JP2005238166A - Anaerobic ammonoxidation treatment method - Google Patents

Anaerobic ammonoxidation treatment method Download PDF

Info

Publication number
JP2005238166A
JP2005238166A JP2004054308A JP2004054308A JP2005238166A JP 2005238166 A JP2005238166 A JP 2005238166A JP 2004054308 A JP2004054308 A JP 2004054308A JP 2004054308 A JP2004054308 A JP 2004054308A JP 2005238166 A JP2005238166 A JP 2005238166A
Authority
JP
Japan
Prior art keywords
reaction tank
nitrogen
water
calcium
anamox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004054308A
Other languages
Japanese (ja)
Inventor
Toshihiro Kiyokawa
智弘 清川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004054308A priority Critical patent/JP2005238166A/en
Publication of JP2005238166A publication Critical patent/JP2005238166A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a stable and efficient treatment by forming granular sludge sedimentation properties to keep the concentration thereof high in a USB reaction tank, in performing anaerobic ammonoxidation treatment method by holding the granular sludge of ANAMMOX bacteria in the USB reaction tank. <P>SOLUTION: A calcium compound is added to ANAMMOX water to be treated introduced into the USB reaction tank 1 and a calcium compound is incorporated in granules in a form of calcium carbonate or hydroxyapatite not only to enhance the specific gravity of the granules but also to well keep the sedimentation properties thereof to prevent the outflow of the granules from the USB reaction tank. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アンモニア態窒素と亜硝酸態窒素を含有する原水を、アンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体とする独立栄養性脱窒微生物(以下「ANAMMOX微生物」と称す場合がある。)を含むグラニュール汚泥を保持する反応槽に上向流で通液して嫌気的アンモニア酸化処理(以下「ANAMMOX処理」と称す場合がある。)する方法において、沈降性の良いグラニュール汚泥を形成し、これを反応槽内に高濃度に保持することにより、安定かつ効率的な処理を行う方法に関する。   In the present invention, raw water containing ammonia nitrogen and nitrite nitrogen is used as an autotrophic denitrifying microorganism (hereinafter referred to as “ANAMOX microorganism”) having ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. In a method of anaerobic ammonia oxidation treatment (hereinafter sometimes referred to as “ANAMMOX treatment”) by flowing upwardly into a reaction tank holding granule sludge containing The present invention relates to a method for performing stable and efficient treatment by forming good granular sludge and maintaining it in a reaction tank at a high concentration.

排水中に含まれるアンモニア態窒素は河川、湖沼及び海洋などにおける富栄養化の原因物質の一つであり、排液処理工程で効率的に除去する必要がある。一般に、排水中のアンモニア態窒素は、アンモニア態窒素をアンモニア酸化細菌により亜硝酸態窒素に酸化し、更にこの亜硝酸態窒素を亜硝酸酸化細菌により硝酸態窒素に酸化する硝化工程と、これらの亜硝酸態窒素及び硝酸態窒素を従属栄養性細菌である脱窒菌により、有機物を電子供与体として利用して窒素ガスにまで分解する脱窒工程との2段階の生物反応を経て窒素ガスにまで分解される。   Ammonia nitrogen contained in wastewater is one of the causative substances of eutrophication in rivers, lakes, and oceans, and it is necessary to remove it efficiently in the drainage treatment process. In general, ammonia nitrogen in wastewater is oxidized by ammonia oxidizing bacteria to nitrite nitrogen, and nitrifying nitrogen is oxidized to nitrate nitrogen by nitrite oxidizing bacteria. Nitrite nitrogen and nitrate nitrogen are subjected to denitrification bacteria, which are heterotrophic bacteria, and are converted into nitrogen gas through a two-stage biological reaction with a denitrification process in which organic matter is decomposed into nitrogen gas using an electron donor. Disassembled.

しかし、このような従来の硝化脱窒法では、脱窒工程において電子供与体としてメタノールなどの有機物を多量に必要とし、また硝化工程では多量の酸素が必要であるため、ランニングコストが高いという欠点がある。   However, such a conventional nitrification denitrification method requires a large amount of organic matter such as methanol as an electron donor in the denitrification step, and also requires a large amount of oxygen in the nitrification step, so that the running cost is high. is there.

これに対して、近年、アンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体とする独立栄養性微生物(自己栄養細菌)を利用し、アンモニア態窒素と亜硝酸態窒素とを反応させて脱窒する嫌気的アンモニア酸化処理(ANAMMOX処理)法が提案された。この方法であれば、有機物の添加は不要であるため、従属栄養性の脱窒菌を利用する方法と比べて、コストを低減することができる。また、独立栄養性の微生物は収率が低く、汚泥の発生量が従属栄養性微生物と比較すると著しく少ないので、余剰汚泥の発生量を抑えることができる。更に、従来の硝化脱窒法で観察されるNOの発生がなく、環境に対する負荷を低減できるといった特長もある。 On the other hand, in recent years, ammonia nitrogen and nitrite nitrogen are reacted using autotrophic microorganisms (autotrophic bacteria) using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. An anaerobic ammonia oxidation treatment (ANAMOX treatment) method for denitrification by dehydration was proposed. If this method is used, it is not necessary to add an organic substance, so that the cost can be reduced as compared with a method using heterotrophic denitrifying bacteria. Moreover, since the yield of autotrophic microorganisms is low and the amount of sludge generated is significantly less than that of heterotrophic microorganisms, the amount of surplus sludge generated can be suppressed. Furthermore, there is also a feature that the generation of N 2 O observed by the conventional nitrification denitrification method does not occur and the burden on the environment can be reduced.

このANAMMOX処理法はANAMMOX微生物によって、アンモニア態窒素と約1.3倍量の亜硝酸態窒素とを、下記反応式(1)に従って、窒素ガスにする生物反応である。
NH +1.32NO +0.066HCO +0.13H
→1.02N+0.26NO +0.066CH0.50.15
+2.03HO …(1)
This ANAMOX treatment method is a biological reaction in which ammonia nitrogen and about 1.3 times the amount of nitrite nitrogen are converted into nitrogen gas according to the following reaction formula (1) by an ANAMOX microorganism.
NH 4 + +1.32 NO 2 +0.066 HCO 3 + 0.13H +
→ 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15
+ 2.03H 2 O (1)

従って、例えば、ANAMMOX処理の前段において、排水中に含まれるアンモニア態窒素の一部分を亜硝酸態窒素に酸化し、ANAMMOX処理において、これを原水として、残留するアンモニア態窒素と酸化により生成した亜硝酸態窒素とを反応させて除去することができる。   Therefore, for example, in the preceding stage of the ANAMOX treatment, a part of the ammonia nitrogen contained in the waste water is oxidized to nitrite nitrogen, and in the ANAMOX treatment, this is used as raw water to produce the remaining ammonia nitrogen and the nitrous acid generated by oxidation. It can be removed by reacting with nitrogen.

しかし、上記ANAMMOX処理法では、反応に関与するANAMMOX微生物がその収率が低い分、増殖速度が遅く、反応槽内に高濃度に保持することが困難であり、このために処理効率を高めることができないという問題があった。   However, in the above-mentioned ANAMMOX treatment method, the growth rate of the ANAMMOX microorganisms involved in the reaction is low and the growth rate is slow, and it is difficult to maintain a high concentration in the reaction tank. There was a problem that could not.

ところで、従属栄養性細菌である脱窒菌を利用する従来の硝化脱窒法では、原水を反応槽の下部より上向流で流入させ、菌の付着担体を用いることなく、汚泥をブロック化又は粒状化させて粒径1〜数mmのグラニュール汚泥の汚泥床(スラッジブランケット)を形成させ、反応槽中に高濃度の微生物を保持して高負荷処理を行うUSB(Upflow Sludge Bed;上向流汚泥床)方式で処理が行われており、ANAMMOX微生物についても、グラニュール汚泥を用いて、USB反応槽により高負荷で嫌気的アンモニア酸化処理を行うことが提唱されている(特開2002−346593号公報)。
特開2002−346593号公報
By the way, in the conventional nitrification denitrification method using denitrifying bacteria, which are heterotrophic bacteria, raw water is allowed to flow upward from the bottom of the reaction tank, and sludge is blocked or granulated without using a bacterial adhesion carrier. A sludge bed (sludge blanket) of granular sludge with a particle size of 1 to several mm is formed, and a high-load treatment is carried out while retaining a high concentration of microorganisms in the reaction tank (Upflow Sludge Bed) It is proposed that an anamoxic microorganism is subjected to anaerobic ammonia oxidation treatment with a high load in a USB reaction tank using granulated sludge (JP 2002-346593 A). Publication).
JP 2002-346593 A

しかしながら、ANAMMOX微生物のグラニュール汚泥を保持した反応槽に原水を上向流で通液して高負荷運転を継続すると、グラニュールが肥大して粒径が大きくなり、グラニュール内部に空洞が形成され、そこにガスが包括されることによって、グラニュールの沈降速度が著しく低下する。そして、その結果、グラニュールの浮上、更には槽内の上昇水流による反応槽からの流出が起こり、反応槽内にグラニュール汚泥を安定的に保持することが困難となるという問題がある。   However, when raw water is passed upwardly into the reaction tank holding the granulated sludge of ANMAMOX microorganisms and the high load operation is continued, the granules are enlarged and the particle size is increased, and a cavity is formed inside the granules. In addition, the inclusion of gas therein significantly reduces the sedimentation rate of the granules. As a result, there is a problem that the granule is floated, and the outflow from the reaction tank occurs due to the rising water flow in the tank, making it difficult to stably hold the granule sludge in the reaction tank.

本発明は上記の問題点を解決し、反応槽内にANAMMOX微生物のグラニュール汚泥を保持して嫌気的アンモニア酸化処理を行うにあたり、沈降性のよいグラニュール汚泥を形成させて、反応槽内にグラニュール汚泥を高濃度に保持することによって、安定かつ効率的な処理を行う嫌気的アンモニア酸化処理方法を提供することを目的とする。   The present invention solves the above-mentioned problems, and in carrying out anaerobic ammonia oxidation treatment while holding the granule sludge of ANAMMOX microorganisms in the reaction tank, granule sludge with good sedimentation is formed in the reaction tank. An object of the present invention is to provide an anaerobic ammonia oxidation treatment method that performs stable and efficient treatment by maintaining granular sludge at a high concentration.

本発明の嫌気的アンモニア酸化処理方法は、アンモニア態窒素と亜硝酸態窒素を含有する原水を、アンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体とする独立栄養性脱窒微生物を含むグラニュール汚泥を保持する反応槽に上向流で通液して嫌気的アンモニア酸化処理する方法において、該反応槽に導入される水にカルシウム化合物を添加して該反応槽に通液することを特徴とする。   The anaerobic ammonia oxidation treatment method of the present invention is an autotrophic denitrifying microorganism using raw water containing ammonia nitrogen and nitrite nitrogen as an electron donor and ammonia nitrate as an electron acceptor. In a method of conducting an anaerobic ammonia oxidation treatment by flowing upward into a reaction tank holding granule sludge containing water, a calcium compound is added to water introduced into the reaction tank, and the liquid is passed through the reaction tank It is characterized by that.

ANAMMOX微生物を含むグラニュールを保持したUSB反応槽の高負荷運転を継続すると、グラニュールの肥大化、グラニュール内部の空洞化が生じ、これによってグラニュールの沈降速度が著しく低下し、槽内の上昇水流により、グラニュールが反応槽から流出し易くなるが、USB反応槽に導入される水(以下「ANAMMOX被処理水」と称す場合がある。)にカルシウム化合物を添加して、グラニュールにカルシウム成分を炭酸カルシウムやヒドロキシアパタイトの形にして取り込ませることによって、グラニュールの比重を高め、その沈降性を良好に維持させることができるようになる。   Continued high-load operation of a USB reaction tank holding granules containing ANAMMOX microorganisms causes granule enlargement and cavitation inside the granules, which significantly reduces the sedimentation rate of the granules. The rising water flow makes it easier for the granules to flow out of the reaction tank, but the calcium compound is added to the water introduced into the USB reaction tank (hereinafter sometimes referred to as “ANAMOX treated water”) to form the granules. By incorporating the calcium component in the form of calcium carbonate or hydroxyapatite, it is possible to increase the specific gravity of the granule and maintain its sedimentation well.

本発明において、カルシウム化合物は、USB反応槽の流入水のカルシウム濃度が20mg/L以上となるように、或いは、USB反応槽の流入水の窒素成分に対するカルシウム成分の重量比(カルシウム/全窒素比。以下「Ca/T−N比」と称す場合がある。)が0.03以上となるように添加することが好ましい。   In the present invention, the calcium compound is used so that the calcium concentration of the inflow water of the USB reaction tank is 20 mg / L or more, or the weight ratio of the calcium component to the nitrogen component of the inflow water of the USB reaction tank (calcium / total nitrogen ratio). Hereinafter, it may be referred to as “Ca / TN ratio”.) Is preferably added so that 0.03 or more.

本発明において、USB反応槽に導入される水は、好ましくは窒素含有排水を亜硝酸型硝化して排水中のアンモニア態窒素の一部を亜硝酸態窒素に変換した硝化液であることが好ましいが、この場合、原水である窒素含有排水にカルシウム化合物が含まれていても、亜硝酸化工程におけるpH調整のために炭酸ナトリウムや炭酸水素ナトリウムが添加されるため、これらのカルシウム成分は炭酸カルシウムとして固形化、析出してしまい、ANAMMOXグラニュールの内部に析出させることができない。そのため、亜硝酸化工程の後段で、USB反応槽に流入するANAMMOX被処理水中にカルシウム化合物を添加することが重要である。   In the present invention, the water introduced into the USB reaction tank is preferably a nitrification liquid in which nitrogen-containing wastewater is nitrite-type nitrified to convert a part of ammonia nitrogen in the wastewater into nitrite nitrogen. However, in this case, even if the calcium compound is contained in the nitrogen-containing wastewater, which is the raw water, sodium carbonate and sodium hydrogen carbonate are added to adjust the pH in the nitritation process. As a result, it solidifies and precipitates and cannot be deposited inside the ANAMOX granule. For this reason, it is important to add a calcium compound to the ANAMOX treated water that flows into the USB reaction tank after the nitritation step.

本発明の嫌気的アンモニア酸化処理方法によれば、ANAMMOX微生物を含むグラニュールを保持したUSB反応槽内に、沈降性の良いグラニュール汚泥を形成してその浮上、流出を防止し、グラニュール汚泥を反応槽内に高濃度に保持することにより、安定かつ効率的な嫌気的アンモニア酸化処理を行うことができる。   According to the anaerobic ammonia oxidation treatment method of the present invention, granule sludge having good sedimentation property is formed in a USB reaction tank holding granules containing ANAMOX microorganisms to prevent its floating and outflow. By maintaining a high concentration in the reaction tank, a stable and efficient anaerobic ammonia oxidation treatment can be performed.

以下に図面を参照して本発明の嫌気的アンモニア酸化処理方法の実施の形態を詳細に説明する。   Embodiments of the anaerobic ammonia oxidation treatment method of the present invention will be described below in detail with reference to the drawings.

図1は、本発明の嫌気的アンモニア酸化処理方法の実施に好適なUSB反応槽の一例を示す系統図である。   FIG. 1 is a system diagram showing an example of a USB reaction tank suitable for carrying out the anaerobic ammonia oxidation treatment method of the present invention.

このUSB反応槽1は、内部にANAMMOX微生物のグラニュール汚泥床が形成され、底部にANAMMOX被処理水の導入配管2が接続されている。反応槽1の上部には気液固分離装置3が設けられ、この気液固分離装置3から、処理水の排出配管4と処理水の一部を循環水として導入配管2に戻す循環配管5が引き出されている。また、導入配管2には、カルシウム化合物の注入配管6が接続されている。   The USB reaction tank 1 has a granulated sludge bed of ANAMOX microorganisms inside, and an introduction pipe 2 for the ANMOX treated water is connected to the bottom. A gas / liquid / solid separation device 3 is provided in the upper part of the reaction tank 1, and a circulation pipe 5 from the gas / liquid / solid separation device 3 to return the treated water discharge pipe 4 and a part of the treated water to the introduction pipe 2 as circulating water. Has been pulled out. Further, a calcium compound injection pipe 6 is connected to the introduction pipe 2.

原水は、配管5からの循環水と共に配管2からUSB反応槽1の底部に導入される間に配管6よりカルシウム化合物が添加される。USB反応槽1に導入された原水は、ANAMMOX微生物のグラニュール汚泥床を上向流で上昇する間に、ANAMMOX微生物により嫌気的アンモニア酸化処理され、処理水が配管4より系外へ排出される。また、処理水の一部は配管5よりANAMMOX被処理水の導入配管2に循環される。   While raw water is introduced into the bottom of the USB reaction tank 1 from the pipe 2 together with the circulating water from the pipe 5, a calcium compound is added from the pipe 6. The raw water introduced into the USB reaction tank 1 is subjected to anaerobic ammonia oxidation treatment by the ANAMOX microorganisms while rising upward in the granulated sludge bed of the ANAMMOX microorganisms, and the treated water is discharged from the pipe 4 to the outside of the system. . Further, a part of the treated water is circulated from the pipe 5 to the introduction pipe 2 for the ANMOX treated water.

添加するカルシウム化合物としては、塩化カルシウム(CaCl)、水酸化カルシウム(Ca(OH))等を用いることができ、カルシウム化合物は、ANAMMOX被処理水の窒素濃度が比較的低く、100〜670mg−N/Lである場合には、好ましくはUSB反応槽1の流入水中のカルシウム濃度が20mg/L以上、特に20〜100mg/Lとなるように、また、ANAMMOX被処理水の窒素濃度が比較的高く、670〜3000mg−N/Lである場合には、USB反応槽1の流入水中のCa/T−N比が0.03以上、特に0.05〜0.20となるように添加することが好ましい。カルシウム化合物添加量が上記範囲よりも少ないと、カルシウム化合物を添加したことによる本発明のグラニュール汚泥の沈降性向上効果を十分に得ることができず、多いとANAMMOX反応によるpH上昇に伴ない、反応槽出口や出口配管にスケールが生成してしまう。 As the calcium compound to be added, calcium chloride (CaCl 2 ), calcium hydroxide (Ca (OH) 2 ) or the like can be used, and the calcium compound has a relatively low nitrogen concentration in the ANMOX treated water, and is 100 to 670 mg. In the case of -N / L, the calcium concentration in the inflow water of the USB reaction tank 1 is preferably 20 mg / L or more, particularly 20 to 100 mg / L, and the nitrogen concentration of the ANMOX treated water is compared. When it is 670 to 3000 mg-N / L, it is added so that the Ca / TN ratio in the inflow water of the USB reaction tank 1 is 0.03 or more, particularly 0.05 to 0.20. It is preferable. If the calcium compound addition amount is less than the above range, the effect of improving the sedimentation property of the granule sludge of the present invention due to the addition of the calcium compound cannot be sufficiently obtained, and if it is more, the pH increases due to the ANAMOX reaction, Scales are generated at the reaction vessel outlet and outlet piping.

本発明の生物脱窒方法において、処理対象となるANAMMOX被処理水は、アンモニア態窒素及び亜硝酸態窒素を含む水であり、有機物及び有機態窒素を含むものであってもよいが、これらは脱窒処理前に予めアンモニア態窒素になる程度まで分解しておくことが好ましく、また、溶存酸素濃度が高い場合には、必要に応じて溶存酸素を除去しておくことが好ましい。ANAMMOX被処理水は無機物を含んでいてもよい。また、ANAMMOX被処理水はアンモニア態窒素を含む液と亜硝酸態窒素を含む液を混合したものであってもよい。例えば、アンモニア態窒素を含む排水をアンモニア酸化微生物の存在下に好気性処理を行い、アンモニア態窒素の一部、好ましくはその1/2を亜硝酸に部分酸化したものをANAMMOX被処理水とすることができる。更には、アンモニア態窒素を含む排水の一部をアンモニア酸化微生物の存在下に好気性処理を行い、アンモニア態窒素を亜硝酸に酸化し、アンモニア態窒素を含む排水の残部と混合したものをANAMMOX被処理水としても良い。   In the biological denitrification method of the present invention, the ANAMOX treated water to be treated is water containing ammonia nitrogen and nitrite nitrogen, and may contain organic matter and organic nitrogen. It is preferable to decompose to ammonia nitrogen in advance before the denitrification treatment, and when the dissolved oxygen concentration is high, it is preferable to remove the dissolved oxygen as necessary. The ANAMOX treated water may contain an inorganic substance. Moreover, the ANAMOX treated water may be a mixture of a liquid containing ammonia nitrogen and a liquid containing nitrite nitrogen. For example, wastewater containing ammonia nitrogen is subjected to aerobic treatment in the presence of ammonia oxidizing microorganisms, and a portion of ammonia nitrogen, preferably one half of which is partially oxidized to nitrous acid, is treated as ANAMMOX treated water. be able to. Furthermore, a part of the waste water containing ammonia nitrogen is subjected to aerobic treatment in the presence of ammonia oxidizing microorganisms, the ammonia nitrogen is oxidized to nitrous acid, and the mixture of the remaining waste water containing ammonia nitrogen is mixed with ANAMMOX. It may be treated water.

一般的には、下水、し尿、嫌気性硝化脱離液等のアンモニア態窒素、有機態窒素及び有機物を含む排水が処理対象となる場合が多いが、この場合、これらを好気性又は嫌気性処理して有機物を分解し、有機態窒素をアンモニア態窒素に分解し、さらに部分亜硝酸化或いは、一部についての亜硝酸化を行った硝化液をANAMMOX被処理水とすることが好ましい。   In general, wastewater containing ammonia nitrogen, organic nitrogen and organic matter such as sewage, human waste, anaerobic nitrification and desorption liquid is often treated. In this case, these are treated aerobically or anaerobically. Thus, it is preferable to use the nitrification liquid obtained by decomposing the organic matter, decomposing the organic nitrogen into ammonia nitrogen, and further performing partial nitritation or partial nitritation to be treated with ANAMOX.

ANAMMOX被処理水のアンモニア態窒素と亜硝酸態窒素の割合はモル比でアンモニア態窒素1に対して亜硝酸態窒素0.5〜2、特に1〜1.5とするのが好ましい。ANAMMOX被処理水中のアンモニア態窒素及び亜硝酸態窒素の濃度はそれぞれ5〜3000mg/L、5〜200mg/Lであることが好ましいが、処理水を循環して希釈すればこの限りではない。   The ratio of the ammonia nitrogen and nitrite nitrogen in the ANAMOX treated water is preferably 0.5 to 2, particularly 1 to 1.5, in terms of molar ratio with respect to ammonia nitrogen 1. The concentrations of ammonia nitrogen and nitrite nitrogen in the ANAMOX treated water are preferably 5 to 3000 mg / L and 5 to 200 mg / L, respectively, but the concentration is not limited as long as the treated water is circulated and diluted.

ANAMMOX処理条件としては、例えば反応槽内液の温度が10〜40℃、特に20〜35℃、pHが5〜9、特に6〜8、溶存酸素濃度が0〜2.5mg/L、特に0〜0.2mg/L、BOD濃度が0〜50mg/L、特に0〜20mg/L、窒素負荷が0.1〜10kg−N/m・day、特に1〜5kg−N/m・dayの範囲とするのが好ましい。 As the conditions for the ANAMOX treatment, for example, the temperature of the liquid in the reaction vessel is 10 to 40 ° C., particularly 20 to 35 ° C., the pH is 5 to 9, particularly 6 to 8, and the dissolved oxygen concentration is 0 to 2.5 mg / L, particularly 0. -0.2 mg / L, BOD concentration is 0-50 mg / L, especially 0-20 mg / L, nitrogen load is 0.1-10 kg-N / m 3 · day, especially 1-5 kg-N / m 3 · day It is preferable to be in the range.

グラニュール汚泥を形成する場合、微生物だけではグラニュール形成に期間を要するので、核となる物質を添加し、その核の周りにANAMMOX微生物の生物膜を形成させても良い。この場合、核として、例えば微生物グラニュールや非生物的な担体を挙げることができる。   When granule sludge is formed, it takes a period of time for granule formation only with microorganisms. Therefore, a substance serving as a nucleus may be added to form a biofilm of ANAMOX microorganisms around the nucleus. In this case, examples of the nucleus include microbial granules and abiotic carriers.

核として用いられる微生物グラニュールとしては、メタン菌グラニュール等の嫌気性微生物や従属栄養性脱窒菌グラニュール等を挙げることができる。メタン菌グラニュールは、UASB(Upflow Anaerobic Sludge Blanket;上向流嫌気性汚泥床)法もしくはEGSB(Expanded Granule Sludge Bed;展開粒状汚泥床)法でメタン発酵が行われているメタン発酵槽で使用されているものを適用できる。また、従属栄養性脱窒グラニュールは、USB方式の通常の脱窒槽で利用されるものを適用できる。これらのグラニュールはそのままの状態で、又はその破砕物として用いることができる。ANAMMOX微生物はこのような微生物グラニュールに付着しやすく、グラニュールの形成に要する時間が短縮される。また、核として非生物的な材料を用いるよりも経済的である。   Examples of the microorganism granules used as the nucleus include anaerobic microorganisms such as methane bacteria granules and heterotrophic denitrifying bacteria granules. Methane granule is used in methane fermentation tanks where methane fermentation is performed by UASB (Upflow Anaerobic Sludge Blanket) method or EGSB (Expanded Granule Sludge Bed) method You can apply what you have. The heterotrophic denitrification granules can be those used in a normal USB denitrification tank. These granules can be used as they are or as crushed materials thereof. ANAMMOX microorganisms are likely to adhere to such microbial granules, and the time required for the formation of granules is shortened. It is also more economical than using abiotic materials as the core.

核として用いられる非生物的な材料としては、例えば、活性炭、ゼオライト、ケイ砂、ケイソウ土、焼成セラミック、イオン交換樹脂等、好ましくは活性炭、ゼオライト等よりなる、粒径50〜200μm、好ましくは50〜100μmで、平均比重1.01〜2.5、好ましくは1.1〜2.0の担体を挙げることができる。   Examples of the abiotic material used as the core include activated carbon, zeolite, silica sand, diatomaceous earth, fired ceramic, ion exchange resin, and the like, preferably made of activated carbon, zeolite, and the like, and a particle size of 50 to 200 μm, preferably 50. A carrier having an average specific gravity of 1.01 to 2.5, preferably 1.1 to 2.0, can be mentioned.

このようにして形成されるANAMMOX微生物のグラニュール汚泥は、平均粒径が0.25〜3mm、好ましくは0.25〜2mm、より好ましくは0.25〜1.5mm程度、平均比重が1.01〜2.5、好ましくは1.1〜2.0であることが望ましい。グラニュールの粒度が小さいほど比表面積が大きくなるので、高い汚泥濃度を維持し、嫌気的アンモニア酸化処理を効率よく行う点で好ましい。   The granulated sludge of the ANAMOX microorganism thus formed has an average particle size of 0.25 to 3 mm, preferably 0.25 to 2 mm, more preferably about 0.25 to 1.5 mm, and an average specific gravity of 1. It is desirable that it is 01 to 2.5, preferably 1.1 to 2.0. The smaller the granule particle size, the larger the specific surface area, which is preferable in that the high sludge concentration is maintained and the anaerobic ammonia oxidation treatment is efficiently performed.

本発明の嫌気的アンモニア酸化処理方法は、具体的には、嫌気性処理で見られるようなUASB方式又はEGSB方式で反応槽内のANAMMOX微生物のグラニュール汚泥を原水の上向流で展開させてグラニュール汚泥床を形成して行うのが、原水とグラニュール汚泥との接触効率を高くすることができ、好ましい。なお、処理水の一部は、必要に応じて循環水として、反応槽のANAMMOX被処理水導入側へ戻す。   Specifically, the anaerobic ammonia oxidation treatment method of the present invention is a UASB method or an EGSB method as seen in anaerobic treatment, in which the granular sludge of ANAMOX microorganisms in the reaction tank is developed in the upstream flow of the raw water. It is preferable to form a granular sludge bed because the contact efficiency between the raw water and the granular sludge can be increased. In addition, a part of the treated water is returned to the ANAMOX treated water introduction side of the reaction tank as circulating water as necessary.

この場合、UASB方式であれば循環水量はANAMMOX被処理水量の0.5〜10倍とし、反応槽内の上向流速(ANAMMOX被処理水と循環水との合計の流速)を0.5〜4m/hrとするのが好ましい。また、EGSB方式であればANAMMOX被処理水量は原水量の0.5〜20倍とし、反応槽内の上向流速(ANAMMOX被処理水と循環水の合計の流速)を2〜15m/hrとしてグラニュール汚泥床を展開させて通液する。   In this case, in the case of the UASB method, the circulating water amount is 0.5 to 10 times the amount of the ANAMOX treated water, and the upward flow rate in the reaction tank (the total flow rate of the ANAMOX treated water and the circulating water) is 0.5 to It is preferably 4 m / hr. In the case of the EGSB method, the amount of water to be treated with ANAMMOX is 0.5 to 20 times the amount of raw water, and the upward flow rate in the reaction tank (the total flow rate of the water to be treated with ANAMMOX and circulating water) is 2 to 15 m / hr Expand the granular sludge bed and let it through.

本発明においては、ANAMMOX微生物のグラニュール汚泥を保持する反応槽にANAMMOX被処理水を上向流で通液して嫌気的アンモニア酸化処理するに当たり、反応槽にカルシウム化合物を添加しながら、ANAMMOX被処理水を反応槽に通液するものであり、カルシウム化合物は、ANAMMOX被処理水とは別の注入配管から注入することも可能であるが、ANAMMOX被処理水と共に均一に反応槽に添加するために、図1に示す如く、ANAMMOX被処理水の導入配管2にカルシウム化合物を注入することが好ましい。   In the present invention, when an AMAMOX treated water is passed in an upward flow through a reaction tank holding granulated sludge of ANAMOX microorganisms for anaerobic ammonia oxidation treatment, a calcium compound is added to the reaction tank, The treated water is passed through the reaction tank, and the calcium compound can be injected from an injection pipe different from the ANAMOX treated water, but is added to the reaction tank uniformly along with the ANAMOX treated water. In addition, as shown in FIG. 1, it is preferable to inject a calcium compound into the introduction pipe 2 of the ANAMOX treated water.

なお、図1のUSB反応槽1において、カルシウム化合物の注入配管は循環水の循環配管5に設けても良く、また、この循環配管5の接続位置よりも上流側の導入配管2に設けても良い。   In the USB reaction tank 1 of FIG. 1, the calcium compound injection pipe may be provided in the circulation pipe 5 of the circulating water, or may be provided in the introduction pipe 2 upstream of the connection position of the circulation pipe 5. good.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
図2に示す手順で、アンモニア態窒素濃度450〜600mg−N/Lの原水の亜硝酸化処理を行った後、得られた硝化液(アンモニア態窒素濃度150〜300mg−N/L,亜硝酸態窒素200〜400mg−N/L)にカルシウム化合物を添加して図1に示すUSB反応槽(容積200L)でANAMMOX処理を行った。USB反応槽では、流入水pH7.2〜7.5、温度30〜32℃、HRT2hrで、処理水に亜硝酸態窒素を2〜20mg−N/L残存させる運転を行った。
Example 1
After performing nitritation treatment of raw water having an ammonia nitrogen concentration of 450 to 600 mg-N / L by the procedure shown in FIG. 2, the resulting nitrification solution (ammonia nitrogen concentration of 150 to 300 mg-N / L, nitrous acid) The calcium compound was added to 200-400 mg-N / L of nitrogen (N) and the ANAMOX treatment was performed in the USB reaction tank (volume 200 L) shown in FIG. In the USB reaction tank, the operation was performed such that 2 to 20 mg-N / L of nitrite nitrogen remained in the treated water at an influent water pH of 7.2 to 7.5, a temperature of 30 to 32 ° C., and an HRT of 2 hr.

この運転中にUSB反応槽内のグラニュール汚泥を15〜30日毎に採取して測定し、結果を図3に示した。   During this operation, granular sludge in the USB reaction tank was sampled and measured every 15-30 days, and the results are shown in FIG.

まず、USB反応槽に導入するANAMMOX被処理水にカルシウム化合物として塩化カルシウムを添加してこの被処理水中のカルシウム濃度が13〜15mg/L(Ca/T−Nが0.02〜0.03)として処理を行ったところ、この期間のANAMMOXグラニュール汚泥の沈降速度は運転開始時には35m/hrであったが、次第に減少し、運転開始から220日目には27m/hrまで低下する結果が得られた。   First, calcium chloride is added as a calcium compound to the ANAMOX treated water introduced into the USB reaction tank, and the calcium concentration in the treated water is 13 to 15 mg / L (Ca / TN is 0.02 to 0.03). As a result, the sedimentation rate of the ANAMOX granule sludge during this period was 35 m / hr at the start of operation, but gradually decreased, and the result decreased to 27 m / hr on the 220th day after the start of operation. It was.

続いて、運転開始から260日目(図3のA点)より、アンモニア態窒素濃度が300〜500mg−N/Lの原水を亜硝酸化処理し、得られた硝化液(アンモニア態窒素濃度100〜300mg−N/L,亜硝酸態窒素150〜300mg−N/L)をANAMMOX被処理水として上記と同様にしてANAMMOX処理を行った。このときのANAMMOX被処理水中のカルシウム濃度は30〜40mg−N/LでCa/T−Nは0.06〜0.13であった。その結果、この原水のアンモニア態窒素濃度変更から30日後に、それまで減少していたグラニュール汚泥の沈降速度が上昇傾向に転じ、60日後には運転開始時と同程度の35m/hrにまで回復した。   Subsequently, from 260 days after starting operation (point A in FIG. 3), raw water having an ammonia nitrogen concentration of 300 to 500 mg-N / L was subjected to nitritation treatment, and the resulting nitrification solution (ammonia nitrogen concentration 100) ˜300 mg-N / L, nitrite nitrogen 150-300 mg-N / L) was used as the ANAMOX treated water and subjected to the ANAMOX treatment in the same manner as described above. The calcium concentration in the ANAMOX treated water at this time was 30 to 40 mg-N / L, and Ca / TN was 0.06 to 0.13. As a result, 30 days after the change of the ammonia nitrogen concentration of the raw water, the sedimentation rate of the granular sludge that had decreased until then began to increase, and after 60 days, it reached 35 m / hr, the same level as at the start of operation. Recovered.

このことから、ANAMMOX被処理水のCa/T−Nが0.03以上となるようにカルシウム化合物を添加することにより、グラニュール汚泥の沈降性を高めることができることが分かる。   This shows that the sedimentation property of granule sludge can be improved by adding a calcium compound so that Ca / T-N of ANAMOX treated water becomes 0.03 or more.

本発明の嫌気的アンモニア酸化処理方法の実施に好適なUASB反応槽の一例を示す系統図である。It is a systematic diagram which shows an example of the UASB reaction tank suitable for implementation of the anaerobic ammonia oxidation processing method of this invention. 実施例1における処理フローを示す図である。FIG. 6 is a diagram illustrating a processing flow in the first embodiment. 実施例1におけるグラニュール汚泥の沈降速度の経時変化を示すグラフである。2 is a graph showing the change over time in the sedimentation rate of granular sludge in Example 1. FIG.

符号の説明Explanation of symbols

1 USB反応槽
3 気液固分離装置
1 USB reaction tank 3 Gas-liquid solid separation device

Claims (4)

アンモニア態窒素と亜硝酸態窒素を含有する原水を、アンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体とする独立栄養性脱窒微生物を含むグラニュール汚泥を保持する反応槽に上向流で通液して嫌気的アンモニア酸化処理する方法において、
該反応槽に導入される水にカルシウム化合物を添加して該反応槽に通液することを特徴とする嫌気的アンモニア酸化処理方法。
The raw water containing ammonia nitrogen and nitrite nitrogen is put into a reaction tank holding granulated sludge containing autotrophic denitrifying microorganisms with ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. In the method of anaerobic ammonia oxidation treatment by flowing in an upward flow,
An anaerobic ammonia oxidation method characterized by adding a calcium compound to water introduced into the reaction vessel and passing the solution through the reaction vessel.
請求項1において、該反応槽に導入される水中のカルシウム濃度が20mg/L以上となるように、該水にカルシウム化合物を添加することを特徴とする嫌気的アンモニア酸化処理方法。   2. The anaerobic ammonia oxidation method according to claim 1, wherein a calcium compound is added to the water so that a concentration of calcium in the water introduced into the reaction tank is 20 mg / L or more. 請求項1又は2において、該反応槽に導入される水中の窒素成分に対するカルシウム成分の重量比(カルシウム/全窒素)が0.03以上となるように、該水にカルシウム化合物を添加することを特徴とする嫌気的アンモニア酸化処理方法。   In Claim 1 or 2, adding a calcium compound to this water so that the weight ratio (calcium / total nitrogen) of the calcium component with respect to the nitrogen component in the water introduced into this reaction tank may be 0.03 or more. An anaerobic ammonia oxidation method characterized. 請求項1ないし3のいずれか1項において、該反応槽に導入される水が、窒素含有排水を亜硝酸型硝化処理して得られた硝化液であることを特徴とする嫌気的アンモニア酸化処理方法。   The anaerobic ammonia oxidation process according to any one of claims 1 to 3, wherein the water introduced into the reaction tank is a nitrification liquid obtained by nitrifying nitrite treatment of nitrogen-containing wastewater. Method.
JP2004054308A 2004-02-27 2004-02-27 Anaerobic ammonoxidation treatment method Pending JP2005238166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004054308A JP2005238166A (en) 2004-02-27 2004-02-27 Anaerobic ammonoxidation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004054308A JP2005238166A (en) 2004-02-27 2004-02-27 Anaerobic ammonoxidation treatment method

Publications (1)

Publication Number Publication Date
JP2005238166A true JP2005238166A (en) 2005-09-08

Family

ID=35020462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004054308A Pending JP2005238166A (en) 2004-02-27 2004-02-27 Anaerobic ammonoxidation treatment method

Country Status (1)

Country Link
JP (1) JP2005238166A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117842A (en) * 2005-10-26 2007-05-17 Ebara Corp Method and apparatus for removing nitrogen of high concentration organic waste water
DE112006001608T5 (en) 2005-08-19 2008-07-03 Matsushita Electric Industrial Co., Ltd., Kadoma Electronic component placement process
CN100408487C (en) * 2006-10-16 2008-08-06 哈尔滨工业大学 Efficient composite anaerobic reactor for treating high-concentration organic waste water
JP2009233567A (en) * 2008-03-27 2009-10-15 Kurita Water Ind Ltd Biological denitrification system
CN101898829A (en) * 2010-07-15 2010-12-01 大连海洋大学 Method for starting salt tolerant anammox reactor
JP2011251255A (en) * 2010-06-02 2011-12-15 Kumamoto Univ Waste liquid treatment method and waste liquid treatment device
CN101767875B (en) * 2010-02-05 2012-05-02 浙江大学 Double-circulation biological membrane anaerobic ammonia oxidation reactor
FR2970710A1 (en) * 2011-01-20 2012-07-27 Valbio PROCESS FOR THE BIOLOGICAL TREATMENT OF WASTEWATER BY AEROBIC GRANULAR BIOMASS
CN102976483A (en) * 2012-10-30 2013-03-20 北京工业大学 Method for rapid starting of anaerobic ammonium oxidation granular sludge by using UASB
CN103058365A (en) * 2013-01-08 2013-04-24 北京工业大学 Anaerobic ammonia oxidization granule sludge starting method for treatment of urban sanitary sewage
CN103420481A (en) * 2013-08-19 2013-12-04 北京工业大学 Anaerobic ammonia oxidized coupled heterotrophic denitrifying denitrification method
CN103663692A (en) * 2013-09-03 2014-03-26 杭州师范大学 Integrated shortcut nitrification/anaerobic ammoxidation reactor
CN104386813A (en) * 2014-11-20 2015-03-04 沈阳建筑大学 Method for quickly forming anaerobic-ammonia oxidation and granulation sludge
CN104529056A (en) * 2014-11-29 2015-04-22 北京工业大学 Method for realizing autotrophic nitrogen removal of city sewage through symbiosis of flocculent sludge and granular sludge
CN104591381A (en) * 2014-12-30 2015-05-06 杭州师范大学 Method for improving terramycin impact resistance of anammox sludge
CN104628131A (en) * 2015-02-15 2015-05-20 北京工业大学 Production device and method for achieving stable denitrification of nitrite in continuous flow
CN104860482A (en) * 2015-05-25 2015-08-26 北京石油化工学院 Advanced nitrogen removal method for treating late landfill leachate with upflow anaerobic sludge blanket, anoxic/oxic and anaerobic ammonia oxidation reactor combined process
CN105152324A (en) * 2015-09-22 2015-12-16 浙江大学 Anaerobic ammonia oxidation reactor capable of classifying sludge through cyclone
CN105152327A (en) * 2015-09-30 2015-12-16 杭州师范大学 Culture method of anammox granule sludge with hydroxyapatite core
CN105174448A (en) * 2015-10-13 2015-12-23 沈阳建筑大学 Anaerobic ammonia oxidation and denitrification coupling device and controlled operation method thereof
JP2016016347A (en) * 2014-07-07 2016-02-01 新日鐵住金株式会社 Biological nitrogen removal method
CN105502652A (en) * 2016-01-28 2016-04-20 沈阳建筑大学 Method for increasing forming speed of anaerobic ammonia oxidation granule sludge
CN105502811A (en) * 2015-12-07 2016-04-20 北京城市排水集团有限责任公司 Anaerobic ammonia oxidation-based landfill leachate treatment device and use method thereof
CN105800780A (en) * 2016-05-26 2016-07-27 沈阳工业大学 Circumfluent sulfate type anaerobic ammonia oxidation microbial reactor
CN105906062A (en) * 2016-07-12 2016-08-31 沈阳建筑大学 Method for enhancing formation speed of anaerobic ammoxidation granular sludge by controlling reflux ratio
JP2016174980A (en) * 2015-03-18 2016-10-06 株式会社クボタ Apparatus and method for treating water
JP2016174981A (en) * 2015-03-18 2016-10-06 株式会社クボタ Apparatus and method for treating water
CN106348444A (en) * 2016-10-28 2017-01-25 齐鲁工业大学 Method for quickly starting CANON nitrogen removal process
CN107364962A (en) * 2017-06-15 2017-11-21 华南理工大学 A kind of method for strengthening anaerobism while denitrification methane phase granule sludge stability
CN108840433A (en) * 2018-06-26 2018-11-20 北京工业大学 Gradient controls dissolved oxygen and realizes pulling flow type integration short distance nitration/Anammox processing city domestic sewage device and method
CN109626556A (en) * 2018-11-23 2019-04-16 中国科学院广州地球化学研究所 Artificial wetland treatment pig farm biogas slurry based on zeolite filler realizes the device and method of short distance nitration
CN112694170A (en) * 2021-01-07 2021-04-23 北京工业大学 Method and device for improving anaerobic ammonia oxidation denitrification effect and operation stability at low temperature
CN112939333A (en) * 2021-01-25 2021-06-11 上海大学 Method for quickly starting anaerobic ammonia oxidation reactor and quickly improving total nitrogen removal load
CN112978912A (en) * 2021-05-06 2021-06-18 臻和慧联(浙江)环境科技有限公司 Sewage treatment agent, autotrophic denitrification microorganism carrier and preparation method thereof
CN113415881A (en) * 2021-06-04 2021-09-21 北京工业大学 Device and method for realizing autotrophic nitrogen removal and synchronous phosphorus recovery of domestic sewage by using granular sludge with hydroxyapatite as crystal nucleus
CN117003382A (en) * 2023-08-25 2023-11-07 广东清研环境科技有限公司 PN/A reaction system and reaction process for coupling front-end short-range denitrification

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140695A (en) * 1981-02-20 1982-08-31 Ebara Infilco Co Ltd Removal of nitrogen and phosphorus from filthy water
JPS62225294A (en) * 1986-03-26 1987-10-03 Japan Organo Co Ltd Biological denitrification device
JP2002346593A (en) * 2001-05-22 2002-12-03 Kurita Water Ind Ltd Method and apparatus for denitrification
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003033788A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for treating raw water containing phosphorus and ammoniacal nitrogen
JP2003047990A (en) * 2001-08-02 2003-02-18 Kurita Water Ind Ltd Biological denitrifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140695A (en) * 1981-02-20 1982-08-31 Ebara Infilco Co Ltd Removal of nitrogen and phosphorus from filthy water
JPS62225294A (en) * 1986-03-26 1987-10-03 Japan Organo Co Ltd Biological denitrification device
JP2002346593A (en) * 2001-05-22 2002-12-03 Kurita Water Ind Ltd Method and apparatus for denitrification
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003033788A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for treating raw water containing phosphorus and ammoniacal nitrogen
JP2003047990A (en) * 2001-08-02 2003-02-18 Kurita Water Ind Ltd Biological denitrifier

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006001608T5 (en) 2005-08-19 2008-07-03 Matsushita Electric Industrial Co., Ltd., Kadoma Electronic component placement process
JP4570550B2 (en) * 2005-10-26 2010-10-27 荏原エンジニアリングサービス株式会社 Nitrogen removal method and apparatus for high concentration organic wastewater
JP2007117842A (en) * 2005-10-26 2007-05-17 Ebara Corp Method and apparatus for removing nitrogen of high concentration organic waste water
CN100408487C (en) * 2006-10-16 2008-08-06 哈尔滨工业大学 Efficient composite anaerobic reactor for treating high-concentration organic waste water
JP2009233567A (en) * 2008-03-27 2009-10-15 Kurita Water Ind Ltd Biological denitrification system
CN101767875B (en) * 2010-02-05 2012-05-02 浙江大学 Double-circulation biological membrane anaerobic ammonia oxidation reactor
JP2011251255A (en) * 2010-06-02 2011-12-15 Kumamoto Univ Waste liquid treatment method and waste liquid treatment device
CN101898829A (en) * 2010-07-15 2010-12-01 大连海洋大学 Method for starting salt tolerant anammox reactor
US8999165B2 (en) 2011-01-20 2015-04-07 Valbio Method for the biological treatment of wastewater using an aerobic granular biomass
FR2970710A1 (en) * 2011-01-20 2012-07-27 Valbio PROCESS FOR THE BIOLOGICAL TREATMENT OF WASTEWATER BY AEROBIC GRANULAR BIOMASS
WO2012098171A3 (en) * 2011-01-20 2012-11-01 Valbio Method for the biological treatment of wastewater using an aerobic granular biomass
CN102976483B (en) * 2012-10-30 2013-11-06 北京工业大学 Method for rapid starting of anaerobic ammonium oxidation granular sludge by using UASB
CN102976483A (en) * 2012-10-30 2013-03-20 北京工业大学 Method for rapid starting of anaerobic ammonium oxidation granular sludge by using UASB
CN103058365A (en) * 2013-01-08 2013-04-24 北京工业大学 Anaerobic ammonia oxidization granule sludge starting method for treatment of urban sanitary sewage
CN103420481A (en) * 2013-08-19 2013-12-04 北京工业大学 Anaerobic ammonia oxidized coupled heterotrophic denitrifying denitrification method
CN103663692A (en) * 2013-09-03 2014-03-26 杭州师范大学 Integrated shortcut nitrification/anaerobic ammoxidation reactor
JP2016016347A (en) * 2014-07-07 2016-02-01 新日鐵住金株式会社 Biological nitrogen removal method
CN104386813A (en) * 2014-11-20 2015-03-04 沈阳建筑大学 Method for quickly forming anaerobic-ammonia oxidation and granulation sludge
CN104386813B (en) * 2014-11-20 2016-01-13 沈阳建筑大学 A kind of method of quick formation anaerobic ammonium oxidation granular sludge
CN104529056A (en) * 2014-11-29 2015-04-22 北京工业大学 Method for realizing autotrophic nitrogen removal of city sewage through symbiosis of flocculent sludge and granular sludge
CN104529056B (en) * 2014-11-29 2016-04-06 北京工业大学 A kind of floc sludge and granule sludge symbiosis realize the method for municipal effluent autotrophic denitrification
CN104591381A (en) * 2014-12-30 2015-05-06 杭州师范大学 Method for improving terramycin impact resistance of anammox sludge
CN104628131A (en) * 2015-02-15 2015-05-20 北京工业大学 Production device and method for achieving stable denitrification of nitrite in continuous flow
JP2016174981A (en) * 2015-03-18 2016-10-06 株式会社クボタ Apparatus and method for treating water
JP2016174980A (en) * 2015-03-18 2016-10-06 株式会社クボタ Apparatus and method for treating water
CN104860482A (en) * 2015-05-25 2015-08-26 北京石油化工学院 Advanced nitrogen removal method for treating late landfill leachate with upflow anaerobic sludge blanket, anoxic/oxic and anaerobic ammonia oxidation reactor combined process
CN105152324A (en) * 2015-09-22 2015-12-16 浙江大学 Anaerobic ammonia oxidation reactor capable of classifying sludge through cyclone
CN105152327A (en) * 2015-09-30 2015-12-16 杭州师范大学 Culture method of anammox granule sludge with hydroxyapatite core
CN105174448A (en) * 2015-10-13 2015-12-23 沈阳建筑大学 Anaerobic ammonia oxidation and denitrification coupling device and controlled operation method thereof
CN105502811A (en) * 2015-12-07 2016-04-20 北京城市排水集团有限责任公司 Anaerobic ammonia oxidation-based landfill leachate treatment device and use method thereof
CN105502652A (en) * 2016-01-28 2016-04-20 沈阳建筑大学 Method for increasing forming speed of anaerobic ammonia oxidation granule sludge
CN105800780A (en) * 2016-05-26 2016-07-27 沈阳工业大学 Circumfluent sulfate type anaerobic ammonia oxidation microbial reactor
CN105906062A (en) * 2016-07-12 2016-08-31 沈阳建筑大学 Method for enhancing formation speed of anaerobic ammoxidation granular sludge by controlling reflux ratio
CN105906062B (en) * 2016-07-12 2018-07-27 沈阳建筑大学 A method of control reflux ratio improves anaerobic ammonium oxidation granular sludge and forms speed
CN106348444A (en) * 2016-10-28 2017-01-25 齐鲁工业大学 Method for quickly starting CANON nitrogen removal process
CN107364962A (en) * 2017-06-15 2017-11-21 华南理工大学 A kind of method for strengthening anaerobism while denitrification methane phase granule sludge stability
CN108840433A (en) * 2018-06-26 2018-11-20 北京工业大学 Gradient controls dissolved oxygen and realizes pulling flow type integration short distance nitration/Anammox processing city domestic sewage device and method
CN109626556A (en) * 2018-11-23 2019-04-16 中国科学院广州地球化学研究所 Artificial wetland treatment pig farm biogas slurry based on zeolite filler realizes the device and method of short distance nitration
CN112694170A (en) * 2021-01-07 2021-04-23 北京工业大学 Method and device for improving anaerobic ammonia oxidation denitrification effect and operation stability at low temperature
CN112694170B (en) * 2021-01-07 2023-11-17 北京工业大学 Method and device for improving anaerobic ammonia oxidation denitrification effect and operation stability at low temperature
CN112939333A (en) * 2021-01-25 2021-06-11 上海大学 Method for quickly starting anaerobic ammonia oxidation reactor and quickly improving total nitrogen removal load
CN112978912A (en) * 2021-05-06 2021-06-18 臻和慧联(浙江)环境科技有限公司 Sewage treatment agent, autotrophic denitrification microorganism carrier and preparation method thereof
CN112978912B (en) * 2021-05-06 2021-11-05 臻和慧联(浙江)环境科技有限公司 Sewage treatment agent, autotrophic denitrification microorganism carrier and preparation method thereof
CN113415881A (en) * 2021-06-04 2021-09-21 北京工业大学 Device and method for realizing autotrophic nitrogen removal and synchronous phosphorus recovery of domestic sewage by using granular sludge with hydroxyapatite as crystal nucleus
CN117003382A (en) * 2023-08-25 2023-11-07 广东清研环境科技有限公司 PN/A reaction system and reaction process for coupling front-end short-range denitrification
CN117003382B (en) * 2023-08-25 2024-04-19 广东清研环境科技有限公司 PN/A reaction system and reaction process for coupling front-end short-range denitrification

Similar Documents

Publication Publication Date Title
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP4572504B2 (en) Biological denitrification method
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
JP4224951B2 (en) Denitrification method
TWI248918B (en) Method for treating water containing ammonium-nitrogen
JP4872171B2 (en) Biological denitrification equipment
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
JP4453397B2 (en) Biological nitrogen removal method
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4867098B2 (en) Biological denitrification method and apparatus
JP2006082053A (en) Method and apparatus for treating nitrogen-containing drainage
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP4923348B2 (en) Biological denitrification method
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
KR101063828B1 (en) Method of wastewater treatment using an anaerobic reactor having a biological nitrification process connected a cation exchange membrane
JP2003053385A (en) Biological denitrification equipment
Chen et al. Efficient nitrogen removal from onsite wastewater by a novel continuous flow biofilter
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP4642635B2 (en) High concentration organic waste liquid treatment method and apparatus
KR100670231B1 (en) System for processing waste water using rumination sbr
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP2002143888A (en) Method for accumulating autotrophic denitrifying microorganism and biological method for removing nitrogen
JP2007117842A (en) Method and apparatus for removing nitrogen of high concentration organic waste water
JP2004255269A (en) Denitrification method and denitrification apparatus
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412