of the present invention is to provide a wastewater treatment method and apparatus.

本発明者は、上記の点に鑑み鋭意研究を重ねた結果、anammox菌による脱窒反応槽には、ポリビニルアルコール(PVA)ゲル担体を投入した無酸素槽を設け、上向流によって担体を流動化させ、流動化条件として流動層が1〜5割程度膨脹するように流動化させることよって、全担体が完全に流動化する流動床に比べて、ポンプ動力を低減でき、脱窒反応槽を小さくすることができることを見出した。また、脱窒反応槽の循環水流入部を絞り、脱窒反応槽の循環水流入部での水の流速を高めることよって、担体表面へのバイオフィルムの形成を抑制し、担体内部に効率よく菌体を増殖させることができ、高効率な窒素除去ができることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies in view of the above points, the present inventor has provided an anoxic tank filled with polyvinyl alcohol (PVA) gel carrier in the denitrification reaction tank by anammox bacteria, and the carrier flows by upward flow. As a fluidization condition, the fluidized bed is fluidized so that the fluidized bed expands by about 50 to 50%, so that the pump power can be reduced compared to a fluidized bed in which the entire carrier is completely fluidized. We found that it can be made smaller. Also, by restricting the circulating water inflow part of the denitrification reaction tank and increasing the flow rate of water at the circulating water inflow part of the denitrification reaction tank, the formation of biofilm on the surface of the carrier is suppressed, and the inside of the carrier is efficiently The present inventors have found that cells can be grown and nitrogen removal can be performed with high efficiency, and the present invention has been completed.

上記の目的を達成するために、請求項1のアンモニア含有排水の水処理方法の発明は、アンモニア性窒素を含む原水(排水)を亜硝酸性窒素の存在下に、アンモニア性窒素を水素供与体、亜硝酸性窒素を水素受容体とする脱窒微生物により生物脱窒する脱窒反応槽を備えており、該脱窒微生物は脱窒反応槽内でポリビニルアルコール(PVA)ゲル担体に固定され、脱窒微生物を固定したPVAゲル担体は、脱窒反応槽内で上向流で循環する流動層を形成しているアンモニア含有排水の水処理方法であって、脱窒反応槽の循環水流入部における流入水の流速を9500〜20000m/hとすることにより、PVAゲル担体の流動状態を局所的に高めて、PVAゲル担体表面に形成されるバイオフィルム(微生物膜)を破壊することを特徴としている。 In order to achieve the above-mentioned object, the invention of the water treatment method for ammonia-containing wastewater according to claim 1 is characterized in that the raw water (drainage) containing ammonia nitrogen is treated with ammonia nitrogen in the presence of nitrite nitrogen. A denitrification reaction vessel for biological denitrification by a denitrification microorganism using nitrite nitrogen as a hydrogen acceptor, and the denitrification microorganism is fixed to a polyvinyl alcohol (PVA) gel carrier in the denitrification reaction vessel, A PVA gel carrier to which denitrifying microorganisms are fixed is a water treatment method for ammonia-containing wastewater that forms a fluidized bed that circulates in an upward flow in a denitrification reaction tank, and a circulating water inflow portion of the denitrification reaction tank characterized by the flow rate of the influent water and 9500~20000m / h, locally increase the flow state of PVA gel carrier, to destroy biofilms (biofilm) which is formed on the PVA gel carrier surface in It is.

請求項2に記載のアンモニア含有排水の水処理装置の発明は、アンモニア性窒素を含む原水(排水)を亜硝酸性窒素の存在下に、アンモニア性窒素を水素供与体、亜硝酸性窒素を水素受容体とする脱窒微生物により生物脱窒する脱窒反応槽を備えており、該脱窒微生物は脱窒反応槽内でPVAゲル担体に固定され、脱窒微生物を固定したPVAゲル担体は、脱窒反応槽内で上向流で循環する流動層を形成しているアンモニア含有排水の水処理装置であって、脱窒反応槽の循環水流入部に循環水憤出ノズルが設けられ、循環水憤出ノズルから脱窒反応槽内に憤出した流入水の流速を9500〜20000m/hとすることにより、PVAゲル担体の流動状態が局所的に高められて、PVAゲル担体表面に形成されるバイオフィルム(微生物膜)が破壊されることを特徴としている。 The invention of the water treatment apparatus for ammonia-containing wastewater according to claim 2 is characterized in that the raw water (drainage) containing ammonia nitrogen is in the presence of nitrite nitrogen, ammonia nitrogen is a hydrogen donor, and nitrite nitrogen is hydrogen. A denitrification reaction vessel for biological denitrification by a denitrification microorganism as a receptor, the denitrification microorganism is fixed to a PVA gel carrier in the denitrification reaction vessel, and the PVA gel carrier to which the denitrification microorganism is fixed is: A water treatment device for ammonia-containing wastewater that forms a fluidized bed that circulates in an upward flow in a denitrification reaction tank, and a circulation water discharge nozzle is provided at the circulating water inflow portion of the denitrification reaction tank, By setting the flow rate of the influent water discharged from the water discharge nozzle into the denitrification reaction tank to 9500-20000 m / h, the flow state of the PVA gel carrier is locally increased and formed on the surface of the PVA gel carrier. Biofilm (microbe membrane There has been characterized in that it is destroyed.

請求項3の水処理装置の発明は、上記請求項2に記載のアンモニア含有排水の水処理装置であって、脱窒反応槽の底部に設けられた循環水憤出ノズルが、筒形周壁とこれの上端に連なる頂壁とを具備しており、循環水憤出ノズルの筒形周壁に、平面よりみて放射状にかつ水平方向に開口した所要数の循環水憤出孔が設けられていることを特徴としている。 The invention of the water treatment apparatus according to claim 3 is the water treatment apparatus for ammonia-containing waste water according to claim 2, wherein the circulating water discharge nozzle provided at the bottom of the denitrification reaction tank includes a cylindrical peripheral wall and and comprising a top wall connected to this upper end, the cylindrical wall of the circulation water Ikidode nozzle and Deana Ikido required number of circulating water that opens or one horizontal direction radially viewed from the plane provided It is characterized by being.

請求項4の水処理装置の発明は、上記請求項2に記載のアンモニア含有排水の水処理装置であって、脱窒反応槽の底部に設けられた循環水憤出ノズルが、循環管の循環水流入側端部に接続された分配用主管と、この分配用主管に平面よりみて櫛形に接続された分岐憤出管とによって構成され、各分岐憤出管に下方に開口した所要数の循環水憤出孔が設けられていることを特徴としている。 The invention of the water treatment device according to claim 4 is the water treatment device for ammonia-containing waste water according to claim 2, wherein the circulating water discharge nozzle provided at the bottom of the denitrification reaction tank circulates in the circulation pipe. and dispensing main pipe connected to the water inlet side end portion, it is constituted by a planar Yorimi branch connected to comb Te Ikido extraction tube to the dispensing main, required number that opens downwardly to the respective branch Ikido extraction tube It is characterized in that a circulating water discharge hole is provided .

本発明によるアンモニア含有排水の水処理方法は、アンモニア性窒素を含む原水(排水)を亜硝酸性窒素の存在下に、アンモニア性窒素を水素供与体、亜硝酸性窒素を水素受容体とする脱窒微生物により生物脱窒する脱窒反応槽を備えており、該脱窒微生物は脱窒反応槽内でポリビニルアルコール(PVA)ゲル担体に固定され、脱窒微生物を固定したPVAゲル担体は、脱窒反応槽内で上向流で循環する流動層を形成しているアンモニア含有排水の水処理方法であって、脱窒反応槽の循環水流入部における流入水の流速を9500〜20000m/hとすることにより、PVAゲル担体の流動状態を局所的に高めて、PVAゲル担体表面に形成されるバイオフィルム(微生物膜)を破壊するものであるから、本発明によれば、担体表面へのバイオフィルムの形成を抑制することができて、担体の表面付近だけでなく、担体内部まで菌体が入り込み、増殖することよって、担体の利用効率を高めることができて、高効率な窒素除去を果たし得るという効果を奏する。 The water treatment method for ammonia-containing wastewater according to the present invention is a dewatering process in which raw water (drainage) containing ammonia nitrogen is used in the presence of nitrite nitrogen, ammonia nitrogen as a hydrogen donor, and nitrite nitrogen as a hydrogen acceptor.窒微organism by provided with a denitrification tank for biological denitrification, dehydration窒微organism is fixed in polyvinyl alcohol (PVA) gel carrier in the denitrification reactor, PVA gel carrier with a fixed denitrifying organisms, de A method for water treatment of ammonia-containing wastewater forming a fluidized bed that circulates in an upward flow in a nitriding reaction tank, wherein the flow rate of inflow water at the circulating water inflow portion of the denitrification reaction tank is 9500 to 20000 m / h by, locally increase the flow state of PVA gel carrier, since it is intended to destroy biofilms (biofilm) which is formed on the PVA gel carrier surface, according to the present invention, the support surface The formation of biofilms can be suppressed, and not only in the vicinity of the surface of the carrier, but also by entering and growing inside the carrier, the utilization efficiency of the carrier can be increased and highly efficient nitrogen removal can be achieved. There is an effect that can be achieved.

また担体が、PVAゲル担体であるから、本発明によれば、anammox菌による脱窒反応槽には、PVAゲル担体を投入した無酸素槽を設け、上向流によってPVAゲル担体を流動化させ、かつ、脱窒反応槽の循環水流入部を絞り、脱窒反応槽の循環水流入部での水の流速を高めることよって、PVAゲル担体表面へのバイオフィルムの形成を抑制し、PVAゲル担体の内部に効率よく菌体を増殖させることができ、高効率な窒素除去ができるという効果を奏する。 In addition, since the carrier is a PVA gel carrier, according to the present invention, an anoxic tank filled with the PVA gel carrier is provided in the denitrification reaction tank by the anammox bacteria, and the PVA gel carrier is fluidized by upward flow. And by restricting the circulating water inflow part of the denitrification reaction tank and increasing the flow rate of water at the circulating water inflow part of the denitrification reaction tank, the formation of biofilm on the surface of the PVA gel carrier is suppressed, and the PVA gel The cells can be efficiently propagated inside the carrier, and there is an effect that nitrogen can be efficiently removed.

また、本発明のアンモニア含有排水の水処理方法では、脱窒反応槽の循環水流入部における流入水の流速が、9500〜20000m/hであるもので、本発明によれば、担体表面へのバイオフィルムの形成を抑制することができて、担体の表面付近だけでなく、担体内部まで菌体が入り込み、増殖することよって、担体の利用効率を高めることができて、高効率な窒素除去を果たし得るとともに、循環水流送ポンプの動力を低減でき、脱窒反応槽の設備規模を小さくすることができるという効果を奏する。 Moreover, in the water treatment method for ammonia-containing wastewater according to the present invention, the flow rate of the influent water in the circulating water inflow portion of the denitrification reaction tank is 9500 to 20000 m / h. The formation of biofilms can be suppressed, and not only in the vicinity of the surface of the carrier, but also by entering and growing inside the carrier, the utilization efficiency of the carrier can be increased and highly efficient nitrogen removal can be achieved. In addition, the power of the circulating water feed pump can be reduced, and the equipment scale of the denitrification reaction tank can be reduced.

請求項2に記載のアンモニア含有排水の水処理装置の発明は、アンモニア性窒素を含む原水(排水)を亜硝酸性窒素の存在下に、アンモニア性窒素を水素供与体、亜硝酸性窒素を水素受容体とする脱窒微生物により生物脱窒する脱窒反応槽を備えており、該脱窒微生物は脱窒反応槽内でPVAゲル担体に固定され、脱窒微生物を固定したPVAゲル担体は、脱窒反応槽内で上向流で循環する流動層を形成しているアンモニア含有排水の水処理装置であって、脱窒反応槽の循環水流入部に循環水憤出ノズルが設けられ、循環水憤出ノズルから脱窒反応槽内に憤出した流入水の流速を9500〜20000m/hとすることにより、PVAゲル担体の流動状態が局所的に高められて、PVAゲル担体表面に形成されるバイオフィルム(微生物膜)が破壊されるものであるから、本発明によれば、担体表面へのバイオフィルムの形成を抑制することができて、担体の表面付近だけでなく、担体内部まで菌体が入り込み、増殖することよって、担体の利用効率を高めることができて、高効率な窒素除去を果たし得るという効果を奏する。 The invention of the water treatment apparatus for ammonia-containing wastewater according to claim 2 is characterized in that the raw water (drainage) containing ammonia nitrogen is in the presence of nitrite nitrogen, ammonia nitrogen is a hydrogen donor, and nitrite nitrogen is hydrogen. A denitrification reaction vessel for biological denitrification by a denitrification microorganism as a receptor, the denitrification microorganism is fixed to a PVA gel carrier in the denitrification reaction vessel, and the PVA gel carrier to which the denitrification microorganism is fixed is: A water treatment device for ammonia-containing wastewater that forms a fluidized bed that circulates in an upward flow in a denitrification reaction tank, and a circulation water discharge nozzle is provided at the circulating water inflow portion of the denitrification reaction tank, By setting the flow rate of the influent water discharged from the water discharge nozzle into the denitrification reaction tank to 9500-20000 m / h, the flow state of the PVA gel carrier is locally increased and formed on the surface of the PVA gel carrier. Biofilm (microbe membrane Therefore, according to the present invention, the formation of a biofilm on the surface of the carrier can be suppressed, and the bacterial cells can enter and proliferate not only near the surface of the carrier but also inside the carrier. Therefore, it is possible to increase the utilization efficiency of the carrier and to achieve an effect that nitrogen removal can be performed with high efficiency.

請求項3の水処理装置の発明は、上記請求項2に記載のアンモニア含有排水の水処理装置であって、脱窒反応槽の底部に設けられた循環水憤出ノズルが、筒形周壁とこれの上端に連なる頂壁とを具備しており、循環水憤出ノズルの筒形周壁に、平面よりみて放射状にかつ水平方向に開口した所要数の循環水憤出孔が設けられているもので、本発明によれば、循環水の憤出方向を水平方向とすることにより、渦流を作り、担体が激しく流動する効果が生まれ、これによって、担体表面へのバイオフィルムの形成を抑制することができて、担体の表面付近だけでなく、担体内部まで菌体が入り込み、増殖することよって、担体の利用効率を高めることができて、高効率な窒素除去を果たし得るという効果を奏する。 The invention of the water treatment apparatus according to claim 3 is the water treatment apparatus for ammonia-containing waste water according to claim 2, wherein the circulating water discharge nozzle provided at the bottom of the denitrification reaction tank includes a cylindrical peripheral wall and and comprising a top wall connected to this upper end, the cylindrical wall of the circulation water Ikidode nozzle and Deana Ikido required number of circulating water that opens or one horizontal direction radially viewed from the plane provided Therefore, according to the present invention, by setting the discharge direction of the circulating water in the horizontal direction, an effect of creating a vortex and causing the carrier to flow violently is produced, thereby suppressing the formation of biofilm on the surface of the carrier. In addition to the vicinity of the surface of the carrier, the cells enter and grow inside the carrier, so that the utilization efficiency of the carrier can be increased and high-efficiency nitrogen removal can be achieved. .

請求項4の水処理装置の発明は、上記請求項2に記載のアンモニア含有排水の水処理装置であって、脱窒反応槽の底部に設けられた循環水憤出ノズルが、循環管の循環水流入側端部に接続された分配用主管と、この分配用主管に平面よりみて櫛形に接続された分岐憤出管とによって構成され、各分岐憤出管に下方に開口した所要数の循環水憤出孔が設けられているもので、本発明によれば、循環水を、分配用主管と、この分配用主管に平面よりみて櫛形に接続された分岐憤出管の循環水憤出孔より憤出させ、循環水の憤出方向を下方とすることにより、渦流を作り、担体が激しく流動する効果が生まれ、これによって、担体表面へのバイオフィルムの形成を抑制することができて、担体の表面付近だけでなく、担体内部まで菌体が入り込み、増殖することよって、担体の利用効率を高めることができて、高効率な窒素除去を果たし得る。また、循環水憤出孔が、各分岐憤出管に下方に開口してあけられているから、担体により循環水憤出孔が塞がれにくいという効果を奏する。 The invention of the water treatment device according to claim 4 is the water treatment device for ammonia-containing waste water according to claim 2, wherein the circulating water discharge nozzle provided at the bottom of the denitrification reaction tank circulates in the circulation pipe. and dispensing main pipe connected to the water inlet side end portion, it is constituted by a planar Yorimi branch connected to comb Te Ikido extraction tube to the dispensing main, required number that opens downwardly to the respective branch Ikido extraction tube those circulating water Ikido Deana of is provided, according to the present invention, the circulating water, and dispensing main, circulation of this dispensing main connected Te plane Yorimi the comb branch Ikido extraction tube By discharging the water from the water discharge hole and setting the discharge direction of the circulating water downward, an effect of creating a vortex and a violent flow of the carrier is produced, thereby suppressing the formation of biofilm on the surface of the carrier. And the bacteria enter not only near the surface of the carrier but also inside the carrier, I'll be fertilized, to be able to enhance the utilization efficiency of the carrier, it may play a highly efficient nitrogen removal. Further, since the circulating water discharge hole is opened downward in each branch extraction pipe, there is an effect that the circulating water discharge hole is not easily blocked by the carrier .

つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定されるものではない。   Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

図1と図2は、本発明のアンモニア含有排水の水処理方法を実施する装置の第1実施形態を示すフローシートである。   1 and 2 are flow sheets showing a first embodiment of an apparatus for carrying out the water treatment method for ammonia-containing waste water of the present invention.

図1を参照すると、本発明の水処理方法は、アンモニアを含む排水(原水)を処理する方法であって、1次処理槽としての曝気槽(1)にはポンプ(図示略)の作動によって排水供給管(3)から排水を供給する。曝気槽(1)には、例えば下水処理場由来の活性汚泥などを投入しておく。曝気槽(1)の底部には、エアポンプの作動によって空気が供給される散気管(曝気手段)が備えられており、曝気槽(1)において原水中のアンモニアの一部をアンモニア酸化細菌による生物酸化反応により酸化して亜硝酸化する。反応後の1次処理水は、曝気槽(1)に接続された1次処理水流送管(4)からポンプ(図示略)の作動によって排出され、嫌気槽とした2次処理槽としての脱窒反応槽(2)へと流送される。   Referring to FIG. 1, the water treatment method of the present invention is a method for treating waste water (raw water) containing ammonia, and the aeration tank (1) as a primary treatment tank is operated by operating a pump (not shown). Drainage is supplied from the drainage supply pipe (3). For example, activated sludge derived from a sewage treatment plant is put into the aeration tank (1). The bottom of the aeration tank (1) is provided with a diffuser pipe (aeration means) to which air is supplied by the operation of an air pump. In the aeration tank (1), a part of ammonia in the raw water is biologically produced by ammonia oxidizing bacteria. It is oxidized and oxidized to nitrite. The primary treated water after the reaction is discharged from the primary treated water flow pipe (4) connected to the aeration tank (1) by the operation of a pump (not shown), and is removed as a secondary treatment tank as an anaerobic tank. It is sent to the nitrogen reaction tank (2).

なお、排水(原水)には、アンモニアと共に、有機物および亜硝酸が含まれていても良い。   The waste water (raw water) may contain organic substances and nitrous acid together with ammonia.

また、図示は省略したが、曝気槽(1)と脱窒反応槽(2)の間には沈殿槽を設置し、曝気槽(1)から排出された1次処理水を、沈殿槽において固液分離するのが、好ましい。   Although not shown, a precipitation tank is installed between the aeration tank (1) and the denitrification reaction tank (2), and the primary treated water discharged from the aeration tank (1) is solidified in the precipitation tank. Liquid separation is preferred.

脱窒反応槽(2)には、嫌気性アンモニア酸化の条件で長期間培養した脱窒微生物を含む汚泥を投入しておき、この脱窒反応槽(2)において、1次処理水中の亜硝酸とアンモニアの残部とから脱窒を行なう。すなわち、脱窒反応槽(2)では、アンモニア性窒素を含む排水を、亜硝酸性窒素の存在下に、アンモニア性窒素を水素供与体、亜硝酸性窒素を水素受容体とする脱窒微生物により生物脱窒し、下記のanammox(嫌気性アンモニア酸化)反応により排水を浄化する。   In the denitrification reaction tank (2), sludge containing denitrification microorganisms cultured for a long time under the conditions of anaerobic ammonia oxidation is introduced. In this denitrification reaction tank (2), nitrous acid in the primary treated water And denitrification from the remainder of the ammonia. That is, in the denitrification reaction tank (2), wastewater containing ammonia nitrogen is removed by a denitrification microorganism using ammonia nitrogen as a hydrogen donor and nitrite nitrogen as a hydrogen acceptor in the presence of nitrite nitrogen. Biological denitrification is performed, and wastewater is purified by the following anammox (anaerobic ammonia oxidation) reaction.

anammox(嫌気性アンモニア酸化)反応
NH +NO →N↑+2H
脱窒反応槽(2)内では、脱窒微生物がPVAゲル担体(8)に固定され、脱窒微生物を固定したPVAゲル担体(8)は、脱窒反応槽(2)内で上向流で循環する流動層を形成している。
anammox (anaerobic ammonia oxidation) reaction NH 4 + + NO 2 → N 2 ↑ + 2H 2 O
In the denitrification reaction tank (2), the denitrification microorganisms are immobilized on the PVA gel carrier (8), and the PVA gel carrier (8) on which the denitrification microorganisms are immobilized flows upward in the denitrification reaction tank (2). A fluidized bed that circulates in

脱窒反応槽(2)において浄化された処理水は、脱窒反応槽(2)の頂部に接続された排出管(7)より排出する。また、浄化処理水の一部を循環ポンプ(6)の作動により循環管(5)を経て脱窒反応槽(2)に循環返送する。   The treated water purified in the denitrification reaction tank (2) is discharged from a discharge pipe (7) connected to the top of the denitrification reaction tank (2). Further, a part of the purified water is circulated and returned to the denitrification reaction tank (2) through the circulation pipe (5) by the operation of the circulation pump (6).

本発明においては、脱窒反応槽(2)の循環水流入部における流入水の流速を高めることにより、PVAゲル担体(8)の流動状態を局所的に高めて、PVAゲル担体(8)表面に形成されるバイオフィルム(微生物膜)を破壊するものである。   In the present invention, the flow state of the PVA gel carrier (8) is locally increased by increasing the flow rate of the influent water in the circulating water inflow portion of the denitrification reaction tank (2), and the surface of the PVA gel carrier (8) It destroys the biofilm (microbe membrane) formed.

脱窒反応槽(2)の循環水流入部における流入水の流速は、9500〜20000m/hである。ここで、脱窒反応槽(2)の循環水流入部における流入水の流速が9500m/h未満であれば、PVAゲル担体(8)表面に形成されたバイオフィルム(微生物膜)を破壊することができず、PVAゲル担体(8)表面にバイオフィルム(微生物膜)が形成されたままであるので、好ましくない。また循環水流入部における流入水の流速が20000m/hを超えると、ポンプ(6)の圧力損失が過大になり、運転のための動力を多く必要とするので、好ましくない。 The flow rate of inflow water in the circulating water inflow part of the denitrification reaction tank (2) is 9500 to 20000 m / h. Here, if the flow rate of the influent water in the circulating water inflow part of the denitrification reaction tank (2) is less than 9500 m / h, the biofilm (microbe membrane) formed on the surface of the PVA gel carrier (8) is destroyed. This is not preferable because a biofilm (microorganism film) remains formed on the surface of the PVA gel carrier (8). In addition, if the flow rate of the influent water in the circulating water inflow part exceeds 20000 m / h, the pressure loss of the pump (6) becomes excessive, and a large amount of power for operation is required, which is not preferable.

そして、脱窒微生物を固定したPVAゲル担体(8)が脱窒反応槽(2)内で上向流で循環する流動層は、脱窒反応槽(2)の循環水流入部における流入水の流速を高めることにより、1〜5割、好ましくは1.5〜4割、望ましくは2〜3割程度、体積膨脹する。   The fluidized bed in which the PVA gel carrier (8) on which the denitrifying microorganisms are fixed circulates in an upward flow in the denitrification reaction tank (2) is the influent water in the circulating water inflow portion of the denitrification reaction tank (2). By increasing the flow rate, the volume expands by 1 to 50%, preferably 1.5 to 40%, desirably 20 to 30%.

図2に詳しく示すように、脱窒反応槽(2)の底壁(2a)中央部に循環管(5)の一端部が接続され、この循環管(5)端部の循環水流入部を覆うように循環水憤出ノズル(10)が設けられている。循環水憤出ノズル(10)は、円筒形周壁(11)とこれの上端に連なる円錐形頂壁(12)とを具備しており、循環水憤出ノズル(10)の円筒形周壁(11)に、平面よりみて放射状にかつ水平方向に開口した例えば直径1〜3mm、好ましくは1.5〜2.5mm、望ましくは約2mmの5〜20個、好ましくは8〜12個の循環水憤出孔(13)があけられている。 As shown in detail in FIG. 2, one end of the circulation pipe (5) is connected to the center of the bottom wall (2a) of the denitrification reactor (2), and the circulating water inflow part at the end of the circulation pipe (5) is connected to the denitrification reaction tank (2). A circulating water discharge nozzle (10) is provided so as to cover it. The circulating water discharge nozzle (10) includes a cylindrical peripheral wall (11) and a conical top wall (12) connected to the upper end of the cylindrical peripheral wall (11), and the cylindrical peripheral wall (11) of the circulating water discharge nozzle (10). a) one or radially viewed from the planar horizontal direction to the opening was a diameter 1 to 3 mm, preferably 1.5 to 2.5 mm, preferably 5 to 20 to about 2 mm, preferably 8-12 cyclic A water drain hole (13) is formed.

なお、循環水憤出ノズル(10)の筒形周壁(11)は、図示のものは平面よりみて円形であり、また循環水憤出ノズル(10)の頂壁(12)は、円錐形を有しているが、その他、循環水憤出ノズル(10)の筒形周壁(11)は、平面よりみて楕円形であっても良いし、平面よりみて多角形の角筒形を有していても良い。また、循環水憤出ノズル(10)の頂壁(12)は、図示のものは円錐形を有しているが、その他、循環水憤出ノズル(10)の頂壁(12)は、円錐台形、または略半球形であっても良く、さらに、角錐形または角錐台形を有していても良い。   The cylindrical peripheral wall (11) of the circulating water discharge nozzle (10) has a circular shape when viewed from the plane, and the top wall (12) of the circulating water discharge nozzle (10) has a conical shape. In addition, the cylindrical peripheral wall (11) of the circulating water discharge nozzle (10) may be elliptical when viewed from the plane, or has a polygonal square cylindrical shape when viewed from the plane. May be. The top wall (12) of the circulating water discharge nozzle (10) has a conical shape as shown in the figure, but the top wall (12) of the circulating water discharge nozzle (10) has a conical shape. It may be trapezoidal or substantially hemispherical, and may have a pyramid shape or a truncated pyramid shape.

上記のように、本発明によるアンモニア含有排水の水処理方法は、アンモニア性窒素を含む原水(排水)を亜硝酸性窒素の存在下に、アンモニア性窒素を水素供与体、亜硝酸性窒素を水素受容体とする脱窒微生物により生物脱窒する脱窒反応槽(2)において、脱窒反応槽(2)の循環水流入部における流入水の流速を高めることにより、PVAゲル担体(8)の流動状態を局所的に高めて、PVAゲル担体(8)表面に形成されるバイオフィルム(微生物膜)を破壊するものであるから、本発明によれば、PVAゲル担体(8)表面へのバイオフィルムの形成を抑制することができて、ゲル担体(8)の表面付近だけでなく、ゲル担体(8)内部まで菌体が入り込み、増殖することよって、PVAゲル担体(8)の利用効率を高めることができて、高効率な窒素除去を果たし得る。   As described above, according to the method for treating ammonia-containing wastewater according to the present invention, raw water (drainage) containing ammonia nitrogen is treated in the presence of nitrite nitrogen, ammonia nitrogen as a hydrogen donor, and nitrite nitrogen as hydrogen. In the denitrification reaction tank (2) for biological denitrification by the denitrification microorganisms as the acceptor, by increasing the flow rate of the influent water in the circulating water inflow part of the denitrification reaction tank (2), the PVA gel carrier (8) Since the fluid state is locally increased to destroy the biofilm (microbe membrane) formed on the surface of the PVA gel carrier (8), according to the present invention, the bio to the surface of the PVA gel carrier (8) is obtained. The formation of a film can be suppressed, and not only the surface of the gel carrier (8) but also the inside of the gel carrier (8) enters and proliferates, so that the utilization efficiency of the PVA gel carrier (8) is improved. To raise Tree, may play a highly efficient nitrogen removal.

本発明の水処理方法において、脱窒微生物を固定したPVAゲル担体(8)が脱窒反応槽(2)内で上向流で循環する流動層が、脱窒反応槽(2)の循環水流入部における流入水の流速を高めて、PVAゲル担体(8)の流動化条件としてPVAゲル担体(8)が1〜5割、好ましくは約2〜3割程度膨脹するように流動化させることよって、全PVAゲル担体(8)が完全に流動化する流動床に比べて、ポンプ動力を低減でき、脱窒反応槽(2)を小さくすることができる。   In the water treatment method of the present invention, the fluidized bed in which the PVA gel carrier (8) on which the denitrifying microorganisms are fixed circulates in the upward flow in the denitrification reaction tank (2) is the circulating water in the denitrification reaction tank (2). Increasing the flow rate of the influent water in the inflow part and fluidizing the PVA gel carrier (8) so that it expands by 10 to 50%, preferably about 20 to 30% as the fluidization condition of the PVA gel carrier (8). Therefore, the pump power can be reduced and the denitrification reaction tank (2) can be made smaller compared to a fluidized bed in which the entire PVA gel carrier (8) is completely fluidized.

本発明のアンモニア含有排水の水処理装置の発明では、脱窒反応槽(2)の循環水流入部に循環水憤出ノズル(10)が設けられ、循環水憤出ノズル(10)から脱窒反応槽(2)内に憤出した流入水の流速が高められることにより、PVAゲル担体(8)の流動状態が局所的に高められて、PVAゲル担体(8)表面に形成されるバイオフィルム(微生物膜)が破壊される。   In the invention of the water treatment apparatus for ammonia-containing waste water of the present invention, a circulating water discharge nozzle (10) is provided at the circulating water inflow portion of the denitrification reaction tank (2), and denitrification is performed from the circulating water discharge nozzle (10). A biofilm formed on the surface of the PVA gel carrier (8) by locally increasing the flow state of the PVA gel carrier (8) by increasing the flow rate of the influent water spilled into the reaction tank (2). (Microbial membrane) is destroyed.

循環水憤出ノズル(10)の筒形周壁(11)には、平面よりみて放射状にかつ水平方向に開口した所要数の循環水憤出孔(13)が設けられていて、循環水の憤出方向を水平方向とすることにより、流動層内に渦流を作り、PVAゲル担体(8)が激しく流動する作用効果が生まれ、これによって、PVAゲル担体(8)表面へのバイオフィルムの形成を抑制することができて、PVAゲル担体(8)の表面付近だけでなく、PVAゲル担体(8)内部まで菌体が入り込み、増殖することよって、PVAゲル担体(8)の利用効率を高めることができて、高効率な窒素除去を果たし得るものである。 The circulating water Ikidode cylindrical peripheral wall of the nozzle (10) (11), have opened the required number of circulating water Ikido Deana (13) is provided on or One horizontal direction radially viewed from the plane, the circulating water By making the squeezing direction of the horizontal direction a vortex in the fluidized bed, an effect of causing the PVA gel carrier (8) to flow violently is born, and thereby the biofilm on the surface of the PVA gel carrier (8) The formation of the PVA gel carrier (8) not only near the surface of the PVA gel carrier (8) but also inside the PVA gel carrier (8) and proliferate, thereby increasing the efficiency of use of the PVA gel carrier (8). It is possible to enhance the nitrogen removal efficiency.

なお、循環水憤出ノズル(10)の筒形周壁(11)は、平面よりみて円形もしくは楕円形、または角筒形を有し、該ノズル(10)の頂壁(12)は、円錐形、円錐台形、もしくは略半球形、角錐形または角錐台形を有していて、これらはいずれも、いわゆる尖がり(とんがり)の形状を有するものであるから、脱窒反応槽(2)内において循環水憤出ノズル(10)の頂壁(12)上に落ちて来たPVAゲル担体(8)が、スムーズに舞い上がることができ、担体の流動化が速やかに行なわれて、PVAゲル担体(8)表面へのバイオフィルムの形成を抑制することができて、PVAゲル担体(8)の表面付近だけでなく、PVAゲル担体(8)内部まで菌体が入り込み、増殖することよって、PVAゲル担体(8)の利用効率を高めることができて、高効率な窒素除去を果たし得る。   The cylindrical peripheral wall (11) of the circulating water discharge nozzle (10) has a circular or elliptical shape or a rectangular tube shape when viewed from the plane, and the top wall (12) of the nozzle (10) has a conical shape. , Frustoconical, or substantially hemispherical, pyramidal or truncated pyramidal, all of which have a so-called pointed shape, and circulate in the denitrification reactor (2). The PVA gel carrier (8) that has fallen on the top wall (12) of the water discharge nozzle (10) can rise smoothly, and the fluidization of the carrier is performed quickly, so that the PVA gel carrier (8) ) The formation of a biofilm on the surface can be suppressed, and not only the vicinity of the surface of the PVA gel carrier (8) but also the inside of the PVA gel carrier (8) enters and grows, whereby the PVA gel carrier Increase usage efficiency of (8) Bet is made, it can play a highly efficient nitrogen removal.

また、本発明においては、担体(8)が、細孔を有しかつ粒径0.2〜10mmを有する粒状担体(8)であっても良い。このような細孔を有する粒状担体(8)によれば、anammox菌による脱窒反応槽(2)には、粒状担体(8)を投入した無酸素槽を設け、上向流によって粒状担体(8)を流動化させ、かつ、脱窒反応槽(2)の循環水流入部を絞り、脱窒反応槽(2)の循環水流入部での水の流速を高めることよって、粒状担体(8)表面へのバイオフィルムの形成を抑制し、粒状担体(8)の表面付近だけでなく、細孔の内部に効率よく菌体を増殖させることができて、高効率な窒素除去ができるものである。   In the present invention, the carrier (8) may be a granular carrier (8) having pores and a particle size of 0.2 to 10 mm. According to the granular carrier (8) having such pores, the denitrification reaction tank (2) with anammox bacteria is provided with an oxygen-free tank filled with the granular carrier (8), and the granular carrier ( 8) and fluidizing the circulating water inflow part of the denitrification reaction tank (2) to increase the flow rate of water at the circulating water inflow part of the denitrification reaction tank (2). ) Suppresses the formation of biofilms on the surface, and can efficiently propagate the bacterial cells not only in the vicinity of the surface of the granular carrier (8) but also in the pores, so that highly efficient nitrogen removal is there.

図4は、本発明のアンモニア含有排水の水処理方法を実施する装置の第2実施形態を示す脱窒反応槽の要部拡大水平断面図、図5は、同水処理装置の脱窒反応槽の要部拡大垂直断面図である。 FIG. 4 is an enlarged horizontal sectional view of a main part of a denitrification reaction tank showing a second embodiment of the apparatus for carrying out the water treatment method for ammonia-containing waste water of the present invention, and FIG. 5 is a denitrification reaction tank of the water treatment apparatus. FIG.

同図を参照すると、本発明のアンモニア含有排水の水処理装置において、脱窒反応槽(2)の底部に設けられた循環水憤出ノズル(15)が、循環管(5)の循環水流入側端部に接続された分配用主管(16)と、この分配用主管(16)に対して直交状に接続された4本の分岐憤出管(17)とによって構成されて、平面よりみて櫛形となされており、各分岐憤出管(17)に下方に開口した所要数の循環水憤出孔(18)が設けられている。 Referring to the figure, in the water treatment apparatus for ammonia-containing waste water according to the present invention, the circulating water discharge nozzle (15) provided at the bottom of the denitrification reaction tank (2) is fed into the circulating water (5). A distribution main pipe (16) connected to the side end portion and four branch extraction pipes (17) connected orthogonally to the distribution main pipe (16) are seen from a plane. have been made with the comb, Ikido each branch Ikido extraction tube required number of circulating water which is open downward (17) Deana (18) is provided Te.

本発明の第2実施形態によれば、循環管(5)の一端部より導入される循環水を、循環水憤出ノズル(15)の4本の分岐憤出管(17)に下方に開口した循環水憤出孔(18)より下向きに憤出させることにより、いわゆる憤流を作り、担体(8)が激しく流動する効果が生まれ、これによって、担体(8)表面へのバイオフィルムの形成を抑制することができて、担体(8)の表面付近だけでなく、担体(8)内部まで菌体が入り込み、菌体が増殖することよって、担体(8)の利用効率を高めることができて、高効率な窒素除去を果たし得るものである。また、循環水憤出孔(18)が、各分岐憤出管(17)に下方に開口してあけられているから、担体(8)により循環水憤出孔(18)が塞がれにくい。 According to the second embodiment of the present invention, the circulating water introduced from one end of the circulation pipe (5) is opened downward to the four branch extraction pipes (17) of the circulation water extraction nozzle (15). By squeezing downward from the circulated water spill hole (18), a so-called turbulent flow is created, and the effect that the carrier (8) flows violently is produced, thereby forming a biofilm on the surface of the carrier (8). In addition to the vicinity of the surface of the carrier (8), the microbial cells enter the inside of the carrier (8), and the microbial cells proliferate, thereby increasing the utilization efficiency of the carrier (8). Thus, highly efficient nitrogen removal can be achieved. Further, since the circulating water discharge hole (18) is opened downward in each branch discharge pipe (17), the circulating water discharge hole (18) is not easily blocked by the carrier (8). .

図示の循環水憤出ノズル(15)は、分配用主管(16)に対して直交状に接続された4本の分岐憤出管(17)のうち、両外側の相対的に短い2本の分岐憤出管(17a)に下方に開口した7個の循環水憤出孔(18)があけられ、内側の相対的に長い2本の分岐憤出管(17b)に下方に開口した11個の循環水憤出孔(18)があけられている。   The circulating water discharge nozzle (15) shown in the figure has two relatively short two outside the four branch discharge pipes (17) connected orthogonally to the distribution main pipe (16). Seven circulating water discharge holes (18) opened downward in the branch extraction pipe (17a) and 11 openings opened downward in the two relatively long branch extraction pipes (17b) inside A circulating water outlet hole (18) is opened.

なお、循環水憤出ノズル(15)は、分配用主管(16)に対して少なくとも2本の分岐憤出管(17)が直交状に接続されておれば良く、また各分岐憤出管(17)に下向きにあけられる循環水憤出孔(18)の個数は、図示のものに限定されない。さらに、各分岐憤出管(17)に下向きにあけられる循環水憤出孔(18)の開口方向は、真下(垂下状方向)でなくても良く、斜め下向きであっても良い。要するに、循環水憤出孔(18)の開口方向は、好ましくは、水平方向に対して10°〜90°の範囲で左または右斜め下向き、あるいは真下方向にあけられている。このように、循環水憤出孔(18)が、各分岐憤出管(17)に下方に開口してあけられているから、担体(8)により循環水憤出孔(18)が塞がれるようなことが全くない。   The circulating water discharge nozzle (15) only needs to have at least two branch discharge pipes (17) connected orthogonally to the distribution main pipe (16), and each branch discharge pipe ( The number of circulating water outlet holes (18) opened downward in 17) is not limited to that shown in the figure. Furthermore, the opening direction of the circulating water discharge hole (18) opened downward in each branch discharge pipe (17) may not be directly below (hanging direction) but may be obliquely downward. In short, the opening direction of the circulating water discharge hole (18) is preferably left or right obliquely downward or right below in the range of 10 ° to 90 ° with respect to the horizontal direction. Thus, since the circulating water discharge hole (18) is opened downward in each branch extraction pipe (17), the circulating water discharge hole (18) is blocked by the carrier (8). There is no such thing.

以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

実施例1
図1と図2に示す装置を用いて、本発明による水処理方法を実施する実験を行なった。
Example 1
Experiments for carrying out the water treatment method according to the present invention were conducted using the apparatus shown in FIGS.

この実施例1では、アンモニアを含む排水(原水)として、塩化アンモニウムおよび亜硝酸ナトリウムで実験用の排水(原水)を調整し、これを使用した。なお、一般的には、アンモニアを含む排水(原水)を曝気槽(1)において、原水中のアンモニアの一部をアンモニア酸化細菌による生物酸化反応により酸化して亜硝酸化する。   In Example 1, as waste water (raw water) containing ammonia, experimental waste water (raw water) was prepared with ammonium chloride and sodium nitrite and used. In general, wastewater (raw water) containing ammonia is oxidized in the aeration tank (1) to nitrite a part of the ammonia in the raw water by a biological oxidation reaction by ammonia-oxidizing bacteria.

つぎに、上記の実験用の排水を、脱窒反応槽(2)に導入した。脱窒反応槽(2)には長期間培養後、anammox(嫌気性アンモニア酸化)が充分馴養されているPVAゲル担体(8)を投入しておき、この脱窒反応槽(2)において、実験用の排水中の亜硝酸とアンモニアの残部とから脱窒を行ない、anammox(嫌気性アンモニア酸化)反応により排水を浄化する。浄化された処理水は、排出管(7)より排出した。   Next, the experimental waste water was introduced into the denitrification reaction tank (2). A PVA gel carrier (8) in which anammox (anaerobic ammonia oxidation) is sufficiently conditioned after being cultured for a long time is put into the denitrification reaction tank (2). Denitrification is performed from the nitrous acid and the remainder of ammonia in the wastewater, and the wastewater is purified by an anammox (anaerobic ammonia oxidation) reaction. The purified treated water was discharged from the discharge pipe (7).

図2において、脱窒反応槽(2)に実験用の排水を導入するだけでは、拡散効果が低いため、実験用の排水中の亜硝酸とアンモニアの混合攪拌を促進するために内部循環水と合流させ、流入水の量を調整することにより、攪拌効果を高める。すなわち、脱窒反応槽(2)において浄化された脱窒水の一部を、循環ポンプ(6)の作動により脱窒反応槽(2)の頂部から循環管(5)を経て脱窒反応槽(2)の底部へと内部循環させ、脱窒反応槽(2)のanammox(嫌気性アンモニア酸化)反応系の内容量を調整して、実験用の排水中の亜硝酸とアンモニアの混合攪拌を促進して、微生物反応が速やかに行なわれるようにした。   In FIG. 2, simply introducing experimental wastewater into the denitrification reaction tank (2) has a low diffusion effect. Therefore, in order to promote mixing and stirring of nitrous acid and ammonia in the experimental wastewater, The mixing effect is increased by adjusting the amount of influent water. That is, a part of denitrified water purified in the denitrification reaction tank (2) is dehydrated from the top of the denitrification reaction tank (2) by the operation of the circulation pump (6) through the circulation pipe (5). Internally circulating to the bottom of (2), adjusting the internal volume of the anammox (anaerobic ammonia oxidation) reaction system in the denitrification reactor (2), and mixing and stirring nitrous acid and ammonia in the wastewater for experiments Accelerated so that the microbial reaction can take place quickly.

脱窒反応槽(2)の底壁(2a)中央部には循環管(5)の一端部が接続され、この循環管(5)端部の循環水流入部を覆うように循環水憤出ノズル(10)が設けられている。循環水憤出ノズル(10)は、円筒形周壁(11)とこれの上端に連なる円錐形頂壁(12)とを具備しており、循環水憤出ノズル(10)の円筒形周壁(11)に、平面よりみて放射状にかつ水平方向に開口した直径2mmの10個の循環水憤出孔(13)があけられている。 One end of the circulation pipe (5) is connected to the center of the bottom wall (2a) of the denitrification reaction tank (2), and the circulating water is discharged so as to cover the circulating water inflow part at the end of the circulation pipe (5). A nozzle (10) is provided. The circulating water discharge nozzle (10) includes a cylindrical peripheral wall (11) and a conical top wall (12) connected to the upper end of the cylindrical peripheral wall (11), and the cylindrical peripheral wall (11) of the circulating water discharge nozzle (10). ), the Ikido 10 of the circulating water of open diameter 2mm on whether one horizontal direction radially viewed from the plane Deana (13) is opened.

この循環水憤出ノズル(10)の円筒形周壁(11)にあけられた平面よりみて放射状かつ水平方向の循環水憤出孔(13)から憤出する循環水流入部における流入水の流速は、9500m/hであった。 The influent water in the circulation water inflow to Ikidode from radial or One horizontal direction of the circulating water Ikido Deana (13) as viewed from the bored plane cylindrical wall (11) of the circulating water Ikidode nozzle (10) The flow rate was 9500 m / h.

図3のグラフに、本発明の上記実施例1による排水処理の実験を60日間実施した経過日数と、実験用の排水中の窒素除去速度(g/m/d)の関係を示した。 The graph of FIG. 3 shows the relationship between the number of days that the wastewater treatment experiment according to Example 1 of the present invention has been performed for 60 days and the nitrogen removal rate (g / m 3 / d) in the wastewater for the experiment.

図3のグラフの結果から明らかなように、本発明によれば、脱窒反応槽(2)において、脱窒反応槽(2)の循環水流入部における流入水の流速を高めることにより、PVAゲル担体(8)の流動状態を局所的に高められて、PVAゲル担体(8)表面にはバイオフィルム(微生物膜)が形成されておらず、PVAゲル担体(8)の表面付近だけでなく、PVAゲル担体(8)内部まで菌体が入り込み、増殖しつづけることよって、実験用の排水中の窒素除去速度が順調に上昇しており、PVAゲル担体(8)の利用効率を高めることができて、高効率な窒素除去を果たし得、良好な浄化処理水が得られることがわかった。   As is apparent from the results of the graph of FIG. 3, according to the present invention, in the denitrification reaction tank (2), by increasing the flow rate of the inflow water in the circulating water inflow portion of the denitrification reaction tank (2), PVA Since the flow state of the gel carrier (8) is locally increased, a biofilm (microbe membrane) is not formed on the surface of the PVA gel carrier (8), not only near the surface of the PVA gel carrier (8). As the cells enter the PVA gel carrier (8) and continue to grow, the nitrogen removal rate in the waste water for experiments is steadily increasing, and the utilization efficiency of the PVA gel carrier (8) can be increased. It was found that high-efficiency nitrogen removal can be achieved and good purified water can be obtained.

比較例1
比較のために、図6に示す従来の脱窒反応槽(20)を具備する水処理装置を使用し、その他の点は、上記実施例1の場合と同様にして、実験を行なった。
Comparative Example 1
For comparison, an experiment was performed using the water treatment apparatus having the conventional denitrification reaction tank (20) shown in FIG. 6 and the other points as in Example 1 above.

従来の水処理装置において、脱窒反応槽(20)の底壁(20a)中央部に循環管(21)の一端部が接続され、この循環管(21)の循環水流入部の上方の所定高さに、パンチングメタルよりなる多孔板(22)が水平状に渡し止められている。この多孔板(22)には、上方に向かって開口した直径2mmの80個の循環水憤出孔(23)があけられている。この脱窒反応槽(20)内でPVAゲル担体(24)に脱窒微生物が固定され、循環管(21)の一端部より脱窒反応槽(20)の下端部に導入された循環水は、パンチングメタルよりなる多孔板(22)の循環水憤出孔(23)を通過して上方に憤出し、これによってPVAゲル担体(24)は、脱窒反応槽(20)内で上向流で循環する流動層を形成している。   In the conventional water treatment apparatus, one end of the circulation pipe (21) is connected to the center of the bottom wall (20a) of the denitrification reaction tank (20), and a predetermined upper portion of the circulation pipe (21) above the circulating water inflow portion. A perforated plate (22) made of punching metal is horizontally stopped at the height. The perforated plate (22) has 80 circulating water discharge holes (23) having a diameter of 2 mm opened upward. In this denitrification reaction tank (20), denitrification microorganisms are fixed to the PVA gel carrier (24), and the circulating water introduced from one end of the circulation pipe (21) to the lower end of the denitrification reaction tank (20) is The PVA gel carrier (24) flows upward in the denitrification reaction tank (20) through the circulating water discharge hole (23) of the perforated plate (22) made of punching metal. A fluidized bed that circulates in

そして、上記実施例1において使用した塩化アンモニウムおよび亜硝酸カリウムで調整した実験排水を、従来の脱窒反応槽(20)に導入して、実験を行なったところ、脱窒反応槽(20)の底部において、パンチングメタルよりなる多孔板(22)の循環水憤出孔(23)から憤出する水の流速は、1300m/hであった。   And when the experimental waste water adjusted with the ammonium chloride and potassium nitrite used in the said Example 1 was introduce | transduced into the conventional denitrification reaction tank (20) and it experimented, the bottom part of a denitrification reaction tank (20) The flow rate of water discharged from the circulating water discharge hole (23) of the perforated plate (22) made of punching metal was 1300 m / h.

図3のグラフに、この比較例1の実験結果をあわせて示した。図3のグラフの結果から明らかなように、比較例1においては、脱窒反応槽(20)において、PVAゲル担体(24)の表面にバイオフィルム(微生物膜)が形成されており、ゲル担体(24)表面のみが菌体の生育場所となってしまったため、ゲル担体(24)内部に菌体が入りにくい状態となり、実験用の排水中の窒素除去速度が、20日を過ぎて上昇せず、PVAゲル担体(24)の利用効率を高めることができず、充分な窒素除去を行なうことができなかった。   The experimental results of Comparative Example 1 are also shown in the graph of FIG. As is apparent from the results of the graph of FIG. 3, in Comparative Example 1, a biofilm (microorganism film) is formed on the surface of the PVA gel carrier (24) in the denitrification reaction tank (20). (24) Since only the surface has become a place where the bacterial cells grow, it becomes difficult for the bacterial cells to enter the gel carrier (24), and the nitrogen removal rate in the waste water for experiments increases after 20 days. In addition, the utilization efficiency of the PVA gel carrier (24) could not be increased, and sufficient nitrogen removal could not be performed.

実施例2
図1と図2に示す水処理装置を用いて、本発明による水処理方法を実施する実験を行なった。
Example 2
Experiments for carrying out the water treatment method according to the present invention were conducted using the water treatment apparatus shown in FIGS.

アンモニア濃度250mg/Lの排水を、容積10Lの1次処理槽としての曝気槽(1)に、30L/dで供給した。曝気槽(1)には、下水処理場由来の活性汚泥で馴養した担体、すなわち好気性微生物及びアンモニア酸化菌を保持するためのポリウレタン樹脂よりなる担体を投入した。曝気槽(1)の底部には、エアポンプの作動によって空気供給管から空気が供給される散気管(曝気手段)が備えられるとともに、曝気槽(1)の頂部に、DO(溶存酸素量)調整装置(図示略)が設けられており、曝気槽(1)の溶存酸素量が1mg/Lとなるように調整した。   Wastewater having an ammonia concentration of 250 mg / L was supplied at 30 L / d to an aeration tank (1) as a primary treatment tank having a volume of 10 L. The aeration tank (1) was charged with a carrier conditioned with activated sludge derived from a sewage treatment plant, that is, a carrier made of polyurethane resin for holding aerobic microorganisms and ammonia oxidizing bacteria. At the bottom of the aeration tank (1), an aeration pipe (aeration means) for supplying air from the air supply pipe by the operation of an air pump is provided, and DO (dissolved oxygen amount) adjustment is provided at the top of the aeration tank (1). An apparatus (not shown) was provided and the amount of dissolved oxygen in the aeration tank (1) was adjusted to 1 mg / L.

この曝気槽(1)において、原水中の有機物を好気性微生物による酸化反応により分解するとともに、アンモニアの一部をアンモニア酸化細菌による生物酸化反応により酸化して亜硝酸化した。曝気槽(1)からの反応後の流出水を、anammox条件で馴養したPVAゲル担体(8)を3Lを投入した上記実施例1と同タイプの脱窒反応槽(2)に導入し、以下、実施例1の場合と同様に排水処理を行なった。   In this aeration tank (1), the organic matter in the raw water was decomposed by an oxidation reaction by an aerobic microorganism, and a part of the ammonia was oxidized by a biological oxidation reaction by an ammonia-oxidizing bacterium to nitrite. The effluent after the reaction from the aeration tank (1) was introduced into the denitrification reaction tank (2) of the same type as in Example 1 above in which 3 L of PVA gel carrier (8) conditioned under the anammox conditions was introduced. The waste water treatment was performed in the same manner as in Example 1.

その結果、脱窒反応槽(2)において、曝気槽(1)からの反応後の流出水中の亜硝酸とアンモニアの残部とから脱窒を行ない、anammox(嫌気性アンモニア酸化)反応により排水を浄化し、浄化された処理水には、アンモニアが全く含まれていなかった。   As a result, in the denitrification reaction tank (2), denitrification is performed from the nitrous acid and the remaining ammonia in the effluent after the reaction from the aeration tank (1), and the wastewater is purified by an anammox (anaerobic ammonia oxidation) reaction. However, the purified treated water did not contain any ammonia.

これに対し、曝気槽(1)からの反応後の流出水を、上記比較例1に示す脱窒反応槽(20)に導入し、以下、比較例1の場合と同様に排水処理を行なったところ、脱窒反応槽(20)での反応後の処理水中には、アンモニアが残存していた。   On the other hand, the effluent after the reaction from the aeration tank (1) was introduced into the denitrification reaction tank (20) shown in Comparative Example 1, and the waste water treatment was performed in the same manner as in Comparative Example 1. However, ammonia remained in the treated water after the reaction in the denitrification reaction tank (20).

本発明によるアンモニア含有排水の水処理装置の第1実施形態を示すフローシートである。It is a flow sheet which shows 1st Embodiment of the water treatment apparatus of the ammonia containing waste_water | drain by this invention. 同水処理装置の脱窒反応槽の要部拡大断面図である。It is a principal part expanded sectional view of the denitrification reaction tank of the water treatment apparatus. 排水処理の実験経過日数と排水中のアンモニア除去速度の関係を表わすグラフである。It is a graph showing the relationship between the experiment elapsed days of wastewater treatment, and the ammonia removal rate in wastewater. 本発明によるアンモニア含有排水の水処理装置の第2実施形態を示す脱窒反応槽の要部拡大水平断面図である。It is a principal part expanded horizontal sectional view of the denitrification reaction tank which shows 2nd Embodiment of the water treatment apparatus of the ammonia containing waste_water | drain by this invention. 同水処理装置の脱窒反応槽の要部拡大垂直断面図である。It is a principal part expanded vertical sectional view of the denitrification reaction tank of the water treatment apparatus. 従来の水処理装置の脱窒反応槽の要部拡大断面図である。It is a principal part expanded sectional view of the denitrification reaction tank of the conventional water treatment apparatus.

1:曝気槽(1次処理槽)
2:脱窒反応槽(2次処理槽)
3:原水流入管
4:1次処理水流送管
5:循環管
6:ポンプ
7:2次処理水排水管
8:PVAゲル担体
10:循環水憤出ノズル
11:円筒形周壁
12:円錐形頂壁
13:循環水憤出孔
15:平面よりみて櫛形の循環水憤出ノズル
16:分配用主管
17:分岐憤出管
18:循環水憤出孔
1: Aeration tank (primary treatment tank)
2: Denitrification reaction tank (secondary treatment tank)
3: Raw water inflow pipe 4: Primary treated water flow pipe 5: Circulating pipe 6: Pump 7: Secondary treated water drain pipe 8: PVA gel carrier 10: Circulating water discharge nozzle 11: Cylindrical peripheral wall 12: Conical top walls 13: circulation water Ikido Deana 15: plane Yorimi circulating water comb Te Ikidode nozzle 16: distributing main pipe 17: branch Ikido extraction pipe 18: circulating water Ikido Deana

Claims (4)

アンモニア性窒素を含む原水(排水)を亜硝酸性窒素の存在下に、アンモニア性窒素を水素供与体、亜硝酸性窒素を水素受容体とする脱窒微生物により生物脱窒する脱窒反応槽を備えており、該脱窒微生物は脱窒反応槽内でポリビニルアルコール(PVA)ゲル担体に固定され、脱窒微生物を固定したPVAゲル担体は、脱窒反応槽内で上向流で循環する流動層を形成しているアンモニア含有排水の水処理方法であって、脱窒反応槽の循環水流入部における流入水の流速を9500〜20000m/hとすることにより、PVAゲル担体の流動状態を局所的に高めて、PVAゲル担体表面に形成されるバイオフィルム(微生物膜)を破壊することを特徴とする、アンモニア含有排水の水処理方法。 A denitrification reactor that biologically denitrifies raw water (drainage) containing ammonia nitrogen in the presence of nitrite nitrogen, denitrifying microorganisms using ammonia nitrogen as a hydrogen donor and nitrite nitrogen as a hydrogen acceptor. with which, dehydration窒微organism is fixed in polyvinyl alcohol (PVA) gel carrier in the denitrification reactor, PVA gel carrier with a fixed denitrifying organisms, flow circulating in upflow denitrification reactor A method for water treatment of ammonia-containing wastewater forming a layer, wherein the flow rate of the influent water at the circulating water inflow portion of the denitrification reaction tank is 9500-20000 m / h, whereby the flow state of the PVA gel carrier is locally A method for water treatment of ammonia-containing wastewater, characterized by destroying a biofilm (microorganism membrane) formed on the surface of a PVA gel carrier . アンモニア性窒素を含む原水(排水)を亜硝酸性窒素の存在下に、アンモニア性窒素を水素供与体、亜硝酸性窒素を水素受容体とする脱窒微生物により生物脱窒する脱窒反応槽を備えており、該脱窒微生物は脱窒反応槽内でPVAゲル担体に固定され、脱窒微生物を固定したPVAゲル担体は、脱窒反応槽内で上向流で循環する流動層を形成しているアンモニア含有排水の水処理装置であって、脱窒反応槽の循環水流入部に循環水憤出ノズルが設けられ、循環水憤出ノズルから脱窒反応槽内に憤出した流入水の流速を9500〜20000m/hとすることにより、PVAゲル担体の流動状態が局所的に高められて、PVAゲル担体表面に形成されるバイオフィルム(微生物膜)が破壊されることを特徴とする、アンモニア含有排水の水処理装置。A denitrification reactor that biologically denitrifies raw water (drainage) containing ammonia nitrogen in the presence of nitrite nitrogen, denitrifying microorganisms using ammonia nitrogen as a hydrogen donor and nitrite nitrogen as a hydrogen acceptor. The denitrifying microorganisms are fixed to the PVA gel carrier in the denitrification reaction tank, and the PVA gel carrier to which the denitrification microorganisms are fixed forms a fluidized bed that circulates upward in the denitrification reaction tank. An ammonia-containing wastewater treatment device, wherein a circulating water discharge nozzle is provided at the circulating water inflow portion of the denitrification reaction tank, and the inflow water discharged from the circulation water discharge nozzle into the denitrification reaction tank. By setting the flow rate to 9500 to 20000 m / h, the flow state of the PVA gel carrier is locally increased, and the biofilm (microorganism film) formed on the surface of the PVA gel carrier is destroyed. Water treatment of wastewater containing ammonia Location. 脱窒反応槽の底部に設けられた循環水憤出ノズルが、筒形周壁とこれの上端に連なる頂壁とを具備しており、循環水憤出ノズルの筒形周壁に、平面よりみて放射状にかつ水平方向に開口した所要数の循環水憤出孔が設けられていることを特徴とする、請求項2に記載の水処理装置。The circulating water discharge nozzle provided at the bottom of the denitrification reaction tank has a cylindrical peripheral wall and a top wall connected to the upper end of the cylindrical peripheral wall. The water treatment apparatus according to claim 2, further comprising a required number of circulating water discharge holes opened horizontally. 脱窒反応槽の底部に設けられた循環水憤出ノズルが、循環管の循環水流入側端部に接続された分配用主管と、この分配用主管に平面よりみて櫛形に接続された分岐憤出管とによって構成され、各分岐憤出管に下方に開口した所要数の循環水憤出孔が設けられていることを特徴とする、請求項2に記載の水処理装置。A circulating water discharge nozzle provided at the bottom of the denitrification reaction tank has a distribution main pipe connected to the circulating water inflow end of the circulation pipe, and a branch pipe connected to the distribution main pipe in a comb shape when viewed from the plane. The water treatment device according to claim 2, wherein a required number of circulating water discharge holes that are open downward are provided in each branch discharge pipe.
JP2005176270A 2005-06-16 2005-06-16 Water treatment method and apparatus for wastewater containing ammonia Expired - Fee Related JP4780553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005176270A JP4780553B2 (en) 2005-06-16 2005-06-16 Water treatment method and apparatus for wastewater containing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005176270A JP4780553B2 (en) 2005-06-16 2005-06-16 Water treatment method and apparatus for wastewater containing ammonia

Publications (2)

Publication Number Publication Date
JP2006346580A JP2006346580A (en) 2006-12-28
JP4780553B2 true JP4780553B2 (en) 2011-09-28

Family

ID=37642975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005176270A Expired - Fee Related JP4780553B2 (en) 2005-06-16 2005-06-16 Water treatment method and apparatus for wastewater containing ammonia

Country Status (1)

Country Link
JP (1) JP4780553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498506A (en) * 2019-07-31 2019-11-26 西安交通大学 A kind of method that PVA gel beads co-culture nitrosation anaerobic ammonium oxidation granular sludge

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190510A (en) * 2006-01-20 2007-08-02 Hitachi Zosen Corp Biological wastewater treatment method
JP5186626B2 (en) * 2007-04-20 2013-04-17 大分県 Biological purification method of sewage from livestock barn using shochu liquor wastewater
CN106745732A (en) * 2016-11-22 2017-05-31 西安工程大学 A kind of PVA porous gels ball filler strengthens low-temperature sewage biological denitrification method
CN107162187B (en) * 2017-06-28 2020-01-14 南京大学 Preparation method of immobilized anaerobic ammonium oxidation bacterial sludge and method for sewage treatment by using immobilized anaerobic ammonium oxidation bacterial sludge

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280652A (en) * 1975-12-27 1977-07-06 Kurita Water Ind Ltd Sewage treating system
JPH0613118B2 (en) * 1984-09-27 1994-02-23 栗田工業株式会社 Fluidized bed biological treatment equipment for wastewater
JPS62152596A (en) * 1985-12-27 1987-07-07 Kurita Water Ind Ltd Sprinkler for treatment of contaminated water
JPH05285493A (en) * 1992-04-07 1993-11-02 Kubota Corp Sewage treatment apparatus
JPH1015582A (en) * 1996-07-03 1998-01-20 Chiyoda Corp Fluidized bed type denitrification method of waste water
JP5150993B2 (en) * 2000-11-28 2013-02-27 栗田工業株式会社 Denitrification method and apparatus
JP2002192179A (en) * 2000-12-22 2002-07-10 Asahi Eng Co Ltd Liquid dispersing nozzle
JP5055669B2 (en) * 2001-07-23 2012-10-24 栗田工業株式会社 Biological denitrification method
JP2003033795A (en) * 2001-07-25 2003-02-04 Kurita Water Ind Ltd Biological denitration equipment and biological denitration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498506A (en) * 2019-07-31 2019-11-26 西安交通大学 A kind of method that PVA gel beads co-culture nitrosation anaerobic ammonium oxidation granular sludge

Also Published As

Publication number Publication date
JP2006346580A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
AU2002301606B2 (en) Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same
JP5038985B2 (en) Aeration-less water treatment system
US6592762B2 (en) Process for treating BOD-containing wastewater
JP4224951B2 (en) Denitrification method
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
JP2006281003A (en) Biological waste water treatment method
CN107108293A (en) The denitrogenation method and nitrogen rejection facility of nitrogenous effluent
WO2007115285A2 (en) Wastewater purification method and apparatus
JP3323040B2 (en) Ultrapure water production equipment
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4780553B2 (en) Water treatment method and apparatus for wastewater containing ammonia
JP4867098B2 (en) Biological denitrification method and apparatus
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP2008221033A (en) Wastewater treatment method and apparatus
JP7133339B2 (en) Nitrogen treatment method
JP4003177B2 (en) Biological treatment equipment
JP2003033796A (en) Biological denitration method
JP2006314991A (en) Apparatus and method for treating high-concentration nitrogen-containing dirty waste water such as waste water from livestock farmer and excreta
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
CN105417901A (en) Sewage treatment device and sewage treatment method
JPH07290088A (en) Method for biologically denitrifying organic waste water
JP2004255269A (en) Denitrification method and denitrification apparatus
KR102488754B1 (en) Apparatus and Method for Treating Anaerobic Digestive Fluid
JP5055669B2 (en) Biological denitrification method
CN211141646U (en) Anaerobic-aerobic integrated treatment device for tobacco sheet wastewater produced by papermaking method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees