JP5055669B2 - Biological denitrification method - Google Patents

Biological denitrification method Download PDF

Info

Publication number
JP5055669B2
JP5055669B2 JP2001221683A JP2001221683A JP5055669B2 JP 5055669 B2 JP5055669 B2 JP 5055669B2 JP 2001221683 A JP2001221683 A JP 2001221683A JP 2001221683 A JP2001221683 A JP 2001221683A JP 5055669 B2 JP5055669 B2 JP 5055669B2
Authority
JP
Japan
Prior art keywords
raw water
nitrite nitrogen
denitrification
concentration
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001221683A
Other languages
Japanese (ja)
Other versions
JP2003033793A (en
Inventor
晃士 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001221683A priority Critical patent/JP5055669B2/en
Publication of JP2003033793A publication Critical patent/JP2003033793A/en
Application granted granted Critical
Publication of JP5055669B2 publication Critical patent/JP5055669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、亜硝酸性窒素を含有する原水を、電子供与体の存在下に亜硝酸性窒素を電子受容体とする脱窒微生物の作用により生物脱窒する方法に係り、特にこの生物脱窒処理において、脱窒槽の原水流入部の局部的な亜硝酸性窒素濃度の上昇に起因する脱窒微生物の失活ないし活性低下を防止して、高負荷処理を可能とする生物脱窒方法に関する。
【0002】
【従来の技術】
従来、下水、工場排水、汚泥消化脱離液、埋立浸出水、屎尿等の窒素含有排水の窒素除去方法としては、硝化細菌によりアンモニア性窒素を亜硝酸性窒素や硝酸性窒素に酸化し、次にメタノール等の電子供与体を添加しつつ脱窒細菌の働きにより亜硝酸性窒素や硝酸性窒素を窒素ガスに還元して水中から窒素を除去する方法が知られている。
【0003】
この方法は、アンモニア性窒素を窒素ガスに酸化するために必要な酸化力よりも過剰の酸素を必要とするため、必要酸素量が多く、多量の酸素を微生物に供給するためのエネルギーを多く必要とする。また、脱窒反応のための電子供与体としてメタノール等の有機物を添加するためのコストがかかり、またこの有機物を摂取して増殖した脱窒細菌が余剰汚泥となるため、廃棄物の量が多く、そのための処分コストが高くつく。特に、硝酸性窒素は亜硝酸性窒素に比べてより酸化された状態にあるため、これを還元するための電子供与体もより多く必要であり、発生する余剰汚泥量も多い。
【0004】
このような窒素除去方法におけるコストを削減するために、アンモニア性窒素を酸化させて主に亜硝酸性窒素を生じさせ、硝酸性窒素は極力生じさせない硝化方法が種々検討されている。脱窒工程の前段にこのような硝化方法を用いれば、酸素供給に要するエネルギーを低減させることができ、また脱窒工程で必要な電子供与体の量が少なくなるために有機物の添加コスト、及び発生する余剰汚泥量を低下させることができる。
【0005】
また、近年、無酸素条件下でアンモニア性窒素を電子供与体、亜硝酸性窒素を電子受容体として両者を反応させ、窒素ガスを生成することができる独立栄養性の脱窒微生物群を利用した脱窒方法が知られるようになった (Microbiology 142(1996), p2187-2196等) 。以下ではこの反応をANAMMOX反応と呼び、この反応に関与する微生物群をANAMMOX菌と呼ぶ。この方法によれば、亜硝酸性窒素の持つ酸化力を用いてアンモニア性窒素を酸化することができるため、理論量と同程度の酸素消費量で窒素除去を行うことができ、エネルギーを節約することができる。また、メタノール等の有機物を添加する必要がないため、そのコストを節約できる。この微生物は独立栄養細菌であり、有機物を利用して脱窒を行う脱窒細菌に比べると、還元する亜硝酸性窒素当たりに発生する余剰汚泥量が5分の1以下であり、廃棄物の発生量を大幅に低減することができる。この反応に関与する電子受容体としての亜硝酸性窒素は排水中のアンモニア性窒素を一部酸化することで得ることができ、また、他系統から導入しても良く、別途薬品を用いても良い。
【0006】
反応槽の型式としては、砂や合成樹脂、ゲルなどの微生物が付着するのに適した担体を充填したカラムに、上向流又は下向流で原水を通水し、担体表面で窒素化合物と微生物を接触させて脱窒反応を進行させる方式が用いられる。ここで用いる担体は、比表面積が大きいものが好適であり、特に粒径0.1〜10mm程度の顆粒状、或いはひも状、筒状、歯車状などの形状が知られている。担体は水中で緩やかに流動されることが好ましく、脱窒により発生するガスや、外部から注入するガス、撹拌機などにより流動される。
【0007】
また、水中に浮遊状態で生育する脱窒微生物を利用することもでき、生育した微生物を固液分離することにより系外へ流出する微生物量を少なくし、系内の微生物濃度を高めることで反応槽容積当たりの反応速度を高めることも好んで行われる。この場合、用いられる固液分離手段には、沈殿、浮上、遠心分離、濾過など従来公知の各種の方法が適用可能である。
【0008】
また、原水を反応槽の下部より上向流で注入させ、菌の付着担体を用いることなく、汚泥をブロック化又は粒状化させて粒径1〜数mmのグラニュール汚泥の汚泥床を形成させ、反応槽中に高濃度で微生物を保持して高負荷処理を行うUSB (Upflow Sludge Bed:上向流汚泥床)方式も知られている。
【0009】
図3は従来のUSB反応槽を示す概略的な断面図である。原水は適宜希釈水と混合され、USB反応槽10底部の原水注入管11より反応槽10に注入される。12は原水注入ポンプ、13は流量調節バルブ、14は流量計、15は希釈水注入管、16は希釈水注入ポンプである。原水注入管11としては内径8〜100mm程度のものが用いられ、反応槽内に下向きに0〜45度で5〜50mm程度の原水噴出口が設けられる。噴出口からの原水の噴出速度は0.5〜5m/secに設定される。配管内の流速は最大部で2〜5m/sec程度とされる。原水を均一に散布するために、図4に示したように、原水注入管11をループに組むことも好んで行われる。このような原水注入管11は、反応槽10の底面積に応じて複数組が設けられることもあるが、その脱窒槽高さ方向の位置は同位置とされる。
【0010】
反応槽10の上部にはガスを分離して静置液面を形成し、この静置部でグラニュールを沈降分離して処理水を得るためのGSS(気固液分離器)17が設けられる。静置部の上部には処理水排出のための処理水集水トラフ18が設けられ、処理水は処理水排出管19から排出される。GSS17は必要に応じて複数組が設けられる。なお、17AはGSS17の沈殿部を示し、17BはGSS17のガストラップ部を示す。
【0011】
ところで、亜硝酸性窒素を電子受容体としたANAMMOX菌を用いる脱窒方法は、前段の硝化工程における酸素消費量削減効果、脱窒のために添加する電子供与体添加量削減効果、余剰汚泥発生量削減効果があるが、一方で亜硝酸性窒素が高濃度に存在するとANAMMOX菌の働きを阻害し、脱窒反応が生じなくなるという問題がある。
【0012】
このような阻害は亜硝酸性窒素濃度50〜200mg/L程度から生じ、高濃度ほど阻害作用が大きくなると言われている。しかしながら、脱窒反応槽内は完全な押し出し流れではなく、流入した亜硝酸性窒素は、脱窒反応により既に亜硝酸性窒素濃度の低下した槽内液と速やかに混合することから、従来においては、流入水中の亜硝酸性窒素濃度は50〜200mg/L或いはそれ以上でも、槽内に注入されると同時に速やかに拡散・希釈されて濃度が低下し、特に問題は生じないものと考えられていた。
【0013】
なお、ANAMMOX脱窒槽内では脱窒反応によりpHが上昇するため、必要に応じて原水pH、槽内pHが調整される。pH調整については、槽内pHが6〜9、好ましくは7〜8.5に保たれる方法であればその手法は問わず、また調整に用いる酸も塩酸、硫酸、炭酸等の従来公知のものを用いることができる。以下ではpH調整の記述は省略する。また、原水中に微生物の成育に必要な塩類(金属塩や炭酸根、りん酸塩、亜硝酸性窒素、アンモニア性窒素等)や有機物が不足する場合には適宜前もって添加しても良いし、槽内に直接添加しても良い。その添加手段は従来公知のものを用いることができる。
【0014】
【発明が解決しようとする課題】
本発明者がANAMMOX菌を担持させたグラニュールを充填したUSB反応槽を用いて、このような亜硝酸性窒素利用型脱窒プロセスによる脱窒処理を試みたところ、原水の亜硝酸性窒素濃度が300mg−N/L以上になると、脱窒能力が低下し、ANAMMOX菌の増殖速度も著しく低下する問題が生じた。
【0015】
このとき使用したUSB型反応槽は、図3に示すようなグラニュール充填高さ4m、直径0.4mの円筒形であり、ANAMMOX菌が増殖するまでの担体としてメタン生成細菌主体のグラニュールを投入したものであり、反応槽内のグラニュール充填部の上部には、ガスを分離して静置液面を確保し、液中のグラニュールを沈降させて反応槽内へ戻し、上澄みを処理水として排出するための分離器(GSS)が設けてある。
【0016】
脱窒能力低下の問題が生じたときに、原水注入口である反応槽下部の亜硝酸性窒素濃度を測定したところ、80〜100mg−N/Lであり、一方、原水注入点より1m離れた地点では、亜硝酸性窒素濃度は50mg−N/L以下に低下していることが見出された。このとき、原水注入点付近ではガスが殆ど発生しておらず、グラニュールも殆ど流動していない状態であったのに対し、この原水注入点から1m以上上方の領域では断続的に上昇する気泡により、グラニュールも断続的に緩やかに撹拌される状態であった。このことから、原水注入点付近では、ガスによる撹拌効果が低く、槽内が押し出し流れに近い状態になっているために、原水中の亜硝酸性窒素が高濃度のまま存在し、このことがANAMMOX菌を阻害してさらにガス発生を低下させ、撹拌を悪化させるという悪循環を生じていることが示唆された。
【0017】
そこで本発明者は、USB反応槽の処理水の一部を循環し、原水中の高濃度亜硝酸性窒素を処理水で希釈することで、希釈後の亜硝酸性窒素濃度を280mg−N/L以下として通水したところ、ANAMMOX菌は次第に増殖し、脱窒能力も増加していくことが確認された。脱窒能力の増加に合わせて、投入する窒素負荷を増加したところ、今度は固液分離部で分離されずに処理水へ流出するグラニュールが増加し、USB反応槽内部のグラニュール保持量が低下する問題が生じた。この結果、グラニュール保持量低下により、USB反応槽内部のANAMMOX菌量も低下し、これに合わせて投入する負荷を再び下げる必要が生じた。この原因を調べたところ、窒素負荷の増大に伴い通水量が増大し、USB反応槽内部の上昇流速が2m/hr以上となり、固液分離部の上昇流速が3m/hr以上となったことによって、沈降速度の遅いグラニュールが沈降分離されずに、処理水へ流出するようになったものと思われた。グラニュールの流出を軽減するためにはUSB反応槽の上昇流速を1.5m/hr以下とする必要があった。
【0018】
このようにUSB反応槽の上昇流速は1.5m/hrの上限があり、原水流入部の亜硝酸性窒素濃度は250mg−N/L以下にする必要があるために、この反応槽に流入させる亜硝酸性窒素の上限は1.1kg−N/m/day、即ち、単位底面積当たり9.0kg−N/dayに制限されることが明らかとなった。ここで、グラニュール高さ4mであるから、グラニュール充填部容積当たりの亜硝酸性窒素負荷は2.2kg−N/m/dayが上限となることが判明した。
【0019】
このような制限は阻害濃度の低い亜硝酸性窒素を導入する場合において特有の問題であり、例えば硝酸性窒素を脱窒するUSB反応槽などにおいては、硝酸性窒素に殆ど阻害性が無いために、このような問題は生じていなかった。
【0020】
また、この時に流出した沈降速度の遅いグラニュールを観察すると、その多くは粒径が3mm以上に肥大しており、また空隙が多く緻密さに欠けるグラニュールであった。また流出したグラニュールの中には、浮力を有しており、静置しても沈降しないグラニュールも多く観察された。
【0021】
本発明は、このようなANAMMOX菌を利用したUSB反応槽における問題点を解決し、原水注入部の局部的な亜硝酸性窒素濃度の上昇に起因するANAMMOX菌の失活ないし活性低下を防止して高負荷処理を行うことができる生物脱窒方法を提供することを目的とする。
【0023】
本発明の生物脱窒方法は、亜硝酸性窒素を含有する原水を、脱窒槽に供給し、該脱窒槽内の亜硝酸性窒素を電子受容体とする脱窒微生物の作用により電子供与体の存在下に脱窒処理する生物脱窒方法であって、該脱窒槽は、亜硝酸性窒素を含有する原水の流入管と処理液の流出管を有し、該原水の流入管は該脱窒槽の流れ方向の異なる位置に複数設けられ、最上流の原水流入管から流入する原水の亜硝酸性窒素の量[N](mg−N/hr)を、最上流の原水流入管が位置する脱窒槽横断面を通過する水量[V](L/hr)で除した値[N]/[V]が300mg−N/Lを超えないように、該最上流の原水流入管から流入する原水の量を調節することを特徴とする。
【0024】
なお、以下において、原水流入管から脱窒槽内に流入する原水の亜硝酸性窒素の量(窒素換算量)[N](mg−N/hr)を、該原水流入管が位置する脱窒槽横断面を通過する水量[V](L/hr)で除した値[N]/[V](mg−N/L)を、「亜硝酸性窒素注入濃度」と称す場合がある。この亜硝酸性窒素注入濃度は、当該原水注入点における原水注入後の全通水量に対する、注入する亜硝酸性窒素の平均濃度を意味する。
【0025】
また、原水流入管を設けた位置を「注入点」と称し、最上流の原水流入管を設けた位置を「第1注入点」と称し、第1注入点よりも下流の原水注入管の設置位置を下から順に「第2注入点」「第3注入点」……………「第n注入点」と称す場合がある。
【0026】
以下に本発明による作用機構を詳細に説明する。
【0027】
本発明者が検討した結果、図3に示す従来のUSB反応槽で亜硝酸性窒素を含む原水をUSB反応槽の下部1点のみから流入させた場合、USB反応槽内では図5のA1に示すように、底部から一定の高さH1までの領域では、亜硝酸性窒素の濃度が阻害作用が強く現れる濃度C以上の濃度となり、ANAMMOX菌が有効に働くことができず、更には失活してしまう。しかしH1以上の高さ領域では拡散・希釈作用により亜硝酸性窒素濃度は低下し、阻害を示さない濃度となるために、脱窒反応が進行する。従って、H1より下流(反応槽上部)では脱窒により生じた窒素ガスの分圧が高まり、また窒素ガスの微細気泡が生じ、これらの窒素ガスが水流により下流(反応槽上方)へ移送されるに従って、窒素ガスが集合し、粗大気泡が生じ、G1付近の地点からは明らかにガスの発生が認められるようになる。
【0028】
なお、ここでCはANAMMOX菌に対して阻害を示す亜硝酸性窒素濃度であり、槽内のpHやアンモニア性窒素濃度、温度などの環境により左右されるが、概ね50〜200mg−N/Lである。なお、亜硝酸性窒素濃度が高くなるにつれ徐々に阻害作用が強くなるため、厳密に一点の濃度を特定するのは好ましくない。ここでは本発明の作用を説明するためにある一点の濃度Cを仮定したが、現実にはある程度の幅を持つ範囲である。従って、高さH1などの値も厳密に一点を定められるものではなく、ある程度の幅を持つ範囲である。
【0029】
この反応槽を連続運転するに従い、亜硝酸性窒素濃度の分布は図5のA2に示すように、上流側の高濃度域が拡大し、C以上の濃度である領域(例えば図5ではH2)が拡大することが判明した。この現象は、A1の状態であったときにH1までの高さの微生物が失活した結果、反応槽入口付近の脱窒機能が働かなくなり、結局亜硝酸性窒素の注入点が図5のI2の地点に移動したことと同様の状況となるためであると考えられた。このとき、窒素ガスの発生が認められる位置もより下流のG2に移動しており、ガスの発生位置が亜硝酸性窒素の注入点から遠ざかっていることから、上流側(反応槽下部)における水の流れがガスにより乱される効果は少なくなり、上流側(反応槽下部)で一層亜硝酸性窒素が拡散せずに高濃度のまま留まりやすい環境になっていることが分かった。
【0030】
以上のことから、反応槽内に、亜硝酸性窒素を含有する原水の注入点付近で局部的に亜硝酸性窒素が高濃度の領域ができると、その領域の微生物が失活し、その結果、亜硝酸性窒素が高濃度である領域がより一層拡大し、新たにその周囲の微生物を失活させ、徐々に亜硝酸性窒素が高濃度なために脱窒反応が阻害される領域が広がることが分かった。また、脱窒反応の阻害により窒素ガスが発生し始める領域が遠ざかり、このことがさらに亜硝酸性窒素の拡散を妨げることも分かった。
【0031】
本発明ではこのような反応槽内の局部的な亜硝酸性窒素濃度の上昇を防止するために、亜硝酸性窒素を含有する原水の流入点を反応槽の高さ方向に複数設け、最下段(最上流)における亜硝酸性窒素注入濃度を300mg−N/L以下とすることで、上述の問題を回避する。
【0032】
即ち、第1注入点の亜硝酸性窒素注入濃度を下げることにより、図6のA3に示したように、反応槽内で亜硝酸性窒素が阻害を示す濃度Cまで高まらないようにし、亜硝酸性窒素が十分に拡散・希釈され、また脱窒されて低濃度になった地点で再度亜硝酸性窒素を含有する原水を注入することで、上述の問題が回避される。
【0033】
このとき、第2注入点以降は、脱窒反応により発生するガスが気泡を形成し始める点G3に近く、この気泡による水流の乱れにより注入された亜硝酸性窒素は脱窒槽内に拡散されやすい条件となっている。更に、気泡が上昇する際にグラニュールが移動するため、仮に注入点付近の高濃度の亜硝酸性窒素によって失活し始めたANAMMOX菌があったとしても、時間の経過と共にこのANAMMOX菌の位置は移動し、亜硝酸性窒素の濃度が低く阻害を生じないところへ行くことができる。高濃度亜硝酸性窒素との接触が短時間の場合には、脱窒能力の失活は一時的なものに留まり、速やかに活性が回復される。
【0034】
このために、第2注入点以降における亜硝酸性窒素注入濃度は第1注入点におけるそれよりも高くて良い。
【0035】
また、本発明によれば次のような効果も奏される。
【0036】
本発明者が検討したところ、グラニュール内部に十分なANAMMOX菌が増殖している場合、グラニュール内部への基質の拡散による浸透が律速となる。例えば、アンモニア性窒素が十分に存在し、亜硝酸性窒素濃度が10mg−N/Lの状態では、亜硝酸性窒素の浸透する深さはグラニュール表面から0.3〜0.6μm程度であり、これより内側にあるANAMMOX菌には亜硝酸性窒素が到達しないためにANAMMOX菌が有効に働くことができない。これに対して亜硝酸性窒素濃度が50mg−N/Lの状態では、亜硝酸性窒素の浸透する深さはグラニュール表面から1〜2mm程度となり、グラニュール内部のANAMMOX菌まで有効に利用され、グラニュール当たりの脱窒能力は2倍程度まで向上する。このようにグラニュール内部のANAMMOX菌が増殖すると、グラニュールの内側から応力がかかるために、グラニュールは均一な球形に成長することができず、表面にひび割れが生じて応力を吸収しながら成長する結果、空隙が多く緻密さに欠けるグラニュールが生ずることが判明した。また、グラニュール内部まで基質が浸透することは、内部で窒素ガスが発生することを意味するため、ここで発生した窒素ガスがグラニュール内部に生じた空隙に溜まることによって、グラニュールに浮力が生じて浮上し易くなる。
【0037】
図3に示す従来のUSB反応槽による連続試験においても、原水の注入点付近には2〜3mmの比較的粒径の大きいグラニュールが多く分布しており、これは注入点付近の高濃度の亜硝酸性窒素環境下でグラニュールが成長した結果であると考えられた。なお、それ以上の大きさのグラニュールは、内部に気泡を抱いて浮力が生じ、反応槽上部へ上昇して浮上することが観察された。この結果、亜硝酸性窒素濃度の高い領域に新たなグラニュールが流入し、このグラニュールは肥大して気泡を抱いて上昇するというサイクルが繰り返されるため、原水の注入点付近は肥大グラニュールの生産場所になっていることが明らかになった。
【0038】
このような肥大グラニュールが生成されないようにするためには、反応槽内の亜硝酸性窒素濃度を好ましくは30mg−N/L以下、特に好ましくは10mg−N/L以下とするのが良く、このためには本発明に従って、原水の注入点を脱窒槽の高さ方向に複数設け、最上流の第1注入点の亜硝酸性窒素注入濃度を好ましくは150mg−N/L以下、特に好ましくは80mg−N/L以下とし、第2注入点以降の亜硝酸性窒素注入濃度を好ましくは300mg−N/L以下、特に好ましくは150mg−N/L以下とするのが特に効果がある。
【0039】
本発明の脱窒槽においては、担体の種類や、反応槽の形状により槽内流速の上限、微生物保持量の上限が異なるために、限界となる負荷は脱窒槽の仕様や運転条件により異なるが、いずれの場合も、本発明に従って、原水の注入点を脱窒槽の流れ方向の異なる位置に複数設けることで、高負荷時に生ずる局部的亜硝酸性窒素濃度の増大の問題、即ち、局部的脱窒能力の失活とその経時的拡大、及び生物膜の肥大やそれに伴う浮上の問題を回避することができ、従来に比べて著しく高い負荷や高濃度の亜硝酸性窒素の流入に対応することができる。
【0040】
なお、このような作用効果はANAMMOX菌以外の他の脱窒細菌を用いた場合でも同様であり、また他の脱窒細菌に対して亜硝酸性窒素が阻害を及ぼす濃度範囲もほぼ同様であることから、ANAMMOX菌以外の脱窒細菌を用いた場合にも本発明は有効に適用することができる。
【0041】
【発明の実施の形態】
以下に図面を参照して本発明の生物脱窒方法の実施の形態を詳細に説明する。
【0042】
図1,2は本発明の生物脱窒装置の実施の形態を示す系統図である。図1,2において、図3に示す部材と同一機能を奏する部材には同一符号を付してある。
【0043】
図1の生物脱窒装置は、原水注入管(流入管)11を分岐させて、USB反応槽(脱窒槽)10の高さ方向に2箇所注入点を設け、原水注入管11に撹拌用ガスの導入管20を接続した点が図3に示す従来の装置と異なり、その他は図3の装置と同様の構成とされている。
【0044】
各原水注入管11A,11Bから注入する原水流量はそれぞれ流量計14A,14Bと流量調節バルブ13A,13Bで調整可能となっている。原水注入管11A,11BをUSB反応槽10内で定位置に固定するためには、例えば、USB反応槽10の底面及び/又は壁面から図示しないサポート部材をのばし、このサポート部材に注入管11A,11Bを固定すれば良い。また、配管を反対側の壁面に貫通させることで配管を支持しても良い。
【0045】
図1の装置では、USB反応槽10内のグラニュールをバブリングにより撹拌するためのガス注入手段としてブロワ21が設けてあり、ガスはガス注入管20から原水注入管11を通じて導入されるようになっている。このガス流量は流量計23と流量調整バルブ22により調整される。ガス注入管は原水注入管11A,11B毎に設けても良く、また、ガス注入管はUSB反応槽10に直接取り付けても良い。
【0046】
バブリングのためのガスは酸素を含有しないガスが好ましく、特に脱窒反応で生成した窒素ガスを主体とするガスを用いるのが特に好ましい。ただし、酸素含有ガスを吹き込んで槽内の溶存酸素濃度が一時的に上昇しても、溶存酸素濃度が再び低下すれば脱窒反応は復旧するので、空気などの酸素含有ガスも使用可能である。
【0047】
図2に示す生物脱窒装置は、各原水注入管11A,11BのUSB反応槽10内の部分に下向きの枝管11a,11bがそれぞれ設けられており、その他は図1の装置と同様の構成とされている。
【0048】
このように枝管11a,11bを設けることで、仮に原水注入管11A,11Bが詰まったとしても、枝管11a,11bの内部に留まり、原水注入管11A,11Bの主管の流れを妨げないため、他の枝管から均一に原水を散布することができる。
【0049】
本発明で処理する亜硝酸性窒素を含有する液としては、下水、工場排水、汚泥消化脱離液、埋立浸出水、屎尿等の排水中の窒素化合物を原料に亜硝酸性窒素を生成させた液、特に排水中の有機性窒素又はアンモニア性窒素の全部又は一部を酸化させて亜硝酸性窒素を生成させた液が挙げられる。また、排水中の硝酸性窒素の全部又は一部を還元させて亜硝酸性窒素を生成させたものであっても良く、外部から工業薬品等の形で亜硝酸性窒素を添加したものでも良い。原水の亜硝酸性窒素濃度を低減するための希釈水としては、原水や処理水を用いても良いし、排水のうち、特に亜硝酸性窒素濃度の低い部分を用いても良い。また、反応槽の中間部から取り出した亜硝酸性窒素濃度の低い水を用いても良く、工業用水や水道水、井戸水等を用いても良い。
【0050】
これらの希釈水と亜硝酸性窒素を含有する原水とは、反応槽に入る前に混合しておくのが望ましいが、反応槽に入った直後に混合されても良いし、予めUSB反応槽10の上流側から希釈水を流しておいて、濃厚な亜硝酸性窒素含有液のみを注入しても良い。
【0051】
原水の注入点は、図1,2に示す如く、2点に限らず2点以上で任意の数設けることができるが、被処理液流路の流下方向、即ち、USB反応槽10の高さ方向に対して好ましくは0.1〜2mの間隔、特に好ましくは0.3〜1.5mの間隔で注入点を設けるのが良く、注入点の数は、USB反応槽10の高さ方向に対して好ましくは2〜10点、特に好ましくは2〜4点設けるのが好ましい。
【0052】
また、被処理液流路の断面方向、即ち、USB反応槽10内の横断面において、各注入点からの原水の吐出口は、その断面の広さに応じて好ましくは0.1〜5m、特に好ましくは0.2〜2mの間隔で設けるのが好ましい。例えば、横断面積25mで高さ2mの容積50mの反応槽内領域に設ける吐出口は1〜2000点、特に1〜60点とするのが好ましい。
【0053】
原水注入管としては、一端が開口したパイプや、側面に開孔を設けたパイプ等、従来公知の任意のものを用いることができる。
【0054】
本発明においては、注入管を複数設けると共に、最下段の第1注入点からの亜硝酸性窒素注入濃度を300mg−N/L以下とする。この注入濃度が300mg−N/Lを超えると、前述の如く、反応槽内でANAMMOX菌が高濃度の亜硝酸性窒素により阻害を受ける。第1注入点の亜硝酸性窒素注入濃度は、前述の如く、肥大グラニュールの生成防止の点からは、150mg−N/L以下、特に80mg−N/L以下であることが好ましいが、この注入濃度を過度に低くすることは、原水の水質によっては希釈水量が多くなり、処理効率が低下する。従って、一般的には、第1注入点の亜硝酸性窒素注入濃度は10〜300mg−N/L特に20〜80mg−N/Lとなるように、必要に応じて希釈水で希釈することが好ましい。
【0055】
また、第2注入点以降の亜硝酸性窒素注入濃度は第1注入点の亜硝酸性窒素注入濃度よりも高くすることができ、上記の阻害やグラニュールの肥大化の防止の観点から600mg−N/L以下、特に300mg−N/L以下、とりわけ150mg−N/L以下が好ましいが、処理効率等の面からは第2注入点以降の亜硝酸性窒素注入濃度は10〜600mg−N/L特に20〜150mg−N/Lとするのが好ましい。
【0056】
各注入点における原水(或いは希釈された原水)の吐出速度は、好ましくは0.1〜10m/secが良く、より好ましくは0.5〜5m/sec、特に好ましくは1〜2m/secが良い。この流速は各注入点ないし噴出口から意図した通りの流量を注入するために重要であり、流速が低いと、意図しない特定の注入点ないし噴出口から特に多く液が注入される一方、他の注入点ないし噴出口からは殆ど液が注入されないという問題が生ずる。また、スライムやスケールの付着により吐出面積が変わり、それに応じて注入流量が意図せずに変更される問題が生ずる。一方、流速が高すぎる場合、液の注入に大きな圧力が必要となり、この圧力を生み出すための注入ポンプが高価になったり、その駆動動力を多く必要とするなどの問題を生ずる。また吐出口付近において、槽内液と混合する前の高濃度の亜硝酸性窒素と微生物が接触しやすくなり、微生物の活性が低下したり、生物膜が物理的に破壊されたり、破壊されないまでも微生物の存在量が著しく偏る問題が生ずる。
【0057】
各々の注入点に対して効果的な原水の分配比や希釈水の注入量は反応槽内の微生物の濃度や活性、流入負荷や反応槽内の撹拌状態、ガスの流れ等に応じて変わってくるため、注入点への注入量は容易に変更できる構造が望ましい。ただし、注入点を数多く設けた場合には、複数の注入点をグループとして扱い、グループ毎の注入量を変更できるようにしても良い。
【0058】
さらに、注入点付近の微生物は槽内液と十分に混合する前の高濃度亜硝酸性窒素が接触し、活性が低下する危険があるため、原水注入管の吐出口付近を透水性部材で覆うことで、高濃度亜硝酸性窒素が多くの微生物に接触する前に槽内液と拡散・混合させることが有効である。この場合、透水性部材としては、微生物担体が通過しにくいものが好ましく、目開き0.1〜2mm程度のウェッジワイヤースクリーンやメッシュ、不織布や濾布などの布、多孔質セラミック、メンブレンフィルター等任意のものが利用できる。
【0059】
これらの透水性部材は、亜硝酸性窒素1kg−N/dayの注入量当たり、好ましくは0.005〜0.2m、更に好ましくは0.01〜0.05mの接触面積となるように設けるのが好ましい。
【0060】
図7〜9を参照して、このような透水性部材を用いる実施の形態を説明する。図7は原水注入管を示し、図7(a)は正面図、図7(b)は図7(a)のB−B線に沿う断面図である。この原水注入管30は、例えば、内径20mmのパイプであり、30m/dayの原水を供給することができる。この原水注入管30の先端30Aは塞いであり、先端から30mm離れた位置から50mmおきに四方に10mm径の吐出口30Bが4個づつ、5組、計20個設けられている。この原水注入管30の管内流速は1m/sec、各吐出口30Bにおける吐出速度は0.2m/secとなる。
【0061】
この原水注入管30は例えば300〜600mg−N/Lの亜硝酸性窒素を供給するものとして使用され、このとき注入する窒素量は9〜18kg−N/dayとなる。
【0062】
この原水注入管30の周囲に設ける透水性部材として、例えば図8(a)(正面図)、図8(b)(側面図)に示したように100〜200mm径、高さ300mmの円筒形で、目開きが0.5mmのウェッジワイヤースクリーン40などを用いることができる。ここでは円筒の両端面は加工の容易性を考慮して特に透水性のない金属板41A,41Bとしている。この円筒の透水部42の面積は0.09〜0.27mである。
【0063】
図9は図7の原水注入管30に図8のウェッジワイヤースクリーン40を設置した状態を示す図であり、図9(a)は斜視図、図9(b)は内部透視正面図を示す。原水注入管30は、ウェッジワイヤースクリーン40の一方の端面の金属板41Aに設けた開孔41aから挿入され、この金属板41Aと他端面の金属板41Bに接着されて固定されている。図9では、ウェッジワイヤースクリーン40が、原水注入管30と同軸的に設けられているが、交叉方向に設けられていても良い。
【0064】
なお、原水注入管として先端が開口したパイプを用い、この先端の開口からウェッジワイヤースクリーン内に原水を噴出させるようにしても良い。この場合原水注入管の先端開口部分をウェッジワイヤースクリーンの端面に取り付けても良く、原水注入管の先端開口側をウェッジワイヤースクリーンの内部まで挿入しても良い。
【0065】
ウェッジワイヤースクリーンのような透水性部材を設けた場合、このような透水性部材は、生物膜の増殖により目詰まりすることがあるため、下方からの気泡が当たる位置に透水性部材を設置するか、又は専用のバブリング手段を設けて適宜目詰まりを回復するようにすることが好ましい。また、図1に示す如く、原水注入管にバブリング用のエアを供給する構造とすることもできる。
【0066】
本発明は、砂や合成樹脂、ゲルなど任意の微生物担体を用いた場合にも効果を発揮するが、特に槽内の流速を低くとる必要がある担体を用いた装置に有効であり、このような担体は水に近い比重を持つ場合が多い。従って、本発明は水に対する比重が0.5〜2.0の担体を用いる反応槽に適用したときに効果が高く、特に水に対する比重が0.8〜1.3の担体を用いる反応槽に適用したときに効果が高い。
【0067】
担体が流出する心配の少ない固定床方式の場合や、浮遊状態の担体をスクリーンやメッシュなどで流出防止する場合には、本発明の代わりに希釈水量又は処理水循環水量を増加させることで同様の効果があるが、その場合にも本発明を用いることで、希釈水の節約や、循環ポンプのコストの節約を行うことができる。
【0068】
これらの担体を用いた反応槽の場合、設置面積を低減するために縦方向に長い反応槽が好まれる場合があり、その場合通水方向は上向流又は下向流となる場合が多いが、本発明は特に上下流方向の長さが長い反応槽に用いる場合に好適であり、好ましくは3〜30m、より好ましくは4〜15mの反応部長さを持つ反応槽に対して効果を発揮する。
【0069】
グラニュール以外の他の担体を用いる脱窒装置では、必ずしも上向流である必要はなく、GSSも設置するのが好ましい場合と設置の必要がない場合があり、担体の種類やGSSの設置の有無は本発明を限定する要因とはならない。
【0070】
また、担体を流動状態で用いたり、担体を用いずに0.1μm以下のフロック状に増殖する菌体を用いて脱窒反応を行わせる場合にも、水槽内が押し出し流れに近い状態であったり、直列2槽以上、特に直列3槽以上に分割してある場合には本発明を好適に適用することができる。
【0071】
本発明を用いた場合に、上流側の流速が低下する結果、上流側の液及び担体の流動が少なくなり、懸濁物質(SS)が担体間に目詰まりし、原水のショートパスが生じたり、担体同士が結合してブロック状となって被処理液がショートパスし、有効に処理が進行しない現象が生じたり、またブロック状の担体間にガスが溜まり、浮上する問題が生ずる場合がある。この問題を回避するために、定期的に流速を高めたり、逆方向に液を流して目詰まりしたSSを洗い流したり、バブリングにより担体を撹拌することが有効である。例えばUSB方式の場合、1ヶ月に1〜20回程度の割合、特に好ましくは2〜5回の割合で、必要に応じて槽内流速を1〜10m/hr程度とし、好ましくは窒素ガスなどの酸素を含有しない気体を用いて、底面積当たり1〜30Nm/m/hr程度で2〜40分間程度バブリングをすると良い。この操作により担体間に堆積したSSを剥離又は均一化することができるため、目詰まりの問題を解決でき、また反応槽内における担体の位置を移動することで担体に付着する生物膜量を均一化することができる。
【0072】
本発明によれば、脱窒反応速度を高くとることができるため、亜硝酸性窒素の容積負荷を担体充填部の見掛け容積当たり0.1〜50kg−N/m/day、より好ましくは0.5〜30kg−N/m/dayとすることができる。
【0073】
【実施例】
以下に比較例及び実施例を挙げて本発明をより具体的に説明する。
【0074】
比較例1
図3に示す従来のUSB反応槽(グラニュール充填高さ4m,直径0.4mの円筒形でANAMMOX菌が増殖するまでの担体としてメタン生成細菌主体のグラニュールを投入したもの)により、700mg−N/Lのアンモニア性窒素と600mg−N/Lの亜硝酸性窒素を含む原水を、1m/dayの処理水で希釈しながら、反応槽の1箇所の注入点のみから、導入して処理を行った。
【0075】
原水の注入点はUSB反応槽の底面から直接注入した。
【0076】
運転開始時には、40L/dayで通水を開始し、亜硝酸性窒素が除去されて処理水の亜硝酸性窒素濃度が5mg−N/L以下になったのを確認してから徐々に原水の流入量を増加した。この結果、約3ヶ月間後に0.8m/dayの原水を処理できるようになり、グラニュール充填容積当たり亜硝酸性窒素1kg/m/dayの処理能力を持つようになった。このときにアンモニア性窒素は約0.77kg/m/day除去されており、また硝酸性窒素が約0.17kg/m/day生じていたため、窒素の除去能力としては1.6kg/m/dayであった。亜硝酸性窒素の除去量に対するアンモニア性窒素の除去量と硝酸性窒素の生成量は負荷に関わらずほぼ一定であったため、以降は亜硝酸性窒素の除去量のみを表記する。
【0077】
この状態の時に、反応槽から流出するグラニュールはわずかであり、反応槽内のグラニュール量に顕著な変化は見られなかった。このため、ANAMMOX菌が増殖したことによる微生物量の増加は、担体として用いたメタン細菌主体のグラニュールの自己消化による減少、及びわずかに流出したグラニュール量とほぼ釣り合っていると思われた。
【0078】
また、流出したグラニュールは前述のように粒径3mm以上で球が崩れた不均一な形をしていた。このようなグラニュールは反応槽下部の原水注入点付近及びグラニュール充填部の最上部に多く、前述の作用で原水注入点付近でグラニュールが肥大化し、その後に浮力を生じて上層部に上昇し、特に浮力の大きなグラニュールが流出していると思われた。
【0079】
その後、原水の通水量を1m/dayに増加したところ、処理水中に亜硝酸性窒素は10mg−N/L程度残留するようになり、1週間程度は徐々に減少する傾向が見られたが、その後漸増し、3週間後には処理水中に亜硝酸性窒素は20mg−N/L付近に達した。反応槽内の亜硝酸性窒素の濃度分布を測定すると、図5に示したように、原水注入点付近は亜硝酸性窒素濃度が100〜200mg−N/Lとなっており、このため原水注入点付近のANAMMOX菌が失活し始めたことが処理水質悪化の原因と判断された。
【0080】
このため、希釈水量を1.2m/dayに増加し、また流入点付近の失活したグラニュールを分散させるために窒素ガスを1Nm/hrの流量で反応槽下部から10分間程度送り込むことで反応槽内を撹拌した。この操作以降、処理水の亜硝酸性窒素濃度は減少し、1週間後には5mg−N/L以下となった。
【0081】
以降は、原水量を増加するごとに希釈水量をその1.2倍に増加することで、通水量を徐々に上げることができ、2ヶ月後には原水通水量を2m/day(上昇流速1.5m/hr)まで上げることができた。このときグラニュール充填部当たりの亜硝酸性窒素の除去能力は2.4kg−N/m/dayであった。
【0082】
更に通水量を上げていったところ、反応槽から流出するグラニュールの量が多くなり、特に原水通水量が2.7m/day付近(上昇流速2m/hr)に達したところで、再び処理水中の亜硝酸性窒素濃度が15mg−N/L程度となった。引き続きこの条件で運転を続けたところ、グラニュールの流出によってグラニュール充填部高さが徐々に減少する傾向が見られ、また処理水の亜硝酸性窒素濃度は10日後に約25mg−N/Lまで増加した。
【0083】
このときの槽内の様子を観察すると、気泡の上昇により巻き上げられたグラニュールの一部が沈降せずに上昇し、更にGSSの沈殿部で一部は沈殿するものの一部は沈降せずに流出していた。このため、反応槽内部及びGSS沈殿部の上昇流速が、通水量の増加と共に速くなったことにより、沈殿せずに流出するグラニュールの量が増加したものと思われた。
【0084】
実施例1
比較例1の問題を解決するために、図1に示す如く、更にUSB反応槽の底面から1.5mの高さ位置に原水の注入点(第2注入点)を増やし、第1注入点から原水を0.9m/dayで注入し、第2注入点から原水を1.8m/dayで分割して注入し、希釈水は第1注入点にのみ原水量の1.2倍量注入するようにした。
【0085】
即ち、第1注入点からは亜硝酸性窒素濃度約270mg−N/Lの原水と希釈水の混合水を注入し、第2注入点からは亜硝酸性窒素濃度600mg−N/Lの原水を注入した。
【0086】
このときの第1注入点の亜硝酸性窒素注入濃度は270mg−N/Lであり、第2注入点の亜硝酸性窒素注入濃度は280mg−N/Lであった。
【0087】
このようにすることで、処理水の亜硝酸性窒素濃度は再び低減し、グラニュールの流出も減少した。また同様の比率を保ちながら原水の通水量を上げることで、合計3.2m/dayまでの原水を安定に処理して、亜硝酸性窒素濃度5mg−N/L以下の処理水を得ることができ、このとき亜硝酸性窒素の除去能力はグラニュール充填部当たり3.8kg−N/m/dayであった。
【0088】
このとき第2注入点付近の亜硝酸性窒素濃度を測定すると約30〜50mg−N/Lとなっていた。
【0089】
第2注入点における亜硝酸性窒素注入濃度の限界を調べるために、第2注入点から注入する原水に亜硝酸性窒素濃度を10,000mg/Lに調整した亜硝酸ナトリウム溶液を添加し、第2注入点における亜硝酸性窒素注入濃度を徐々に高めて、脱窒槽内第2注入点付近における亜硝酸性窒素濃度を測定した。このとき、第1注入点に導入する希釈水は一時的に脱酸素した水道水とした。
【0090】
この結果、第2注入点に上記亜硝酸ナトリウム溶液0.12m/dayを注入し、第2注入点から注入する原水中の亜硝酸性窒素濃度が1200mg/L、第2注入点における亜硝酸性窒素注入濃度が580mg/Lの時に、脱窒槽内第2注入点付近における亜硝酸性窒素濃度が50〜100mgとなった。この結果から、第2注入点における亜硝酸性窒素注入濃度の限界値は600mg/L付近であると考えられた。
【0091】
実施例2
実施例1において、更にUSB反応槽の底面部から2mの高さ位置に原水の注入点(第3注入点)を設け、第1注入点〜第3注入点に、それぞれ0.9m/dayの等量の原水を注入し、希釈水は第1注入点にのみ原水量の1.2倍注入した。
【0092】
即ち、第1注入点からは亜硝酸性窒素濃度約270mg−N/Lの原水と希釈水の混合水を注入し、第2,第3注入点からは亜硝酸性窒素濃度600mg−N/Lの原水を注入した。
【0093】
このときの第1注入点の亜硝酸性窒素注入濃度は270mg−N/Lであり、第2注入点の亜硝酸性窒素注入濃度は190mg−N/Lであり、第3注入点の亜硝酸性窒素注入濃度は140mg−N/Lであり、実際に、第2注入点付近の亜硝酸性窒素濃度は約15〜30mg−N/Lに低下し、第3注入点付近では約10〜20mg−N/Lとなっていた。
【0094】
この状態で約2ヶ月間の運転を行ったところ、グラニュールの流出量が低下し、槽内における3mm以上に肥大化したグラニュールの割合が減少し始めたことが確認されたため、原水を分割注入することによるグラニュール肥大化防止効果が確認された。
【0095】
【発明の効果】
以上詳述した通り、本発明の生物脱窒方法においては、ANAMMOXUSB反応槽における原水注入部の局部的な亜硝酸性窒素濃度の上昇に起因するANAMMOX菌の失活を防止して高負荷処理を行うことができる。
【図面の簡単な説明】
【図1】本発明の生物脱窒装置の実施の形態を示す概略的な断面図である。
【図2】本発明の生物脱窒装置の他の実施の形態を示す概略的な断面図である。
【図3】従来のUSB反応槽を示す概略的な断面図である。
【図4】USB反応槽の原水注入管の一例を示す平面図である。
【図5】従来のUSB反応槽によるUSB反応槽内の亜硝酸性窒素濃度の分布を示すグラフである。
【図6】本発明に係るUSB反応槽によるUSB反応槽内の亜硝酸性窒素濃度の分布を示すグラフである。
【図7】原水注入管の実施例を示す図であって、図7(a)は正面図、図7(b)は図7(a)のB−B線に沿う断面図を示す。
【図8】本発明に好適なウェッジワイヤースクリーンの実施例を示す図であって、図8(a)は正面図、図8(b)は側面図を示す。
【図9】図7の原水注入管に図8のウェッジワイヤースクリーンを取り付けた状態を示し、図9(a)は斜視図、図9(b)は内部透視正面図を示す。
【符号の説明】
10 USB反応槽
11,11A,11B 原水注入管
15 希釈水注入管
17 GSS
18 処理水集水トラフ
19 処理水排出管
20 ガス注入管
30 原水注入管
40 ウェッジワイヤースクリーン
[0001]
BACKGROUND OF THE INVENTION
The present invention biodenitrifies raw water containing nitrite nitrogen by the action of a denitrification microorganism using nitrite nitrogen as an electron acceptor in the presence of an electron donor. Who In particular, in this biological denitrification treatment, the denitrification microorganisms are prevented from being deactivated or reduced in activity due to the local increase in nitrite nitrogen concentration in the raw water inflow section of the denitrification tank, and high load treatment is performed. Possible Life It relates to a material denitrification method.
[0002]
[Prior art]
Conventionally, the nitrogen removal method for nitrogen-containing wastewater such as sewage, industrial wastewater, sludge digestion and effluent, landfill leachate, and manure is oxidized by nitrifying bacteria to nitrite nitrogen or nitrate nitrogen. A method is known in which nitrogen is removed from water by reducing nitrite nitrogen or nitrate nitrogen to nitrogen gas by the action of denitrifying bacteria while adding an electron donor such as methanol.
[0003]
This method requires more oxygen than the oxidizing power required to oxidize ammonia nitrogen to nitrogen gas, so it requires a large amount of oxygen and requires a lot of energy to supply a large amount of oxygen to the microorganism. And In addition, there is a cost for adding an organic substance such as methanol as an electron donor for the denitrification reaction, and denitrifying bacteria grown by ingesting this organic substance become excess sludge, resulting in a large amount of waste. The disposal cost for that is high. In particular, since nitrate nitrogen is in a more oxidized state than nitrite nitrogen, more electron donors are required to reduce it, and a large amount of excess sludge is generated.
[0004]
In order to reduce the cost in such a nitrogen removal method, various nitrification methods that oxidize ammonia nitrogen to generate mainly nitrite nitrogen and generate nitrate nitrogen as much as possible have been studied. If such a nitrification method is used in the previous stage of the denitrification step, the energy required for oxygen supply can be reduced, and the amount of electron donor required in the denitrification step is reduced. The amount of excess sludge generated can be reduced.
[0005]
In recent years, we have used an autotrophic denitrifying microorganism group that can generate nitrogen gas by reacting ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor under anoxic conditions. The denitrification method became known (Microbiology 142 (1996), p2187-2196, etc.). Hereinafter, this reaction is referred to as an ANAMOX reaction, and a group of microorganisms involved in this reaction is referred to as an ANAMOX bacterium. According to this method, ammonia nitrogen can be oxidized using the oxidizing power of nitrite nitrogen, so nitrogen can be removed with an oxygen consumption equivalent to the theoretical amount, saving energy. be able to. Moreover, since it is not necessary to add organic substances, such as methanol, the cost can be saved. This microorganism is an autotrophic bacterium, and the amount of excess sludge generated per nitrite nitrogen to be reduced is less than one-fifth compared to denitrifying bacteria that use organic matter to denitrify, The amount of generation can be greatly reduced. Nitrite nitrogen as an electron acceptor involved in this reaction can be obtained by partially oxidizing ammonia nitrogen in wastewater, and may be introduced from other systems, or a separate chemical may be used. good.
[0006]
The type of reaction tank is a column packed with a carrier suitable for adhering microorganisms such as sand, synthetic resin, and gel. A method is used in which a denitrification reaction proceeds by contacting microorganisms. A carrier having a large specific surface area is suitable for the carrier used here, and in particular, a granular shape having a particle diameter of about 0.1 to 10 mm, or a shape such as a string shape, a cylindrical shape, or a gear shape is known. The carrier is preferably flowed gently in water, and is flowed by a gas generated by denitrification, a gas injected from the outside, a stirrer, or the like.
[0007]
In addition, denitrifying microorganisms that grow in suspension in water can be used, and the reaction is achieved by increasing the concentration of microorganisms in the system by reducing the amount of microorganisms flowing out of the system by solid-liquid separation of the grown microorganisms. Increasing the reaction rate per tank volume is also preferred. In this case, various conventionally known methods such as precipitation, flotation, centrifugation, and filtration can be applied to the solid-liquid separation means used.
[0008]
In addition, raw water is injected in an upward flow from the bottom of the reaction tank, and sludge is blocked or granulated without using a bacterial adhesion carrier to form a sludge bed of granular sludge having a particle size of 1 to several mm. In addition, a USB (Upflow Sludge Bed) system is also known in which microorganisms are held at a high concentration in a reaction tank and a high load treatment is performed.
[0009]
FIG. 3 is a schematic cross-sectional view showing a conventional USB reaction vessel. The raw water is appropriately mixed with dilution water and injected into the reaction tank 10 through the raw water injection pipe 11 at the bottom of the USB reaction tank 10. 12 is a raw water injection pump, 13 is a flow control valve, 14 is a flow meter, 15 is a dilution water injection pipe, and 16 is a dilution water injection pump. As the raw water injection pipe 11, one having an inner diameter of about 8 to 100 mm is used, and a raw water outlet of about 5 to 50 mm at 0 to 45 degrees is provided in the reaction tank. The ejection speed of the raw water from the ejection port is set to 0.5 to 5 m / sec. The maximum flow rate in the pipe is about 2 to 5 m / sec. In order to uniformly disperse the raw water, it is also preferable to assemble the raw water injection pipe 11 into a loop as shown in FIG. A plurality of sets of such raw water injection pipes 11 may be provided according to the bottom area of the reaction tank 10, but the positions in the height direction of the denitrification tank are the same.
[0010]
A gas-solid-liquid separator (GSS) 17 is provided at the top of the reaction tank 10 to form a stationary liquid surface by separating the gas, and to obtain treated water by settling and separating the granules in the stationary section. . A treated water collection trough 18 for discharging treated water is provided at the upper part of the stationary part, and the treated water is discharged from the treated water discharge pipe 19. Multiple sets of GSSs 17 are provided as necessary. In addition, 17A shows the precipitation part of GSS17, 17B shows the gas trap part of GSS17.
[0011]
By the way, the denitrification method using ANAMOX bacteria using nitrite nitrogen as an electron acceptor is effective in reducing oxygen consumption in the previous nitrification step, reducing the amount of electron donor added for denitrification, and generating excess sludge. Although there is an effect of reducing the amount, on the other hand, if nitrite nitrogen is present in a high concentration, there is a problem that the action of the ANMAMOX bacteria is inhibited and the denitrification reaction does not occur.
[0012]
Such inhibition is said to occur from a nitrite nitrogen concentration of about 50 to 200 mg / L, and the higher the concentration, the greater the inhibitory action. However, in the denitrification reaction tank, the flow of nitrite nitrogen is not a complete extrusion flow, and the nitrite nitrogen that has flowed in is quickly mixed with the liquid in the tank already having a reduced nitrite nitrogen concentration due to the denitrification reaction. Even if the concentration of nitrite nitrogen in the inflow water is 50 to 200 mg / L or more, it is considered that the concentration will decrease rapidly as soon as it is injected into the tank and it will be rapidly diffused and diluted. It was.
[0013]
In the ANAMOX denitrification tank, the pH increases due to the denitrification reaction, so that the raw water pH and the tank pH are adjusted as necessary. Regarding pH adjustment, any method can be used as long as the pH in the tank is maintained at 6 to 9, preferably 7 to 8.5, and acids used for the adjustment are conventionally known, such as hydrochloric acid, sulfuric acid, and carbonic acid. Things can be used. Hereinafter, description of pH adjustment is omitted. In addition, when there are insufficient salts (metal salts, carbonate radicals, phosphates, nitrite nitrogen, ammonia nitrogen, etc.) and organic substances necessary for the growth of microorganisms in the raw water, they may be added in advance as appropriate. You may add directly in a tank. The addition means can use a conventionally well-known thing.
[0014]
[Problems to be solved by the invention]
When the present inventor tried a denitrification process by such a denitrification process using nitrite nitrogen using a USB reaction tank filled with granules carrying ANAMMOX bacteria, the concentration of nitrite nitrogen in the raw water was When it became 300 mg-N / L or more, the denitrification ability declined, and the problem that the growth rate of ANAMOX bacteria fell remarkably occurred.
[0015]
The USB reaction tank used at this time is a cylindrical shape with a granule filling height of 4 m and a diameter of 0.4 m as shown in FIG. 3, and granule mainly composed of methanogenic bacteria is used as a carrier until ANAMOX bacteria grow. In the upper part of the granule filling part in the reaction tank, gas is separated to ensure a stationary liquid surface, the granules in the liquid are allowed to settle and return to the reaction tank, and the supernatant is processed. A separator (GSS) is provided for discharge as water.
[0016]
When the problem of lowering the denitrification capacity occurred, the nitrite nitrogen concentration in the lower part of the reaction tank as the raw water injection port was measured and found to be 80-100 mg-N / L, while 1 m away from the raw water injection point. At the site, it was found that the nitrite nitrogen concentration had dropped below 50 mg-N / L. At this time, almost no gas was generated in the vicinity of the raw water injection point, and the granules were hardly flowing. On the other hand, in the region above 1 m from the raw water injection point, the bubbles rose intermittently. Thus, the granules were also intermittently gently stirred. Because of this, the stirring effect by gas is low near the raw water injection point, and the inside of the tank is close to the extrusion flow, so there is a high concentration of nitrite nitrogen in the raw water. It was suggested that a vicious cycle of inhibiting ANAMOX bacteria to further reduce gas generation and worsen agitation was generated.
[0017]
Therefore, the present inventor circulates a part of the treated water in the USB reaction tank and dilutes the high concentration nitrite nitrogen in the raw water with the treated water, so that the nitrite nitrogen concentration after dilution is 280 mg-N / When the water was passed below L, it was confirmed that ANAMOX bacteria gradually grew and the denitrification ability increased. When the nitrogen load to be added is increased in accordance with the increase in denitrification capacity, the number of granules flowing out to the treated water without being separated in the solid-liquid separation section increases, and the amount of granules retained in the USB reaction tank is increased. A problem that declined occurred. As a result, the amount of ANAMOX bacteria in the USB reaction tank also decreased due to a decrease in the granule retention amount, and it was necessary to reduce the load to be added again in accordance with this. As a result of investigating this cause, the amount of water flow increased as the nitrogen load increased, the rising flow velocity inside the USB reaction tank became 2 m / hr or more, and the rising flow velocity in the solid-liquid separation unit became 3 m / hr or more. It seems that granules with a slow sedimentation speed flowed into the treated water without sedimentation. In order to reduce the outflow of granules, the ascending flow rate of the USB reaction tank was required to be 1.5 m / hr or less.
[0018]
As described above, the rising speed of the USB reaction tank has an upper limit of 1.5 m / hr, and the concentration of nitrite nitrogen in the raw water inflow section needs to be 250 mg-N / L or less. The upper limit of nitrite nitrogen is 1.1 kg-N / m 3 / Day, that is, limited to 9.0 kg-N / day per unit bottom area. Here, since the granule height is 4 m, the nitrite nitrogen load per granule filling part volume is 2.2 kg-N / m. 3 It was found that / day is the upper limit.
[0019]
Such restriction is a particular problem when introducing nitrite nitrogen having a low inhibitory concentration. For example, in a USB reaction tank that denitrifies nitrate nitrogen, nitrate nitrogen has almost no inhibition. No such problem has occurred.
[0020]
Further, when observing the granule flowing out at this time and having a slow sedimentation rate, most of the granule was enlarged to a particle size of 3 mm or more, and there were many voids and lacking in density. In addition, some of the granules that flowed out had buoyancy and did not settle even when left standing.
[0021]
The present invention solves such problems in USB reaction tanks using ANAMOX bacteria, and prevents inactivation or reduced activity of ANAMMOX bacteria caused by a local increase in nitrite nitrogen concentration in the raw water injection section. High-load processing Life The object is to provide a denitrification method.
[0023]
In the biological denitrification method of the present invention, raw water containing nitrite nitrogen is supplied to a denitrification tank, and an electron donor is removed by the action of a denitrification microorganism using nitrite nitrogen in the denitrification tank as an electron acceptor. A biological denitrification method in which denitrification treatment is performed in the presence of the denitrification tank, wherein the denitrification tank has an inflow pipe of raw water containing nitrite nitrogen and an outflow pipe of a treatment liquid, and the inflow pipe of the raw water is the denitrification tank The amount of nitrite nitrogen [N of raw water flowing in from the uppermost raw water inflow pipe] [N o ] (Mg-N / hr) is the amount of water passing through the denitrification tank cross section where the most upstream raw water inflow pipe is located [V o ] Value divided by (L / hr) [N o ] / [V o ] Is adjusted so that it does not exceed 300 mg-N / L, the amount of raw water flowing from the uppermost raw water inlet pipe.
[0024]
In the following, the amount of nitrite nitrogen (nitrogen equivalent) [N] (mg-N / hr) of raw water flowing into the denitrification tank from the raw water inflow pipe is taken across the denitrification tank where the raw water inflow pipe is located. The value [N] / [V] (mg-N / L) divided by the amount of water passing through the surface [V] (L / hr) may be referred to as “nitrite nitrogen injection concentration”. The nitrite nitrogen injection concentration means the average concentration of nitrite nitrogen to be injected with respect to the total water flow amount after the raw water injection at the raw water injection point.
[0025]
Also, the position where the raw water inflow pipe is provided is referred to as “injection point”, the position where the uppermost raw water inflow pipe is provided is referred to as “first injection point”, and the raw water injection pipe downstream from the first injection point is installed. The positions may be referred to as “second injection point”, “third injection point”,...
[0026]
The action mechanism according to the present invention will be described in detail below.
[0027]
As a result of investigation by the present inventor, when raw water containing nitrite nitrogen is allowed to flow from only one lower point of the USB reaction tank in the conventional USB reaction tank shown in FIG. As shown, in the region from the bottom to a certain height H1, the concentration of nitrite nitrogen is such that the inhibitory action is strong. c The concentration becomes higher than that, and the ANAMOX bacteria cannot work effectively and are inactivated. However, in a region higher than H1, the concentration of nitrite nitrogen decreases due to the diffusion / dilution action and becomes a concentration that does not show inhibition, so that the denitrification reaction proceeds. Therefore, the partial pressure of nitrogen gas generated by denitrification is increased downstream from H1 (the upper part of the reaction tank), and fine bubbles of nitrogen gas are generated. These nitrogen gases are transferred downstream (above the reaction tank) by the water flow. As a result, nitrogen gas collects and coarse bubbles are generated, and the generation of gas is clearly recognized from a point near G1.
[0028]
Here, C c Is a nitrite nitrogen concentration that inhibits ANAMMOX bacteria, and is generally 50 to 200 mg-N / L, although it depends on the environment such as pH, ammonia nitrogen concentration, and temperature in the tank. In addition, since the inhibitory action gradually becomes stronger as the nitrite nitrogen concentration becomes higher, it is not preferable to specify the concentration at one point strictly. Here, in order to explain the operation of the present invention, there is a certain concentration C c However, in reality, it is a range with a certain width. Accordingly, the value such as the height H1 is not strictly determined at one point, and is a range having a certain width.
[0029]
As this reaction vessel is continuously operated, the distribution of nitrite nitrogen concentration increases in the high concentration region on the upstream side, as indicated by A2 in FIG. c It has been found that the region having the above concentration (for example, H2 in FIG. 5) expands. This phenomenon is caused when microorganisms having a height up to H1 are deactivated in the state of A1, so that the denitrification function near the reaction tank inlet does not work, and the injection point of nitrite nitrogen is eventually I2 in FIG. It was thought that this was because the situation was the same as having moved to this point. At this time, the position where the generation of nitrogen gas is recognized is also moved to the downstream G2, and the position where the gas is generated is away from the injection point of nitrite nitrogen. The flow was less affected by the gas, and it was found that the nitrite nitrogen did not diffuse further on the upstream side (lower part of the reaction tank) and the environment was likely to remain at a high concentration.
[0030]
From the above, if a region with high concentration of nitrite nitrogen is locally formed in the reaction tank near the injection point of raw water containing nitrite nitrogen, microorganisms in that region are deactivated, and as a result , The area where nitrite nitrogen is high is further expanded, the surrounding microorganisms are newly deactivated, and the area where the denitrification reaction is inhibited gradually due to the high concentration of nitrite nitrogen is expanded I understood that. It was also found that the area where nitrogen gas begins to be generated due to the inhibition of the denitrification reaction has moved away, which further hinders the diffusion of nitrite nitrogen.
[0031]
In the present invention, in order to prevent such a local increase in the concentration of nitrite nitrogen in the reaction tank, a plurality of inflow points of raw water containing nitrite nitrogen are provided in the height direction of the reaction tank, The above-mentioned problem is avoided by setting the nitrite nitrogen injection concentration in the (most upstream) to 300 mg-N / L or less.
[0032]
That is, by reducing the nitrite nitrogen injection concentration at the first injection point, the concentration C at which nitrite nitrogen shows inhibition in the reaction tank as shown by A3 in FIG. c The above problem can be avoided by injecting raw water containing nitrite nitrogen again at the point where nitrite nitrogen is sufficiently diffused and diluted and denitrified to a low concentration. Is done.
[0033]
At this time, after the second injection point, the gas generated by the denitrification reaction is close to the point G3 where the bubbles start to form bubbles, and the nitrite nitrogen injected by the disturbance of the water flow due to the bubbles is easily diffused into the denitrification tank. It is a condition. Furthermore, since the granules move as the bubbles rise, even if there is ANAMOX bacteria that have started to be inactivated by high concentrations of nitrite nitrogen near the injection point, the position of this ANAMMOX bacteria over time Can move to where the concentration of nitrite nitrogen is low and no inhibition occurs. When contact with high-concentration nitrite nitrogen is for a short time, the denitrification ability is deactivated temporarily, and the activity is quickly recovered.
[0034]
For this reason, the nitrite nitrogen injection concentration after the second injection point may be higher than that at the first injection point.
[0035]
Moreover, according to this invention, the following effects are also show | played.
[0036]
As a result of investigation by the present inventor, when sufficient ANAMMOX bacteria are growing inside the granule, penetration by diffusion of the substrate into the granule becomes rate-limiting. For example, when ammonia nitrogen is sufficiently present and the nitrite nitrogen concentration is 10 mg-N / L, the penetration depth of nitrite nitrogen is about 0.3 to 0.6 μm from the granule surface. In addition, since nitrite nitrogen does not reach the ANAMOX bacteria inside this, the ANAMOX bacteria cannot work effectively. On the other hand, when the concentration of nitrite nitrogen is 50 mg-N / L, the penetration depth of nitrite nitrogen is about 1 to 2 mm from the surface of the granule, and it is effectively used up to ANAMMOX bacteria inside the granule. In addition, the denitrification capacity per granule is improved to about twice. When the ANAMMOX bacteria inside the granule proliferate in this way, stress is applied from the inside of the granule, so the granule cannot grow into a uniform spherical shape, and the surface grows while absorbing cracking and generating stress. As a result, it was found that granules having many voids and lacking in density were produced. Moreover, since the penetration of the substrate into the granule means that nitrogen gas is generated inside, the buoyancy of the granule is caused by the nitrogen gas generated here collecting in the voids generated inside the granule. It is easy to rise and rise.
[0037]
Also in the continuous test using the conventional USB reaction tank shown in FIG. 3, a large number of granules having a relatively large particle size of 2 to 3 mm are distributed near the injection point of the raw water, which is a high concentration around the injection point. This is considered to be the result of the growth of granules in a nitrite nitrogen environment. In addition, it was observed that a granule having a size larger than that caused buoyancy by holding bubbles inside, and rising to the upper part of the reaction tank. As a result, a new granule flows into the region where the concentration of nitrite nitrogen is high, and this granule is enlarged, and the cycle of rising with air bubbles is repeated. It became clear that it was a production site.
[0038]
In order to prevent the formation of such enlarged granules, the nitrite nitrogen concentration in the reaction tank is preferably 30 mg-N / L or less, particularly preferably 10 mg-N / L or less, For this purpose, according to the present invention, a plurality of injection points of raw water are provided in the height direction of the denitrification tank, and the concentration of nitrite nitrogen injection at the first upstream injection point is preferably 150 mg-N / L or less, particularly preferably. It is particularly effective that the nitrite nitrogen injection concentration after the second injection point is 80 mg-N / L or less, preferably 300 mg-N / L or less, particularly preferably 150 mg-N / L or less.
[0039]
In the denitrification tank of the present invention, because the upper limit of the flow rate in the tank and the upper limit of the amount of microorganisms retained depend on the type of carrier and the shape of the reaction tank, the limit load varies depending on the specifications and operating conditions of the denitrification tank, In any case, according to the present invention, by providing a plurality of injection points of raw water at different positions in the flow direction of the denitrification tank, there is a problem of an increase in local nitrite nitrogen concentration occurring at high load, that is, local denitrification. Capability deactivation and its expansion over time, biofilm enlargement and associated levitation problems can be avoided, and it is possible to cope with significantly higher loads and higher concentrations of nitrite nitrogen inflow than before. it can.
[0040]
In addition, such an effect is the same also when other denitrifying bacteria other than ANAMOX bacteria are used, and the concentration range in which nitrite nitrogen inhibits other denitrifying bacteria is almost the same. For this reason, the present invention can be effectively applied even when denitrifying bacteria other than ANAMOX bacteria are used.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE INVENTION Life An embodiment of the material denitrification method will be described in detail.
[0042]
1 and 2 are system diagrams showing an embodiment of the biological denitrification apparatus of the present invention. 1 and 2, members having the same functions as those shown in FIG.
[0043]
The biological denitrification apparatus in FIG. 1 branches the raw water injection pipe (inflow pipe) 11 and provides two injection points in the height direction of the USB reaction tank (denitrification tank) 10, and the raw water injection pipe 11 has a stirring gas. 3 is different from the conventional apparatus shown in FIG. 3 in that the introduction pipe 20 is connected, and the other configuration is the same as that of the apparatus shown in FIG.
[0044]
The flow rates of raw water injected from the raw water injection pipes 11A and 11B can be adjusted by flow meters 14A and 14B and flow rate control valves 13A and 13B, respectively. In order to fix the raw water injection pipes 11A and 11B in a fixed position in the USB reaction tank 10, for example, a support member (not shown) is extended from the bottom surface and / or wall surface of the USB reaction tank 10, and the injection pipes 11A, 11A, What is necessary is just to fix 11B. Further, the pipe may be supported by penetrating the pipe through the opposite wall surface.
[0045]
In the apparatus of FIG. 1, a blower 21 is provided as a gas injection means for stirring the granules in the USB reaction tank 10 by bubbling, and the gas is introduced from the gas injection pipe 20 through the raw water injection pipe 11. ing. This gas flow rate is adjusted by a flow meter 23 and a flow rate adjusting valve 22. A gas injection pipe may be provided for each of the raw water injection pipes 11A and 11B, and the gas injection pipe may be directly attached to the USB reaction tank 10.
[0046]
The gas for bubbling is preferably a gas not containing oxygen, and particularly preferably a gas mainly composed of nitrogen gas generated by denitrification reaction. However, even if the dissolved oxygen concentration in the tank rises temporarily by blowing oxygen-containing gas, the denitrification reaction will recover if the dissolved oxygen concentration decreases again, so oxygen-containing gases such as air can also be used. .
[0047]
The biological denitrification apparatus shown in FIG. 2 is provided with downward branch pipes 11a and 11b at portions of the raw water injection pipes 11A and 11B in the USB reaction tank 10, respectively, and the other configuration is the same as the apparatus of FIG. It is said that.
[0048]
By providing the branch pipes 11a and 11b in this way, even if the raw water injection pipes 11A and 11B are clogged, they remain inside the branch pipes 11a and 11b and do not hinder the flow of the main pipes of the raw water injection pipes 11A and 11B. The raw water can be uniformly sprayed from other branch pipes.
[0049]
As a liquid containing nitrite nitrogen to be treated in the present invention, nitrite nitrogen was generated from nitrogen compounds in wastewater such as sewage, factory effluent, sludge digestion and desorption liquid, landfill leachate, and manure. Examples thereof include liquids, particularly liquids in which nitrite nitrogen is generated by oxidizing all or part of organic nitrogen or ammonia nitrogen in waste water. In addition, it may be one in which all or part of nitrate nitrogen in the waste water is reduced to generate nitrite nitrogen, or one in which nitrite nitrogen is added from the outside in the form of industrial chemicals, etc. . As dilution water for reducing the nitrite nitrogen concentration of the raw water, raw water or treated water may be used, or a portion of the waste water having a particularly low nitrite nitrogen concentration may be used. Moreover, water with a low nitrite nitrogen concentration taken out from the middle part of the reaction tank may be used, or industrial water, tap water, well water, or the like may be used.
[0050]
These dilution water and raw water containing nitrite nitrogen are desirably mixed before entering the reaction tank, but may be mixed immediately after entering the reaction tank, or may be mixed in advance with the USB reaction tank 10. Alternatively, the diluted water may be allowed to flow from the upstream side, and only the concentrated nitrite-containing nitrogen-containing liquid may be injected.
[0051]
As shown in FIGS. 1 and 2, the number of raw water injection points is not limited to two, and any number of two or more can be provided. However, the flow direction of the liquid flow path, that is, the height of the USB reaction tank 10 can be provided. The injection points are preferably provided at intervals of 0.1 to 2 m, particularly preferably at intervals of 0.3 to 1.5 m with respect to the direction. The number of injection points is in the height direction of the USB reaction tank 10. On the other hand, it is preferable to provide 2 to 10 points, particularly preferably 2 to 4 points.
[0052]
Further, in the cross-sectional direction of the liquid flow path to be treated, that is, in the transverse cross section in the USB reaction tank 10, the discharge port of the raw water from each injection point is preferably 0.1 to 5 m depending on the width of the cross section. Especially preferably, it is preferable to provide at intervals of 0.2 to 2 m. For example, cross-sectional area 25m 2 At a height of 2m and a volume of 50m 3 It is preferable that the number of outlets provided in the reaction tank region is 1 to 2000 points, particularly 1 to 60 points.
[0053]
As the raw water injection pipe, any conventionally known pipes such as a pipe having one end opened and a pipe having an opening on the side surface can be used.
[0054]
In the present invention, a plurality of injection pipes are provided, and the concentration of nitrite nitrogen injection from the lowest first injection point is set to 300 mg-N / L or less. When the injection concentration exceeds 300 mg-N / L, as described above, ANAMMOX bacteria are inhibited by high concentration of nitrite nitrogen in the reaction tank. As described above, the concentration of nitrite nitrogen injection at the first injection point is preferably 150 mg-N / L or less, particularly 80 mg-N / L or less from the viewpoint of preventing the formation of enlarged granules. When the injection concentration is excessively lowered, the amount of diluted water increases depending on the quality of the raw water, and the treatment efficiency decreases. Therefore, in general, the nitrite nitrogen injection concentration at the first injection point is 10 to 300 mg-N / L, particularly 20 to 80 mg-N / L. preferable.
[0055]
Further, the nitrite nitrogen injection concentration after the second injection point can be made higher than the nitrite nitrogen injection concentration at the first injection point, and 600 mg− from the viewpoint of the above-mentioned inhibition and granule enlargement. N / L or less, particularly 300 mg-N / L or less, particularly 150 mg-N / L or less is preferable. From the viewpoint of processing efficiency, the concentration of nitrite nitrogen injection after the second injection point is 10 to 600 mg-N / L. L is particularly preferably 20 to 150 mg-N / L.
[0056]
The discharge speed of raw water (or diluted raw water) at each injection point is preferably 0.1 to 10 m / sec, more preferably 0.5 to 5 m / sec, and particularly preferably 1 to 2 m / sec. . This flow rate is important for injecting the intended flow rate from each injection point or jet outlet. When the flow rate is low, particularly a large amount of liquid is injected from a specific unintended injection point or jet port, There is a problem that almost no liquid is injected from the injection point or the jet outlet. Further, there is a problem that the discharge area changes due to the adhesion of slime or scale, and the injection flow rate is changed unintentionally accordingly. On the other hand, when the flow rate is too high, a large pressure is required for injecting the liquid, and there arises a problem that an injection pump for generating this pressure becomes expensive or requires a large amount of driving power. Also, in the vicinity of the discharge port, the high concentration of nitrite nitrogen before mixing with the liquid in the tank can easily come into contact with microorganisms until the activity of the microorganisms decreases, the biofilm is physically destroyed, or is not destroyed However, there is a problem that the abundance of microorganisms is significantly biased.
[0057]
The effective raw water distribution ratio and dilution water injection amount for each injection point vary depending on the concentration and activity of microorganisms in the reaction tank, the inflow load, the stirring state in the reaction tank, the gas flow, etc. Therefore, it is desirable to have a structure in which the injection amount at the injection point can be easily changed. However, when many injection points are provided, a plurality of injection points may be handled as a group so that the injection amount for each group can be changed.
[0058]
Furthermore, since microorganisms near the injection point come into contact with high-concentration nitrous acid nitrogen before being sufficiently mixed with the liquid in the tank, there is a risk that the activity may be reduced. Therefore, the vicinity of the discharge port of the raw water injection pipe is covered with a water-permeable member. Therefore, it is effective that the high concentration nitrite nitrogen is diffused and mixed with the liquid in the tank before coming into contact with many microorganisms. In this case, the water-permeable member is preferably one that is difficult for the microorganism carrier to pass through, such as a wedge wire screen or mesh having an aperture of about 0.1 to 2 mm, a cloth such as a nonwoven fabric or a filter cloth, a porous ceramic, a membrane filter, etc. Can be used.
[0059]
These water-permeable members are preferably 0.005 to 0.2 m per nitrite nitrogen 1 kg-N / day injection amount. 2 More preferably, 0.01-0.05m 2 It is preferable to provide the contact area.
[0060]
An embodiment using such a water-permeable member will be described with reference to FIGS. 7 shows the raw water injection pipe, FIG. 7 (a) is a front view, and FIG. 7 (b) is a cross-sectional view taken along the line BB of FIG. 7 (a). The raw water injection pipe 30 is, for example, a pipe having an inner diameter of 20 mm, 3 / Day raw water can be supplied. The tip 30A of the raw water injection tube 30 is closed, and five discharge nozzles 30B each having a diameter of 10 mm are provided in four directions at intervals of 50 mm from a position 30 mm away from the tip. The flow rate in the raw water injection pipe 30 is 1 m / sec, and the discharge speed at each discharge port 30B is 0.2 m / sec.
[0061]
This raw water injection pipe 30 is used, for example, to supply 300 to 600 mg-N / L of nitrite nitrogen, and the amount of nitrogen injected at this time is 9 to 18 kg-N / day.
[0062]
As a water permeable member provided around the raw water injection pipe 30, for example, as shown in FIG. 8A (front view) and FIG. 8B (side view), a cylindrical shape having a diameter of 100 to 200 mm and a height of 300 mm. Thus, a wedge wire screen 40 having an opening of 0.5 mm can be used. Here, both end faces of the cylinder are made of metal plates 41A and 41B that are not particularly permeable in consideration of ease of processing. The area of the cylindrical water-permeable portion 42 is 0.09 to 0.27 m. 2 It is.
[0063]
9 is a view showing a state in which the wedge wire screen 40 of FIG. 8 is installed in the raw water injection pipe 30 of FIG. 7. FIG. 9 (a) is a perspective view, and FIG. 9 (b) is an internal perspective front view. The raw water injection pipe 30 is inserted from an opening 41a provided in the metal plate 41A on one end face of the wedge wire screen 40, and is fixed by being bonded to the metal plate 41A and the metal plate 41B on the other end face. In FIG. 9, the wedge wire screen 40 is provided coaxially with the raw water injection pipe 30, but may be provided in the crossing direction.
[0064]
Note that a pipe having an open end may be used as the raw water injection pipe, and the raw water may be ejected into the wedge wire screen from the open end. In this case, the tip opening portion of the raw water injection pipe may be attached to the end surface of the wedge wire screen, or the tip opening side of the raw water injection pipe may be inserted into the wedge wire screen.
[0065]
When a water-permeable member such as a wedge wire screen is provided, such a water-permeable member may be clogged due to the growth of a biofilm. Alternatively, it is preferable to provide a dedicated bubbling means so as to recover clogging as appropriate. Moreover, as shown in FIG. 1, it can also be set as the structure which supplies the air for bubbling to a raw | natural water injection pipe.
[0066]
The present invention is effective even when an arbitrary microbial carrier such as sand, synthetic resin, or gel is used, but is particularly effective for an apparatus using a carrier that requires a low flow rate in the tank. Such a carrier often has a specific gravity close to that of water. Therefore, the present invention is highly effective when applied to a reaction vessel using a carrier having a specific gravity with respect to water of 0.5 to 2.0, and particularly for a reaction vessel using a carrier with a specific gravity with respect to water of 0.8 to 1.3. High effect when applied.
[0067]
In the case of a fixed bed system where the carrier is less likely to flow out, or when the floating carrier is prevented from flowing out with a screen or mesh, the same effect can be obtained by increasing the amount of diluted water or treated water circulating water instead of the present invention. In this case as well, by using the present invention, it is possible to save dilution water and the cost of the circulation pump.
[0068]
In the case of a reaction tank using these carriers, a reaction tank that is long in the vertical direction may be preferred in order to reduce the installation area. In this case, the water flow direction is often an upward flow or a downward flow. The present invention is particularly suitable for use in a reaction vessel having a long length in the upstream and downstream directions, and is effective for a reaction vessel having a reaction part length of preferably 3 to 30 m, more preferably 4 to 15 m. .
[0069]
In a denitrification apparatus that uses a carrier other than granule, it is not always necessary to have an upward flow, and it may be preferable to install GSS, or it may not be necessary to install it. The presence or absence is not a factor that limits the present invention.
[0070]
In addition, even when the carrier is used in a flowing state or when denitrification reaction is performed using cells that grow in a floc form of 0.1 μm or less without using the carrier, the inside of the water tank is in a state close to the extrusion flow. In addition, the present invention can be suitably applied in the case where it is divided into two or more series tanks, particularly three or more series tanks.
[0071]
When the present invention is used, as a result of the flow rate on the upstream side decreasing, the flow of the liquid and carrier on the upstream side is reduced, the suspended substance (SS) is clogged between the carriers, and a short path of raw water occurs. In some cases, the carriers are combined to form a block and the liquid to be treated is short-passed, causing a phenomenon that the treatment does not proceed effectively, or a gas may accumulate between the block-shaped carriers and rise. . In order to avoid this problem, it is effective to periodically increase the flow rate, to wash away the clogged SS by flowing a liquid in the opposite direction, or to stir the carrier by bubbling. For example, in the case of the USB method, the flow rate in the tank is set to about 1 to 10 m / hr as necessary at a rate of about 1 to 20 times per month, particularly preferably about 2 to 5 times, preferably nitrogen gas or the like. 1 to 30 Nm per bottom area using a gas that does not contain oxygen 3 / M 2 Bubbling at about / hr for about 2 to 40 minutes is good. By this operation, the SS deposited between the carriers can be peeled off or made uniform, so that the problem of clogging can be solved, and the amount of the biofilm adhering to the carrier can be made uniform by moving the position of the carrier in the reaction tank. Can be
[0072]
According to the present invention, since the denitrification reaction rate can be increased, the volume load of nitrite nitrogen is 0.1 to 50 kg-N / m per apparent volume of the carrier packed portion. 3 / Day, more preferably 0.5-30 kg-N / m 3 / Day.
[0073]
【Example】
Hereinafter, the present invention will be described more specifically with reference to comparative examples and examples.
[0074]
Comparative Example 1
700 mg- by the conventional USB reaction tank shown in FIG. 3 (with a granule filling height of 4 m and a diameter of 0.4 m and containing granule mainly composed of methanogenic bacteria as a carrier until the growth of ANAMOX bacteria). Raw water containing N / L ammonia nitrogen and 600 mg-N / L nitrite nitrogen 3 Treatment was performed by introducing from only one injection point of the reaction tank while diluting with / day treated water.
[0075]
The raw water injection point was injected directly from the bottom of the USB reaction tank.
[0076]
At the start of operation, water flow was started at 40 L / day, and after confirming that nitrite nitrogen was removed and the nitrite nitrogen concentration in the treated water was 5 mg-N / L or less, the raw water was gradually Increased inflow. As a result, after about 3 months, 0.8m 3 / Day raw water can be processed, nitrite nitrogen 1kg / m2 per granule filling volume 3 / Day processing capability. At this time, ammoniacal nitrogen is about 0.77 kg / m. 3 / Day is removed, and nitrate nitrogen is about 0.17 kg / m. 3 / Day, the nitrogen removal ability is 1.6 kg / m 3 / Day. Since the removal amount of ammonia nitrogen and the generation amount of nitrate nitrogen with respect to the removal amount of nitrite nitrogen were almost constant regardless of the load, only the removal amount of nitrite nitrogen will be described hereinafter.
[0077]
In this state, the amount of granules flowing out from the reaction vessel was very small, and no significant change was observed in the amount of granules in the reaction vessel. For this reason, the increase in the amount of microorganisms due to the growth of ANAMOX bacteria seemed to be almost balanced with the decrease due to the self-digestion of granules mainly composed of methane bacteria used as a carrier and the amount of granules slightly spilled.
[0078]
Further, the granule that had flowed out had a non-uniform shape in which the sphere collapsed with a particle size of 3 mm or more as described above. There are many such granules near the raw water injection point at the bottom of the reaction tank and at the top of the granule filling part. Due to the above-mentioned action, the granule is enlarged near the raw water injection point, and then buoyancy is generated and the upper part is raised. In particular, it seemed that granules with large buoyancy were flowing out.
[0079]
After that, the flow rate of raw water is 1m 3 / Day, nitrite nitrogen remained in the treated water at about 10 mg-N / L, and gradually decreased for about 1 week, but then gradually increased, and after 3 weeks Nitrite nitrogen in the treated water reached around 20 mg-N / L. When the concentration distribution of nitrite nitrogen in the reaction vessel is measured, as shown in FIG. 5, the concentration of nitrite nitrogen is 100 to 200 mg-N / L in the vicinity of the raw water injection point. It was judged that the anammox bacteria in the vicinity of the point started to be inactivated, and the quality of the treated water deteriorated.
[0080]
For this reason, the dilution water amount is 1.2 m. 3 In order to disperse the deactivated granules near the inflow point, 1Nm of nitrogen gas is added. 3 The inside of the reaction vessel was agitated by feeding it from the bottom of the reaction vessel at a flow rate of / hr for about 10 minutes. After this operation, the concentration of nitrite nitrogen in the treated water decreased, and it became 5 mg-N / L or less after one week.
[0081]
From then on, every time the raw water volume is increased, the diluted water volume is increased by a factor of 1.2, so that the water flow volume can be gradually increased. 3 / Day (rising flow rate 1.5 m / hr). At this time, the removal ability of nitrite nitrogen per granule filling part is 2.4 kg-N / m. 3 / Day.
[0082]
When the water flow rate was further increased, the amount of granules flowing out of the reaction tank increased, and the raw water flow rate was especially 2.7 m. 3 When it reached around / day (ascending flow rate 2 m / hr), the nitrite nitrogen concentration in the treated water again became about 15 mg-N / L. When the operation was continued under these conditions, the granule filling portion had a tendency to gradually decrease due to the outflow of the granule, and the nitrite nitrogen concentration of the treated water was about 25 mg-N / L after 10 days. Increased to.
[0083]
When observing the state in the tank at this time, a part of the granule wound up by the rising of the bubbles rises without settling, and further, a part of the GSS settles but does not settle. It was leaked. For this reason, it was thought that the amount of granules that flowed out without sedimentation increased because the rising flow rate inside the reaction vessel and the GSS sedimentation section became faster with the increase in water flow rate.
[0084]
Example 1
In order to solve the problem of Comparative Example 1, as shown in FIG. 1, the raw water injection point (second injection point) was further increased to a height of 1.5 m from the bottom of the USB reaction tank, and from the first injection point. 0.9m of raw water 3 / Day, and 1.8m of raw water from the second injection point 3 / Day was divided and injected, and the dilution water was injected only 1.2 times the amount of raw water only at the first injection point.
[0085]
That is, from the first injection point, raw water with a nitrite nitrogen concentration of about 270 mg-N / L is injected, and from the second injection point, raw water with a nitrite nitrogen concentration of 600 mg-N / L is injected. Injected.
[0086]
At this time, the nitrite nitrogen injection concentration at the first injection point was 270 mg-N / L, and the nitrite nitrogen injection concentration at the second injection point was 280 mg-N / L.
[0087]
By doing so, the concentration of nitrite nitrogen in the treated water was reduced again, and the outflow of granules was also reduced. In addition, by increasing the amount of raw water passing while maintaining the same ratio, a total of 3.2m 3 / Day can be stably treated to obtain treated water having a nitrite nitrogen concentration of 5 mg-N / L or less. At this time, the removal ability of nitrite nitrogen is 3.8 kg per granule filling part. -N / m 3 / Day.
[0088]
At this time, when the concentration of nitrite nitrogen near the second injection point was measured, it was about 30 to 50 mg-N / L.
[0089]
In order to investigate the limit of the nitrite nitrogen injection concentration at the second injection point, a sodium nitrite solution adjusted to a nitrite nitrogen concentration of 10,000 mg / L was added to the raw water injected from the second injection point, The nitrite nitrogen injection concentration at the two injection points was gradually increased, and the nitrite nitrogen concentration in the vicinity of the second injection point in the denitrification tank was measured. At this time, the dilution water introduced into the first injection point was temporarily deoxygenated tap water.
[0090]
As a result, the sodium nitrite solution 0.12 m was added to the second injection point. 3 Second injection in the denitrification tank when the concentration of nitrite nitrogen in the raw water injected from the second injection point is 1200 mg / L and the concentration of nitrite nitrogen injection at the second injection point is 580 mg / L. The nitrite nitrogen concentration in the vicinity of the point was 50 to 100 mg. From this result, it was considered that the limit value of the nitrite nitrogen injection concentration at the second injection point was around 600 mg / L.
[0091]
Example 2
In Example 1, a raw water injection point (third injection point) is further provided at a height of 2 m from the bottom of the USB reaction tank, and 0.9 m is provided at each of the first injection point to the third injection point. 3 / Day of the same amount of raw water was injected, and diluted water was injected 1.2 times the amount of raw water only at the first injection point.
[0092]
That is, from the first injection point, a mixture of raw water and diluted water having a nitrite nitrogen concentration of about 270 mg-N / L is injected, and from the second and third injection points, a nitrite nitrogen concentration of 600 mg-N / L. Of raw water was injected.
[0093]
At this time, the nitrite nitrogen injection concentration at the first injection point is 270 mg-N / L, the nitrite nitrogen injection concentration at the second injection point is 190 mg-N / L, and nitrous acid at the third injection point. Nitrogen concentration is 140 mg-N / L. Actually, the concentration of nitrite nitrogen near the second injection point decreases to about 15-30 mg-N / L, and about 10-20 mg near the third injection point. -N / L.
[0094]
When operation was performed for about two months in this state, it was confirmed that the amount of granule outflow decreased and the proportion of granules enlarged to 3 mm or more in the tank began to decrease. The effect of preventing granule enlargement by injection was confirmed.
[0095]
【Effect of the invention】
As detailed above, the present invention Life In the material denitrification method, it is possible to perform high load treatment by preventing inactivation of ANAMMOX bacteria due to a local increase in nitrite nitrogen concentration in the raw water injection section in the ANAMOXUSB reaction tank.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a biological denitrification apparatus of the present invention.
FIG. 2 is a schematic cross-sectional view showing another embodiment of the biological denitrification apparatus of the present invention.
FIG. 3 is a schematic cross-sectional view showing a conventional USB reaction tank.
FIG. 4 is a plan view showing an example of a raw water injection pipe of a USB reaction tank.
FIG. 5 is a graph showing the distribution of nitrite nitrogen concentration in a USB reaction tank according to a conventional USB reaction tank.
FIG. 6 is a graph showing the distribution of nitrite nitrogen concentration in the USB reaction tank by the USB reaction tank according to the present invention.
7 is a view showing an embodiment of the raw water injection pipe, FIG. 7 (a) is a front view, and FIG. 7 (b) is a cross-sectional view taken along line BB of FIG. 7 (a).
8A and 8B are diagrams showing an embodiment of a wedge wire screen suitable for the present invention, in which FIG. 8A shows a front view and FIG. 8B shows a side view.
9 shows a state in which the wedge wire screen of FIG. 8 is attached to the raw water injection pipe of FIG. 7, FIG. 9 (a) is a perspective view, and FIG. 9 (b) is an internal perspective front view.
[Explanation of symbols]
10 USB reaction tank
11, 11A, 11B Raw water injection pipe
15 Dilution water injection tube
17 GSS
18 Treated water collection trough
19 Treated water discharge pipe
20 Gas injection pipe
30 Raw water injection pipe
40 wedge wire screen

Claims (3)

亜硝酸性窒素を含有する原水を、脱窒槽に供給し、該脱窒槽内の亜硝酸性窒素を電子受容体とする脱窒微生物の作用により電子供与体の存在下に脱窒処理する生物脱窒方法であって、
該脱窒槽は、亜硝酸性窒素を含有する原水の流入管と処理液の流出管を有し、
該原水の流入管は該脱窒槽の流れ方向の異なる位置に複数設けられ、
最上流の原水流入管から流入する原水の亜硝酸性窒素の量[N](mg−N/hr)を、最上流の原水流入管が位置する脱窒槽横断面を通過する水量[V](L/hr)で除した値[N]/[V]が300mg−N/Lを超えないように、該最上流の原水流入管から流入する原水の量を調節することを特徴とする生物脱窒方法。
Biological denitrification is performed by supplying raw water containing nitrite nitrogen to a denitrification tank, and denitrifying treatment in the presence of an electron donor by the action of a denitrification microorganism using nitrite nitrogen in the denitrification tank as an electron acceptor. Nitrogen method,
The denitrification tank has an inflow pipe for raw water containing nitrite nitrogen and an outflow pipe for treatment liquid,
A plurality of inflow pipes of the raw water are provided at different positions in the flow direction of the denitrification tank,
The amount of nitrite nitrogen [N o ] (mg−N / hr) of raw water flowing in from the uppermost raw water inflow pipe is changed to the amount of water [V o passing through the denitrification tank cross section where the uppermost raw water inflow pipe is located. ] The amount of raw water flowing from the uppermost raw water inlet pipe is adjusted so that the value [N o ] / [V o ] divided by (L / hr) does not exceed 300 mg-N / L. Biological denitrification method.
前記最上流以外の少なくとも1つの原水流入管から流入する原水の亜硝酸性窒素の量[N](mg−N/hr)を、該原水流入管が位置する脱窒槽横断面を通過する水量[V](L/hr)で除した値[N]/[V]が600mg−N/Lを超えないように、該最上流以外の原水流入管から流入する原水の量を調節することを特徴とする請求項に記載の生物脱窒方法。The amount of nitrite nitrogen [ Nn ] (mg-N / hr) of raw water flowing in from at least one raw water inflow pipe other than the uppermost stream is the amount of water passing through the denitrification tank cross section where the raw water inflow pipe is located. The amount of raw water flowing from the raw water inflow pipe other than the most upstream is adjusted so that the value [N n ] / [V n ] divided by [V n ] (L / hr) does not exceed 600 mg-N / L The biological denitrification method according to claim 1 , wherein: 前記脱窒槽には、前記脱窒微生物が担体表面に生物膜を形成したもの、又は、前記脱窒微生物が自己造粒によりグラニュールを形成したものが内蔵されていることを特徴とする請求項1又は2に記載の生物脱窒方法。The denitrification tank contains the denitrification microorganism in which a biofilm is formed on a carrier surface or the denitrification microorganism in which granules are formed by self-granulation. The biological denitrification method according to 1 or 2.
JP2001221683A 2001-07-23 2001-07-23 Biological denitrification method Expired - Lifetime JP5055669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001221683A JP5055669B2 (en) 2001-07-23 2001-07-23 Biological denitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001221683A JP5055669B2 (en) 2001-07-23 2001-07-23 Biological denitrification method

Publications (2)

Publication Number Publication Date
JP2003033793A JP2003033793A (en) 2003-02-04
JP5055669B2 true JP5055669B2 (en) 2012-10-24

Family

ID=19055317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001221683A Expired - Lifetime JP5055669B2 (en) 2001-07-23 2001-07-23 Biological denitrification method

Country Status (1)

Country Link
JP (1) JP5055669B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811702B2 (en) * 2004-03-30 2011-11-09 株式会社日立プラントテクノロジー Anaerobic ammonia oxidation method and wastewater treatment method
JP4645157B2 (en) * 2004-11-01 2011-03-09 株式会社日立プラントテクノロジー Method and apparatus for treating ammonia-containing liquid
JP4780553B2 (en) * 2005-06-16 2011-09-28 日立造船株式会社 Water treatment method and apparatus for wastewater containing ammonia
EP1806324A1 (en) 2006-01-05 2007-07-11 Biothane Systems International B.V. Process and reactor for anaerobic waste water purification
BRPI0705361A2 (en) * 2007-12-28 2010-05-11 Mercosul Com Ltda process for increasing the concentration of microorganism colonies in an anaerobic digestion removal process
JP5316553B2 (en) 2011-01-24 2013-10-16 株式会社明電舎 Waste water treatment apparatus and waste water treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652841B2 (en) * 1993-12-07 1997-09-10 麒麟麦酒株式会社 Operating method of wastewater treatment equipment
JPH07308686A (en) * 1994-05-20 1995-11-28 Mitsubishi Kakoki Kaisha Ltd Upward flow anaerobic treatment device
JP4080046B2 (en) * 1998-01-26 2008-04-23 株式会社荏原製作所 Anaerobic treatment method and apparatus

Also Published As

Publication number Publication date
JP2003033793A (en) 2003-02-04

Similar Documents

Publication Publication Date Title
US9133044B2 (en) Method and device for the treatment of waste water
US6146531A (en) Process and apparatus for biologically treating water
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
JP4224951B2 (en) Denitrification method
US20020185437A1 (en) Method for purification of waste water and a "RFLR" device for performing the same
CN110386731B (en) Main stream autotrophic nitrogen removal system and method based on MBBR
Münch et al. Suspended carrier technology allows upgrading high-rate activated sludge plants for nitrogen removal via process intensification
WO2006049322A1 (en) Biological denitrification method and apparatus
KR102015607B1 (en) Nitrogen removal system for sewage and wastewater comprising nitrogen
JP5055669B2 (en) Biological denitrification method
JP2003033790A (en) Denitrification device and method therefor
KR20000034519A (en) Treatment method of wastewater using filtration and aerobic microorganism
KR100464110B1 (en) Sewage disposal apparatus
CN212334940U (en) Integrated sewage treatment device for deep denitrification and dephosphorization
EP2049443B1 (en) A method and apparatus for simultaneous clarification and endogenous post denitrification
JP4568528B2 (en) Water treatment equipment
KR102000526B1 (en) Manufacturing System for High Quality Liquid Fertilizer with High Nitrate Nitrogen, No Ammonia Nitrogen and No Suspended Solids
JP4780553B2 (en) Water treatment method and apparatus for wastewater containing ammonia
JP2006314991A (en) Apparatus and method for treating high-concentration nitrogen-containing dirty waste water such as waste water from livestock farmer and excreta
US6527948B2 (en) Apparatus for purification of waste water and a “RFLR” device for performing the same
CN102198971A (en) Upward flow biological aerated filter and aeration method thereof
CN112320954A (en) Split aeration combined tower and method for treating high-concentration organic and/or nitrogen-containing wastewater
KR100279843B1 (en) Wastewater Contact Aeration Purification System and Contact Aeration Purification Method
JP2002172399A (en) Denitrification treatment method
KR102488754B1 (en) Apparatus and Method for Treating Anaerobic Digestive Fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5055669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term