JP5581872B2 - Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid - Google Patents

Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid Download PDF

Info

Publication number
JP5581872B2
JP5581872B2 JP2010166371A JP2010166371A JP5581872B2 JP 5581872 B2 JP5581872 B2 JP 5581872B2 JP 2010166371 A JP2010166371 A JP 2010166371A JP 2010166371 A JP2010166371 A JP 2010166371A JP 5581872 B2 JP5581872 B2 JP 5581872B2
Authority
JP
Japan
Prior art keywords
tank
denitrification
ammonia
nitritation
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010166371A
Other languages
Japanese (ja)
Other versions
JP2012024707A (en
Inventor
甬生 葛
博司 佐久間
良介 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2010166371A priority Critical patent/JP5581872B2/en
Publication of JP2012024707A publication Critical patent/JP2012024707A/en
Application granted granted Critical
Publication of JP5581872B2 publication Critical patent/JP5581872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はアンモニア性窒素含有の有機性及び無機性廃液の窒素除去に関するもので、下水消化汚泥の濃縮脱水液、有機性汚泥や畜産廃液等のメタン発酵汚泥及び分離液、さらに浸出水や工業廃水中の窒素除去に関するものである。   The present invention relates to nitrogen removal from ammonia and nitrogen-containing organic and inorganic waste liquids. Concentrated dewatered liquid of sewage digested sludge, methane fermentation sludge and separated liquids such as organic sludge and livestock waste liquid, leachate and industrial waste water. It relates to nitrogen removal.

有機性汚泥や下水汚泥等の有機物濃度の高い液状廃棄物に対し、嫌気性消化することにより、有機物である炭素源をメタンガス(CH)として回収できる上に、汚泥減容効果も高く、有機性廃棄物の削減とエネルギ回収の有効手段である。しかし、嫌気性消化では、原液中の窒素が除去されないため、消化汚泥の濃縮分離液や脱水ろ液に高濃度の窒素が残留する。上記の他にごみ浸出水や石油化学工場廃水において、BODが低く、アンモニア性窒素が高濃度に残留することがある。いずれも窒素除去が求められている。 By anaerobic digestion of liquid waste with high organic matter concentration such as organic sludge and sewage sludge, the carbon source that is organic matter can be recovered as methane gas (CH 4 ), and the sludge volume reducing effect is also high, This is an effective means of reducing waste and recovering energy. However, in anaerobic digestion, nitrogen in the stock solution is not removed, so high-concentration nitrogen remains in the concentrated sludge and dehydrated filtrate of digested sludge. In addition to the above, waste leachate and petrochemical factory wastewater may have a low BOD and a high concentration of ammoniacal nitrogen. Both require nitrogen removal.

従来から、窒素含有廃液の脱窒処理方式として、一般的に生物学的硝化脱窒法がよく用いられている。生物学的硝化脱窒法では、通常硝化プロセス及び脱窒プロセスより構成される。第1プロセスの硝化プロセスでは、原水中のアンモニア性窒素を好気状態の反応槽、通称硝化槽において、先ずアンモニア酸化菌により亜硝酸性窒素に酸化し、続いて亜硝酸酸化菌により亜硝酸性窒素を硝酸性窒素に酸化する。硝化プロセス後段の脱窒プロセスではこの硝化槽からの処理液(硝化液)を嫌気状態の反応槽、通称脱窒槽に導入して、硝化液中の硝酸性窒素及び亜硝酸性窒素を従属栄養性の脱窒菌により、電子供与体の存在下、無害の窒素ガスに還元される。この電子供与体は通常処理対象液中の有機物が利用される。有機物の少ない場合、外部からメタノールを電子供与体として添加する必要がある。   Conventionally, a biological nitrification denitrification method is often used as a denitrification treatment method for nitrogen-containing waste liquid. The biological nitrification denitrification method is usually composed of a nitrification process and a denitrification process. In the nitrification process of the first process, ammonia nitrogen in the raw water is first oxidized to nitrite nitrogen by ammonia-oxidizing bacteria in an aerobic reaction tank, commonly called a nitrification tank, and then nitrite-oxidized by nitrite-oxidizing bacteria. Nitrogen is oxidized to nitrate nitrogen. In the denitrification process after the nitrification process, the treatment liquid (nitrification liquid) from this nitrification tank is introduced into an anaerobic reaction tank, commonly known as a denitrification tank, and nitrate nitrogen and nitrite nitrogen in the nitrification liquid are heterotrophic. By the denitrifying bacteria, it is reduced to harmless nitrogen gas in the presence of an electron donor. As this electron donor, an organic substance in the liquid to be treated is usually used. When the amount of organic substances is small, it is necessary to add methanol as an electron donor from the outside.

この生物学的硝化脱窒処理では、流入原水中のアンモニア性窒素を、硝化槽において、亜硝酸性窒素を経て最終的に硝酸性窒素に酸化する。このため、硝化槽にアンモニア性窒素酸化に必要な酸素を供給する必要がある。しかし、酸素必要量は原水アンモニア性窒素の4.57倍と高く、その供給動力が無視できない。また、脱窒槽では、硝酸性窒素が電子受容体となる従属脱窒反応において、電子供与体となる有機物が必要となる。原水中に有機物が少ない場合、脱窒に必要な電子供与体となるメタノールを添加することが必要となる。安定した脱窒性能を得るため、メタノール添加量は通常、脱窒槽に流入する硝酸性窒素量の2.5〜3倍程度必要となる。このように硝化プロセスの曝気動力及び脱窒プロセスのメタノール添加量は莫大であり、ランニングコストが高い。これらの低減が硝化脱窒プロセスを普及するのに解決しなければいけない大きな課題となっている。   In this biological nitrification denitrification treatment, ammonia nitrogen in the inflow raw water is finally oxidized into nitrate nitrogen via nitrite nitrogen in the nitrification tank. For this reason, it is necessary to supply oxygen necessary for ammoniacal nitrogen oxidation to the nitrification tank. However, the required oxygen amount is 4.57 times higher than that of the raw water ammonia nitrogen, and the supply power cannot be ignored. Further, in the denitrification tank, an organic substance that becomes an electron donor is required in a dependent denitrification reaction in which nitrate nitrogen becomes an electron acceptor. When the organic water is small in the raw water, it is necessary to add methanol as an electron donor necessary for denitrification. In order to obtain stable denitrification performance, the amount of methanol added is usually required to be about 2.5 to 3 times the amount of nitrate nitrogen flowing into the denitrification tank. Thus, the aeration power of the nitrification process and the amount of methanol added in the denitrification process are enormous, and the running cost is high. These reductions have become a major issue that must be solved to spread the nitrification denitrification process.

近年、上記従属栄養脱窒菌による従来の脱窒機構と全く異なる独立栄養脱窒菌による脱窒処理法が開示されている(例えば、特許文献1)。これはアンモニア性窒素を電子供与体とし亜硝酸性窒素を電子受容体とする独立栄養性微生物を利用し、アンモニア性窒素と亜硝酸性窒素を嫌気状態において反応させて窒素ガスに変換する嫌気性アンモニア酸化処理法(Anaerobic Ammonium Oxidation Process)、所謂ANAMMOX反応による窒素除去方法、またはアンモニア脱窒処理法である。下記式(1)はこのアンモニア脱窒の反応式を示す。   In recent years, a denitrification treatment method using an autotrophic denitrifying bacterium that is completely different from the conventional denitrifying mechanism using the heterotrophic denitrifying bacterium has been disclosed (for example, Patent Document 1). This utilizes an autotrophic microorganism with ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, and reacts ammonia nitrogen and nitrite nitrogen in an anaerobic state to convert them into nitrogen gas. It is an ammonia oxidation treatment method (Anaerobic Ammonium Oxidation Process), a nitrogen removal method by a so-called ANAMOX reaction, or an ammonia denitrification treatment method. The following formula (1) shows a reaction formula of this ammonia denitrification.

Figure 0005581872
Figure 0005581872

式(1)に示すアンモニア脱窒の場合、アンモニア性窒素と亜硝酸性窒素が直接反応するため、メタノール等の有機物添加が不要であり、薬品代が大きく低下する。また、脱窒反応ではアンモニア性窒素(NH−N)1モルに対し、亜硝酸性窒素(NO−N)1.32モルの比率で反応するため、処理対象原水中のアンモニア性窒素を従来の硝化プロセスのように全部亜硝酸性及び硝酸性窒素に酸化する必要が無く、その一部を亜硝酸性窒素に酸化すればよいこととなる。上記のアンモニア脱窒反応から、原水NH−Nの一部を亜硝酸性窒素に酸化すれば、アンモニア脱窒処理において、NO−NとNH−Nの混合物となり、式(1)に示すような反応が得られ、処理水のNH−N及びNO−Nがともになくなることが可能である。 In the case of ammonia denitrification represented by formula (1), ammonia nitrogen and nitrite nitrogen react directly, so that it is not necessary to add organic substances such as methanol, and the chemical cost is greatly reduced. Further, in the denitrification reaction, 1 mol of ammonia nitrogen (NH 4 -N) is reacted at a ratio of 1.32 mol of nitrite nitrogen (NO 2 -N). Unlike the conventional nitrification process, it is not necessary to oxidize all of them to nitrite and nitrate nitrogen, and only a part of them should be oxidized to nitrite nitrogen. If a part of the raw water NH 4 -N is oxidized to nitrite nitrogen from the above ammonia denitrification reaction, in the ammonia denitrification treatment, a mixture of NO 2 -N and NH 4 -N is obtained. A reaction as shown is obtained, and it is possible to eliminate both NH 4 —N and NO 2 —N of the treated water.

上記のようにアンモニア脱窒を用いた脱窒処理では、先ず硝化プロセスにおいて流入原水中のアンモニア性窒素の一部を亜硝酸性窒素に酸化する必要がある。アンモニア脱窒反応で高率な脱窒性能を得るために、原水NH−Nの57%をNO−Nにし、43%のNH−Nを残留させておくことが望まれる。この場合、亜硝酸化処理水のNO−N/NH−N比が1.32となり、式(1)に示すアンモニア脱窒反応に必要なNO−N/NH−N比に一致する。
しかしながら、一般的に硝化プロセスは以下の反応式に示すように、原水中のNH−Nは、好気条件において、アンモニア酸化反応および亜硝酸酸化反応を経て、最終的に硝酸性窒素(NO−N)となる。アンモニア酸化反応と亜硝酸酸化反応はほぼ同時に起こるので、アンモニア酸化反応のみ進行させることは通常困難とされている。
In the denitrification treatment using ammonia denitrification as described above, it is first necessary to oxidize a part of ammonia nitrogen in the inflow raw water to nitrite nitrogen in the nitrification process. In order to obtain a high rate of denitrification performance by the ammonia denitrification reaction, it is desired that 57% of the raw water NH 4 —N is changed to NO 2 —N and 43% NH 4 —N is left. In this case, the NO 2 —N / NH 4 —N ratio of nitrite-treated water is 1.32, which matches the NO 2 —N / NH 4 —N ratio required for the ammonia denitrification reaction shown in Formula (1). To do.
However, in general, as shown in the following reaction formula in the nitrification process, NH 4 -N in raw water undergoes ammonia oxidation reaction and nitrite oxidation reaction under aerobic conditions, and finally nitrate nitrogen (NO 3- N). Since the ammonia oxidation reaction and the nitrite oxidation reaction occur almost simultaneously, it is usually difficult to advance only the ammonia oxidation reaction.

Figure 0005581872
Figure 0005581872

近年、アンモニア脱窒の前処理として、この亜硝酸化プロセスの研究開発が進められ、いくつかの処理方法が開示されている。例えば、特許文献2に開示されているように、硝化槽内のアンモニア性窒素及び亜硝酸性窒素の何れも高く維持し、アンモニア性窒素と亜硝酸性窒素の毒性により、亜硝酸性窒素が硝酸性窒素に変換される亜硝酸酸化反応を抑制できるとしている。さらに硝化槽pHを原水流量の調整で6〜8にすることを提案している。   In recent years, research and development of this nitritation process has been advanced as a pretreatment for ammonia denitrification, and several treatment methods have been disclosed. For example, as disclosed in Patent Document 2, both ammonia nitrogen and nitrite nitrogen in the nitrification tank are maintained at a high level, and due to the toxicity of ammonia nitrogen and nitrite nitrogen, nitrite nitrogen is nitrated. It is said that the nitrite oxidation reaction that is converted to basic nitrogen can be suppressed. Furthermore, it is proposed to adjust the nitrification tank pH to 6 to 8 by adjusting the raw water flow rate.

また、特許文献3では、硝化槽に供給する酸素量を抑制し、すなわち、硝化槽内の液中溶存酸素(以下「DO」と称する)を低く維持することで亜硝酸酸化反応を抑制し、亜硝酸型硝化を維持できることを提案しており、また、特許文献4では、亜硝化槽のDOを低くし、アンモニア酸化細菌が生物膜に付着している場合はDOを1.5mg/L以下、浮遊活性汚泥の場合はDOを1.0mg/L以下とすることにより亜硝酸酸化反応を抑制し、亜硝酸型硝化を維持できることを提案している。
また、特許文献5では、亜硝酸化槽に返送される汚泥量を調整することで、亜硝酸化槽におけるpHを所定値に制御し、亜硝酸化槽内の遊離NH−Nまたは遊離HNOを所定値以上に維持し、安定して亜硝酸化処理が得られることが記載されている。
In Patent Document 3, the amount of oxygen supplied to the nitrification tank is suppressed, that is, the nitrous acid oxidation reaction is suppressed by keeping the dissolved oxygen in the liquid (hereinafter referred to as “DO”) low in the nitrification tank, It has been proposed that nitrite-type nitrification can be maintained, and Patent Document 4 lowers DO in the nitrification tank, and when ammonia-oxidizing bacteria adhere to the biofilm, DO is 1.5 mg / L or less. In the case of suspended activated sludge, it is proposed that the nitrite oxidation reaction can be suppressed and the nitrite type nitrification can be maintained by setting DO to 1.0 mg / L or less.
Moreover, in patent document 5, by adjusting the amount of sludge returned to a nitritation tank, pH in a nitritation tank is controlled to a predetermined value, and free NH 3 -N or free HNO in the nitritation tank is controlled. 2 was maintained above a predetermined value, it is described that stable nitrite treatment is obtained.

特許3460745号公報Japanese Patent No. 3460745 特開2003−24983号公報JP 2003-24983 A 特開2003−10883号公報JP 2003-10883 A 特開2004−298841号公報Japanese Patent Laid-Open No. 2004-298441 特開2010−5554号公報JP 2010-5554 A

しかしながら、上記のように窒素含有廃水に対し、アンモニア脱窒による窒素除去(ANAMMOX反応)を適用する場合、原水NH−Nの57%をNO−Nのみに変換する部分亜硝酸化処理が望ましいが、上記の先行技術で開示されているpHやDOの制御では、供給する原水性状や供給量等によって変動が生じ、長時間にわたって安定して脱窒処理することが難しい。 However, when nitrogen removal by ammonia denitrification (ANAMOX reaction) is applied to nitrogen-containing wastewater as described above, partial nitritation treatment that converts 57% of raw water NH 4 —N to NO 2 —N only is performed. Although desirable, in the control of pH and DO disclosed in the above prior art, fluctuations occur depending on the raw aqueous state to be supplied, the supply amount, etc., and it is difficult to stably perform denitrification over a long period of time.

例えば上記特許文献5記載の方法では、亜硝酸化槽のpH調整を、亜硝酸化槽に返送される汚泥量を調整することで行っているが、亜硝酸化槽及び沈殿池の汚泥量が一定の場合、返送汚泥流量を変更しても亜硝酸化槽内MLSS(活性汚泥浮遊物質)濃度が一時的に変化するが、長時間においてMLSSを大きく変更させることが困難である。特に汚泥沈降性が良い場合、返送汚泥流量を減らすと沈殿池での汚泥滞留時間が長くなり、返送汚泥MLSSが上昇し、亜硝酸化槽に返送される汚泥量としては殆ど同じとなるため、亜硝酸化槽MLSS濃度は返送汚泥量変更前とほぼ同程度となる。返送汚泥流量を増やした場合も同様である。沈殿池の汚泥量が限られているため、返送流量を増やしても亜硝酸化槽へ返送される汚泥量の大きな増加が難しい。さらに沈殿池流入水量の増加で返送汚泥濃度が低下し、亜硝酸化槽に返送される汚泥量が大きく増加せず、返送流量変更前と同程度に止まる可能性が高い。さらに活性汚泥の硝化性能は活性汚泥中に存在する硝化菌数に比例する。流入原水中SSやBOD等の有機物が多い場合、活性汚泥中の硝化菌数が少なく、亜硝酸化槽のMLSSを高くしても、硝化性能の向上が殆ど期待できないこともある。   For example, in the method described in Patent Document 5, the pH of the nitritation tank is adjusted by adjusting the amount of sludge returned to the nitritation tank. In a fixed case, even if the return sludge flow rate is changed, the MLSS (activated sludge suspended matter) concentration in the nitritation tank temporarily changes, but it is difficult to greatly change the MLSS in a long time. Especially when the sludge sedimentation is good, reducing the return sludge flow rate will increase the sludge retention time in the sedimentation basin, the return sludge MLSS will rise, and the amount of sludge returned to the nitritation tank will be almost the same, The nitritation tank MLSS concentration is approximately the same as before the return sludge amount change. The same applies when the return sludge flow rate is increased. Since the amount of sludge in the sedimentation basin is limited, it is difficult to increase the amount of sludge returned to the nitrification tank even if the return flow rate is increased. Furthermore, the return sludge concentration decreases due to the increase in the amount of inflow water in the sedimentation basin, and the amount of sludge returned to the nitritation tank does not increase greatly, and it is likely that it will remain at the same level as before the return flow rate change. Furthermore, the nitrification performance of activated sludge is proportional to the number of nitrifying bacteria present in the activated sludge. When there are many organic substances such as SS and BOD in the influent raw water, the number of nitrifying bacteria in the activated sludge is small, and even if the MLSS in the nitritation tank is increased, improvement in nitrification performance may be hardly expected.

上記のように返送汚泥量を調整しても亜硝酸化槽内MLSS濃度に一時的に変化があっても、長時間において返送汚泥量調整前より大きく変化することは難しく、原水流量や窒素濃度変動の大きい時、返送汚泥流量調整のみで亜硝酸化pHを所定値に制御することは困難となる。   Even if the amount of returned sludge is adjusted as described above, even if there is a temporary change in the MLSS concentration in the nitrification tank, it is difficult to change greatly over the long time than before adjusting the amount of returned sludge. When the fluctuation is large, it is difficult to control the nitritation pH to a predetermined value only by adjusting the return sludge flow rate.

本発明は上記従来技術の有する課題を解決するものであり、上記の窒素含有廃水に対し、アンモニア脱窒による窒素除去(ANAMMOX反応)により脱窒処理するに際し、長期間にわたって安定して脱窒処理を行うことができるアンモニア性窒素含有廃液の脱窒処理方法及びその処理装置を提供するものである。   The present invention solves the above-mentioned problems of the prior art. When the above nitrogen-containing wastewater is denitrified by nitrogen removal by ammonia denitrification (ANAMMOX reaction), the denitrification treatment is stable over a long period of time. It is intended to provide a denitrification treatment method for ammonia nitrogen-containing waste liquid and a treatment apparatus therefor.

本発明者らは実排水を用いた連続通水実験の結果、アンモニア性窒素含有の被処理水に対し、被処理水のM−アルカリ度及びNH−N濃度を予め測定し、活性汚泥及びアンモニア酸化菌付着生物担体の共存する亜硝酸化処理槽に流入する該被処理水のM−アルカリ度/NH−N比率が3.7〜4.4となるようにアルカリまたは酸を所定量で亜硝酸化槽に注入し、亜硝酸化槽pHが6.0〜6.9となるように曝気風量または曝気風量と返送汚泥量の両方を調整すれば、安定した亜硝酸化処理が得られるとともに亜硝酸化処理水のNO−N/NH−N比がアンモニア脱窒反応に必要な1.3付近となることを確認でき、本発明に到達したものである。すなわち、本発明は、下記の(1)〜(7)の構成からなるものである。 As a result of continuous water flow experiments using actual wastewater, the present inventors previously measured the M-alkaliness and NH 4 -N concentration of the treated water with respect to the treated water containing ammonia nitrogen, and activated sludge and Predetermined amount of alkali or acid so that the M-alkalinity / NH 4 -N ratio of the treated water flowing into the nitritation treatment tank coexisting with the ammonia-oxidizing bacteria adherent biological carrier is 3.7 to 4.4. And then adjusting the aeration air volume or both the aeration air volume and the return sludge volume so that the nitritation tank pH is 6.0 to 6.9, a stable nitritation treatment can be obtained. In addition, it was confirmed that the NO 2 —N / NH 4 —N ratio of nitrite-treated water was around 1.3, which is necessary for the ammonia denitrification reaction, and the present invention was achieved. That is, this invention consists of the structure of following (1)-(7).

(1)アンモニア性窒素(NH−N)を含有する被処理液を、活性汚泥及びアンモニア酸化菌付着の微生物担体が共存する亜硝酸化槽に導入し、該被処理液中のアンモニア性窒素(NH−N)の一部を亜硝酸性窒素(NO−N)に変換した後、固液分離槽にて濃縮分離し、該分離された活性汚泥の一部を前記亜硝酸化槽に返送して亜硝酸化処理するアンモニア性窒素含有被処理液の脱窒処理方法において、
前記被処理液のアンモニア性窒素濃度(NH−N)及びM−アルカリ度を予め測定し、
前記測定結果からM−アルカリ度/NH−N比が3.7〜4.4となるように亜硝酸化槽にアルカリまたは酸を所定量注入し、かつ、
前記亜硝酸化槽のpHが6.0〜6.9となるように、
該pHが6.0以下では、曝気風量を減らし槽内の溶存酸素(DO)を低下させて、硝化速度を低下させると共に、前記返送量を減らし槽内の活性汚泥濃度を低下させることによりpHを上昇させ、該pHが6.9以上では、曝気風量を増やし槽内の溶存酸素(DO)を上昇させて、硝化速度を向上させると共に、前記返送量を増やし槽内の活性汚泥濃度を上昇させることによりpHを低下させるように制御することを特徴とするアンモニア性窒素含有被処理液の脱窒処理方法。
(1) A liquid to be treated containing ammonia nitrogen (NH 4 -N) is introduced into a nitritation tank in which activated sludge and a microbial carrier adhering to ammonia-oxidizing bacteria coexist, and ammonia nitrogen in the liquid to be treated A part of (NH 4 -N) is converted into nitrite nitrogen (NO 2 -N), and then concentrated and separated in a solid-liquid separation tank, and a part of the separated activated sludge is converted into the nitritation tank. In the denitrification method of the ammoniacal nitrogen-containing liquid to be returned to the nitrite,
Ammonia nitrogen concentration (NH 4 -N) and M-alkalinity of the liquid to be treated are measured in advance,
From the measurement results, a predetermined amount of alkali or acid was injected into the nitritation tank so that the M-alkalinity / NH 4 -N ratio was 3.7 to 4.4 , and
The pH of the nitritation tank is 6.0 to 6.9,
When the pH is 6.0 or less, the aeration air volume is reduced to lower the dissolved oxygen (DO) in the tank, the nitrification rate is lowered, and the return amount is reduced to lower the activated sludge concentration in the tank. When the pH is 6.9 or more, the aeration air volume is increased to increase the dissolved oxygen (DO) in the tank to improve the nitrification rate, and the return amount is increased to increase the activated sludge concentration in the tank. A denitrification treatment method for an ammoniacal nitrogen-containing liquid to be treated, which is controlled so as to lower the pH.

(2)前記亜硝酸化槽処理水のNH−Nの濃度及びNO−Nの濃度をモニターし、NO−N/NH−Nの濃度比(NO−N/NH−N比)が1.3以下の時は亜硝酸化槽へのアルカリ注入量を増加するか又は酸注入量を減少させ、NO−N/NH−N比が1.3以上の時はアルカリ注入量を減少するか又は酸注入量を増加することを特徴とする上記(1)記載のアンモニア性窒素含有被処理液の脱窒処理方法。
(3)前記亜硝酸化処理プロセスで処理された処理水を、アンモニア脱窒菌付着生物担体を充填したアンモニア脱窒槽に導入し、NH−Nが電子供与体およびNO−Nが電子受容体となる独立栄養脱窒菌により脱窒処理することを特徴とする上記(1)又は(2)記載のアンモニア性窒素含有被処理液の脱窒処理方法。
(2) the monitored concentration and the concentration of NO 2 -N of NH 4 -N nitrite reduction vessel treated water, the concentration ratio of NO 2 -N / NH 4 -N ( NO 2 -N / NH 4 -N Ratio) is 1.3 or less, the alkali injection amount into the nitritation tank is increased or the acid injection amount is decreased, and when the NO 2 —N / NH 4 —N ratio is 1.3 or more, the alkali injection amount The method for denitrifying an ammoniacal nitrogen-containing liquid to be treated according to (1), wherein the injection amount is decreased or the acid injection amount is increased.
(3) The treated water treated in the nitritation treatment process is introduced into an ammonia denitrification tank filled with a biocarrier attached with ammonia denitrifying bacteria, NH 4 -N is an electron donor and NO 2 -N is an electron acceptor. The denitrification treatment method for an ammoniacal nitrogen-containing liquid to be treated according to the above (1) or (2), wherein the denitrification treatment is performed with an autotrophic denitrifying bacterium.

(4)前記アンモニア脱窒槽で処理された処理水及び前記固液分離槽から分離された活性汚泥の一部を、前記亜硝酸化槽に該被処理水を導入するための原水槽に返送することを特徴とする上記(3)記載のアンモニア性窒素含有被処理液の脱窒処理方法。
(5)前記アンモニア脱窒槽の酸化還元電位(ORP)をモニターし、該ORPが50mV以上となった時に、アンモニア脱窒槽に有機物を直接添加するか、又は該脱窒槽で得られる窒素ガス(N)を脱窒槽に循環することを特徴とする上記(3)又は(4)記載のアンモニア性窒素含有被処理液の脱窒処理方法。
(4) Return the treated water treated in the ammonia denitrification tank and a part of the activated sludge separated from the solid-liquid separation tank to the raw water tank for introducing the treated water into the nitritation tank. The method for denitrifying an ammoniacal nitrogen-containing liquid to be treated according to (3) above, wherein
(5) The oxidation-reduction potential (ORP) of the ammonia denitrification tank is monitored, and when the ORP reaches 50 mV or more, an organic substance is added directly to the ammonia denitrification tank, or nitrogen gas (N 2 ) is circulated to a denitrification tank, and the denitrification method for an ammoniacal nitrogen-containing liquid to be treated according to the above (3) or (4).

(6)原水槽から導入される被処理水中のアンモニア性窒素(NH−N)の一部を活性汚泥及びアンモニア酸化菌付着の微生物担体の存在下で亜硝酸性窒素(NO−N)に変換する亜硝酸化槽と、
前記亜硝酸化槽からの流出液から活性汚泥を分離する固液分離槽と、
前記分離された活性汚泥の一部を前記亜硝酸化槽に返送する汚泥返送ラインと、
前記固液分離槽からの流出液をアンモニア性窒素(NH−N)が電子供与体および亜硝酸性窒素(NO−N)が電子受容体となる独立栄養脱窒菌により脱窒処理するアンモニア脱窒槽と
前記亜硝酸化槽に導入する被処理液のNH−Nの濃度及びM−アルカリ度を測定し測定値を得る測定計と、
前記測定値に応じてM−アルカリ度/NH−N比が3.7〜4.4になるように前記亜硝酸化槽にアルカリまたは酸を所定量注入する注入機構と、
前記亜硝酸化槽に設けられpH値を測定するpH計と、
前記pH計のpH値が6.0〜6.9となるように曝気風量または前記汚泥返送量を調整する機構と、
前記アンモニア脱窒槽で処理された処理水の一部を前記原水槽に返送する処理水循環ラインと、
前記固液分離槽から分離された活性汚泥の一部を前記原水槽に返送する原水槽汚泥返送ラインと、を備え、
前記処理水循環ラインと前記原水槽汚泥搬送ラインとにより、前記アンモニア性窒素(NH−N)濃度が高い原水に対して、亜硝酸化槽の処理を安定化させたことを特徴とするアンモニア性窒素含有被処理液の脱窒処理装置。
(7)原水槽から導入される被処理水中のアンモニア性窒素(NH−N)の一部を活性汚泥及びアンモニア酸化菌付着の微生物担体の存在下で亜硝酸性窒素(NO−N)に変換する亜硝酸化槽と、
前記亜硝酸化槽からの流出液から活性汚泥を分離する固液分離槽と、
前記分離された活性汚泥の一部を前記亜硝酸化槽に返送する汚泥返送ラインと、
前記固液分離槽からの流出液をアンモニア性窒素(NH−N)が電子供与体および亜硝酸性窒素(NO−N)が電子受容体となる独立栄養脱窒菌により脱窒処理するアンモニア脱窒槽と
前記亜硝酸化槽に導入する被処理液のNH−Nの濃度及びM−アルカリ度を測定し測定値を得る測定計と、
前記測定値に応じてM−アルカリ度/NH−N比が3.7〜4.4になるように前記亜硝酸化槽にアルカリまたは酸を所定量注入する注入機構と、
前記亜硝酸化槽に設けられpH値を測定するpH計と、
前記pH計のpH値が6.0〜6.9となるように曝気風量または前記汚泥返送量を調整する制御機構と、を備え、
前記制御機構により、前記亜硝酸化槽のpHが6.0〜6.9となるように、
該pHが6.0以下では、曝気風量を減らし槽内の溶存酸素(DO)を低下させて、硝化速度を低下させると共に、前記返送量を減らし槽内の活性汚泥濃度を低下させることによりpHを上昇させ、該pHが6.9以上では、曝気風量を増やし槽内の溶存酸素(DO)を上昇させて、硝化速度を向上させると共に、前記返送量を増やし槽内の活性汚泥濃度を上昇させることによりpHを低下させるように制御を行うことを特徴とするアンモニア性窒素含有被処理液の脱窒処理装置。
(6) A part of ammonia nitrogen (NH 4 -N) in the water to be treated introduced from the raw water tank is treated with nitrite nitrogen (NO 2 -N) in the presence of activated sludge and a microorganism carrier adhering to ammonia oxidizing bacteria. A nitritation tank that converts to
A solid-liquid separation tank for separating activated sludge from the effluent from the nitritation tank;
A sludge return line for returning a part of the separated activated sludge to the nitritation tank;
Ammonia in which effluent from the solid-liquid separation tank is denitrified by an autotrophic denitrifying bacterium in which ammonia nitrogen (NH 4 -N) serves as an electron donor and nitrite nitrogen (NO 2 -N) serves as an electron acceptor. A denitrification tank and a measuring instrument for measuring the concentration of NH 4 -N and M-alkalinity of the liquid to be treated introduced into the nitritation tank, and obtaining measurement values;
An injection mechanism for injecting a predetermined amount of alkali or acid into the nitritation tank so that the M-alkalinity / NH 4 -N ratio is 3.7 to 4.4 according to the measured value;
A pH meter provided in the nitritation tank for measuring a pH value;
A mechanism for adjusting the amount of aeration air or the amount of returned sludge so that the pH value of the pH meter is 6.0 to 6.9;
A treated water circulation line for returning a part of the treated water treated in the ammonia denitrification tank to the raw water tank;
A raw water tank sludge return line for returning a part of the activated sludge separated from the solid-liquid separation tank to the raw water tank,
Ammonia, characterized in that the treatment of the nitritation tank is stabilized with respect to the raw water having a high ammoniacal nitrogen (NH 4 -N) concentration by the treated water circulation line and the raw water tank sludge transport line. Denitrification treatment equipment for nitrogen-containing treatment liquid.
(7) A part of ammonia nitrogen (NH 4 -N) in the treated water introduced from the raw water tank is treated with nitrite nitrogen (NO 2 -N) in the presence of activated sludge and a microorganism carrier adhering to ammonia oxidizing bacteria. A nitritation tank that converts to
A solid-liquid separation tank for separating activated sludge from the effluent from the nitritation tank;
A sludge return line for returning a part of the separated activated sludge to the nitritation tank;
Ammonia in which effluent from the solid-liquid separation tank is denitrified by an autotrophic denitrifying bacterium in which ammonia nitrogen (NH 4 -N) serves as an electron donor and nitrite nitrogen (NO 2 -N) serves as an electron acceptor. A denitrification tank and a measuring instrument for measuring the concentration of NH 4 -N and M-alkalinity of the liquid to be treated introduced into the nitritation tank, and obtaining measurement values;
An injection mechanism for injecting a predetermined amount of alkali or acid into the nitritation tank so that the M-alkalinity / NH 4 -N ratio is 3.7 to 4.4 according to the measured value;
A pH meter provided in the nitritation tank for measuring a pH value;
A control mechanism for adjusting the amount of aeration air or the amount of sludge returned so that the pH value of the pH meter is 6.0 to 6.9,
By the control mechanism, the pH of the nitritation tank is 6.0 to 6.9,
When the pH is 6.0 or less, the aeration air volume is reduced to lower the dissolved oxygen (DO) in the tank, the nitrification rate is lowered, and the return amount is reduced to lower the activated sludge concentration in the tank. When the pH is 6.9 or more, the aeration air volume is increased to increase the dissolved oxygen (DO) in the tank to improve the nitrification rate, and the return amount is increased to increase the activated sludge concentration in the tank. The denitrification apparatus of the ammoniacal nitrogen containing liquid to be processed characterized by controlling so that pH may be lowered by making it.

上記亜硝酸化処理において、原水中のNH−NがNO−Nに酸化されることに伴い、M−アルカリ度が消費され、1mg/LのNH−Nの硝化で消費されるM−アルカリ度は7.1mg/Lとなる。原水のNH−N濃度に対するM−アルカリ度比率が低い場合、原水NH−Nの硝化比率が少なく、処理水NO−N/NH−N比が目標値の1.3を大きく下回ることとなる。逆に原水のNH−N濃度に対するM−アルカリ度が高い場合、硝化が進行し、処理水NH−N残留が少なくなり、処理水NO−N/NH−N比が目標値の1.3を大きく超えることとなる。
原水中のM−アルカリ度/NH−N比率の変化により亜硝酸化処理水のNO−N/NH−N比率が大きく変化し、アンモニア脱窒反応に必要なNO−N/NH−N比である1.3から大きく外れることがあり、安定した脱窒処理が得られない。上記の従来技術では、原水流量の調整で硝化槽pHを所定値に制御しても、原水M−アルカリ度/NH−N比率は原水性状に左右されることから、処理水NO−N/NH−Nを目標1.3付近に制御することは困難である。
In the nitrification treatment, M-alkalinity is consumed as NH 4 -N in raw water is oxidized to NO 2 -N, and M consumed in nitrification of 1 mg / L NH 4 -N. -The alkalinity is 7.1 mg / L. When the ratio of M-alkalinity to the NH 4 —N concentration of the raw water is low, the nitrification ratio of the raw water NH 4 —N is small, and the treated water NO 2 —N / NH 4 —N ratio is far below the target value of 1.3. It will be. Conversely, when the M-alkalinity with respect to the NH 4 -N concentration of the raw water is high, nitrification proceeds, the residual amount of the treated water NH 4 -N decreases, and the treated water NO 2 -N / NH 4 -N ratio is the target value. It will greatly exceed 1.3.
NO 2 -N / NH 4 -N ratio of nitrite treatment water by a change in the M- alkalinity / NH 4 -N ratio in the raw water varies greatly, NO 2 -N / NH required ammonia denitrification It may deviate significantly from the 4- N ratio of 1.3, and a stable denitrification treatment cannot be obtained. In the above prior art, even if the nitrification tank pH is controlled to a predetermined value by adjusting the raw water flow rate, the raw water M-alkalinity / NH 4 -N ratio depends on the raw water state, so treated water NO 2 -N It is difficult to control / NH 4 -N around the target 1.3.

本発明では、アンモニア性窒素含有の被処理水に対し、被処理水のM−アルカリ度及びNH−N濃度を予め測定し、活性汚泥及びアンモニア酸化菌付着生物担体の共存する亜硝酸化処理槽に流入する該被処理水のM−アルカリ度/NH−N比率が3.7〜4.4となるようにアルカリまたは酸を所定量で亜硝酸化槽に注入することを第一の特徴としている。 In the present invention, M-alkalinity and NH 4 -N concentration of water to be treated are measured in advance with respect to the water to be treated containing ammoniacal nitrogen, and nitritation treatment in which activated sludge and ammonia-oxidizing bacteria adherent biocarrier coexist is present. The first step is to inject a predetermined amount of alkali or acid into the nitritation tank so that the M-alkalinity / NH 4 -N ratio of the water to be treated flowing into the tank is 3.7 to 4.4. It is a feature.

更に、アンモニア酸化菌付着する生物担体の硝化性能は亜硝酸化槽のDO、即ち曝気風量に依存し、亜硝酸化槽の生物担体硝化速度相対比とDOの関係を示す図1に示す通り、担体の硝化速度がDO上昇に伴なって増加しており、特にDOが3mg/L以上となれば、硝化速度の上昇が速く、DOが5mg/L以上となれば、担体の硝化速度がほぼ最大値の90%に達することが明らかとなった。また、DOが2mg/L以下となれば、担体硝化速度が最大値の20%以下に低下し、低DOでは担体硝化速度が大きく低下することも明らかとなった。
本発明では、亜硝酸化槽において活性汚泥とアンモニア酸化菌付着する生物担体を混合した反応槽を用い、下記のとおりの技術思想に基づき亜硝酸槽のpH調整を行うことを第二の特徴としている。
Furthermore, the nitrification performance of the biocarrier adhering to the ammonia-oxidizing bacteria depends on DO of the nitrification tank, that is, the aeration air volume, and as shown in FIG. The nitrification rate of the carrier increases as DO increases. In particular, if DO is 3 mg / L or more, the nitrification rate increases rapidly, and if DO is 5 mg / L or more, the nitrification rate of the carrier is almost the same. It became clear that it reached 90% of the maximum value. It was also revealed that the carrier nitrification rate decreased to 20% or less of the maximum value when DO was 2 mg / L or less, and that the carrier nitrification rate was greatly reduced at low DO.
In the present invention, as a second feature, the pH of the nitrite tank is adjusted based on the following technical idea using a reaction tank in which activated sludge and a biological carrier adhering to ammonia-oxidizing bacteria are mixed in a nitrification tank. Yes.

本発明の亜硝酸化槽においては、アンモニア酸化菌は生物担体に付着しているとともに活性汚泥にも共存している。亜硝酸化槽の硝化性能は生物担体硝化性能と活性汚泥硝化性能の和と考えることができる。したがって、上記の知見から、曝気風量が多いと生物担体の硝化活性が高くなる。また、活性汚泥の硝化性能は亜硝酸化槽内の活性汚泥濃度に依存し、活性汚泥濃度が高いほど硝化性能が高くなる。なお、活性汚泥は微生物の集合体であり、原水性状や汚泥滞留時間によって硝化菌比率が大きく変化する。BOD等の有機物やSSを多く含有する原水が流入した場合、亜硝酸化槽活性汚泥中の硝化菌比率が極めて低下し、硝化能力が殆どないと予想される。これに対し、生物担体に付着している微生物は基本的に硝化菌、本発明ではアンモニア酸化菌のみである。従って、主に硝化性能に寄与するのは生物担体である。   In the nitritation tank of the present invention, ammonia oxidizing bacteria are attached to the biological carrier and coexist in the activated sludge. The nitrification performance of the nitrification tank can be considered as the sum of the biological carrier nitrification performance and the activated sludge nitrification performance. Therefore, from the above findings, the nitrification activity of the biological carrier increases when the amount of aeration air is large. The nitrification performance of activated sludge depends on the activated sludge concentration in the nitritation tank, and the nitrification performance increases as the activated sludge concentration increases. The activated sludge is an aggregate of microorganisms, and the ratio of nitrifying bacteria varies greatly depending on the raw water state and sludge residence time. When raw water containing a large amount of organic matter such as BOD or SS or SS flows, the ratio of nitrifying bacteria in the nitritation tank activated sludge is extremely reduced, and it is expected that there is almost no nitrifying ability. On the other hand, the microorganisms adhering to the biological carrier are basically only nitrifying bacteria, and in the present invention, only ammonia oxidizing bacteria. Therefore, it is the biological carrier that mainly contributes to the nitrification performance.

一方で、亜硝酸化槽では、硝化が進行するとpHが低下する。通常の硝化では、pHの適値が8付近とされているが、本発明では種々検討の結果、生物担体及び活性汚泥の共存する亜硝酸化槽に対し、曝気風量または曝気風量と返送汚泥量の両方を調整することで亜硝酸化槽pHを6.0〜6.9に制御することによって、NH−Nを安定的にNO−Nへと理想的な比率で一部亜硝酸化できることを見出したものである。
即ち、pHが6.9以上となれば、曝気風量を増やし、DOを高くすることで生物担体の硝化速度が向上することで、硝化が進行し、pHが低下する。同様に返送汚泥流量を増やせば、一時的に亜硝酸化槽内の活性汚泥濃度が高くなり、亜硝酸化槽の硝化速度向上に寄与してpHが低下する。
同様に亜硝酸化槽pHが6以下となれば、曝気風量を減らしてDOを低くすれば、担体硝化速度が低下し、亜硝酸化槽pHが6以上に上昇する。同時に返送汚泥量を減少すれば、一時的に亜硝酸化槽内の活性汚泥濃度が低下し、亜硝酸化槽の硝化性能が低下し、同様にpHが6以上に上昇することが可能である。
On the other hand, in a nitritation tank, the pH decreases as nitrification proceeds. In normal nitrification, the optimum pH value is around 8. However, in the present invention, as a result of various studies, the amount of aeration air or the amount of aeration air and the amount of sludge returned to a nitrification tank in which a biological carrier and activated sludge coexist. By adjusting both of these parameters, the pH of the nitritation tank is controlled to 6.0 to 6.9, so that NH 4 -N is stably converted to NO 2 -N and partially nitritized at an ideal ratio. This is what we can do.
That is, if pH becomes 6.9 or more, nitrification will advance and pH will fall by increasing the aeration air volume and making DO high, improving the nitrification speed of a biological carrier. Similarly, if the return sludge flow rate is increased, the activated sludge concentration in the nitritation tank temporarily increases, contributing to an improvement in the nitrification rate of the nitritation tank and lowering the pH.
Similarly, if the nitritation tank pH is 6 or less, the carrier nitrification rate is decreased and the nitritation tank pH is increased to 6 or more if the aeration air volume is reduced and the DO is lowered. At the same time, if the amount of returned sludge is reduced, the concentration of activated sludge in the nitritation tank temporarily decreases, the nitrification performance of the nitritation tank decreases, and the pH can similarly rise to 6 or more. .

亜硝酸化槽に流入する原水流量が多くなったり、NH−N濃度が上昇したりする等、NH−N負荷が所定値を超えた場合でも、pHを6.0〜6.9にし、安定した亜硝酸化処理を得るためには亜硝酸化槽DOをできれば3mg/L以上、好ましくは、4mg/L以上にすることが望ましい。
一方、亜硝酸化槽に流入する原水流量が少なくなったり、NH−N濃度が低下したりする等、NH−N負荷が所定値より低下した場合でも、pHを6.0〜6.9にし、安定した亜硝酸化処理を得るためには亜硝酸化槽DOをできれば3mg/L以下、好ましくは、2mg/L以下にすることが望ましい。
Even when the NH 4 -N load exceeds a predetermined value, such as when the flow rate of raw water flowing into the nitritation tank increases or the concentration of NH 4 -N increases, the pH is adjusted to 6.0 to 6.9. In order to obtain a stable nitritation treatment, if possible, the nitritation tank DO should be 3 mg / L or more, preferably 4 mg / L or more.
On the other hand, even when the NH 4 -N load falls below a predetermined value, such as when the flow rate of raw water flowing into the nitrification tank decreases or the NH 4 -N concentration falls, the pH is adjusted to 6.0 to 6. 9, in order to obtain a stable nitritation treatment, the nitritation tank DO should be 3 mg / L or less, preferably 2 mg / L or less if possible.

本発明によれば、流入原水のM−アルカリ度/NH−N比率を所定値となるように調製し、亜硝酸化槽において流入NH−N負荷が変動しても、曝気風量または曝気風量と返送汚泥量の調製を行えば、亜硝酸化槽pHを6.0〜6.9に制御でき、安定した部分亜硝酸化処理ができ、亜硝酸化処理水NO−N/NH−N比率がほぼ目標の1.3前後となり、後段のアンモニア脱窒処理において安定した脱窒性能と高い窒素除去率が得られる。さらに、亜硝酸化処理槽にアンモニア酸化菌付着の微生物担体と活性汚泥を共存させることで亜硝酸化槽内のアンモニア酸化菌を高濃度に保持できることから、高いNH−N負荷が得られる。また、アンモニア脱窒槽に供給する亜硝酸化処理水DOが低いほど、アンモニア脱窒槽への持ち込みDOが少なく、脱窒活性への悪影響が少ない。沈殿池にて活性汚泥と固液分離した亜硝酸化処理水DOが亜硝酸化槽DOより低く、アンモニア脱窒槽へのDO持ち込みが少なくなり、アンモニア脱窒槽の処理性能が安定して得られる。 According to the present invention, the M-alkalinity / NH 4 -N ratio of the inflow raw water is adjusted to a predetermined value, and even if the inflow NH 4 -N load fluctuates in the nitritation tank, the aeration air volume or aeration By adjusting the air volume and the return sludge volume, the pH of the nitritation tank can be controlled to 6.0 to 6.9, stable partial nitritation treatment can be performed, and nitritation water NO 2 —N / NH 4 The -N ratio is about 1.3, which is the target, and stable denitrification performance and a high nitrogen removal rate can be obtained in the ammonia denitrification treatment in the subsequent stage. Furthermore, since the ammonia oxidizing bacteria in the nitrating tank can be kept at a high concentration by allowing the microbial carrier adhering to the ammonia oxidizing bacteria and activated sludge to coexist in the nitrating treatment tank, a high NH 4 -N load can be obtained. In addition, the lower the nitritation water DO supplied to the ammonia denitrification tank, the less DO brought into the ammonia denitrification tank and the less adverse effect on the denitrification activity. The nitritation water DO solid-liquid separated from the activated sludge in the sedimentation basin is lower than the nitritation tank DO, and the amount of DO brought into the ammonia denitrification tank is reduced, so that the treatment performance of the ammonia denitrification tank can be stably obtained.

更に、亜硝酸化槽処理水のNH−N濃度とNO−N濃度をモニターし、測定したNO−N/NH−Nが1.3から外れた時、亜硝酸化槽に注入しているアルカリまたは酸の注入量を微調整すれば、亜硝酸化処理水NO−N/NH−Nがほぼ1.3となり、後段のアンモニア脱窒槽に供給すれば、さらに安定した脱窒処理と良好な水質を得ることができる。 Furthermore, the NH 4 —N concentration and the NO 2 —N concentration of the nitritation tank treatment water are monitored, and when the measured NO 2 —N / NH 4 —N deviates from 1.3, it is injected into the nitritation tank. By finely adjusting the amount of alkali or acid injected, the nitrite-treated water NO 2 —N / NH 4 —N becomes approximately 1.3. Nitrogen treatment and good water quality can be obtained.

亜硝酸化槽の生物担体硝化速度相対比とDOの関係を示すグラフである。It is a graph which shows the relationship between the biological carrier nitrification rate relative ratio of a nitrification tank, and DO. 本発明の脱窒処理方法の一態様を示す概略図(フローシート)である。It is the schematic (flow sheet) which shows the one aspect | mode of the denitrification processing method of this invention. 本発明の脱窒処理方法の他の態様を示す概略図(フローシート)である。It is the schematic (flow sheet) which shows the other aspect of the denitrification processing method of this invention.

本発明の対象となる被処理水は、高濃度のアンモニア性窒素を含有する汚水であり、有機物、炭酸塩、亜硝酸性窒素、その他の物質を含んでいても良い。有機体窒素がある場合は、そのまま本発明に投入しても良いが、予め嫌気処理又は好気処理により有機体窒素をアンモニア性窒素に変換してもよい。また、BODがアンモニア性窒素に対し3倍以上ある汚水の場合においても、そのまま本発明に投入しても良いが、予め、生物処理してアンモニア性窒素に対し1/2となるように低下させておくと尚いっそうよい。対象汚水の例を挙げると、し尿、下水、嫌気性消化の脱水ろ液、ゴミ浸出水、肥料工場排水などが挙げられる。   The water to be treated which is the subject of the present invention is sewage containing a high concentration of ammonia nitrogen, and may contain organic substances, carbonates, nitrite nitrogen and other substances. When organic nitrogen is present, it may be put into the present invention as it is, but organic nitrogen may be converted to ammonia nitrogen by anaerobic treatment or aerobic treatment in advance. Moreover, even in the case of sewage with BOD 3 times or more that of ammonia nitrogen, it may be put into the present invention as it is. Even better. Examples of target sewage include human waste, sewage, anaerobic digestion dehydrated filtrate, waste leachate, fertilizer factory effluent and the like.

以下に本発明の脱窒処理方法を、本発明の実施態様の一例を示す図面を用いて詳細に説明する。ただし、本発明はこれらの実施態様のみに限定されるものではない。
まず、下水消化汚泥の濃縮脱水ろ液に対し、本発明による処理の一例を、図2に示すフローシートを用いて説明する。
Hereinafter, the denitrification method of the present invention will be described in detail with reference to the drawings showing an example of an embodiment of the present invention. However, the present invention is not limited only to these embodiments.
First, an example of the treatment according to the present invention for the concentrated dewatered filtrate of sewage digested sludge will be described with reference to the flow sheet shown in FIG.

本発明の一形態である図2に示す脱窒処理装置は、原水槽2と、被処理水中のアンモニア性窒素(NH−N)の一部を活性汚泥及びアンモニア酸化菌付着の微生物担体8の存在下で亜硝酸性窒素(NO−N)に変換する亜硝酸化槽4と、該亜硝酸化槽からの流出液から活性汚泥を分離する固液分離槽(沈殿池)11と、該固液分離槽11から分離された活性汚泥の一部を該亜硝酸化槽に返送する汚泥返送ライン14と、該固液分離槽11からの流出液をNH−Nが電子供与体およびNO−Nが電子受容体となる独立栄養脱窒菌により脱窒処理するアンモニア脱窒槽16を有し、該亜硝酸化槽4に導入する被処理液3のNH−Nの濃度(mg/L)及びM−アルカリ度(mg/L)を測定する測定計(図示せず)を具備し、該測定値に応じてM−アルカリ度/NH−N比が3.7〜4.4となるように該亜硝酸化槽にアルカリまたは酸を注入する機構と、該亜硝酸化槽4にpH計6を具備し、該pH計6の測定値に応じてpHが6.0〜6.9となるように曝気風量または曝気風量および該亜硝酸槽への汚泥返送量を調整する機構とを備えている。 A denitrification treatment apparatus shown in FIG. 2 which is an embodiment of the present invention includes a raw water tank 2 and a microbial carrier 8 to which a part of ammonia nitrogen (NH 4 -N) in treated water adheres activated sludge and ammonia oxidizing bacteria. A nitritation tank 4 that converts to nitrite nitrogen (NO 2 -N) in the presence of a solid, a solid-liquid separation tank (precipitation basin) 11 that separates activated sludge from the effluent from the nitritation tank, The sludge return line 14 for returning a part of the activated sludge separated from the solid-liquid separation tank 11 to the nitritation tank, and the NH 4 -N as an electron donor and the effluent from the solid-liquid separation tank 11 It has an ammonia denitrification tank 16 that denitrifies by an autotrophic denitrifying bacterium in which NO 2 -N becomes an electron acceptor, and the NH 4 -N concentration (mg / mg) of the liquid 3 to be treated introduced into the nitritation tank 4 L) and a meter (not shown) for measuring M-alkalinity (mg / L), A mechanism for injecting alkali or acid into the nitritation tank so that the M-alkalinity / NH 4 -N ratio is 3.7 to 4.4 according to the measured value, and a pH in the nitritation tank 4 A mechanism for adjusting the amount of aeration air or the amount of aeration air and the amount of sludge returned to the nitrite tank so that the pH is 6.0 to 6.9 according to the measured value of the pH meter 6 I have.

図2に示す如く、消化汚泥の濃縮脱水ろ液1が流入原水として原水槽2に導入され、原水槽2から被処理液3が亜硝酸化槽4に供給される。亜硝酸化槽4では、供給された被処理液3に含まれるアンモニア性窒素(NH−N)の一部が、アンモニア酸化菌付着の生物担体8及び活性汚泥中のアンモニア酸化菌の働きにより亜硝酸性窒素(NO−N)に酸化される。処理後の亜硝酸化槽内混合液が亜硝酸化槽分離スクリーン20にて担体が分離されて亜硝酸化槽流出液10が沈殿池(固液分離槽)11に流入し、汚泥沈降分離後、上澄液が亜硝酸化処理水12として得られる。 As shown in FIG. 2, the concentrated dehydrated filtrate 1 of digested sludge is introduced into the raw water tank 2 as inflow raw water, and the liquid 3 to be treated is supplied from the raw water tank 2 to the nitritation tank 4. In the nitrification tank 4, a part of ammonia nitrogen (NH 4 -N) contained in the supplied liquid 3 to be treated is caused by the action of the biological carrier 8 attached to the ammonia oxidizing bacteria and the ammonia oxidizing bacteria in the activated sludge. is oxidized to nitrite nitrogen (NO 2 -N). After the treatment, the mixed liquid in the nitritation tank is separated by the nitritation tank separation screen 20 and the nitritation tank effluent 10 flows into the settling tank (solid-liquid separation tank) 11, and after sludge sedimentation separation. A supernatant is obtained as nitrite-treated water 12.

亜硝酸化槽に流入する被処理液3に対し、予めNH−N及びM−アルカリ度を測定し、M−アルカリ度/NH−N比を算出する。M−アルカリ度/NH−N比が3.7以下の場合にはアルカリを、4.4以上の場合には酸を亜硝酸化槽に注入する。この場合、注入後の被処理液M−アルカリ度/NH−N比が3.7〜4.4、好ましくは3.9〜4.1となるように添加量を設定する。また、要求水質に応じて、M−アルカリ度/NH−N比をできるだけ4.0付近とするのが好ましい。 NH 4 -N and M-alkalinity are measured in advance for the liquid 3 to be treated flowing into the nitritation tank, and the M-alkalinity / NH 4 -N ratio is calculated. When the M-alkalinity / NH 4 -N ratio is 3.7 or less, an alkali is injected into the nitritation tank when the ratio is 4.4 or more. In this case, the addition amount is set so that the liquid M-alkalinity / NH 4 -N ratio after injection is 3.7 to 4.4, preferably 3.9 to 4.1. Also, on demand water, preferably only 4.0 near as possible M- alkalinity / NH 4 -N ratio.

ここで、添加する中和剤5としては、アルカリで水酸化ナトリウム、炭酸ナトリウム、重炭酸ナトリウム等、酸で硫酸、塩酸、等が挙げられる。   Here, examples of the neutralizing agent 5 to be added include sodium hydroxide, sodium carbonate, sodium bicarbonate and the like as alkali, and sulfuric acid and hydrochloric acid as the acid.

亜硝酸化槽4にはpH計6及びDO計7が設置されており、pHが6.0〜6.9、好ましくは6.4〜6.7となるように曝気風量または曝気風量および該亜硝酸槽への汚泥返送量を調整する。pHが6.9以上となれば、曝気ブロワー9からの曝気風量を増やすことによって槽内DOを上昇させる。DO上昇に伴って生物担体8の硝化速度が向上し、亜硝酸化槽4のpHが低下して6.9以下となる。また、同時に沈殿池(固液分離槽)11にて沈降した汚泥の返送量14を一時的に増やせば、亜硝酸化槽4内の活性汚泥濃度が上昇し、同様な効果が得られる。
逆に流入水量や原水窒素濃度の低下でNH−N負荷の低い時にpHが6.0以下となれば、曝気ブロワー9の曝気風量を減らし、亜硝酸化槽のDOを低くすれば、生物担体8の硝化速度が低下して亜硝酸槽pHが6.0以上に回復する。同じく、同時に返送汚泥量14を一時的に減らし、亜硝酸化槽4内の活性汚泥濃度を低下させれば、亜硝酸化槽4内の硝化速度の低下に寄与して槽内pHが上昇する。
A pH meter 6 and a DO meter 7 are installed in the nitritation tank 4, and the aeration air volume or aeration air volume and the aeration air volume are adjusted so that the pH is 6.0 to 6.9, preferably 6.4 to 6.7. Adjust the amount of sludge returned to the nitrous acid tank. If pH becomes 6.9 or more, DO in a tank will be raised by increasing the amount of aeration air from the aeration blower 9. As DO increases, the nitrification rate of the biological carrier 8 increases, and the pH of the nitritation tank 4 decreases to 6.9 or less. At the same time, if the return amount 14 of the sludge settled in the sedimentation basin (solid-liquid separation tank) 11 is temporarily increased, the activated sludge concentration in the nitritation tank 4 increases, and the same effect is obtained.
Conversely, if the pH is 6.0 or less when the NH 4 -N load is low due to a decrease in the influent water volume or the raw water nitrogen concentration, the aeration air volume of the aeration blower 9 is reduced, and the DO in the nitritation tank is reduced. The nitrification rate of the carrier 8 is lowered and the pH of the nitrite tank is restored to 6.0 or more. Similarly, if the return sludge amount 14 is temporarily reduced at the same time and the activated sludge concentration in the nitritation tank 4 is lowered, the pH in the tank rises due to the decrease in the nitrification rate in the nitritation tank 4. .

亜硝酸化槽4のNH−N負荷を常に高く得るためには亜硝酸化槽DOを常に高く維持することが望ましい。図1に示すように担体の場合、DO3mg/L以下となれば、DO低下に伴なう硝化速度の低下が大きく、DO4mg/L以上となれば、最大硝化速度の80%以上得られることから、亜硝酸化槽4のDOが通常3mg/L、好ましくは4mg/L以上を目安に管理することが望ましい。
従って、流入窒素負荷変動により、亜硝酸化槽pHが6.9以上となれば、亜硝酸化槽DOが4mg/L以上となるように曝気風量を上げることが効果的である。また、亜硝酸化槽4のDOが2mg/L以下の場合には硝化速度が小さいため、pHが6.0以下の場合には、亜硝酸化槽4のDOが2mg/L以下となるように曝気風量を下げることが効果的である。
In order to always obtain a high NH 4 —N load in the nitritation tank 4, it is desirable to keep the nitritation tank DO constantly high. As shown in FIG. 1, in the case of a carrier, if the DO is 3 mg / L or less, the decrease in the nitrification rate accompanying DO decrease is large, and if the DO is 4 mg / L or more, 80% or more of the maximum nitrification rate is obtained. The DO in the nitritation tank 4 is usually 3 mg / L, preferably 4 mg / L or more.
Therefore, if the nitritation tank pH becomes 6.9 or more due to inflow nitrogen load fluctuation, it is effective to increase the aeration air volume so that the nitritation tank DO becomes 4 mg / L or more. Further, since the nitrification rate is low when the DO in the nitritation tank 4 is 2 mg / L or less, the DO in the nitritation tank 4 is 2 mg / L or less when the pH is 6.0 or less. It is effective to reduce the amount of aeration air.

亜硝酸化槽4に、活性汚泥に加えて、アンモニア酸化菌を付着固定できる高分子生物担体8を充填すれば、アンモニア酸化菌を安定して付着できることから、亜硝酸化槽4において安定した亜硝酸化性能が得られる。亜硝酸化槽4に充填する高分子生物担体8としては、ポリエチレングリコール(PEG)やポリビニルアルコール(PVA)、ポリアクリルアミド、光硬化性樹脂等の合成高分子、カラギーナン、アルギン酸ソーダ等の高分子を用いたゲル担体、ポリエチレンやポリウレタン、ポリプロピレン等からなる流動担体が挙げられる。
担体8の形状としては球形、四角形、円筒形の何れの形状でも使用可能であり、有効径も特に限定的ではないが、曝気槽出口の分離スクリーン20により安定して分離するためには、3〜10mm程度が好ましい。担体比重は曝気状態において均一に流動可能となる1.001〜1.05であるものが好ましい。また、担体充填量は均一に混合流動可能となる10〜30V%であることが望ましい。
In addition to activated sludge, in addition to the activated sludge, the polymer biological carrier 8 capable of adhering and fixing ammonia oxidizing bacteria can be stably attached to the nitrifying tank 4. Nitrification performance is obtained. As the polymer biological carrier 8 filled in the nitritation tank 4, synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyacrylamide, and photo-curing resin, polymers such as carrageenan and sodium alginate are used. Examples thereof include a gel carrier, a fluid carrier made of polyethylene, polyurethane, polypropylene, or the like.
As the shape of the carrier 8, any of a spherical shape, a square shape, and a cylindrical shape can be used, and the effective diameter is not particularly limited. However, in order to stably separate the carrier 8 by the separation screen 20 at the aeration tank outlet, 3 About 10 mm is preferable. The specific gravity of the carrier is preferably from 1.001 to 1.05 so that it can flow uniformly in the aerated state. Moreover, it is desirable that the carrier filling amount is 10 to 30 V% which enables uniform mixing flow.

図2に示す概略図では、亜硝酸化処理水12は直接アンモニア脱窒槽16に導入される。アンモニア脱窒槽16では、脱窒担体17のアンモニア脱窒菌により流入処理水中のNH−Nが電子供与体、及びNO−Nが電子受容体となり、脱窒処理される。脱窒処理後の混合液が分離スクリーン21より脱窒担体が分離されて、アンモニア脱窒処理水22となる。 In the schematic diagram shown in FIG. 2, the nitrite-treated water 12 is directly introduced into the ammonia denitrification tank 16. In the ammonia denitrification tank 16, NH 4 -N in the inflow treated water becomes an electron donor and NO 2 -N becomes an electron acceptor by the denitrification bacteria of the denitrification carrier 17, and is denitrified. In the mixed liquid after the denitrification treatment, the denitrification carrier is separated from the separation screen 21 to become ammonia denitrification treated water 22.

アンモニア脱窒槽16に、アンモニア脱窒菌を付着固定できる高分子生物担体17を充填することにより、アンモニア脱窒菌を安定して付着でき、アンモニア脱窒槽16において安定した脱窒性能が得られる。アンモニア脱窒槽16に充填する高分子担体17としては、ポリビニルアルコール(PVA)やポリエチレングリコール(PEG)、ポリアクリルアミド、光硬化性樹脂等の合成高分子、カラギーナン、アルギン酸ソーダ等の高分子を用いたゲル担体、ポリエチレンやポリウレタン、ポリプロピレン等からなる流動担体が挙げられる。
担体17の形状としては球形、四角形、円筒形の何れの形状でも使用可能であり、有効径は特に限定的ではないが、脱窒槽16出口の分離スクリーン21により安定して分離するためには、3〜10mm程度が好ましい。担体として表面に微細孔径を多く有するもの、内部中空であるスポンジ、表面に無数の凹凸を有するものがアンモニア脱窒菌の付着固定が速く、短期間で高い脱窒性能が得られる。さらに長期間、脱窒槽内アンモニア脱窒菌を高濃度に維持できることから、安定した脱窒性能が得られる。
担体比重は嫌気状態において撹拌より均一流動できる1.00〜1.10であるものが好ましい。担体充填量は脱窒槽内において局部堆積のないように10〜30V%とすることが望ましい。
By filling the ammonia denitrification tank 16 with the polymer biological carrier 17 capable of adhering and fixing ammonia denitrifying bacteria, the ammonia denitrifying bacteria can be stably adhered, and stable denitrification performance can be obtained in the ammonia denitrifying tank 16. As the polymer carrier 17 filled in the ammonia denitrification tank 16, a synthetic polymer such as polyvinyl alcohol (PVA), polyethylene glycol (PEG), polyacrylamide, photocurable resin, or a polymer such as carrageenan or sodium alginate was used. Examples thereof include a fluid carrier made of a gel carrier, polyethylene, polyurethane, polypropylene or the like.
As the shape of the carrier 17, any of a spherical shape, a square shape, and a cylindrical shape can be used, and the effective diameter is not particularly limited, but in order to stably separate by the separation screen 21 at the outlet of the denitrification tank 16, About 3 to 10 mm is preferable. A carrier having a large number of fine pores on the surface, a sponge having a hollow inside, and a material having innumerable irregularities on the surface can quickly attach and fix ammonia denitrifying bacteria, and high denitrification performance can be obtained in a short period of time. Furthermore, since the ammonia denitrifying bacteria in the denitrification tank can be maintained at a high concentration for a long period of time, stable denitrification performance can be obtained.
The specific gravity of the carrier is preferably 1.00 to 1.10 which can flow uniformly by stirring in an anaerobic state. The carrier filling amount is desirably 10 to 30 V% so as not to cause local deposition in the denitrification tank.

本発明では、アンモニア脱窒槽16の酸化還元電位(ORP)をORP計18で測定し、ORPが50mV以上に上昇すれば、亜硝酸化処理水12に有機物の添加剤15を一時的に混合して脱窒槽16に供給し、ORPが50mV以下に低下すれば、その供給を停止することが好ましい。また、脱窒槽16から発生する窒素ガスを脱窒槽底部に供給して循環すれば、同様にORPが低下する。   In the present invention, when the oxidation-reduction potential (ORP) of the ammonia denitrification tank 16 is measured by the ORP meter 18 and the ORP rises to 50 mV or more, the organic additive 15 is temporarily mixed in the nitrite-treated water 12. If the ORP drops to 50 mV or less, it is preferable to stop the supply. Further, if the nitrogen gas generated from the denitrification tank 16 is supplied to the bottom of the denitrification tank and circulated, the ORP similarly decreases.

アンモニア脱窒槽16に流入する亜硝酸化処理水12は、脱窒処理にとっては、そのDOが低いほど良く、基本的に0mg/Lとなることが望ましい。DOが高いとアンモニア脱窒菌へのDO阻害が懸念される。アンモニア脱窒槽16において、DOが残留すると酸化還元電位(ORP)が上昇する。ORPが50mV以上となれば、アンモニア脱窒活性が低下するため、脱窒槽ORPが50mV以上となれば、有機物である添加剤15を亜硝酸化処理水12に混合して添加する。脱窒担体17には、通常、脱窒菌とともに、有機物を好気的に酸化分解するフロック形成菌も一部付着している。有機物の補給でこのフロック形成菌が活性化してDOを消費することで脱窒槽ORPが低下する。これにより、アンモニア脱窒菌活性が高く維持されて安定した脱窒性能が得られる。
一方、フロック形成菌の増殖速度はアンモニア脱窒菌より速いため、有機物15の添加量が多いとアンモニア脱窒菌よりフロック形成菌が多く増殖し、脱窒槽16内の脱窒菌比率が低下することから、有機物添加量はなるべく少ないほうが好ましい。従って、有機物15の添加後に脱窒槽16のORPが50mV以下となれば、添加を停止する。
The nitritation water 12 flowing into the ammonia denitrification tank 16 is better for the denitrification process as its DO is lower, and basically it is preferably 0 mg / L. When DO is high, there is a concern about inhibition of DO to ammonia denitrifying bacteria. If DO remains in the ammonia denitrification tank 16, the oxidation-reduction potential (ORP) increases. If the ORP is 50 mV or more, the ammonia denitrification activity is reduced. Therefore, if the denitrification tank ORP is 50 mV or more, the organic additive 15 is mixed with the nitrite-treated water 12 and added. A part of floc-forming bacteria that aerobically oxidatively decompose organic substances is attached to the denitrification carrier 17 together with the denitrification bacteria. The denitrification tank ORP is lowered by activating the floc-forming bacteria by supplying organic matter and consuming DO. Thereby, ammonia denitrifying bacteria activity is maintained high and stable denitrification performance is obtained.
On the other hand, since the growth rate of floc-forming bacteria is faster than that of ammonia-denitrifying bacteria, if the amount of organic substance 15 added is large, more floc-forming bacteria grow than ammonia-denitrifying bacteria, and the ratio of denitrifying bacteria in the denitrifying tank 16 decreases. It is preferable that the amount of organic substance added is as small as possible. Therefore, when the ORP of the denitrification tank 16 becomes 50 mV or less after the addition of the organic matter 15, the addition is stopped.

ここで、添加する有機物としては、メタノール、エタノール、酢酸、酢酸ナトリウム、グルコース、ペプトン等が挙げられる。   Here, examples of the organic substance to be added include methanol, ethanol, acetic acid, sodium acetate, glucose, peptone, and the like.

上記の例では、亜硝酸化処理水12を直接アンモニア脱窒槽16に導入しているが、亜硝酸化処理水12のDOが高い場合、その途中に中間槽を設け、一旦該中間槽に亜硝酸化処理水12を導入してDO低減してからアンモニア脱窒槽16に導入することにより、さらに高い脱窒効果が得られる。また、この場合、アンモニア脱窒槽16に流入するDO除去を目的とした上記添加剤15の注入を、該中間槽に対して実施しても同様な効果が得られる。   In the above example, the nitrite-treated water 12 is directly introduced into the ammonia denitrification tank 16, but when the DO of the nitrite-treated water 12 is high, an intermediate tank is provided in the middle, and the By introducing the nitrating water 12 to reduce the DO and then introducing it into the ammonia denitrification tank 16, a higher denitrification effect can be obtained. In this case, the same effect can be obtained even if the additive 15 is injected into the intermediate tank for the purpose of removing DO flowing into the ammonia denitrification tank 16.

アンモニア脱窒処理水22は必要に応じて循環ライン23を通じてその一部を原水槽2に循環する。
アンモニア脱窒処理水22の一部を必ずしも、原水槽1に循環する必要はないが、NH−N濃度の高い原水に対しては、NH−N濃度及びNO−N濃度の低減したアンモニア脱窒処理水22を原水槽に循環することにより、亜硝酸化槽4に流入する被処理水3のNH−N濃度が低くなり、亜硝酸化槽4の処理が安定する。例えば、畜糞廃液のメタン発酵液や濃縮汚泥や生ごみのメタン発酵液脱水ろ液等、原液NH−N濃度が1500mg/L以上であり、このまま、部分亜硝酸化処理後に亜硝酸化槽に残留するNH−N濃度及びNO−N濃度はそれぞれ約600〜900mg/Lと高くなる。この状態ではNH−N由来の遊離NHとNO−N由来の遊離HNOの何れも毒性が強くなり、好ましくない。NO−N濃度が800mg/L以上の場合で、しかもpHが7以下の場合には、NO−Nの毒性強度がアンモニア酸化菌に対しても悪影響を及ぼすため、アンモニア酸化菌の活性が低下し、安定した部分亜硝酸化が得られず、処理性能の悪化を招く要因となる。この場合に、NH−N濃度とNO−N濃度の低いアンモニア脱窒処理水22の一部を原水槽2に循環すれば(循環ライン23)、被処理液3中のNH−N濃度が低減でき、亜硝酸化槽内のNO−N濃度とNH−N濃度がアンモニア酸化菌活性に悪影響を及ぼさない範囲となり、安定した亜硝酸化処理を得ることができる。さらにアンモニア脱窒処理水22のM−アルカリ度が高く、M−アルカリ度/NH−N比が4.4より高いことが多いため、M−アルカリ度/NH−N比が3.7以下と該比が小さい原水の場合には、M−アルカリ度の補給となり、亜硝酸化槽に注入するアルカリを低減することができる。
A part of the ammonia denitrification treated water 22 is circulated to the raw water tank 2 through a circulation line 23 as necessary.
Necessarily a part of the ammonia denitrifying treatment water 22, need not be recycled to the raw water tank 1, for high NH 4 -N concentration raw water, and reduction of NH 4 -N concentration and NO 2 -N concentration By circulating the ammonia denitrification treated water 22 to the raw water tank, the NH 4 —N concentration of the water to be treated 3 flowing into the nitritation tank 4 is lowered, and the treatment of the nitritation tank 4 is stabilized. For example, the stock solution NH 4 -N concentration is 1500 mg / L or more, such as methane fermentation liquid of livestock manure waste liquid, concentrated sludge, and methane fermentation liquid dehydrated filtrate of garbage, and it remains in the nitrification tank after partial nitritation treatment. The remaining NH 4 —N concentration and NO 2 —N concentration are as high as about 600 to 900 mg / L, respectively. In this state, both NH 4 —N-derived free NH 3 and NO 2 —N-derived free HNO 2 are highly toxic and are not preferable. When the NO 2 -N concentration is 800 mg / L or more and the pH is 7 or less, the toxicity intensity of NO 2 -N also has an adverse effect on ammonia oxidizing bacteria. As a result, the stable partial nitritation cannot be obtained, which causes a deterioration in processing performance. In this case, if a part of the ammonia denitrification treated water 22 having a low NH 4 —N concentration and a low NO 2 —N concentration is circulated to the raw water tank 2 (circulation line 23), NH 4 —N in the liquid 3 to be treated. The concentration can be reduced, and the NO 2 —N concentration and the NH 4 —N concentration in the nitritation tank are in a range that does not adversely affect the activity of ammonia oxidizing bacteria, and a stable nitritation treatment can be obtained. Furthermore, since the M-alkalinity of the ammonia denitrification treated water 22 is high and the M-alkalinity / NH 4 -N ratio is often higher than 4.4, the M-alkalinity / NH 4 -N ratio is 3.7. In the case of raw water having a small ratio to the following, M-alkalinity is replenished, and the alkali injected into the nitritation tank can be reduced.

更に、NH−N濃度の高い原水に対しては、図3に示すように、亜硝酸化処理後の沈殿池11からの返送汚泥の一部を、返送管24により原水槽2に返送することにより、原水槽において活性汚泥中従属脱窒菌の働きにより、原水中の有機物が水素供与体として用いられ、循環されたアンモニア脱窒処理水中のNO−Nを除去できることから、亜硝酸化槽に流入する原水T−Nが低下し、最終処理水となるアンモニア脱窒処理水T−Nも低減されて処理システム全体のT−N除去率が向上する。さらに原水槽においてNO−N除去に伴う有機物の低減で亜硝酸化槽に流入する有機物が少なくなり、硝化菌活性が高く維持されることから安定した亜硝酸化性能が得られる。。 Further, as shown in FIG. 3, a part of the returned sludge from the sedimentation basin 11 after the nitritation treatment is returned to the raw water tank 2 through the return pipe 24 for the raw water having a high NH 4 -N concentration. Thus, the organic matter in the raw water is used as a hydrogen donor by the action of the dependent denitrifying bacteria in the activated sludge in the raw water tank, and NO x -N in the circulated ammonia denitrification treated water can be removed. The raw water T-N flowing into the water decreases, and the ammonia denitrification treated water TN serving as the final treated water is also reduced, thereby improving the TN removal rate of the entire treatment system. Further, organic substances flowing into the nitritation tank are reduced due to the reduction of organic substances accompanying NO X -N removal in the raw water tank, and the nitrifying activity is maintained high, so that stable nitritation performance is obtained. .

以下に、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention are shown below, but the present invention is not limited to these examples.

<実施例1>
図2に示す処理フローに従って、下水消化汚泥脱水ろ液のアンモニア脱窒処理を行った。表1に本実施例1の処理条件を示す。
<Example 1>
According to the treatment flow shown in FIG. 2, the ammonia denitrification treatment of the sewage digested sludge dehydrated filtrate was performed. Table 1 shows the processing conditions of Example 1.

Figure 0005581872
Figure 0005581872

亜硝酸化処理槽4には平均粒径4.2mmのPEGからなる担体8を20V%充填した。原水槽2から亜硝酸化処理槽4に平均255L/d連続通水した。流入原水に対し、予めM−アルカリ度/NH−N比を求め、M−アルカリ度/NH−Nが4.0となるようにNaOH水溶液5を亜硝酸化槽4に注入した。亜硝酸化槽4内のDOが4mg/L以上となるようにブロワー9の出力調整を行った。また、亜硝酸化槽4のpHが6.0〜6.9となるように曝気ブロワー9の出力調整を優先した。なお、ブロワー9の出力調整をしてもpH6.0〜6.9から外れた時は返送汚泥量14の調整も行った。亜硝酸化槽内MLSSが3000〜4000mg/Lとなるように余剰汚泥13の引き抜きを行った。 The nitrite treatment tank 4 was filled with 20 V% of a carrier 8 made of PEG having an average particle size of 4.2 mm. An average of 255 L / d was continuously passed from the raw water tank 2 to the nitritation tank 4. The M-alkalinity / NH 4 -N ratio was determined in advance with respect to the inflow raw water, and the NaOH aqueous solution 5 was injected into the nitritation tank 4 so that the M-alkalinity / NH 4 -N was 4.0. The output of the blower 9 was adjusted so that the DO in the nitritation tank 4 was 4 mg / L or more. In addition, priority was given to the output adjustment of the aeration blower 9 so that the pH of the nitritation tank 4 would be 6.0 to 6.9. Even when the output of the blower 9 was adjusted, the return sludge amount 14 was also adjusted when it was out of pH 6.0 to 6.9. The excess sludge 13 was extracted so that the MLSS in the nitritation tank was 3000 to 4000 mg / L.

アンモニア脱窒槽16に対し、pHが7.5となるように硫酸注入による制御を行った。脱窒槽16には平均粒径4mmのPVAからなる担体17を20V%充填した。また、アンモニア脱窒槽16に流入する亜硝酸化処理水12の無機炭素がほとんど無かったため、添加剤(無機炭素源)15としてNaCO約300mg/Lを亜硝酸化処理水12に添加した。
表2に実施例1において、約1年間連続通水処理期間中、原水、亜硝酸化処理水及びアンモニア脱窒処理水質の一例を示す。
The ammonia denitrification tank 16 was controlled by injecting sulfuric acid so that the pH was 7.5. The denitrification tank 16 was filled with 20 V% of a carrier 17 made of PVA having an average particle diameter of 4 mm. Further, since there was almost no inorganic carbon in the nitritation water 12 flowing into the ammonia denitrification tank 16, about 300 mg / L of Na 2 CO 3 was added to the nitritation water 12 as an additive (inorganic carbon source) 15. .
Table 2 shows examples of raw water, nitrite-treated water, and ammonia denitrification-treated water quality in Example 1 during continuous water treatment for about one year.

Figure 0005581872
Figure 0005581872

亜硝酸化処理において原水M−アルカリ度/NH−N比を予め4.0に調整したことから、NH−Nの約57%が亜硝酸化され、処理水NO−Nが480mg/Lとなり、NO−N/NH−N比が1.3とアンモニア脱窒必要量1.32に近い値が得られた。処理水NO−Nに対するNO−N比が99.6%となり、安定した亜硝酸化処理が得られた。
アンモニア脱窒処理において、流入亜硝酸化処理水NO−N/NH−Nが1.3とアンモニア脱窒反応に必要な比率にほぼ一致している。この結果、脱窒処理水NH−N及びNO−Nがそれぞれ、10.5mg/L、12.3mg/Lといずれも低い。T−Nが107.8mg/Lとなり、流入原水T−Nに対する除去率が87.3%得られた。
Since the raw water M-alkalinity / NH 4 -N ratio was adjusted to 4.0 in advance in the nitritation treatment, about 57% of NH 4 -N was nitrified, and the treated water NO 2 -N was 480 mg / L, the NO 2 —N / NH 4 —N ratio was 1.3, which was close to the ammonia denitrification requirement of 1.32. The NO 2 —N ratio to the treated water NO X —N was 99.6%, and a stable nitritation treatment was obtained.
In the ammonia denitrification treatment, the inflow nitritation water NO 2 —N / NH 4 —N is 1.3, which is almost equal to the ratio required for the ammonia denitrification reaction. As a result, the denitrification water NH 4 —N and NO 2 —N are both low, 10.5 mg / L and 12.3 mg / L, respectively. TN became 107.8 mg / L and the removal rate with respect to inflow raw | natural water TN was obtained 87.3%.

また、実施例1では、原水中不足M−アルカリ度を補給するため、亜硝酸化槽にアルカリ剤を連続添加した。なお、アルカリ剤を原水槽に直接添加しても同様な効果が得られる。また、アルカリ剤としてNaOHやNaCO及びNaHCO等何れを用いても同様な効果が得られる。 Further, in Example 1, an alkaline agent was continuously added to the nitritation tank in order to replenish the raw water deficiency M-alkalinity. Note that the same effect can be obtained by adding an alkali agent directly to the raw water tank. The same effect can be obtained by using any one of NaOH, Na 2 CO 3 and NaHCO 3 as the alkali agent.

<比較例1>
実施例1と同一な下水消化汚泥脱水ろ液を原水1として用い、原水に対してNaOH注入によるM−アルカリ度/NH−N調整を行わず、亜硝酸化槽4のpHが7.5となるようにNaOH注入による制御を行った。また、曝気風量及び汚泥返送率はともに一定とした。他の条件は実施例1と同一とした。
表3に比較例1の原水及び処理水水質結果の一例を示す。
<Comparative Example 1>
The same sewage digested sludge dehydrated filtrate as in Example 1 was used as raw water 1, and M-alkalinity / NH 4 -N adjustment by NaOH injection was not performed on the raw water, and the pH of the nitritation tank 4 was 7.5. Control by NaOH injection was performed so that The aeration volume and sludge return rate were both constant. Other conditions were the same as in Example 1.
Table 3 shows an example of the raw water and treated water quality results of Comparative Example 1.

Figure 0005581872
Figure 0005581872

表3に示すように原水M−アルカリ度/NH−N比を調整せず、亜硝酸化処理槽のpHを7.5に制御していたため、硝化進行に伴ない、pHが7.5以下に低下した時、原水NH−N全量硝化に不足のM−アルカリ度がNaOH注入より補給された。その結果、亜硝酸化槽処理水NH−Nが5.6mg/Lに低下した。亜硝酸化槽内のNH−N低下で亜硝酸酸化菌に及ぼす遊離NH毒性が少なくなった。また、亜硝酸化槽pHが7.5と高く、遊離HNOが少なく、亜硝酸酸化菌への毒性も低くなったことから、硝化が硝酸型に進行し、処理水NO−Nが3.5mg/Lに低下し、NO−Nが840mg/Lに増加し、亜硝酸型硝化とすることができなかった。
上記のように亜硝酸化槽において安定した亜硝酸化処理ができず、硝化が硝酸型硝化となってしまったことから、アンモニア脱窒槽では処理水NO−Nが835mg/Lと高く、処理水T−Nも835mg/Lと原水T−Nとほぼ同程度となり、窒素除去率が僅か2%程度であった。
As shown in Table 3, since the raw water M-alkalinity / NH 4 -N ratio was not adjusted and the pH of the nitrite treatment tank was controlled to 7.5, the pH was 7.5 as nitrification progressed. When reduced to below, the raw water NH 4 —N total nitrification was inadequate for M-alkaline replenishment from NaOH injection. As a result, the nitritation tank treated water NH 4 -N decreased to 5.6 mg / L. Reduction of NH 4 -N in the nitrification tank reduced the toxicity of free NH 3 to nitrite oxidizing bacteria. Further, since the pH of the nitritation tank is as high as 7.5, the amount of free HNO 2 is small, and the toxicity to nitrite oxidizing bacteria is low, nitrification proceeds to the nitric acid type, and the treated water NO 2 -N is 3 It decreased to 0.5 mg / L, NO 3 -N increased to 840 mg / L, and nitrite type nitrification could not be achieved.
As described above, since stable nitritation treatment could not be performed in the nitritation tank, and nitrification became nitric acid type nitrification, the treated water NO 3 -N was as high as 835 mg / L in the ammonia denitrification tank. The water TN was 835 mg / L, which was almost the same as the raw water TN, and the nitrogen removal rate was only about 2%.

<比較例2>
原水は実施例1と同様なものを用いた。本比較例では、原水M−アルカリ度/NH−N調整及び亜硝酸化槽pH制御の何れも実施しなかった。亜硝酸化槽のNH−N負荷及びアンモニア脱窒槽T−N負荷等は実施例1と同じとした。
表4に比較例2の原水及び処理水水質結果の一例を示す。
<Comparative example 2>
The raw water was the same as in Example 1. In this comparative example, neither raw water M-alkalinity / NH 4 -N adjustment nor nitritation tank pH control was performed. The NH 4 —N load and the ammonia denitrification tank TN load of the nitritation tank were the same as those in Example 1.
Table 4 shows an example of the raw water and treated water quality results of Comparative Example 2.

Figure 0005581872
Figure 0005581872

表4に示すように流入原水に対し、M−アルカリ度/NH−Nを調整しなかったため、亜硝酸化処理水NH−Nが458mg/Lとなり、実施例1より87mg/L高い。また、NO−Nが398mg/Lとなり、実施例1より82mg/L低下した。この結果、亜硝酸化処理水NO−N/NH−N比が0.9とアンモニア脱窒反応に必要である1.3より低い値となった。
アンモニア脱窒処理では、処理水NH−Nが145mg/Lと高いため、処理水T−Nが229mg/Lとなり、原水に対する除去率は73%に止まった。
上記のように原水M−アルカリ度/NH−Nを調整しなかった場合、亜硝酸化処理水のNO−N/NH−Nがアンモニア脱窒反応に必要な1.3から大きく外れるため、アンモニア脱窒ではNH−Nが多く残留し、脱窒処理水T−Nが高くなり、良好な脱窒性能が得られなかった。
As shown in Table 4, since the M-alkalinity / NH 4 -N was not adjusted with respect to the inflow raw water, the nitrite-treated water NH 4 -N was 458 mg / L, which is 87 mg / L higher than Example 1. Moreover, NO 2 —N was 398 mg / L, which was 82 mg / L lower than Example 1. As a result, the nitrite-treated water NO 2 —N / NH 4 —N ratio was 0.9, which was lower than 1.3 required for the ammonia denitrification reaction.
In the ammonia denitrification treatment, the treated water NH 4 -N was as high as 145 mg / L, so the treated water TN was 229 mg / L, and the removal rate with respect to the raw water was 73%.
If the raw water M-alkalinity / NH 4 —N is not adjusted as described above, the NO 2 —N / NH 4 —N of the nitrite-treated water greatly deviates from 1.3 required for the ammonia denitrification reaction. Therefore, a large amount of NH 4 —N remains in ammonia denitrification, and the denitrification treated water TN becomes high, and good denitrification performance cannot be obtained.

<比較例3>
比較例3の原水も、実施例1と同様なものを用いた。また、原水に対し、M−アルカリ度/NH−N比が4.0となるように亜硝酸化槽にNaOHを注入した。しかし、実施例1のように亜硝酸化槽pHが6.0〜6.9となるように曝気風量の制御を実施せず、ほぼ一定の風量で曝気した。なお、返送汚泥量は実施例1と同様にpHが6.0〜6.9となるように返送率を変化させた。
表5に比較例3の原水及び処理水水質結果の一例を示す。
<Comparative Example 3>
The raw water of Comparative Example 3 was the same as that of Example 1. Further, with respect to the raw water, M- alkalinity / NH 4 -N ratio was injected NaOH to nitrite reduction vessel such that a 4.0. However, as in Example 1, the aeration air volume was not controlled so that the nitritation tank pH was 6.0 to 6.9, and aeration was performed with a substantially constant air volume. In addition, the return rate was changed so that the amount of returned sludge was pH 6.0 to 6.9 as in Example 1.
Table 5 shows an example of the raw water and treated water quality results of Comparative Example 3.

Figure 0005581872
Figure 0005581872

表5に示すように、実施例1の亜硝酸化処理水NH−Nが371mg/Lに対し、本比較例の亜硝酸化処理水NH−Nが425mg/Lと高くなった。また、NO−Nが365mg/Lと実施例1より低く、さらにNO−Nが72mg/Lと高い。この結果、亜硝酸化処理水NO−N/NH−Nが0.8と目標の1.3から大きく外れた。
比較例3では、亜硝酸化槽pHが6.9以上と高い場合において、活性汚泥返送量を上げても、曝気風量が増加せず一定であったため、硝化性能に大きく寄与する担体の硝化能力が向上せず、M−アルカリ度が残留し、NH−Nが高くなった。この結果、pHが7.3と実施例1より高く、NO−Nが365mg/Lと実施例1より低いことから、遊離HNOが実施例1より低下し、亜硝酸化酸化菌に対する遊離HNO毒性が低下したため、亜硝酸酸化菌の活性がやや増加し、処理水NO−Nが72mg/Lに増加した。
亜硝酸化処理が安定せず、良好な処理水が得なれなかったことから、アンモニア脱窒槽処理水でNH−Nが132mg/L、NO−Nが147mg/Lと大きく残留し、T−Nが281mg/Lと高く、原水に対するT−N除去率は67%に止まった。
As shown in Table 5, the nitrite-treated water NH 4 -N of Example 1 was as high as 425 mg / L while the nitrite-treated water NH 4 -N of this comparative example was 371 mg / L. Moreover, NO 2 —N is 365 mg / L, which is lower than Example 1, and NO 3 —N is 72 mg / L, which is higher. As a result, the nitrite-treated water NO 2 —N / NH 4 —N greatly deviated from the target of 1.3, 0.8.
In Comparative Example 3, when the pH of the nitritation tank is as high as 6.9 or higher, even if the activated sludge return amount is increased, the aeration air volume does not increase and is constant, so the nitrification ability of the carrier that greatly contributes to nitrification performance Was not improved, M-alkaliness remained, and NH 4 -N became high. As a result, the pH is 7.3, which is higher than that of Example 1, and NO 2 -N is 365 mg / L, which is lower than that of Example 1. Therefore, free HNO 2 is lower than that of Example 1, and free from nitrite oxidizing bacteria. Since the toxicity of HNO 2 decreased, the activity of nitrite oxidizing bacteria increased slightly, and the treated water NO 3 -N increased to 72 mg / L.
Since nitritation treatment was not stable and good treated water could not be obtained, NH 4 -N was largely left at 132 mg / L and NO x -N was 147 mg / L in the ammonia denitrification tank treated water. -N was as high as 281 mg / L, and the TN removal rate relative to the raw water was only 67%.

<比較例4>
比較例4の原水も、実施例1と同様なものを用いた。また、原水に対し、M−アルカリ度/NH−N比が4.0となるように亜硝酸化槽にNaOHを注入した。しかし、実施例1のように亜硝酸化槽pHが6.0〜6.9となるように曝気風量及び返送汚泥流量調整の何れも実施せず、返送率が原水量に対し30%とほぼ一定であった。
表6に比較例4の原水及び処理水水質結果の一例を示す。
<Comparative example 4>
The raw water of Comparative Example 4 was the same as that of Example 1. Further, with respect to the raw water, M- alkalinity / NH 4 -N ratio was injected NaOH to nitrite reduction vessel such that a 4.0. However, neither the aeration air volume nor the return sludge flow rate adjustment was performed so that the nitritation tank pH was 6.0 to 6.9 as in Example 1, and the return rate was almost 30% of the raw water amount. It was constant.
Table 6 shows an example of the raw water and treated water quality results of Comparative Example 4.

Figure 0005581872
Figure 0005581872

表6に示すように比較例4においても、亜硝酸化槽処理水NH−Nが510mg/Lと高い。また、NO−Nが285mg/Lと実施例1より低い。さらにNO−Nが85mg/Lに上昇した。この結果、亜硝酸化処理水NO−N/NH−Nが0.6と目標1.3から大きく外れた。
比較例4では、一時的に亜硝酸化槽流入NH−N負荷の増加或は亜硝酸化槽硝化担体の硝化能力が低下し、pHが6.9以上と上昇した場合でも、曝気風量や返送汚泥量が一定であるため、亜硝酸化槽内担体及び活性汚泥の硝化能力が増加せず、必要な硝化能力が不足して処理水M−アルカリ度やNH−Nの上昇となった。また、pHが7.6と実施例1より高く、NO−Nが285mg/Lと実施例1より低いことから、遊離HNOが実施例1より低下し、亜硝酸化酸化菌に対する遊離HNO毒性が低下したため、亜硝酸酸化菌の活性がやや増加し、処理水NO−Nが85mg/Lに増加した。
亜硝酸化処理が安定せず、良好な処理水が得られなかったことから、アンモニア脱窒槽処理水でNH−Nが292mg/L、NO−Nが146mg/Lと大きく残留し、T−Nが438mg/Lと高く、原水に対するT−N除去率は48%に止まった。
As shown in Table 6, also in Comparative Example 4, the nitritation tank treated water NH 4 -N is as high as 510 mg / L. Moreover, NO 2 —N is 285 mg / L, which is lower than that of Example 1. Furthermore, NO 3 -N increased to 85 mg / L. As a result, the nitrite-treated water NO 2 —N / NH 4 —N was 0.6, greatly deviating from the target 1.3.
In Comparative Example 4, even when the nitritation tank inflow NH 4 -N load is temporarily increased or the nitrification capacity of the nitrification tank nitrification carrier is lowered and the pH rises to 6.9 or more, Since the amount of returned sludge is constant, the nitrification capacity of the support in the nitrification tank and activated sludge does not increase, and the required nitrification capacity is insufficient, resulting in an increase in the treated water M-alkalinity and NH 4 -N. . Further, pH is higher than 7.6 as in Example 1, since the NO 2 -N is lower than in Example 1 and 285 mg / L, free HNO 2 is lower than in Example 1, free HNO against nitritation oxidation bacteria 2 Since the toxicity decreased, the activity of nitrite oxidizing bacteria increased slightly, and the treated water NO 3 -N increased to 85 mg / L.
Since the nitritation treatment was not stable and good treated water could not be obtained, NH 4 -N remained large at 292 mg / L and NO X -N at 146 mg / L in the ammonia denitrification tank treated water, and T -N was as high as 438 mg / L, and the TN removal rate relative to the raw water was only 48%.

<実施例2>
実施例2は畜糞廃液のメタン発酵分離液に対する本願発明適用の一例である。表7に実施例2の処理条件を示す。
<Example 2>
Example 2 is an example of application of the present invention to a methane fermentation separated liquid of livestock waste liquid. Table 7 shows the processing conditions of Example 2.

Figure 0005581872
Figure 0005581872

実施例2は実施例1と同じ処理装置を用いた。しかし、対象原水NH−Nが高いため、原水量が80L/dと実施例1より少ない。ここでは、アンモニア脱窒処理水を80L/d原水槽に循環した。また、亜硝酸化処理の沈殿池から返送汚泥を原水量20%相当の16L/dを原水槽に返送した。原水槽へ沈殿池から返送汚泥の流入で槽内MLSSが約2000〜3000mg/Lとなった。原水槽への原水流入量は平均80L/dであり、原水ベースのHRTを約24Hとした。また、原水槽内を撹拌機にて常時撹拌した。
原水に対し、実施例1と同様にM−アルカリ度/NH4−N比が4.0となるように亜硝酸化槽にNaOHを注入した。また、亜硝酸化槽pHが6.0〜6.9となるように曝気風量及び返送汚泥流量の調整を実施した。
表8に実施例2の流入原水と原水槽原水、亜硝酸化槽処理水と脱窒槽処理水水質の一例を示す。
In Example 2, the same processing apparatus as in Example 1 was used. However, since the target raw water NH 4 -N is high, the amount of raw water is 80 L / d, which is smaller than that in Example 1. Here, ammonia denitrification treated water was circulated to the 80 L / d raw water tank. Moreover, 16 L / d equivalent to 20% of the amount of raw water was returned to the raw water tank from the nitrite treatment sedimentation basin. The MLSS in the tank became about 2000 to 3000 mg / L due to the inflow of the returned sludge from the sedimentation tank into the raw water tank. The average amount of raw water inflow into the raw water tank was 80 L / d, and the HRT based on the raw water was about 24H. Further, the inside of the raw water tank was constantly stirred with a stirrer.
NaOH was injected into the nitritation tank with respect to the raw water so that the M-alkalinity / NH4-N ratio was 4.0, as in Example 1. In addition, the aeration air volume and the return sludge flow rate were adjusted so that the nitritation tank pH was 6.0 to 6.9.
Table 8 shows an example of inflow raw water, raw water tank raw water, nitritation tank treated water, and denitrification tank treated water quality of Example 2.

Figure 0005581872
Figure 0005581872

原水槽流入の畜糞廃液メタン発酵分離液NH−Nが2580mg/Lと高いが、脱窒処理水の流入混合で原水槽NH−Nが1320mg/Lとなった。NO−Nの高い脱窒処理水の混合にも関わらず、原水槽内NO−Nが7.1mg/Lと低い。また、BODが250mg/Lと流入原水の1100mg/Lより大きく低下した。これは原水槽内で流入返送汚泥中従属脱窒菌の活動でメタン発酵分離液中のBODが水素供与体として使用されて脱窒反応が進行した結果である。
亜硝酸化処理では、処理水NH−Nが535mg/L、NO−Nが705mg/Lとなり、NO−N/NH−Nが1.3となり、アンモニア脱窒必要量1.32に近い値が得られた。処理水NO−Nに対するNO−N比が98.6%となり、安定した亜硝酸化処理が得られた。
アンモニア脱窒処理では、流入する亜硝酸化処理水NO−N/NH−Nが1.3と目標値にほぼ同じとなっていることから、処理水NH−Nが8.5mg/L、NO−Nが15mg/Lと何れも低い値となった。また、NO−Nが150mg/Lと低く、T−Nが159mg/Lとなり、流入原水に対する除去率が約93.8%となった。
The livestock dung waste liquid methane fermentation separation liquid NH 4 -N in the raw water tank inflow was as high as 2580 mg / L, but the raw water tank NH 4 -N became 1320 mg / L by the inflow mixing of the denitrified water. Despite the mixing of the high NO X -N denitrification water, raw water tank in NO X -N is 7.1 mg / L and less. Moreover, BOD fell significantly from 250 mg / L and 1100 mg / L of inflow raw | natural water. This is a result of the denitrification reaction proceeding in the raw water tank by using the BOD in the methane fermentation separation liquid as a hydrogen donor due to the activity of subordinate denitrifying bacteria in the inflow return sludge.
In the nitritation treatment, the treated water NH 4 -N becomes 535 mg / L, NO 2 -N becomes 705 mg / L, NO 2 -N / NH 4 -N becomes 1.3, and the ammonia denitrification required amount 1.32 A value close to was obtained. The NO 2 —N ratio to the treated water NO X —N was 98.6%, and a stable nitritation treatment was obtained.
In the ammonia denitrification treatment, the inflowing nitrite-treated water NO 2 —N / NH 4 —N is 1.3, which is substantially equal to the target value, so that the treated water NH 4 —N is 8.5 mg / L, NO 2 -N becomes low both with 15 mg / L. Further, NO X -N is as low as 150mg / L, T-N is 159 mg / L, and the removal rate for the inflow raw water was about 93.8%.

<比較例5>
実施例2と同一な畜糞廃液メタン発酵分離液を用いた。ここでは、実施例2と異なり、原水槽には流入原水のみ貯留し、脱窒処理水の循環及び返送汚泥の注入は実施しなかった。他の条件は実施例2と同じとした。
表9に比較例2の原水及び処理水水質の一例を示す。
<Comparative Example 5>
The same livestock dung waste liquid methane fermentation separation liquid as Example 2 was used. Here, unlike Example 2, only the inflow raw water was stored in the raw water tank, and the circulation of denitrification treated water and the injection of return sludge were not performed. Other conditions were the same as in Example 2.
Table 9 shows an example of raw water and treated water quality of Comparative Example 2.

Figure 0005581872
Figure 0005581872

表9に示すように流入原水NH−Nが2580mg/Lと高く、BODも1100mg/L残留している。亜硝酸化処理槽では、処理水NH−Nが1520mg/Lと高く、NO−Nが1015mg/Lとなった。この結果、亜硝酸化処理水NO−N/NH−Nが0.7と低く、目標値の1.32から大きく低下した。これは流入原水NH−Nが2580mg/Lと高く、亜硝酸化槽NH−Nが多く残留することにより、遊離NHの毒性が増加してアンモニア酸化菌の活性が低下したものと考えられる。この結果、硝化性能が低下し、NH−Nが多く残留した。
アンモニア脱窒槽では、流入亜硝酸化処理水のNO−N/NH−Nが0.7しかなく、NH−Nが1520mg/Lと高いため、脱窒進行しても、NH−Nが常時750mg/L以上と高く残留することから、アンモニア脱窒菌にも有毒の遊離NHが高く、アンモニア脱窒菌の活性が徐々に低下した結果、アンモニア脱窒処理水が最終的にNH−Nで1500mg/L、NO−Nで1015mg/Lとなった。これは流入する亜硝酸化処理水とほぼ同程度であり、脱窒性能が全く得られなかった。
上記のように高濃度NH−N原水を希釈せず、直接亜硝酸化槽とアンモニア脱窒槽に導入して部分亜硝酸処理及び脱窒処理を行っても、高濃度NH−N残留で毒性の高い遊離NHが高く、アンモニア酸化菌及び脱窒菌のいずれも大きく毒性の影響によりその活性が低下若しくは停止し、安定した処理が得られなかった。
As shown in Table 9, the influent raw water NH 4 -N is as high as 2580 mg / L, and BOD also remains at 1100 mg / L. In the nitritation treatment tank, the treated water NH 4 —N was as high as 1520 mg / L, and the NO 2 —N was 1015 mg / L. As a result, the nitrite-treated water NO 2 —N / NH 4 —N was as low as 0.7, which was greatly reduced from the target value of 1.32. This is because the influent raw water NH 4 -N is as high as 2580 mg / L, and a large amount of the nitritation tank NH 4 -N remains, thereby increasing the toxicity of free NH 3 and reducing the activity of ammonia oxidizing bacteria. It is done. As a result, the nitrification performance decreased and a large amount of NH 4 -N remained.
In the ammonia denitrification tank, NO 2 —N / NH 4 —N is only 0.7 and NH 4 —N is as high as 1520 mg / L, so even if denitrification proceeds, NH 4 − Since N always remains as high as 750 mg / L or more, the amount of free NH 3 that is toxic to ammonia denitrifying bacteria is also high, and as a result of the gradual decrease in the activity of ammonia denitrifying bacteria, the ammonia denitrified treated water finally becomes NH 4 It became 1015mg / L at 1500 mg / L, in NO 2 -N -N. This was almost the same level as the inflowing nitrite-treated water, and no denitrification performance was obtained.
As described above, even if high concentration NH 4 -N raw water is not diluted, it is introduced directly into the nitrification tank and ammonia denitrification tank, and even if partial nitrite treatment and denitrification treatment are carried out, high concentration NH 4 -N remains. Highly toxic free NH 3 was high, and both ammonia-oxidizing bacteria and denitrifying bacteria were greatly reduced or stopped due to the influence of toxicity, and stable treatment could not be obtained.

本発明によれば、アンモニア性窒素含有の被処理水に対し、被処理水のM−アルカリ度及びNH−N濃度を予め測定し、活性汚泥及びアンモニア酸化菌付着生物担体の共存する亜硝酸化処理槽に流入する該被処理水のM−アルカリ度/NH−N比率が3.7〜4.4となるようにアルカリまたは酸を所定量で亜硝酸化槽に注入し、亜硝酸化槽pHが6.0〜6.9となるように曝気風量または曝気風量と返送汚泥量の両方を調整すれば、安定した亜硝酸化処理が得られるとともに、亜硝酸化処理水のNO−N/NH−N比がアンモニア脱窒反応に必要な1.3付近となることができる。
すなわち、亜硝酸化処理槽に、活性汚泥とともにアンモニア酸化菌付着の微生物担体と活性汚泥を共存させることで、亜硝酸化槽内のアンモニア酸化菌が高濃度に保持できることから、高いNH−N負荷が得られるとともに、亜硝酸酸化層内の曝気風量を調整することにより亜硝酸化槽のpHを調整することができることが分かった。また、アンモニア脱窒槽に供給する亜硝酸化処理水のDOが低いほど、アンモニア脱窒槽への持ち込みDOが少なく、脱窒活性への悪影響が少ない。従って、沈殿池にて活性汚泥と固液分離した亜硝酸化処理水DOが亜硝酸化槽DOより低いと、アンモニア脱窒槽へのDO持込が少なくなり、アンモニア脱窒槽の処理性能が安定して得られる。
According to the present invention, N-nitrite coexisting with activated sludge and ammonia-oxidizing bacteria-attached biological carrier is measured in advance for M-alkalinity and NH 4 -N concentration of water to be treated containing ammoniacal nitrogen. A predetermined amount of alkali or acid is injected into the nitritation tank so that the M-alkaliness / NH 4 -N ratio of the water to be treated flowing into the nitrification tank is 3.7 to 4.4, and nitrous acid is added. If the aeration air volume or both the aeration air volume and the return sludge volume are adjusted so that the pH of the nitrification tank becomes 6.0 to 6.9, a stable nitritation treatment can be obtained, and NO 2 in the nitritation water can be obtained. can be -N / NH 4 -N ratio is around 1.3 required ammonia denitrification.
That is, since the ammonia oxidizing bacteria in the nitrifying tank can be kept at a high concentration by allowing the microbial carrier adhering to the ammonia oxidizing bacteria and the activated sludge to coexist with the activated sludge in the nitrating treatment tank, a high NH 4 -N It was found that the load was obtained and the pH of the nitritation tank could be adjusted by adjusting the amount of aeration air in the nitrite oxidation layer. In addition, the lower the DO of nitritation water supplied to the ammonia denitrification tank, the less DO brought into the ammonia denitrification tank, and the less adverse effect on the denitrification activity. Therefore, if the nitritation water DO solid-liquid separated from activated sludge in the sedimentation basin is lower than the nitritation tank DO, the amount of DO brought into the ammonia denitrification tank is reduced and the treatment performance of the ammonia denitrification tank is stabilized. Obtained.

また、亜硝酸化槽処理水のNH−N濃度とNO−N濃度をモニターし、測定したNO−N/NH−N比が1.3から外れた時、亜硝酸化槽に注入しているアルカリまたは酸の注入量を微調整することにより、亜硝酸化処理水NO−N/NH−Nがほぼ1.3となり、後段のアンモニア脱窒槽に供給すれば、安定した脱窒処理と良好な水質が得られる。 Also, the NH 4 -N concentration and NO 2 -N concentration of the nitritation tank treatment water are monitored, and when the measured NO 2 -N / NH 4 -N ratio deviates from 1.3, By finely adjusting the injection amount of the injected alkali or acid, the nitrite-treated water NO 2 —N / NH 4 —N becomes approximately 1.3, which is stable if supplied to the ammonia denitrification tank in the subsequent stage. Denitrification treatment and good water quality are obtained.

さらに流入原水のNH−N濃度が1500mg/L以上と高い場合には、NH−N濃度の低い脱窒処理水を原水槽に循環することで亜硝酸化槽に流入する混合液NH−Nが希釈されて低くなる。この結果、部分亜硝酸化後の残留NH−N濃度及びNO−N濃度が何れも適切な値に抑えられ、アンモニア酸化菌及びアンモニア脱窒菌に有毒となる遊離NHと遊離HNO濃度も適値となり、アンモニア酸化菌とアンモニア脱窒菌への悪影響が低減でき、安定した部分亜硝酸化及び脱窒処理が得られる。また、流入原水中にBODが残存した場合、亜硝酸化槽沈殿池返送汚泥の一部を原水槽に返送し、原水槽にて撹拌混合すれば、活性汚泥中従属脱窒菌の働きで原水中BODを利用した脱窒反応でアンモニア脱窒処理水中のNO−Nを低減することができる。これにより、脱窒処理水のT−Nが低くなり、原水に対するT−N除去率が向上する。 Furthermore, when the NH 4 —N concentration of the inflowing raw water is as high as 1500 mg / L or more, the mixed solution NH 4 flowing into the nitrification tank by circulating denitrification water having a low NH 4 —N concentration to the raw water tank. -N is diluted and lowered. As a result, the residual NH 4 -N concentration and NO 2 -N concentration after partial nitritation are both suppressed to appropriate values, and free NH 3 and free HNO 2 concentrations that are toxic to ammonia oxidizing bacteria and ammonia denitrifying bacteria Becomes an appropriate value, and adverse effects on ammonia oxidizing bacteria and ammonia denitrifying bacteria can be reduced, and stable partial nitritation and denitrification treatment can be obtained. In addition, if BOD remains in the inflowing raw water, a part of the sludge returned to the nitritation tank sedimentation basin is returned to the raw water tank and stirred and mixed in the raw water tank. NO X —N in the ammonia denitrification treated water can be reduced by denitrification using BOD. Thereby, TN of denitrification processing water becomes low, and the TN removal rate with respect to raw | natural water improves.

以上のことから、本発明の処理方法及び処理装置によれば、長期に安定して、アンモニア脱窒反応後の処理水のNH−N濃度及びNO−N濃度を極めて低濃度まで低下させることができ、下水、浸出水、畜産廃水、産業廃水、有機性排水等の処理の技術分野で広く用いることができる。 From the above, according to the treatment method and treatment apparatus of the present invention, the NH 4 —N concentration and the NO 2 —N concentration of the treated water after the ammonia denitrification reaction are lowered to a very low concentration stably over a long period of time. It can be widely used in the technical field of treatment of sewage, leachate, livestock wastewater, industrial wastewater, organic wastewater and the like.

1:濃縮脱水ろ液
2:原水槽
3:被処理液
4:亜硝酸化槽
5:中和剤
6:亜硝酸化槽pH計
7:DO計
8:亜硝酸化担体
9:曝気ブロワー
10:亜硝酸化槽流出液
11:沈殿池(固液分離槽)
12:亜硝酸化処理水
13:排泥ライン(余剰汚泥)
14:返送汚泥
15:添加剤
16:アンモニア脱窒槽
17:脱窒担体
18:ORP計
19:アンモニア脱窒槽pH計
20:亜硝酸化槽分離スクリーン
21:アンモニア脱窒槽分離スクリーン
22:アンモニア脱窒処理水
23:循環液
24:原水槽返送汚泥
1: Concentrated dehydrated filtrate 2: Raw water tank 3: Liquid to be treated 4: Nitrite tank 5: Neutralizing agent 6: Nitrite tank pH meter 7: DO meter 8: Nitrite carrier 9: Aeration blower 10: Nitrite tank effluent 11: Sedimentation basin (solid-liquid separation tank)
12: Nitrite treated water 13: Waste mud line (excess sludge)
14: Return sludge 15: Additive 16: Ammonia denitrification tank 17: Denitrification carrier 18: ORP meter 19: Ammonia denitrification tank pH meter 20: Nitrite tank separation screen 21: Ammonia denitrification tank separation screen 22: Ammonia denitrification treatment Water 23: Circulating fluid 24: Raw water tank return sludge

Claims (7)

アンモニア性窒素(NH−N)を含有する被処理液を、活性汚泥及びアンモニア酸化菌付着の微生物担体が共存する亜硝酸化槽に導入し、該被処理液中のアンモニア性窒素(NH−N)の一部を亜硝酸性窒素(NO−N)に変換した後、固液分離槽にて濃縮分離し、該分離された活性汚泥の一部を前記亜硝酸化槽に返送して亜硝酸化処理するアンモニア性窒素含有被処理液の脱窒処理方法において、
前記被処理液のアンモニア性窒素濃度(NH−N)及びM−アルカリ度を予め測定し、
前記測定結果からM−アルカリ度/NH−N比が3.7〜4.4となるように亜硝酸化槽にアルカリまたは酸を所定量注入し、かつ、
前記亜硝酸化槽のpHが6.0〜6.9となるように、
該pHが6.0以下では、曝気風量を減らし槽内の溶存酸素(DO)を低下させて、硝化速度を低下させると共に、前記返送量を減らし槽内の活性汚泥濃度を低下させることによりpHを上昇させ、該pHが6.9以上では、曝気風量を増やし槽内の溶存酸素(DO)を上昇させて、硝化速度を向上させると共に、前記返送量を増やし槽内の活性汚泥濃度を上昇させることによりpHを低下させるように制御することを特徴とするアンモニア性窒素含有被処理液の脱窒処理方法。
Liquid to be treated containing ammonium nitrogen (NH 4 -N), was introduced into nitritation tank microbial carrier of activated sludge and ammonia-oxidizing bacteria attached coexist, ammonium nitrogen該被treatment solution (NH 4 -N) is converted into nitrite nitrogen (NO 2 -N), concentrated and separated in a solid-liquid separation tank, and a part of the separated activated sludge is returned to the nitritation tank. In the denitrification method of ammonia nitrogen containing liquid to be nitritized,
Ammonia nitrogen concentration (NH 4 -N) and M-alkalinity of the liquid to be treated are measured in advance,
From the measurement results, a predetermined amount of alkali or acid was injected into the nitritation tank so that the M-alkalinity / NH 4 -N ratio was 3.7 to 4.4 , and
The pH of the nitritation tank is 6.0 to 6.9,
When the pH is 6.0 or less, the aeration air volume is reduced to lower the dissolved oxygen (DO) in the tank, the nitrification rate is lowered, and the return amount is reduced to lower the activated sludge concentration in the tank. When the pH is 6.9 or more, the aeration air volume is increased to increase the dissolved oxygen (DO) in the tank to improve the nitrification rate, and the return amount is increased to increase the activated sludge concentration in the tank. A denitrification treatment method for an ammoniacal nitrogen-containing liquid to be treated, which is controlled so as to lower the pH.
前記亜硝酸化槽処理水のNH−Nの濃度及びNO−Nの濃度をモニターし、NO−N/NH−Nの濃度比(NO−N/NH−N比)が1.3以下の時は亜硝酸化槽へのアルカリ注入量を増加するか又は酸注入量を減少させ、NO−N/NH−N比が1.3以上の時はアルカリ注入量を減少するか又は酸注入量を増加することを特徴とする請求項1記載のアンモニア性窒素含有被処理液の脱窒処理方法。 To monitor the density of the density and NO 2 -N of NH 4 -N of the nitrite reduction vessel treated water, the concentration ratio of NO 2 -N / NH 4 -N ( NO 2 -N / NH 4 -N ratio) When the ratio is 1.3 or less, the alkali injection amount into the nitritation tank is increased or the acid injection amount is decreased. When the NO 2 —N / NH 4 —N ratio is 1.3 or more, the alkali injection amount is increased. The method for denitrification of an ammoniacal nitrogen-containing liquid to be treated according to claim 1, wherein the denitrification treatment method comprises reducing the acid injection amount or increasing the acid injection amount. 前記亜硝酸化処理プロセスで処理された処理水を、アンモニア脱窒菌付着生物担体を充填したアンモニア脱窒槽に導入し、NH−Nが電子供与体およびNO−Nが電子受容体となる独立栄養脱窒菌により脱窒処理することを特徴とする請求項1又は2記載のアンモニア性窒素含有被処理液の脱窒処理方法。 The treated water treated in the nitritation treatment process is introduced into an ammonia denitrification tank filled with an ammonia denitrifying bacteria-attached biological carrier, and NH 4 -N becomes an electron donor and NO 2 -N becomes an electron acceptor. 3. The denitrification method for an ammoniacal nitrogen-containing liquid to be treated according to claim 1 or 2, wherein the denitrification treatment is performed by a nutrient denitrifying bacterium. 前記アンモニア脱窒槽で処理された処理水及び前記固液分離槽から分離された活性汚泥の一部を、前記亜硝酸化槽に該被処理水を導入するための原水槽に返送することを特徴とする請求項3に記載のアンモニア性窒素含有被処理液の脱窒処理方法。   The treated water treated in the ammonia denitrification tank and a part of the activated sludge separated from the solid-liquid separation tank are returned to the raw water tank for introducing the treated water into the nitritation tank. The method for denitrifying an ammoniacal nitrogen-containing liquid to be treated according to claim 3. 前記アンモニア脱窒槽の酸化還元電位(ORP)をモニターし、該ORPが50mV以上となった時に、アンモニア脱窒槽に有機物を直接添加するか、又は該脱窒槽で得られる窒素ガス(N)を脱窒槽に循環することを特徴とする請求項3又は4記載のアンモニア性窒素含有被処理液の脱窒処理方法。 Monitor the oxidation-reduction potential (ORP) of the ammonia denitrification tank, and when the ORP reaches 50 mV or more, add organic substances directly to the ammonia denitrification tank or use nitrogen gas (N 2 ) obtained in the denitrification tank. The method for denitrification of an ammoniacal nitrogen-containing liquid to be treated according to claim 3 or 4, wherein the denitrification tank is circulated in a denitrification tank. 原水槽から導入される被処理水中のアンモニア性窒素(NH−N)の一部を活性汚泥及びアンモニア酸化菌付着の微生物担体の存在下で亜硝酸性窒素(NO−N)に変換する亜硝酸化槽と、
前記亜硝酸化槽からの流出液から活性汚泥を分離する固液分離槽と、
前記分離された活性汚泥の一部を前記亜硝酸化槽に返送する汚泥返送ラインと、
前記固液分離槽からの流出液をアンモニア性窒素(NH−N)が電子供与体および亜硝酸性窒素(NO−N)が電子受容体となる独立栄養脱窒菌により脱窒処理するアンモニア脱窒槽と
前記亜硝酸化槽に導入する被処理液のNH−Nの濃度及びM−アルカリ度を測定し測定値を得る測定計と、
前記測定値に応じてM−アルカリ度/NH−N比が3.7〜4.4になるように前記亜硝酸化槽にアルカリまたは酸を所定量注入する注入機構と、
前記亜硝酸化槽に設けられpH値を測定するpH計と、
前記pH計のpH値が6.0〜6.9となるように曝気風量及び前記汚泥返送量を調整する機構と、
前記アンモニア脱窒槽で処理された処理水の一部を前記原水槽に返送する処理水循環ラインと、
前記固液分離槽から分離された活性汚泥の一部を前記原水槽に返送する原水槽汚泥返送ラインと、を備え、
前記処理水循環ラインと前記原水槽汚泥搬送ラインとにより、前記アンモニア性窒素(NH−N)濃度が高い原水に対して、亜硝酸化槽の処理を安定化させたことを特徴とするアンモニア性窒素含有被処理液の脱窒処理装置。
Part of ammonia nitrogen (NH 4 -N) in the water to be treated introduced from the raw water tank is converted to nitrite nitrogen (NO 2 -N) in the presence of activated sludge and microbial carriers attached to ammonia oxidizing bacteria. A nitritation tank;
A solid-liquid separation tank for separating activated sludge from the effluent from the nitritation tank;
A sludge return line for returning a part of the separated activated sludge to the nitritation tank;
Ammonia in which effluent from the solid-liquid separation tank is denitrified by an autotrophic denitrifying bacterium in which ammonia nitrogen (NH 4 -N) serves as an electron donor and nitrite nitrogen (NO 2 -N) serves as an electron acceptor. A denitrification tank and a measuring instrument for measuring the concentration of NH 4 -N and M-alkalinity of the liquid to be treated introduced into the nitritation tank, and obtaining measurement values;
An injection mechanism for injecting a predetermined amount of alkali or acid into the nitritation tank so that the M-alkalinity / NH 4 -N ratio is 3.7 to 4.4 according to the measured value;
A pH meter provided in the nitritation tank for measuring a pH value;
A mechanism for adjusting the amount of aeration air and the amount of returned sludge so that the pH value of the pH meter is 6.0 to 6.9;
A treated water circulation line for returning a part of the treated water treated in the ammonia denitrification tank to the raw water tank;
A raw water tank sludge return line for returning a part of the activated sludge separated from the solid-liquid separation tank to the raw water tank,
Ammonia, characterized in that the treatment of the nitritation tank is stabilized with respect to the raw water having a high ammoniacal nitrogen (NH 4 -N) concentration by the treated water circulation line and the raw water tank sludge transport line. Denitrification treatment equipment for nitrogen-containing treatment liquid.
原水槽から導入される被処理水中のアンモニア性窒素(NH−N)の一部を活性汚泥及びアンモニア酸化菌付着の微生物担体の存在下で亜硝酸性窒素(NO−N)に変換する亜硝酸化槽と、
前記亜硝酸化槽からの流出液から活性汚泥を分離する固液分離槽と、
前記分離された活性汚泥の一部を前記亜硝酸化槽に返送する汚泥返送ラインと、
前記固液分離槽からの流出液をアンモニア性窒素(NH−N)が電子供与体および亜硝酸性窒素(NO−N)が電子受容体となる独立栄養脱窒菌により脱窒処理するアンモニア脱窒槽と
前記亜硝酸化槽に導入する被処理液のNH−Nの濃度及びM−アルカリ度を測定し測定値を得る測定計と、
前記測定値に応じてM−アルカリ度/NH−N比が3.7〜4.4になるように前記亜硝酸化槽にアルカリまたは酸を所定量注入する注入機構と、
前記亜硝酸化槽に設けられpH値を測定するpH計と、
前記pH計のpH値が6.0〜6.9となるように曝気風量及び前記汚泥返送量を調整する制御機構と、を備え、
前記制御機構により、前記亜硝酸化槽のpHが6.0〜6.9となるように、
該pHが6.0以下では、曝気風量を減らし槽内の溶存酸素(DO)を低下させて、硝化速度を低下させると共に、前記返送量を減らし槽内の活性汚泥濃度を低下させることによりpHを上昇させ、該pHが6.9以上では、曝気風量を増やし槽内の溶存酸素(DO)を上昇させて、硝化速度を向上させると共に、前記返送量を増やし槽内の活性汚泥濃度を上昇させることによりpHを低下させるように制御を行うことを特徴とするアンモニア性窒素含有被処理液の脱窒処理装置。
Part of ammonia nitrogen (NH 4 -N) in the water to be treated introduced from the raw water tank is converted to nitrite nitrogen (NO 2 -N) in the presence of activated sludge and microbial carriers attached to ammonia oxidizing bacteria. A nitritation tank;
A solid-liquid separation tank for separating activated sludge from the effluent from the nitritation tank;
A sludge return line for returning a part of the separated activated sludge to the nitritation tank;
Ammonia in which effluent from the solid-liquid separation tank is denitrified by an autotrophic denitrifying bacterium in which ammonia nitrogen (NH 4 -N) serves as an electron donor and nitrite nitrogen (NO 2 -N) serves as an electron acceptor. A denitrification tank and a measuring instrument for measuring the concentration of NH 4 -N and M-alkalinity of the liquid to be treated introduced into the nitritation tank, and obtaining measurement values;
An injection mechanism for injecting a predetermined amount of alkali or acid into the nitritation tank so that the M-alkalinity / NH 4 -N ratio is 3.7 to 4.4 according to the measured value;
A pH meter provided in the nitritation tank for measuring a pH value;
A control mechanism for adjusting the amount of aeration air and the amount of sludge returned so that the pH value of the pH meter is 6.0 to 6.9,
By the control mechanism, the pH of the nitritation tank is 6.0 to 6.9,
When the pH is 6.0 or less, the aeration air volume is reduced to lower the dissolved oxygen (DO) in the tank, the nitrification rate is lowered, and the return amount is reduced to lower the activated sludge concentration in the tank. When the pH is 6.9 or more, the aeration air volume is increased to increase the dissolved oxygen (DO) in the tank to improve the nitrification rate, and the return amount is increased to increase the activated sludge concentration in the tank. The denitrification apparatus of the ammoniacal nitrogen containing liquid to be processed characterized by controlling so that pH may be lowered by making it.
JP2010166371A 2010-07-23 2010-07-23 Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid Active JP5581872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010166371A JP5581872B2 (en) 2010-07-23 2010-07-23 Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010166371A JP5581872B2 (en) 2010-07-23 2010-07-23 Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid

Publications (2)

Publication Number Publication Date
JP2012024707A JP2012024707A (en) 2012-02-09
JP5581872B2 true JP5581872B2 (en) 2014-09-03

Family

ID=45778316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166371A Active JP5581872B2 (en) 2010-07-23 2010-07-23 Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid

Country Status (1)

Country Link
JP (1) JP5581872B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5631090B2 (en) * 2010-07-26 2014-11-26 水ing株式会社 Waste water treatment apparatus and waste water treatment method
JP5968723B2 (en) * 2012-08-24 2016-08-10 株式会社クボタ Suspended organic matter-containing wastewater treatment system and treatment method
JP5951531B2 (en) * 2013-03-11 2016-07-13 株式会社東芝 Wastewater treatment equipment
JP6448382B2 (en) * 2015-01-19 2019-01-09 水ing株式会社 Nitrogen-containing wastewater denitrification method and denitrification apparatus
CN112850894B (en) * 2021-01-28 2022-07-08 北京坦思环保科技有限公司 Device and method for advanced denitrification of industrial wastewater through anaerobic ammonia oxidation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298841A (en) * 2003-04-01 2004-10-28 Kurita Water Ind Ltd Method for treating nitrogen-containing wastewater
EP1806325B1 (en) * 2004-09-30 2012-09-19 Kurita Water Industries Ltd. Method of treating nitrogen-containing liquid
JP4837706B2 (en) * 2008-06-27 2011-12-14 水ing株式会社 Ammonia nitrogen removal equipment

Also Published As

Publication number Publication date
JP2012024707A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
CN102264651B (en) Method and device for removing biological nitrogen and carrier therefor
JP6720100B2 (en) Water treatment method and water treatment device
JPWO2011148949A1 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP4872171B2 (en) Biological denitrification equipment
WO2016117210A1 (en) Denitrification method and denitrification apparatus for nitrogen-containing waste water
US8323487B2 (en) Waste water treatment apparatus
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4409415B2 (en) Method for removing phosphorus and / or nitrogen from sewage
JP4774120B2 (en) Apparatus and method for treating radioactive nitrate waste liquid
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP7229190B2 (en) Ammonia nitrogen-containing wastewater treatment method and treatment apparatus
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP5186429B2 (en) Method and apparatus for denitrification treatment of digested sludge separation liquid
KR100321679B1 (en) Advanced wastewater treatment method
JP5199794B2 (en) Nitrogen-containing organic wastewater treatment method
JP3858271B2 (en) Wastewater treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5581872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250