JP4453397B2 - Biological nitrogen removal method - Google Patents

Biological nitrogen removal method Download PDF

Info

Publication number
JP4453397B2
JP4453397B2 JP2004056398A JP2004056398A JP4453397B2 JP 4453397 B2 JP4453397 B2 JP 4453397B2 JP 2004056398 A JP2004056398 A JP 2004056398A JP 2004056398 A JP2004056398 A JP 2004056398A JP 4453397 B2 JP4453397 B2 JP 4453397B2
Authority
JP
Japan
Prior art keywords
nitrogen
nitrite
denitrification
ammonia
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004056398A
Other languages
Japanese (ja)
Other versions
JP2005246135A (en
Inventor
智弘 清川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004056398A priority Critical patent/JP4453397B2/en
Publication of JP2005246135A publication Critical patent/JP2005246135A/en
Application granted granted Critical
Publication of JP4453397B2 publication Critical patent/JP4453397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、アンモニア性窒素を含む原水を好気条件下にアンモニア酸化細菌と接触させて、原水中のアンモニア性窒素の少なくとも一部を亜硝酸性窒素に硝化した後、硝化液を、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒細菌の作用により生物脱窒する生物学的窒素除去方法に関する。   In the present invention, raw water containing ammonia nitrogen is brought into contact with ammonia oxidizing bacteria under aerobic conditions to nitrify at least a part of the ammonia nitrogen in the raw water to nitrite nitrogen, The present invention relates to a biological nitrogen removal method in which biological denitrification is performed by the action of a denitrifying bacterium using nitrogen as an electron donor and nitrite nitrogen as an electron acceptor.

排液中に含まれるアンモニア性窒素は河川、湖沼及び海洋などにおける富栄養化の原因物質の一つであり、排液処理工程で効率的に除去する必要がある。一般に、排水中のアンモニア性窒素は、アンモニア性窒素をアンモニア酸化細菌により亜硝酸性窒素に酸化し、更にこの亜硝酸性窒素を亜硝酸酸化細菌により硝酸性窒素に酸化する硝化工程と、これらの亜硝酸性窒素及び硝酸性窒素を従属栄養性細菌である脱窒菌により、有機物を電子供与体として利用して窒素ガスにまで分解する脱窒工程との2段階の生物反応を経て窒素ガスにまで分解される。   Ammonia nitrogen contained in the effluent is one of the causative substances of eutrophication in rivers, lakes and oceans, and it is necessary to remove it efficiently in the effluent treatment process. In general, ammonia nitrogen in wastewater is oxidized by ammonia oxidizing bacteria to nitrite nitrogen, and nitrifying nitrogen is oxidized to nitrate nitrogen by nitrite oxidizing bacteria. Nitrite nitrogen and nitrate nitrogen are denitrified bacteria, which are heterotrophic bacteria, and are converted into nitrogen gas through a two-stage biological reaction with a denitrification process that decomposes organic matter into nitrogen gas using an electron donor. Disassembled.

しかし、このような従来の硝化脱窒法では、脱窒工程において電子供与体としてメタノールなどの有機物を多量に必要とし、また硝化工程では多量の酸素が必要であるため、ランニングコストが高いという欠点がある。   However, such a conventional nitrification denitrification method requires a large amount of organic matter such as methanol as an electron donor in the denitrification step, and also requires a large amount of oxygen in the nitrification step, so that the running cost is high. is there.

これに対して、近年、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性細菌(自己栄養細菌)を利用し、亜硝酸性窒素とアンモニア性窒素とを反応させて脱窒する方法が提案された。この方法であれば、有機物の添加は不要であるため、従属栄養性の脱窒菌を利用する方法と比べて、コストを低減することができる。また、独立栄養性の細菌は収率が低く、汚泥の発生量が従属栄養性細菌と比較すると著しく少ないので、余剰汚泥の発生量を抑えることができる。更に、従来の硝化脱窒法で観察されるNOの発生がなく、環境に対する負荷を低減できるといった特長もある。 On the other hand, in recent years, nitrite nitrogen and ammonia nitrogen are reacted using autotrophic bacteria (autotrophic bacteria) using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A method of denitrifying by letting go was proposed. If this method is used, it is not necessary to add an organic substance, so that the cost can be reduced as compared with a method using heterotrophic denitrifying bacteria. Moreover, since the yield of autotrophic bacteria is low and the amount of sludge generated is significantly less than that of heterotrophic bacteria, the amount of surplus sludge generated can be suppressed. Furthermore, there is also a feature that there is no generation of N 2 O observed by the conventional nitrification denitrification method, and the burden on the environment can be reduced.

この独立栄養性脱窒細菌(以下「ANAMMOX菌」と称す場合がある。)を利用する生物脱窒プロセスは、以下のような反応で亜硝酸性窒素とアンモニア性窒素が反応して窒素ガスに分解されると考えられている。   The biological denitrification process using this autotrophic denitrifying bacterium (hereinafter sometimes referred to as “ANAMOX bacteria”) is a reaction of nitrite nitrogen and ammonia nitrogen in the following reaction to form nitrogen gas. It is thought to be broken down.

