JP2002172399A - Denitrification treatment method - Google Patents

Denitrification treatment method

Info

Publication number
JP2002172399A
JP2002172399A JP2000371719A JP2000371719A JP2002172399A JP 2002172399 A JP2002172399 A JP 2002172399A JP 2000371719 A JP2000371719 A JP 2000371719A JP 2000371719 A JP2000371719 A JP 2000371719A JP 2002172399 A JP2002172399 A JP 2002172399A
Authority
JP
Japan
Prior art keywords
denitrification
tank
nitrification
water
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000371719A
Other languages
Japanese (ja)
Inventor
Kazuya Komatsu
和也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000371719A priority Critical patent/JP2002172399A/en
Publication of JP2002172399A publication Critical patent/JP2002172399A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a biological nitrification and denitrification treatment method enabling the stable removal of nitrogen and capable of sufficiently reducing the volume of a reaction tank required in a denitrification process. SOLUTION: Raw water from raw water piping 1 in introduced into a nitrification tank 10 while it receives the addition of a pH controller from adding piping 2 to be subjected to nitrite type nitrification and the treated water is introduced into a USB type denitrification tank 20. A granular sludge bed 21 is formed in the denitrification tank 20 and the treated water from the denitrification tank 20 is aerobically treated in a re-aeration tank 30 to decompose residual organic matter and the aerobically treated water is subjected to solid-liquid separation treatment in a sedimentation basin 40. The outflow water of the nitrification tank 10 is subjected to solid-liquid separation treatment and only water may be introduced into the denitrification tank 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア性窒素
を含有する排水を生物学的に脱窒処理する方法に係り、
特に硝化工程と脱窒工程とを有する脱窒処理方法に関す
る。詳しくは、後段の脱窒工程を好適には上向流汚泥床
(USB:Upflow SludgeBlanke
t)方式の生物学的脱窒装置によって行うようにした脱
窒処理方法に関する。
The present invention relates to a method for biologically denitrifying wastewater containing ammoniacal nitrogen,
In particular, the present invention relates to a denitrification treatment method having a nitrification step and a denitrification step. More specifically, the subsequent denitrification step is preferably performed in an upward sludge bed (USB: Upflow Sludge Blanke).
The present invention relates to a denitrification treatment method performed by a biological denitrification device of the type t).

【0002】[0002]

【従来の技術】アンモニア性窒素を含む排水を処理する
方法として、該アンモニア性窒素を生物学的に亜硝酸又
は硝酸に硝化し、次いでこの亜硝酸又は硝酸を生物学的
に還元して脱窒する生物学的脱窒処理方法は周知であ
る。
2. Description of the Related Art As a method of treating wastewater containing ammoniacal nitrogen, the ammoniacal nitrogen is biologically nitrified into nitrous acid or nitric acid, and then this nitrous acid or nitric acid is biologically reduced and denitrified. Biological denitrification treatment methods are well known.

【0003】この硝化工程でアンモニア性窒素が亜硝酸
に硝化される段階で止めることにより、硝化工程で必要
となる酸素量や後段の脱窒工程で必要となるメタノール
等の水素供与体量が少なくて済む。
In the nitrification step, the amount of oxygen required in the nitrification step and the amount of hydrogen donors such as methanol required in the subsequent denitrification step are reduced by stopping at the stage where the ammonia nitrogen is nitrified into nitrite. I can do it.

【0004】硝化工程を亜硝酸型硝化に制御する方法と
して、硝化槽内の溶存酸素濃度やpHを制御したり(特
開昭53−70551号、特開昭59−92096
号)、アンモニアや亜硝酸、硫化物により微生物阻害す
る(特開昭60−212294号、特開平2−1986
95号、特開平4−161299号)方法などがある。
また、硝化槽内を亜硝酸酸化菌よりもアンモニア酸化菌
の生育に適した30〜40℃と高めの温度に保持し、か
つ汚泥の返送をなくし、滞留時間を0.5〜2.5日程
度と短めに維持することによってアンモニア酸化菌を優
先的に増殖させて亜硝酸型硝化を維持する方法もある
(The SHARON process:a inn
ovative methods for nitro
gen removal from ammonium
−rich waste water/ Wat.Sc
i.Tech.Vol.37 No.9 pp135−
142 1998)。なお、ここで亜硝酸型硝化という
のは硝化工程で生成する酸化態窒素(亜硝酸性窒素と硝
酸性窒素)のうち、亜硝酸性窒素が50%以上を占める
ものをいう。
As a method of controlling the nitrification step to nitrite-type nitrification, the concentration of dissolved oxygen and pH in a nitrification tank are controlled (Japanese Patent Application Laid-Open Nos. 53-70551 and 59-92096).
Microbial inhibition by ammonia, nitrous acid and sulfide (JP-A-60-212294, JP-A-2-1986)
95, JP-A-4-161299).
In addition, the inside of the nitrification tank is maintained at a higher temperature of 30 to 40 ° C., which is more suitable for the growth of ammonia oxidizing bacteria than nitrite oxidizing bacteria, and sludge is not returned. The residence time is 0.5 to 2.5 days. There is also a method of maintaining nitrite-type nitrification by preferentially growing ammonia-oxidizing bacteria by maintaining the degree to be as short as possible (The SHARON process: a inn
Ovative Methods for Nitro
gen removal from ammonium
-Rich waste water / Wat. Sc
i. Tech. Vol. 37 No. 9 pp135-
142 1998). Here, nitrite-type nitrification refers to nitrite nitrogen that accounts for 50% or more of the oxidized nitrogen (nitrite nitrogen and nitrate nitrogen) generated in the nitrification step.

【0005】これらの亜硝酸型硝化方法はいずれも亜硝
酸酸化菌の活性もしくは増殖を制限し、硝化槽内のアン
モニア酸化活性と亜硝酸酸化活性に差を生じさせ、結果
として本来中間生成物である亜硝酸を残留させるもので
ある。このように亜硝酸型硝化を行う場合にはアンモニ
ア酸化活性を亜硝酸酸化活性よりも高くするため、処理
対象水は100〜3,000mg−N/Lの高濃度のア
ンモニアを含む排水であることが多い。
[0005] All of these nitrite-type nitrification methods limit the activity or growth of nitrite-oxidizing bacteria, and cause a difference between the ammonia oxidation activity and the nitrite oxidation activity in the nitrification tank, and as a result, they are essentially intermediate products. It leaves some nitrous acid. In the case of performing nitrite-type nitrification in this way, the water to be treated is wastewater containing a high concentration of ammonia of 100 to 3,000 mg-N / L in order to make the ammonia oxidation activity higher than the nitrite oxidation activity. There are many.

【0006】[0006]

【発明が解決しようとする課題】このように、亜硝酸型
硝化では処理対象が高濃度のアンモニア含有排水である
ため、その硝化処理水には高濃度の酸化態窒素が含ま
れ、これを後段の脱窒工程で脱窒処理するためには大容
量の脱窒槽が必要になるという問題がある。
As described above, in nitrite type nitrification, since the treatment target is wastewater containing high concentration of ammonia, the nitrification treatment water contains high concentration of oxidized nitrogen, There is a problem that a large-capacity denitrification tank is required in order to perform the denitrification treatment in the denitrification step.

【0007】本発明は、この脱窒工程を小容量の脱窒槽
で行うことができる脱窒処理方法を提供することを目的
とする。
An object of the present invention is to provide a denitrification treatment method capable of performing this denitrification step in a small-capacity denitrification tank.

【0008】[0008]

【課題を解決するための手段】本発明の脱窒処理方法
は、排水中のアンモニア性窒素を窒素酸化物に生物学的
に硝化する工程と、該窒素酸化物を生物学的に還元して
脱窒する工程とを有する脱窒処理方法において、該硝化
工程が亜硝酸型硝化の硝化槽内で行われ、該脱窒工程が
脱窒菌グラニュールが充填されている脱窒槽内で行われ
ることを特徴とするものである。
The denitrification treatment method of the present invention comprises a step of biologically nitrifying ammoniacal nitrogen in wastewater into nitrogen oxides, and a step of biologically reducing the nitrogen oxides. Denitrification method having a step of denitrification, wherein the nitrification step is performed in a nitrification tank of nitrite type nitrification, and the denitrification step is performed in a denitrification tank filled with denitrifying bacteria granules. It is characterized by the following.

【0009】かかる本発明では、硝化工程が亜硝酸型で
あり、硝化工程で必要となる酸素量や後段の脱窒工程に
おいて必要となる水素供与体が少なくて済む。
In the present invention, the nitrification step is of the nitrite type, and the amount of oxygen required in the nitrification step and the amount of hydrogen donor required in the subsequent denitrification step can be reduced.

【0010】この脱窒工程を、脱窒菌グラニュールが充
填されている脱窒槽、好適にはグラニュールを充填した
USB方式の生物学的脱窒装置によって行うことによ
り、脱窒槽が小容量で済む。
The denitrification step is carried out by a denitrification tank filled with denitrifying bacteria granules, preferably a USB type biological denitrification apparatus filled with granules, so that the denitrification tank can have a small capacity. .

【0011】このUSB方式の生物学的脱窒装置では、
脱窒菌の付着担体を用いることなく、反応塔内に脱窒菌
を高濃度の粒状に凝集させたグラニュールの汚泥床を形
成し、亜硝酸化硝化処理水を反応塔下部から導入してこ
のグラニュールと接触させて亜硝酸化硝化処理水中の硝
酸性窒素、亜硝酸性窒素を分解し、脱窒処理水を反応塔
上部の固液分離部から取り出す。このUSB方式の脱窒
処理槽は、脱窒菌が高濃度に凝集した汚泥床を有するた
め、高負荷で脱窒処理することができる。
In this USB type biological denitrification apparatus,
Without using a carrier for denitrifying bacteria, a sludge bed of granules in which the denitrifying bacteria were agglomerated in high concentration was formed in the reaction tower, and nitrite-nitrified water was introduced from the lower part of the reaction tower to form the granules. To decompose nitrate nitrogen and nitrite nitrogen in the nitrifying and nitrifying water, and remove the denitrifying water from the solid-liquid separation section at the top of the reaction tower. Since the USB type denitrification treatment tank has a sludge bed in which denitrifying bacteria are coagulated at a high concentration, the denitrification treatment can be performed at a high load.

【0012】ところで、このUSB方式の脱窒槽への流
入水中のSS濃度が高いと、該脱窒槽でのグラニュール
の維持が不安定になるおそれがある。即ち、流入水中の
SSに伴われてグラニュールが流出したり、SSの方が
沈殿してグラニュールが流出してしまったり、SSによ
ってグラニュールが破壊されてしまったりする。
If the SS concentration in the inflow water into the USB type denitrification tank is high, the maintenance of granules in the denitrification tank may become unstable. That is, the granules flow out due to the SS in the inflow water, the SS precipitates and the granules flow out, or the granules are destroyed by the SS.

【0013】そこで、本発明では、亜硝酸型硝化処理水
を固液分離処理し、分離された水分のみを脱窒工程に送
給することが望ましい。
Therefore, in the present invention, it is desirable to subject the nitrite-type nitrification-treated water to a solid-liquid separation treatment and feed only the separated water to the denitrification step.

【0014】なお、USB方式の脱窒処理工程において
も、通常の脱窒処理工程と同じく脱窒反応に必要な有機
物(通常メタノール)を原水(硝化処理水)に注入する
が、脱窒反応を速やかに完了させるためには、理論上必
要な有機物量よりも過剰に、通常は理論量の約1.2倍
(N濃度の約3倍)程度の有機物量となるように注入す
る。
In the denitrification treatment step of the USB system, an organic substance (normally methanol) necessary for the denitrification reaction is injected into the raw water (nitrified water) as in the ordinary denitrification treatment step. In order to complete the process quickly, the organic material is injected in excess of the theoretically necessary amount of organic matter, usually about 1.2 times the theoretical amount (about 3 times the N concentration).

【0015】脱窒反応塔内において、原水に注入した有
機物は脱窒された亜硝酸性窒素の量に見合った量だけ消
費されるが、原水中には前述の如く理論量より過剰の有
機物を注入しているため、脱窒処理水中には脱窒反応で
消費されなかった余剰の有機物が残留しており、BO
D、CODが高く、当該水をこのまま放流することがで
きない。従って、本発明にあっては、脱窒反応で除去さ
れずになお残留するメタノール等の有機物を除去するた
めに、脱窒反応工程の後段に再曝気槽等の好気性生物処
理工程を設けるのが好ましい。
In the denitrification reaction tower, the organic matter injected into the raw water is consumed in an amount corresponding to the amount of denitrified nitrite nitrogen. Because of the injection, surplus organic substances not consumed by the denitrification reaction remain in the denitrification treatment water, and BO
D, COD is high, and the water cannot be discharged as it is. Therefore, in the present invention, an aerobic biological treatment step such as a re-aeration tank is provided after the denitrification reaction step in order to remove organic substances such as methanol which are not removed by the denitrification reaction. Is preferred.

【0016】[0016]

【発明の実施の形態】以下に図面を参照して実施の形態
を詳細に説明する。図1は本発明の実施の形態に係る脱
窒処理方法を実施するための生物学的脱窒装置を示す系
統図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a system diagram showing a biological denitrification apparatus for performing a denitrification treatment method according to an embodiment of the present invention.

【0017】この生物学的脱窒装置は、硝化槽10、脱
窒槽20、再曝気槽30及び沈殿池40を備えている。
This biological denitrification apparatus includes a nitrification tank 10, a denitrification tank 20, a re-aeration tank 30, and a sedimentation tank 40.

【0018】硝化槽10には原水(アンモニア性窒素含
有排水)が原水配管1を介して導入される。なお、原水
配管1にはpH調製剤添加用の配管2と沈殿池40から
の汚泥返送配管43とが接続されている。この硝化槽1
0内の底部には空気等の酸素含有ガスを槽内に吹き込む
ための散気管11が設けられている。この硝化槽10で
は主に亜硝酸型硝化が進行するが、部分的には硝酸型硝
化も進行する。
Raw water (drainage containing ammoniacal nitrogen) is introduced into the nitrification tank 10 through a raw water pipe 1. The raw water pipe 1 is connected to a pipe 2 for adding a pH adjuster and a pipe 43 for returning sludge from the sedimentation tank 40. This nitrification tank 1
An air diffuser 11 for blowing an oxygen-containing gas such as air into the tank is provided at the bottom of the chamber. In this nitrification tank 10, nitrite-type nitrification mainly proceeds, but nitrate-type nitrification also partially progresses.

【0019】硝化槽10内において主として亜硝酸型硝
化を受けた硝化処理水は、配管12を介して、且つその
途中で配管13からメタノール等の有機物(水素供与
体)の添加を受けて、USB方式の脱窒槽20の下部へ
送給される。この脱窒槽20は、上下方向に長い反応塔
よりなるものであり、下部は下方に縮径する円錐形状部
となっており、その上部が円筒状となっている。配管1
2からの亜硝酸性窒素を含む有機性排水は脱窒槽20の
下部から塔内に導入されて塔内を上向流で流れ、処理水
は塔上部から取出用配管22を介して取り出され、再曝
気槽30へ送給される。また、処理水の一部を配管13
や原水配管1に循環させてもよい。
In the nitrification tank 10, nitrification-treated water mainly subjected to nitrite-type nitrification passes through a pipe 12 and, on the way, receives an organic substance such as methanol (hydrogen donor) from a pipe 13, and receives a USB. It is fed to the lower part of the denitrification tank 20 of the type. The denitrification tank 20 is composed of a vertically long reaction tower. The lower part has a conical portion whose diameter is reduced downward, and the upper part has a cylindrical shape. Piping 1
The organic wastewater containing nitrite nitrogen from Step 2 is introduced into the tower from the lower part of the denitrification tank 20 and flows upward in the tower, and the treated water is taken out from the upper part of the tower via a take-out pipe 22, It is sent to the re-aeration tank 30. In addition, a part of the treated water is
Or may be circulated through the raw water piping 1.

【0020】この脱窒槽20の内部にはグラニュールの
汚泥床21が形成されている。グラニュールの汚泥床2
1は通常、反応塔容積の4〜6割を占める。
Inside the denitrification tank 20, a granular sludge bed 21 is formed. Granule sludge bed 2
1 usually occupies 40 to 60% of the reaction tower volume.

【0021】再曝気槽30内に送給された脱窒処理水
は、散気管31によって吹き込まれた空気等の酸素含有
ガスによって曝気され、残留有機物が好気的に分解処理
される。
The denitrification-treated water fed into the re-aeration tank 30 is aerated by an oxygen-containing gas such as air blown by a diffuser 31 to aerobically decompose residual organic matter.

【0022】この再曝気槽30で有機物が分解処理され
た水は、配管32から沈殿池40へ送られ、上澄水が配
管41から処理水として取り出され、沈殿した汚泥は配
管42から引き抜かれる。そして、汚泥の一部は返送配
管43,44を介して硝化槽10と再曝気槽30へ返送
される。
The water from which the organic matter has been decomposed in the re-aeration tank 30 is sent from a pipe 32 to a sedimentation tank 40, the supernatant water is taken out as treated water from a pipe 41, and the settled sludge is withdrawn from a pipe 42. Then, a part of the sludge is returned to the nitrification tank 10 and the re-aeration tank 30 via the return pipes 43 and 44.

【0023】図2は、図1の硝化槽10からの流出水を
配管16を介して沈殿池15に導入して固液分離し、分
離した分離液のみを配管12から脱窒槽20へ送給する
ようにしたものである。有機物の添加用の配管13はこ
の配管12に接続されている。この沈殿池15の沈降汚
泥は、返送配管17を介して硝化槽10へ返送される。
なお、前記沈殿池40からの返送汚泥は、返送配管44
を介して再曝気槽30のみへ返送されている。図2のそ
の他の構成は図1と同一であり、同一符号は同一部分を
示している。
FIG. 2 shows that the effluent from the nitrification tank 10 of FIG. 1 is introduced into the sedimentation basin 15 via the pipe 16 to be separated into solid and liquid, and only the separated liquid is fed from the pipe 12 to the denitrification tank 20 It is something to do. A pipe 13 for adding an organic substance is connected to the pipe 12. The settled sludge in the sedimentation basin 15 is returned to the nitrification tank 10 via the return pipe 17.
The return sludge from the sedimentation tank 40 is returned to the return pipe 44
Is returned only to the re-aeration tank 30 via the 2 are the same as those in FIG. 1, and the same reference numerals indicate the same parts.

【0024】このような本発明の生物学的脱窒装置にお
いて、脱窒処理される原水性状としては、アンモニア性
窒素濃度が100〜3000mg−N/Lのものが好適
である。
In the biological denitrification apparatus of the present invention, the raw water to be denitrified preferably has an ammonia nitrogen concentration of 100 to 3000 mg-N / L.

【0025】なお、原水に対してPO−P濃度が0.
5〜30mg−P/Lとなるように、必要に応じてPと
してメタノール添加量の0.5〜1%程度のリン酸、リ
ン酸塩等が添加される。
It should be noted that the PO 4 -P concentration is 0.1% with respect to the raw water.
If necessary, phosphoric acid, phosphate, or the like is added as P in an amount of about 0.5 to 1% of the added amount of methanol so that the concentration becomes 5 to 30 mg-P / L.

【0026】また、硝化によりpHが低下するので、図
1,2の通り原水に対しpH調製剤を添加し、硝化槽1
0内のpHを6.0〜7.0に維持するのが好ましい。
pH調製剤は配管1からではなく、直接に硝化槽10に
添加されてもよい。
Since the pH is lowered by nitrification, a pH adjuster is added to the raw water as shown in FIGS.
Preferably, the pH within 0 is maintained between 6.0 and 7.0.
The pH adjusting agent may be directly added to the nitrification tank 10 instead of from the pipe 1.

【0027】硝化槽10では、N負荷は0.5〜4kg
−N/m.d、特に0.5〜2kg/m.dが好ま
しい。水理学的滞留時間HRTは2hr〜2dayが好
ましく、水温は15〜40℃特に25〜37℃が好まし
い。
In the nitrification tank 10, the N load is 0.5 to 4 kg.
−N / m 3 . d, especially 0.5 to 2 kg / m 3 . d is preferred. The hydraulic retention time HRT is preferably 2 hours to 2 days, and the water temperature is preferably 15 to 40 ° C, particularly preferably 25 to 37 ° C.

【0028】脱窒槽20のN負荷は2〜10kg−N/
・d特に5〜10kg−N/m ・dが好ましい。
脱窒槽20の塔内汚泥床比率は20〜70%特に40〜
60%が好ましい。この汚泥床内の汚泥濃度は2万〜1
0万mg/Lとくに2万〜6万mg/Lが好ましい。通
水条件は、HRTは1〜8hr特に1.5〜4hrが好
ましく、LVは0.5〜10m/hr特に2〜6m/h
rが好ましい。pHは6.5〜9.0特に7.0〜8.
0が好ましく、水温は15〜35℃特に20〜30℃が
好ましい。
The N load of the denitrification tank 20 is 2 to 10 kg-N /
m3・ D especially 5 to 10 kg-N / m 3-D is preferred.
The sludge bed ratio in the denitrification tank 20 is 20-70%, especially 40-70%.
60% is preferred. The sludge concentration in this sludge bed is 20,000 to 1
It is preferable that the amount is from 10,000 to 60,000 mg / L. Through
As for water conditions, HRT is preferably 1 to 8 hr, particularly 1.5 to 4 hr.
Preferably, the LV is 0.5 to 10 m / hr, particularly 2 to 6 m / h.
r is preferred. The pH is 6.5-9.0, especially 7.0-8.0.
0 is preferable, and the water temperature is 15 to 35 ° C, particularly 20 to 30 ° C.
preferable.

【0029】配管13からの配管12へのメタノール等
の水素供与体の添加量は、配管12中の水中のNO
NのNの2〜3倍量が好ましい。
The amount of the hydrogen donor such as methanol added from the pipe 13 to the pipe 12 is determined by the amount of NO X
N is preferably 2 to 3 times the amount of N.

【0030】[0030]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0031】実施例1 図1に示す装置を用いて、水道水に酵母エキス10mg
/L、NHClを500mg−N/L、HPO
10mg−P/Lとなるように添加して調製した合成排
水(25℃、pH6.5)を4.2L/hrで流入さ
せ、55日間(うち、15日は立ち上げ期間)処理を行
った。容量20Lの硝化槽10にはスポンジ担体を40
体積%添加するとともにし尿処理場の硝化脱窒汚泥を種
汚泥として投入した。硝化槽10の汚泥濃度は1,20
0mg/Lであった。円筒反応塔よりなる脱窒槽20
は、直径12cm、直胴部の長さは85cm、反応塔下
部円錐部の高さは12cmであり、容積は10Lであ
る。配管13からのメタノール添加量は1,000mg
/Lとした。
Example 1 Using the apparatus shown in FIG. 1, 10 mg of yeast extract was added to tap water.
/ L, NH 4 Cl to 500mg-N / L, H 3 PO 4 to 10 mg-P / L become as in Synthesis drainage (25 ℃, pH6.5) was prepared by adding flowing at 4.2 L / hr Then, processing was performed for 55 days (of which, 15 days were a start-up period). The nitrification tank 10 having a capacity of 20 L contains 40 sponge carriers.
In addition to the volume% addition, nitrification denitrification sludge from a human waste treatment plant was introduced as seed sludge. The sludge concentration in the nitrification tank 10 is 1,20
It was 0 mg / L. Denitrification tank 20 consisting of a cylindrical reaction tower
Has a diameter of 12 cm, a length of a straight body portion of 85 cm, a height of a conical portion at a lower portion of the reaction tower of 12 cm, and a volume of 10 L. The amount of methanol added from the pipe 13 is 1,000 mg
/ L.

【0032】この脱窒槽20には、ステンレス鋼の酸洗
排水のUSB脱窒処理槽から得られたグラニュール汚泥
を種汚泥として脱窒槽下部より塔高の50%まで投入し
た。グラニュール汚泥床21内の汚泥濃度は35,00
0mg/Lであった。
In this denitrification tank 20, granular sludge obtained from a USB denitrification treatment tank of pickling effluent of stainless steel was fed as seed sludge to 50% of the tower height from the lower part of the denitrification tank. The sludge concentration in the granular sludge bed 21 is 350,000.
It was 0 mg / L.

【0033】この間グラニュールが形成する汚泥床21
の界面が脱窒槽20の下部より65%の高さを超えない
ように適宜汚泥の引抜きを行った。
During this time, the sludge bed 21 formed by the granules
Sludge was appropriately pulled out so that the interface of did not exceed a height of 65% from the lower part of the denitrification tank 20.

【0034】装置の立ち上げに要した15日経過後の4
0日間、連続通水して処理を行ったときの水質の平均値
は次の通りであった。 硝化槽10の流出水 NH−N濃度:20mg−N/L NO−N濃度:400mg−N/L NO−N濃度:80mg−N/L 脱窒槽20の流出水 NO−N濃度:1mg−N/L以下 全窒素(NH−NとNO−Nとの合計)の除去率:
96%以上
4 days after the elapse of 15 days required for starting the apparatus
The average value of the water quality when the treatment was performed by continuously passing water for 0 days was as follows. Outflow water of the nitrification tank 10 NH 4 -N concentration: 20 mg-N / L NO 2 -N concentration: 400 mg-N / L NO 3 -N concentration: 80 mg-N / L Outflow water NO X -N concentration of the denitrification tank 20 : 1 mg-N / L or less Removal rate of total nitrogen (total of NH 4 -N and NO X -N):
96% or more

【0035】比較例1 図1のUSB方式の脱窒槽20の代わりに浮遊汚泥式脱
窒槽(容量10L),(MLSS濃度4000mg/
L)を設置した他は同様の構成の硝化脱窒処理装置によ
り同様の運転を行った。
Comparative Example 1 Instead of the USB type denitrification tank 20 of FIG. 1, a floating sludge type denitrification tank (capacity: 10 L), (MLSS concentration: 4000 mg /
Except that L) was installed, the same operation was performed by the nitrification denitrification treatment apparatus of the same configuration.

【0036】その結果、脱窒槽流出水の水質は次の通り
NO−N濃度が高いものであった。 NO−N濃度:375mg−N/L 全窒素除去率:21%
As a result, the quality of the water discharged from the denitrification tank had a high NO X -N concentration as follows. NO X -N concentration: 375 mg-N / L Total nitrogen removal rate: 21%

【0037】比較例2 図1のUSB方式の脱窒槽20の代わりに浮遊汚泥式脱
窒槽(50L,MLSS濃度4,000mg/Lを設置
した他は同様の構成の硝化脱窒処理装置により同様の運
転を行った。その結果、脱窒槽流出水の水質は次の通り
NO−N濃度の低いものであった。 NO−N濃度:1mg−N/L以下 全窒素除去率:96%以上
COMPARATIVE EXAMPLE 2 A nitrification denitrification treatment apparatus of the same configuration except that a floating sludge denitrification tank (50 L, MLSS concentration: 4,000 mg / L) was installed instead of the USB type denitrification tank 20 of FIG. As a result, the water quality of the denitrification tank effluent was as low as NO X -N concentration as follows: NO X -N concentration: 1 mg-N / L or less Total nitrogen removal rate: 96% or more

【0038】上記の実施例1と比較例1,2との対比か
ら明らかな通り、脱窒槽を実施例1と同容積とした比較
例1では脱窒は著しく不十分であり、実施例1と同程度
の脱窒効率を達成するには比較例2の通り実施例1の約
5倍の脱窒反応槽容積が必要である。即ち、実施例1に
よれば比較例2に比べて約1/5の容積の脱窒槽によっ
て同程度の高水質の処理水を得ることができる。
As is clear from the comparison between Example 1 and Comparative Examples 1 and 2, in Comparative Example 1 in which the denitrification tank had the same volume as in Example 1, the denitrification was extremely insufficient. To achieve the same level of denitrification efficiency, a denitrification reaction tank volume about 5 times that of Example 1 is required as in Comparative Example 2. That is, according to the first embodiment, treated water having the same high quality can be obtained by using a denitrification tank having a volume about 1/5 of that of the comparative example 2.

【0039】実施例2 図2の通り沈殿池15を設置した硝化脱窒処理装置を用
いて実施例1と同一の条件で運転を行った。立上運転
後、前記条件で60日運転したとき、実施例1では、硝
化槽から流入する浮遊汚泥に伴われてグラニュールが流
失し、槽内汚泥床比率が徐々に低下した。45日後には
37%となり、処理水中にNO−Nが残留するように
なった。60日目の槽内汚泥床比率は32%であり、処
理水のNO −N濃度は75mgN/L、TN除去率は
81%であった。これに対し、実施例2では運転開始時
の50%から徐々に増加し、25,52日目に65%に
達したところで50%までグラニュールを余剰汚泥とし
て引き抜いたが、運転期間を通じて常に、処理水のNO
−N濃度は1mgN/L以下、全窒素除去率は96%
以上であった。
Example 2 A nitrification and denitrification treatment apparatus equipped with a sedimentation basin 15 as shown in FIG. 2 was used.
The operation was performed under the same conditions as in Example 1. Start-up operation
Later, when the device was operated under the above conditions for 60 days, in Example 1,
Granules flow along with the suspended sludge flowing from the
And the sludge bed ratio in the tank gradually decreased. 45 days later
37%, NO in treated waterXSo that -N remains
became. The sludge bed ratio in the tank on the 60th day was 32%.
NO of water X-N concentration is 75mgN / L, TN removal rate is
It was 81%. On the other hand, in the second embodiment,
Gradually increased from 50% to 65% on days 25 and 52
When it reaches, up to 50% granule becomes excess sludge
However, throughout the operation period, NO
X-N concentration is 1mgN / L or less, total nitrogen removal rate is 96%
That was all.

【0040】このように、沈殿池15を設置することに
より、長期にわたり安定して硝化脱窒処理運転を継続で
きることが認められた。
As described above, it was recognized that the nitrification and denitrification treatment operation could be stably continued for a long time by installing the sedimentation basin 15.

【0041】[0041]

【発明の効果】以上の通り、本発明によると、安定した
窒素除去を可能とし、且つ脱窒工程で必要とされる反応
槽容積が小さくて足りる生物学的硝化脱窒処理方法が提
供される。
As described above, according to the present invention, there is provided a biological nitrification and denitrification treatment method which enables stable nitrogen removal and requires a small reactor volume in the denitrification step. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態に係る脱窒処理方法に用いられる生
物学的脱窒装置の系統図である。
FIG. 1 is a system diagram of a biological denitrification device used in a denitrification treatment method according to an embodiment.

【図2】実施の形態に係る脱窒処理方法に用いられる生
物学的脱窒装置の系統図である。
FIG. 2 is a system diagram of a biological denitrification device used in the denitrification treatment method according to the embodiment.

【符号の説明】[Explanation of symbols]

10 硝化槽 15 沈殿池 20 脱窒槽 30 再曝気槽 40 沈殿池 Reference Signs List 10 nitrification tank 15 sedimentation tank 20 denitrification tank 30 re-aeration tank 40 sedimentation tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 排水中のアンモニア性窒素を窒素酸化物
に生物学的に硝化する工程と、該窒素酸化物を生物学的
に還元して脱窒する工程とを有する脱窒処理方法におい
て、 該硝化工程が亜硝酸型硝化の硝化槽内で行われ、 該脱窒工程が脱窒菌グラニュールが充填されている脱窒
槽内で行われることを特徴とする脱窒処理方法。
1. A denitrification treatment method comprising the steps of biologically nitrifying ammoniacal nitrogen in wastewater into nitrogen oxides and biologically reducing and denitrifying said nitrogen oxides. A denitrification treatment method, wherein the nitrification step is performed in a nitrification tank of nitrite type nitrification, and the denitrification step is performed in a denitrification tank filled with denitrifying bacteria granules.
【請求項2】 請求項1において、前記硝化工程の流出
水を汚泥と水分とに分離し、分離した水分のみを前記脱
窒工程に送給することを特徴とする脱窒処理方法。
2. The denitrification treatment method according to claim 1, wherein the effluent of the nitrification step is separated into sludge and water, and only the separated water is sent to the denitrification step.
JP2000371719A 2000-12-06 2000-12-06 Denitrification treatment method Pending JP2002172399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000371719A JP2002172399A (en) 2000-12-06 2000-12-06 Denitrification treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000371719A JP2002172399A (en) 2000-12-06 2000-12-06 Denitrification treatment method

Publications (1)

Publication Number Publication Date
JP2002172399A true JP2002172399A (en) 2002-06-18

Family

ID=18841395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000371719A Pending JP2002172399A (en) 2000-12-06 2000-12-06 Denitrification treatment method

Country Status (1)

Country Link
JP (1) JP2002172399A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053382A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Nitrification-denitrification treatment method
JP2005131451A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2005144283A (en) * 2003-11-13 2005-06-09 Hitachi Plant Eng & Constr Co Ltd Method for manufacturing nitrous acid type nitrification carrier
JP2006181445A (en) * 2004-12-27 2006-07-13 Kurita Water Ind Ltd Waste water treatment apparatus
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2010058021A (en) * 2008-09-02 2010-03-18 Yamato:Kk Method of treating nitrogen-containing organic wastewater
JP2013202511A (en) * 2012-03-28 2013-10-07 Swing Corp Removing device and removing method of nitrogen and phosphorus
CN104528951A (en) * 2014-12-29 2015-04-22 天津凯英科技发展有限公司 Microbial agent for treating coking wastewater and application thereof
US9096448B2 (en) 2010-11-24 2015-08-04 Kurita Water Industries Ltd. Anaerobic treatment method and apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053382A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Nitrification-denitrification treatment method
JP2005131451A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2005144283A (en) * 2003-11-13 2005-06-09 Hitachi Plant Eng & Constr Co Ltd Method for manufacturing nitrous acid type nitrification carrier
JP2006181445A (en) * 2004-12-27 2006-07-13 Kurita Water Ind Ltd Waste water treatment apparatus
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2010058021A (en) * 2008-09-02 2010-03-18 Yamato:Kk Method of treating nitrogen-containing organic wastewater
US9096448B2 (en) 2010-11-24 2015-08-04 Kurita Water Industries Ltd. Anaerobic treatment method and apparatus
KR20180113635A (en) 2010-11-24 2018-10-16 쿠리타 고교 가부시키가이샤 Method and apparatus for anaerobic treatment
JP2013202511A (en) * 2012-03-28 2013-10-07 Swing Corp Removing device and removing method of nitrogen and phosphorus
CN104528951A (en) * 2014-12-29 2015-04-22 天津凯英科技发展有限公司 Microbial agent for treating coking wastewater and application thereof
CN104528951B (en) * 2014-12-29 2016-01-06 天津凯英科技发展有限公司 A kind of Treatment of Coking Effluent microbiobacterial agent and application thereof

Similar Documents

Publication Publication Date Title
US4183809A (en) Process for removing organic substances and nitrogen compounds from waste water
CA2247406C (en) Biodegradable effluent nutrient removal
US20140367330A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
JP4224951B2 (en) Denitrification method
JP3899848B2 (en) Denitrification method and denitrification apparatus
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
US8323487B2 (en) Waste water treatment apparatus
US7404897B2 (en) Method for nitrogen removal and treatment of digester reject water in wastewater using bioaugmentation
JP2011189249A (en) Biological nitrogen treatment method for ammonia-containing waste water
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP2002172399A (en) Denitrification treatment method
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP2003033790A (en) Denitrification device and method therefor
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP3958900B2 (en) How to remove nitrogen from wastewater
KR100783789B1 (en) Apparatus for wastewater treatment and method for wastewater treatment using the same
JP6880894B2 (en) Wastewater treatment method with ANAMMOX process
JP4608771B2 (en) Biological denitrification equipment
KR101345642B1 (en) Method for removing nitrogen in waste water
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP4101498B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JPH09168796A (en) Removal of nitrogen in waste water
KR100443410B1 (en) Apparatus for Wastewater treatment with Simultaneous Nitrification/Denitrification and A Treatment method thereof