Figure 0004453397
Figure 0004453397

なお、この反応式(1)の反応生成物として窒素の他に硝酸が生成するため、ANAMMOX工程の後段にメタノール等の有機物の共存下で生物脱窒を行う脱窒工程を設けることにより、窒素の除去率を高め、良好な水質の処理水を得ることができる。   Since nitric acid is produced in addition to nitrogen as a reaction product of the reaction formula (1), a nitrogen removal process is performed by performing a biological denitrification process in the presence of an organic substance such as methanol after the ANAMOX process. The removal rate can be increased, and treated water with good water quality can be obtained.

ANAMMOX菌を利用して脱窒処理を行う場合、ANAMMOX菌を保持するANAMMOX反応槽に流入する被処理水(原水)は、亜硝酸性窒素とアンモニア性窒素を含む必要がある。このため、従来においては、例えば、アンモニア性窒素を含む排水を予め硝化処理し、排水中のアンモニア性窒素の一部をアンモニア酸化細菌により亜硝酸性窒素に酸化したものを原水として導入している。この原水は、上記反応式から明らかなように、亜硝酸性窒素とアンモニア性窒素とがモル比1:1.32で反応するため、アンモニア性窒素(NH−N)のモル濃度bと亜硝酸性窒素(NO−N)のモル濃度aとの比a/bが約1.3となるような割合で含むことが好ましい。 When the denitrification treatment is performed using the ANAMMOX bacteria, the water to be treated (raw water) flowing into the ANAMMOX reaction tank holding the ANAMOX bacteria needs to contain nitrite nitrogen and ammonia nitrogen. For this reason, conventionally, for example, wastewater containing ammonia nitrogen is nitrified in advance, and a portion of ammonia nitrogen in the waste water is oxidized into nitrite nitrogen by ammonia oxidizing bacteria as raw water. . As is clear from the above reaction formula, this raw water reacts with nitrite nitrogen and ammonia nitrogen at a molar ratio of 1: 1.32, so that the molar concentration b of ammonia nitrogen (NH 4 -N) and It is preferable that the ratio a / b with respect to the molar concentration a of nitrate nitrogen (NO 2 —N) is about 1.3.

しかしながら、濃度、流量に変動のある排水に対して常に亜硝酸性窒素とアンモニア性窒素とのモル比a/bが約1.3となるようにANAMMOX工程に流入させて反応させることは難しく、従って、ANAMMOX工程の処理水中には亜硝酸性窒素又はアンモニア性窒素が残留することが多い。   However, it is difficult to react with wastewater with varying concentration and flow rate by flowing it into the ANAMOX process so that the molar ratio a / b of nitrite nitrogen to ammonia nitrogen is always about 1.3, Therefore, nitrite nitrogen or ammonia nitrogen often remains in the treated water of the ANAMOX process.

また、ANAMMOX菌は有機物、酸素、pHなどの種々の因子によって阻害を受けることが知られている。これらの因子でANAMMOX菌が阻害を受けて活性が低下した場合には、ANAMMOX工程の処理水中にアンモニア性窒素及び亜硝酸性窒素が残留することになる。   In addition, it is known that ANAMMOX bacteria are inhibited by various factors such as organic matter, oxygen, and pH. In the case where the activity of the AMAMOX bacteria is reduced due to inhibition by these factors, ammonia nitrogen and nitrite nitrogen remain in the treated water of the ANAMMOX process.

ANAMMOX工程の処理水中に残留した亜硝酸性窒素は、硝酸の除去のためにANAMMOX工程の後段に設けられる、メタノール等の有機物の共存下で生物脱窒させる脱窒工程において除去されるため、ANAMMOX工程の処理水中に残留する亜硝酸性窒素がプロセス全体の窒素除去率を悪化させることにはならない。   Since the nitrite nitrogen remaining in the treated water of the ANAMOX process is removed in the denitrification process that is provided in the latter stage of the ANAMOX process for removing nitric acid and biologically denitrifies in the presence of an organic substance such as methanol. Nitrite nitrogen remaining in the process water does not deteriorate the overall nitrogen removal rate of the process.

しかしながら、ANAMMOX工程の処理水中に残留したアンモニア性窒素は、後段の脱窒工程では除去できないため、プロセス全体の窒素除去率の低下を引き起こす。   However, ammonia nitrogen remaining in the treated water of the ANAMOX process cannot be removed in the subsequent denitrification process, which causes a reduction in the nitrogen removal rate of the entire process.

このような問題点を解決するために、アンモニア性窒素を含む原水を好気条件下にアンモニア酸化細菌と接触させて、原水中のアンモニア性窒素の少なくとも一部を亜硝酸性窒素に硝化する亜硝酸化工程と、該亜硝酸化工程の硝化液を、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒細菌の作用により生物脱窒する脱窒工程と、を有する生物学的窒素除去方法において、脱窒工程からの脱窒処理液中にアンモニアが検出される場合には、亜硝酸化工程から脱窒工程に送られる硝化液に対し、亜硝酸、亜硝酸塩又は亜硝酸性窒素含有排水を添加することが特開2003−53387号公報、特にその第0037〜0039段落に記載されている。   In order to solve such problems, the raw water containing ammonia nitrogen is brought into contact with ammonia oxidizing bacteria under aerobic conditions to nitrify at least a part of the ammonia nitrogen in the raw water to nitrite nitrogen. A nitrification step, and a nitrification step in which the nitrification step is performed, and a denitrification step of biological denitrification by the action of a denitrifying bacterium using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, In the method of removing biological nitrogen, when ammonia is detected in the denitrification treatment liquid from the denitrification process, nitrite and nitrite are used against the nitrification liquid sent from the nitritation process to the denitrification process. Alternatively, adding nitrite-containing nitrogen-containing waste water is described in JP-A No. 2003-53387, particularly in paragraphs 0037 to 0039 thereof.

同号公報の方法によれば、脱窒工程をアンモニア性窒素律速条件に維持することにより、脱窒工程の処理水中にアンモニア性窒素を残留させないようにし、高い窒素除去率を安定して得ることができる。   According to the method of the same publication, by maintaining the denitrification process at the ammoniacal nitrogen rate-limiting condition, ammonia nitrogen is not left in the treated water of the denitrification process, and a high nitrogen removal rate can be stably obtained. Can do.

なお、同号公報において、アンモニアイオン濃度の測定は、試薬を用いて比色で定量する方法、伝導度を測定するイオンクロマトグラフ法、イオン電極法などにより行われるが、これらの中でも、特にイオン電極の使用が設備費や測定の迅速性・信頼性の観点からも好ましいことが記載されている。イオン電極の原理は、基本的にpH電極と類似であり、測定対象とする成分を選択的に通過する隔膜を用いて、電極内のイオン濃度差から対象成分の液濃度を検出するものである。このイオン電極からは濃度信号が電気信号として出力され、この信号をもとに、アンモニア性窒素濃度が監視・制御される。
特開2003−53387号公報
In the same publication, ammonia ion concentration is measured by a colorimetric method using a reagent, an ion chromatograph method for measuring conductivity, an ion electrode method, and the like. It is described that the use of an electrode is preferable from the viewpoints of equipment cost and quickness and reliability of measurement. The principle of the ion electrode is basically similar to that of the pH electrode, and uses a diaphragm that selectively passes the component to be measured, and detects the liquid concentration of the target component from the difference in ion concentration in the electrode. . A concentration signal is output as an electrical signal from the ion electrode, and the ammonia nitrogen concentration is monitored and controlled based on this signal.
JP 2003-53387 A

上記特開2003−53387号公報では、脱窒工程からの脱窒処理水中に亜硝酸性窒素が大量に残留しても、それは検出されず、そのまま処理水として流出してしまうため、処理水中の残留窒素濃度が高くなる。また、高濃度の亜硝酸が槽内に残留することによってANAMMOX反応が阻害される。   In the above Japanese Patent Application Laid-Open No. 2003-53387, even if a large amount of nitrite nitrogen remains in the denitrification treated water from the denitrification process, it is not detected and flows out as treated water as it is. Residual nitrogen concentration increases. Moreover, the ANAMMOX reaction is inhibited by the high concentration of nitrous acid remaining in the tank.

さらに、同号公報の方法では、処理水のアンモニア性窒素濃度を検出し、フィードバックして制御するところから、反応槽の大きさ、水の滞留時間によっては、制御に時間的な遅れが発生し、良好な処理水質を維持することができないことがある。   Furthermore, according to the method of the same publication, the ammonia nitrogen concentration of the treated water is detected and fed back to control, so that there is a time delay in the control depending on the size of the reaction tank and the residence time of water. In some cases, good treated water quality cannot be maintained.

本発明は、このような問題点を解決し、処理水中の窒素濃度が安定して低くなる生物学的窒素除去方法を提供することを目的とする。   An object of the present invention is to solve such problems and to provide a biological nitrogen removal method in which the nitrogen concentration in the treated water is stably lowered.

発明の生物学的窒素除去方法は、アンモニア性窒素を含む原水を好気条件下にアンモニア酸化細菌と接触させて、原水中のアンモニア性窒素の少なくとも一部を亜硝酸性窒素に硝化する亜硝酸化工程と、該亜硝酸化工程の硝化液を、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒細菌の作用により生物脱窒する脱窒工程と、を有する生物学的窒素除去方法において、該脱窒工程は、第1の脱窒工程と、該第1の脱窒工程からの1次脱窒処理液をさらに脱窒処理する第2の脱窒工程とを有しており、該1次脱窒処理液に対し亜硝酸性窒素又はアンモニア性窒素を添加することにより該1次脱窒処理液中の亜硝酸性窒素のモル濃度(a)とアンモニア性窒素のモル濃度(b)との比a/bを1〜1.5とすることを特徴とするものである。 Biological nitrogen removal process of the present invention, the raw water containing ammonia nitrogen is contacted with ammonia-oxidizing bacteria in aerobic conditions, nitrous for nitrification at least a portion of the ammoniacal nitrogen in the raw water to nitrite nitrogen A nitrification step, and a nitrification step in which the nitrification step is performed, and a denitrification step of biological denitrification by the action of a denitrifying bacterium using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, In this biological nitrogen removal method, the denitrification step includes a first denitrification step and a second denitrification step of further denitrifying the primary denitrification solution from the first denitrification step. The molar concentration (a) of nitrite nitrogen in the primary denitrification treatment liquid and ammonia by adding nitrite nitrogen or ammonia nitrogen to the primary denitrification treatment liquid The ratio a / b with respect to the molar concentration (b) of crystalline nitrogen is 1 to 1.5 It is an butterfly.

本発明では、原水を亜硝酸化処理してあらかじめアンモニア性窒素と亜硝酸性窒素の成分比がある程度調整された硝化液とする。この硝化液を2段にANAMMOX処理する。本発明では、このANAMMOX被処理水中のアンモニア性窒素と亜硝酸性窒素の濃度を測定し、その測定値に基づいて、アンモニア性窒素あるいは亜硝酸性窒素をANAMMOX被処理水に添加することで、亜硝酸性窒素とアンモニア性窒素とのモル比a/bを最適比の1〜1.5(好ましくは1.3)に維持させてANAMMOX処理を行う。これにより、ANAMMOX処理水に残留するアンモニア性窒素および亜硝酸性窒素の濃度を低減させ、高い窒素除去率を安定して得ることができる。 In the present invention, the raw water is subjected to a nitritation treatment to obtain a nitrification liquid in which the component ratio of ammonia nitrogen and nitrite nitrogen is adjusted to some extent. This nitrification solution is subjected to ANAMOX treatment in two stages. In the present invention, the concentration of ammonia nitrogen and nitrite nitrogen in the ANAMOX treated water is measured, and ammonia nitrogen or nitrite nitrogen is added to the ANAMMOX treated water based on the measured value. The ANAMMOX treatment is performed while maintaining the molar ratio a / b of nitrite nitrogen and ammonia nitrogen at an optimum ratio of 1 to 1.5 (preferably 1.3). Thereby, the concentration of ammonia nitrogen and nitrite nitrogen remaining in the ANAMOX treated water can be reduced, and a high nitrogen removal rate can be stably obtained.

以下に図面を参照して本発明の生物学的窒素除去方法の実施の形態を詳細に説明する。   Embodiments of the biological nitrogen removal method of the present invention will be described below in detail with reference to the drawings.

図1は、参考例に係る生物学的窒素除去方法の実施の形態を説明する生物脱窒装置の系統図である。 FIG. 1 is a system diagram of a biological denitrification apparatus for explaining an embodiment of a biological nitrogen removal method according to a reference example .

図1において、原水はまず亜硝酸化槽1に導入されて曝気され、原水中のアンモニア性窒素の一部がアンモニア酸化細菌により亜硝酸性窒素に部分酸化される(亜硝酸化工程)。   In FIG. 1, raw water is first introduced into a nitritation tank 1 and aerated, and a part of ammonia nitrogen in the raw water is partially oxidized to nitrite nitrogen by ammonia oxidizing bacteria (nitrification step).

亜硝酸化槽1の流出液(硝化液)はANAMMOX反応槽2に導入され、撹拌下、ANAMMOX菌によるANAMMOX反応でアンモニア性窒素及び亜硝酸性窒素が除去される(脱窒工程)。   The effluent (nitrification liquid) of the nitritation tank 1 is introduced into the ANAMOX reaction tank 2, and ammonia nitrogen and nitrite nitrogen are removed by the ANAMMOX reaction by the ANAMOX bacteria under stirring (denitrification process).

なお、図示はしないが、ANAMMOX反応槽2の流出液は次いで脱窒槽に導入され、メタノール等の有機物が添加され、撹拌下、ANAMMOX反応で生成した硝酸が脱窒細菌により嫌気条件下で窒素ガスに分解される。また、ANAMMOX反応槽2の流出液中に亜硝酸性窒素が残留する場合には、この亜硝酸性窒素も窒素ガスに分解される。   Although not shown, the effluent of the ANAMOX reaction tank 2 is then introduced into the denitrification tank, and organic substances such as methanol are added. Under stirring, the nitric acid produced in the ANAMOX reaction is degassed by the denitrifying bacteria under anaerobic conditions. Is broken down into Further, when nitrite nitrogen remains in the effluent of the ANAMOX reaction tank 2, this nitrite nitrogen is also decomposed into nitrogen gas.

本発明において、処理対象となる原水は、アンモニア性窒素を含む水であり、有機物及び有機性窒素を含むものであってもよいが、これらは脱窒処理前に予めアンモニア性窒素になる程度まで分解しておくことが好ましい。原水は無機物を含んでいても良い。   In the present invention, the raw water to be treated is water containing ammonia nitrogen, and may contain organic matter and organic nitrogen. However, they are preliminarily converted to ammonia nitrogen before denitrification treatment. It is preferable to decompose. The raw water may contain an inorganic substance.

一般的には、下水、し尿、嫌気性消化脱離液等のアンモニア性窒素、有機性窒素及び有機物を含む排水が処理対象となる場合が多いが、この場合、これらを好気性又は嫌気性処理して有機物を分解し、有機性窒素をアンモニア性窒素に分解した後、亜硝酸化槽1に導入することが好ましい。   In general, wastewater containing ammonia nitrogen, organic nitrogen and organic matter such as sewage, human waste, anaerobic digestion and desorption liquid is often treated. In this case, these are treated aerobically or anaerobically. Thus, it is preferable that the organic matter is decomposed and the organic nitrogen is decomposed into ammonia nitrogen, and then introduced into the nitritation tank 1.

前述の如く、ANAMMOX反応では、亜硝酸性窒素とアンモニア性窒素とがモル比1:1.3で反応するため、ANAMMOX反応槽2の流入水は亜硝酸性窒素とアンモニア性窒素とのモル比a/bが1〜1.5好ましくは1.1〜1.4特に好ましくは1.3となるような割合で亜硝酸性窒素とアンモニア性窒素とを含むことが好ましい。このため、亜硝酸化槽から流出する硝化液中の亜硝酸性窒素濃度aとアンモニア性窒素濃度bとを測定装置3で測定し、この測定値に基づき、濃度制御装置4で薬注バルブ12又は22をコントロールして亜硝酸塩水溶液又はアンモニウム塩水溶液を硝化液に添加する。この亜硝酸塩は、この実施の形態では亜硝酸ナトリウムであるが、その他の亜硝酸塩又は亜硝酸であってもよい。ただし、取り扱い易く、また正確に亜硝酸濃度を制御することができるところから、亜硝酸塩特に安価な亜硝酸ナトリウムが好適である。   As described above, in the ANAMMOX reaction, nitrite nitrogen and ammonia nitrogen react at a molar ratio of 1: 1.3. Therefore, the influent water in the ANAMOX reaction tank 2 is a molar ratio of nitrite nitrogen and ammonia nitrogen. It is preferable to contain nitrite nitrogen and ammonia nitrogen in such a ratio that a / b is 1 to 1.5, preferably 1.1 to 1.4, and particularly preferably 1.3. For this reason, the nitrite nitrogen concentration a and the ammonia nitrogen concentration b in the nitrification liquid flowing out from the nitrification tank are measured by the measuring device 3, and based on this measured value, the concentration control device 4 uses the chemical injection valve 12. Alternatively, 22 is controlled and an aqueous nitrite solution or an aqueous ammonium salt solution is added to the nitrification solution. The nitrite is sodium nitrite in this embodiment, but may be other nitrites or nitrites. However, nitrite, particularly inexpensive sodium nitrite, is preferred because it is easy to handle and can accurately control the nitrite concentration.

アンモニウム塩としては硫酸アンモニウムが好適であるが、その他のアンモニウム塩であってもよい。また、アンモニウム塩の水溶液の代りに、アンモニア性窒素含有水、例えば原水の一部をこの硝化液に添加してもよい。ただし、正確に亜硝酸性窒素濃度を制御するためには、アンモニウム塩、特に安価な硫酸アンモニウムが好適である。   As the ammonium salt, ammonium sulfate is suitable, but other ammonium salts may be used. Further, instead of the aqueous solution of ammonium salt, a part of ammonia nitrogen-containing water, for example raw water, may be added to the nitrification solution. However, in order to accurately control the nitrite nitrogen concentration, an ammonium salt, particularly an inexpensive ammonium sulfate is preferable.

なお、亜硝酸塩及びアンモニウムの各水溶液は、それぞれタンク10,20、薬注ポンプ11,21及び前記薬注バルブ12,22よりなる薬注ユニットを介して、亜硝酸化槽1からの硝化液に添加される。   In addition, each aqueous solution of nitrite and ammonium is converted into a nitrification solution from the nitrification tank 1 through a chemical injection unit including tanks 10 and 20, chemical injection pumps 11 and 21, and the chemical injection valves 12 and 22, respectively. Added.

図2は発明の実施の形態を示す系統図である。 Figure 2 is a system diagram showing an embodiment of the present invention.

この実施の形態では、亜硝酸化槽1からの硝化液が第1ANAMMOX反応槽2aに導入され、ANAMMOX菌により脱窒処理されて1次脱窒処理水となる。この1次脱窒処理水が第2ANAMMOX反応層2bに導入され、さらにANAMMOX菌により脱窒処理されて2次脱窒処理水とされる。   In this embodiment, the nitrification liquid from the nitritation tank 1 is introduced into the first ANAMOX reaction tank 2a and denitrified by the ANAMOX bacteria to become primary denitrified water. This primary denitrification treated water is introduced into the second ANAMOX reaction layer 2b and further denitrified by the ANAMOX bacteria to obtain secondary denitrification treated water.

この第1ANAMMOX槽から流出する1次脱窒処理水中の亜硝酸性窒素濃度及びアンモニア性窒素濃度が濃度測定装置3によって測定され、この測定結果に基づき、一次脱窒処理水のa/b比が1〜1.5好ましくは1.1〜1.4特に好ましくは1.3となるように亜硝酸塩又はアンモニウム塩が添加される。この添加を行うための薬注ユニットの構成は図1のものと同一であり、同一符号は同一部分を示している。
図1,2のいずれの方法によっても、ANAMMOX反応槽2,2bの処理水にアンモニア性窒素が実質的に残留しないようにすることができる。
The nitrite nitrogen concentration and the ammonia nitrogen concentration in the primary denitrification treated water flowing out from the first ANAMMOX tank are measured by the concentration measuring device 3, and based on this measurement result, the a / b ratio of the primary denitrification treated water is determined. A nitrite or ammonium salt is added so as to be 1 to 1.5, preferably 1.1 to 1.4, particularly preferably 1.3. The structure of the chemical injection unit for performing this addition is the same as that of FIG. 1, and the same code | symbol has shown the identical part.
1 and 2, ammonia nitrogen can be substantially prevented from remaining in the treated water in the ANAMOX reactors 2 and 2b.

なお、亜硝酸化槽1のpH、DO濃度、温度は、
pH:6.0〜8.5、特に6.5〜7.5
DO濃度:0.05〜5mg/L、特に0.1〜1.5mg/L
温度:10〜40℃、特に25〜35℃
が好ましい。
The pH, DO concentration, and temperature of the nitritation tank 1 are
pH: 6.0-8.5, especially 6.5-7.5
DO concentration: 0.05-5 mg / L, especially 0.1-1.5 mg / L
Temperature: 10-40 ° C, especially 25-35 ° C
Is preferred.

ANAMMOX反応槽2,2a,2bにおいては、
pH :6〜9、特に6.5〜8.0
DO濃度 :0〜2.5mg/L、特に0〜0.2mg/L
温度 :10〜40℃、特に20〜35℃
BOD濃度:0〜50mg/L、特に0〜20mg/L
窒素負荷 :0.1〜10kg−N/m・day、特に0.2〜5kg−
N/m・day
が好ましい。
In the ANAMOX reactors 2, 2a, 2b,
pH: 6-9, especially 6.5-8.0
DO concentration: 0 to 2.5 mg / L, especially 0 to 0.2 mg / L
Temperature: 10-40 ° C, especially 20-35 ° C
BOD concentration: 0-50 mg / L, especially 0-20 mg / L
Nitrogen load: 0.1 to 10 kg-N / m 3 · day, especially 0.2 to 5 kg-
N / m 3 · day
Is preferred.

なお、亜硝酸化槽1やANAMMOX反応槽2,2a,2bの反応槽の型式には特に制限はなく、汚泥懸濁方式の他、固定床、流動床、グラニュール法、担体添加法等の生物膜法によるものであっても良い。また、亜硝酸化槽、ANAMMOX反応槽それぞれの後段に、沈殿槽、膜分離装置などの固液分離装置を設けても良い。亜硝酸化槽はエアリフト型曝気槽であっても良い。ANAMMOX反応槽はエアの代りに窒素ガスを用いたガスリフト型反応槽であっても良く、また、ANAMMOX菌のグラニュール汚泥床を形成したUSB(Upflow Sludge Bed;上向流汚泥床)反応槽であっても良い。   In addition, there is no restriction | limiting in particular in the type | mold of the reaction tank of nitritation tank 1 or ANAMMOX reaction tank 2, 2a, 2b, In addition to sludge suspension system, fixed bed, fluidized bed, granule method, carrier addition method, etc. It may be based on a biofilm method. Moreover, you may provide solid-liquid separation apparatuses, such as a precipitation tank and a membrane separator, in the back | latter stage of each of a nitritation tank and an ANAMOX reaction tank. The nitritation tank may be an airlift aeration tank. The NAAMMOX reactor may be a gas lift type reactor using nitrogen gas instead of air, and is a USB (Upflow Sludge Bed) reactor that forms a granular sludge bed of ANAMMOX bacteria. There may be.

以下に比較例及び実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to comparative examples and examples.

比較例1
アンモニアを含む下水汚泥の嫌気消化処理後の脱水濾液を被処理水として、図1に示す容積3.0LのANAMMOX反応装置に、ANAMMOX細菌のグラニュール24000mg/Lを1.5L充填し、10L/dayの条件で原水を通水して処理した。運転条件はpH7.3、ANAMMOX槽内温度を30℃に調整して行った。
Comparative Example 1
The dehydrated filtrate after the anaerobic digestion treatment of sewage sludge containing ammonia was treated as water to be treated, and the ANAMMOX reactor having a volume of 3.0 L shown in FIG. The raw water was passed through under the condition of day. The operating conditions were pH 7.3 and the temperature inside the ANAMOX tank was adjusted to 30 ° C.

亜硝酸塩、アンモニア塩の添加は行われずに、上記条件で20日間運転を行ったときの被処理水と処理水の経日変化を調べ、結果を図4に示した The addition of nitrite and ammonia salt was not carried out, and the changes over time in the water to be treated and the treated water when operated for 20 days under the above conditions were examined, and the results are shown in FIG .

施例
ANAMMOX反応槽を直列に二段に分けた図において、測定装置3により、一段目ANAMMOX反応槽2aからの1次脱窒処理水のアンモニア性窒素濃度、亜硝酸性窒素濃度を測定し、アンモニアが検出された場合には亜硝酸ナトリウムを、亜硝酸が検出された場合には硫酸アンモニウムを、NO−N/NH−Nの濃度比率が最適比である1.3となるように、該1次脱窒処理水に添加し、二段目ANAMMOX反応槽2bで処理した。流量、pH、温度の運転条件は比較例と同じ条件で行った。二段目反応槽2bから流出する2次脱窒処理水のアンモニウム性窒素濃度、亜硝酸性窒素濃度の経日変化を図3に示した。
Real Example 1
In FIG. 2 where the ANAMOX reaction tank is divided into two stages in series, the measurement device 3 measures the ammonia nitrogen concentration and nitrite nitrogen concentration of the primary denitrification treated water from the first stage ANAMMOX reaction tank 2a. Is detected, sodium nitrite is detected, ammonium nitrate is detected when nitrous acid is detected, and the concentration ratio of NO 2 —N / NH 4 —N is 1.3 so that the optimum ratio is 1.3. It added to the primary denitrification process water, and processed with the 2nd step | paragraph ANAMOX reaction tank 2b. The operating conditions of flow rate, pH, and temperature were the same as in the comparative example. FIG. 3 shows the daily changes in the ammonium nitrogen concentration and nitrite nitrogen concentration of the secondary denitrification water flowing out from the second-stage reaction tank 2b.

図3より以下のことが明らかである。ANAMMOX被処理水の濃度制御を行わなかった比較例1では処理水中に平均50mgN/Lの窒素が残留していた。これに対し、ANAMMOX被処理水に基づく制御を行った実施例1では処理水の全窒素濃度は2mgN/L以下であり、残留窒素濃度の低い良好な処理水を得ることができた。 The following is clear from FIG. In Comparative Example 1 in which the concentration control of the ANAMOX treated water was not performed, an average of 50 mg N / L nitrogen remained in the treated water. In contrast, Anammox total nitrogen concentration in the treated water in Example 1 were carried out control based on the water to be treated is less than 2 mgN / L, it was possible to obtain a low residual nitrogen concentration better treated water.

参考例に係る生物学的窒素除去方法の実施の形態を説明する生物脱窒装置の系統図である。It is a systematic diagram of the biological denitrification apparatus explaining embodiment of the biological nitrogen removal method which concerns on a reference example . 発明の生物学的窒素除去方法の実施の形態を説明する生物脱窒装置の系統図である。It is a systematic diagram of the biological denitrification apparatus explaining embodiment of the biological nitrogen removal method of this invention. 比較例1と実施例1における原水と処理水の全窒素濃度の経日変化を示すグラフである。It is a graph showing the passage of days changes in total nitrogen concentration in the treated water in Comparative Example 1 and the raw water in Example 1.

1 亜硝酸化槽
2,2a,2b ANAMMOX反応槽
1 Nitrite tank 2, 2a, 2b ANAMMOX reactor

Claims (2)

アンモニア性窒素を含む原水を好気条件下にアンモニア酸化細菌と接触させて、原水中のアンモニア性窒素の少なくとも一部を亜硝酸性窒素に硝化する亜硝酸化工程と、
該亜硝酸化工程の硝化液を、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒細菌の作用により生物脱窒する脱窒工程と、
を有する生物学的窒素除去方法において、
該脱窒工程は、第1の脱窒工程と、該第1の脱窒工程からの1次脱窒処理液をさらに脱窒処理する第2の脱窒工程とを有しており、
該1次脱窒処理液に対し亜硝酸性窒素又はアンモニア性窒素を添加することにより該1次脱窒処理液中の亜硝酸性窒素のモル濃度(a)とアンモニア性窒素のモル濃度(b)との比a/bを1〜1.5とすることを特徴とする生物学的窒素除去方法。
A nitritation step of contacting raw water containing ammonia nitrogen with ammonia oxidizing bacteria under aerobic conditions to nitrify at least a portion of the ammonia nitrogen in the raw water to nitrite nitrogen;
A denitrification step in which the nitrification solution in the nitrification step is biodenitrified by the action of a denitrifying bacterium using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor;
In a biological nitrogen removal method having
The denitrification step includes a first denitrification step and a second denitrification step of further denitrifying the primary denitrification treatment liquid from the first denitrification step,
By adding nitrite nitrogen or ammonia nitrogen to the primary denitrification solution, the molar concentration (a) of nitrite nitrogen and the molar concentration of ammonia nitrogen (b And a ratio of a / b to 1 to 1.5.
請求項1において、亜硝酸性窒素として亜硝酸塩を添加し、アンモニア性窒素としてアンモニウム塩を添加することを特徴とする生物学的窒素除去方法。 Oite to claim 1, nitrite is added as a nitrite nitrogen, biological nitrogen removal method is characterized by adding an ammonium salt as ammonium nitrogen.
JP2004056398A 2004-03-01 2004-03-01 Biological nitrogen removal method Expired - Fee Related JP4453397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056398A JP4453397B2 (en) 2004-03-01 2004-03-01 Biological nitrogen removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056398A JP4453397B2 (en) 2004-03-01 2004-03-01 Biological nitrogen removal method

Publications (2)

Publication Number Publication Date
JP2005246135A JP2005246135A (en) 2005-09-15
JP4453397B2 true JP4453397B2 (en) 2010-04-21

Family

ID=35027139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056398A Expired - Fee Related JP4453397B2 (en) 2004-03-01 2004-03-01 Biological nitrogen removal method

Country Status (1)

Country Link
JP (1) JP4453397B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910266B2 (en) * 2004-03-01 2012-04-04 栗田工業株式会社 Nitrification method and treatment method of ammonia-containing nitrogen water
JP4645157B2 (en) * 2004-11-01 2011-03-09 株式会社日立プラントテクノロジー Method and apparatus for treating ammonia-containing liquid
JP4570550B2 (en) * 2005-10-26 2010-10-27 荏原エンジニアリングサービス株式会社 Nitrogen removal method and apparatus for high concentration organic wastewater
JP2007117902A (en) * 2005-10-28 2007-05-17 Japan Organo Co Ltd Method and apparatus for treating ammonium ion-containing wastewater
JP4644107B2 (en) * 2005-12-05 2011-03-02 株式会社タクマ Method for treating wastewater containing ammonia
JP2007190510A (en) * 2006-01-20 2007-08-02 Hitachi Zosen Corp Biological wastewater treatment method
JP5118376B2 (en) * 2007-03-30 2013-01-16 オルガノ株式会社 Water treatment method and water treatment apparatus
JP4837706B2 (en) * 2008-06-27 2011-12-14 水ing株式会社 Ammonia nitrogen removal equipment
JP5006849B2 (en) * 2008-07-10 2012-08-22 メタウォーター株式会社 Denitrification method of organic raw water by controlling nitrite type nitrification
JP5789922B2 (en) * 2010-07-02 2015-10-07 栗田工業株式会社 Water treatment method and ultrapure water production method
CN102190371B (en) * 2010-03-18 2013-01-30 华东师范大学 Breeding method for anaerobic ammonium oxidation granular sludge
JP5631090B2 (en) * 2010-07-26 2014-11-26 水ing株式会社 Waste water treatment apparatus and waste water treatment method
JP5914964B2 (en) 2010-10-18 2016-05-11 栗田工業株式会社 Ultrapure water production method
JP5194151B2 (en) * 2011-07-20 2013-05-08 前澤工業株式会社 Waste water treatment equipment
JP6230032B2 (en) * 2012-09-13 2017-11-15 ディー.シー. ウォーター アンド スーアー オーソリティー Method and apparatus for denitrification in wastewater treatment
CN104176824B (en) * 2014-09-05 2016-06-29 北京坦思环保科技有限公司 A kind of ammonium nitrate wastewater biochemical treatment apparatus and operation method
CN105110472A (en) * 2015-10-13 2015-12-02 沈阳建筑大学 Denitrification process for whole anammox and denitrification coupling process
EP4217320A4 (en) * 2020-09-24 2024-04-24 Fluence Water Products and Innovation Ltd Method and system for wastewater treatment

Also Published As

Publication number Publication date
JP2005246135A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4951826B2 (en) Biological nitrogen removal method
JP4453397B2 (en) Biological nitrogen removal method
TWI402221B (en) Nitration of ammonia - containing nitrogen water and its treatment
JP2005238166A (en) Anaerobic ammonoxidation treatment method
KR101176437B1 (en) Bio-electrochemical wastewater treating apparatus for a simultaneous removal of ammonia and organics and wastewater treatment method using the apparatus
JP2000015288A (en) Waste water treatment method and apparatus
JP5100091B2 (en) Water treatment method
JP4872171B2 (en) Biological denitrification equipment
JP4882175B2 (en) Nitrification method
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP2003033789A (en) Method for denitrificaton treatment using living organisms and device therefor
JP5292658B2 (en) A method for nitrification of ammonia nitrogen-containing water
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP4867099B2 (en) Biological denitrification method
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP2002143888A (en) Method for accumulating autotrophic denitrifying microorganism and biological method for removing nitrogen
KR20060102763A (en) System for processing waste water using rumination sbr
JP2019217481A (en) Water treatment method
JP2005329399A (en) Method and apparatus for removing nitrogen
WO2019244964A1 (en) Water treatment method and water treatment device
JP2004305814A (en) Method for treating nitrogen-containing wastewater
JP3837757B2 (en) Method for treating selenium-containing water
JP2006088057A (en) Method for treating ammonia-containing water
JP6667030B2 (en) Water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees