JP2002143888A - Method for accumulating autotrophic denitrifying microorganism and biological method for removing nitrogen - Google Patents

Method for accumulating autotrophic denitrifying microorganism and biological method for removing nitrogen

Info

Publication number
JP2002143888A
JP2002143888A JP2000342363A JP2000342363A JP2002143888A JP 2002143888 A JP2002143888 A JP 2002143888A JP 2000342363 A JP2000342363 A JP 2000342363A JP 2000342363 A JP2000342363 A JP 2000342363A JP 2002143888 A JP2002143888 A JP 2002143888A
Authority
JP
Japan
Prior art keywords
nitrogen
autotrophic denitrifying
accumulating
nitrite
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000342363A
Other languages
Japanese (ja)
Other versions
JP4529277B2 (en
Inventor
Rei Imashiro
麗 今城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000342363A priority Critical patent/JP4529277B2/en
Publication of JP2002143888A publication Critical patent/JP2002143888A/en
Application granted granted Critical
Publication of JP4529277B2 publication Critical patent/JP4529277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method to efficiently accumulate autotrophic denitrifying microorganisms in a short time which carry out denitrification by using ammonia nitrogen as an electron donor and using nitrite nitrogen as an electron acceptor. SOLUTION: The method for accumulating autotrophic denitrifying microorganisms which carry out denitrification by using ammonia nitrogen as an electron donor and using nitrite nitrogen as an electron acceptor includes the following processes. Microorganism sludge is cultured in an inorganic culture liquid containing NOx nitrogen under anaerobic conditions to cause autolysis, then the microorganisms are cultured in an inorganic culture liquid containing ammonia nitrogen and nitrite nitrogen under anaerobic conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアンモニア性窒素を
電子供与体、亜硝酸性窒素を電子受容体として脱窒を行
う独立栄養性脱窒微生物の集積方法、特にアンモニア性
窒素を含む排水の生物学的窒素除去に利用することがで
きる独立栄養性脱窒微生物の集積方法および生物学的窒
素除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accumulating autotrophic denitrifying microorganisms, which performs denitrification by using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, and more particularly, to an organism of wastewater containing ammonia nitrogen. The present invention relates to a method for accumulating autotrophic denitrifying microorganisms and a method for removing biological nitrogen that can be used for biological nitrogen removal.

【0002】[0002]

【従来の技術】排水中に含まれるアンモニア性窒素は河
川、湖沼および海洋などにおける富栄養化の原因物質の
一つであり、排水処理工程で効率的に除去されることが
望まれる。一般に、排水中のアンモニア性窒素は硝化と
脱窒の2段階の生物反応によって窒素ガスにまで分解さ
れる。具体的には、硝化工程ではアンモニア性窒素はア
ンモニア酸化細菌によって亜硝酸性窒素に酸化され、こ
の亜硝酸性窒素が亜硝酸酸化細菌によって硝酸性窒素に
酸化される。次に脱窒工程ではこれらの亜硝酸性窒素お
よび硝酸性窒素は従属栄養性細菌である脱窒菌により、
有機物を電子供与体として利用しながら窒素ガスにまで
分解される。
2. Description of the Related Art Ammoniacal nitrogen contained in wastewater is one of the substances causing eutrophication in rivers, lakes and oceans, and it is desired that it be efficiently removed in the wastewater treatment process. Generally, ammonia nitrogen in wastewater is decomposed into nitrogen gas by a two-stage biological reaction of nitrification and denitrification. Specifically, in the nitrification step, ammoniacal nitrogen is oxidized to nitrite nitrogen by ammonia oxidizing bacteria, and this nitrite nitrogen is oxidized to nitrate nitrogen by nitrite oxidizing bacteria. Next, in the denitrification step, these nitrite nitrogen and nitrate nitrogen are denitrified by heterotrophic bacteria,
It is decomposed into nitrogen gas while using organic substances as electron donors.

【0003】このような従属栄養性の脱窒菌を利用する
従来の生物学的窒素除去では、脱窒工程において電子供
与体としてメタノールなどの有機物を多量に添加する必
要があるのでランニングコストを増加させている。また
硝化工程では多量の酸素が必要であり、ランニングコス
トを増加させている。
In the conventional biological nitrogen removal using heterotrophic denitrifying bacteria, the running cost is increased because a large amount of an organic substance such as methanol must be added as an electron donor in the denitrification step. ing. In the nitrification process, a large amount of oxygen is required, which increases running costs.

【0004】ところで、嫌気条件下でアンモニア性窒素
が電子供与体、亜硝酸性窒素が電子受容体となる独立栄
養性の脱窒微生物群も知られている(FEMS Microbiolog
y Letters, 16(1995), p177-184およびWat. Res., 31(1
997), p1955-1962)。亜硝酸性窒素が電子受容体となる
独立栄養性の脱窒微生物群は幾つかの排水処理系に存在
することが確認されているが、公知の培養法ではコロニ
ーを作らないため単離して純粋培養することが難しく、
このため種々雑多な微生物の混合体から集積する必要が
ある。しかし、もともと存在数が少なく、増殖速度も遅
いため、集積用の培養液中に目的の微生物が存在してい
るかどうかの判断が難しいほか、排水処理に適用できる
量を集積することも非常に困難である。このように、こ
れまでに独立栄養性の脱窒微生物を高い確率で、かつ効
率的に集積する方法については知られていない。
[0004] Autotrophic denitrifying microorganisms in which ammonia nitrogen is an electron donor and nitrite nitrogen is an electron acceptor under anaerobic conditions are also known (FEMS Microbiolog).
y Letters, 16 (1995), p177-184 and Wat. Res., 31 (1
997), p1955-1962). Autotrophic denitrifying microorganisms in which nitrite nitrogen serves as an electron acceptor have been confirmed to be present in some wastewater treatment systems. It is difficult to culture,
Therefore, it is necessary to accumulate from a mixture of various microorganisms. However, due to the low number of organisms and the slow growth rate, it is difficult to determine whether or not the target microorganisms are present in the culture medium for accumulation, and it is also very difficult to accumulate an amount applicable to wastewater treatment. It is. Thus, there is no known method for efficiently and efficiently accumulating autotrophic denitrifying microorganisms.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、独立
栄養性脱窒微生物を短期間で効率よく集積することがで
きる独立栄養性脱窒微生物の集積方法、およびこの独立
栄養性脱窒微生物を用いた生物学的窒素除去方法を提案
することである。
An object of the present invention is to provide a method for accumulating autotrophic denitrifying microorganisms capable of accumulating autotrophic denitrifying microorganisms efficiently in a short period of time, and this autotrophic denitrifying microorganism. The purpose is to propose a biological nitrogen removal method using the method.

【0006】[0006]

【課題を解決するための手段】本発明は次の独立栄養性
脱窒微生物の集積方法および生物学的窒素除去方法であ
る。 (1) アンモニア性窒素を電子供与体、亜硝酸性窒素
を電子受容体として脱窒を行う独立栄養性脱窒微生物の
集積方法であって、微生物汚泥を、NOx性窒素を含む
無機培養液中で、嫌気条件下で培養して自己消化させた
後、アンモニア性窒素および亜硝酸性窒素を含む無機培
養液中で嫌気条件下に培養する独立栄養性脱窒微生物の
集積方法。 (2) アンモニア性窒素を電子供与体、亜硝酸性窒素
を電子受容体として脱窒を行う独立栄養性脱窒微生物の
集積方法であって、硝化汚泥または脱窒汚泥を、NOx
性窒素1〜1000mg/Lを含む無機培養液中で、溶
存酸素濃度が1mg/L以下の嫌気条件下で培養して自
己消化させた後、アンモニア性窒素1〜1000mg/
Lおよび亜硝酸性窒素1〜200mg/Lを含む無機培
養液中で、溶存酸素濃度が0.5mg/L以下の嫌気条
件下で培養する独立栄養性脱窒微生物の集積方法。 (3) NOx性窒素が硝酸性窒素である上記(1)ま
たは(2)記載の集積方法。 (4) アンモニア性窒素濃度の上昇が停止した時点を
自己消化の終点とする上記(1)ないし(3)のいずれ
かに記載の集積方法。 (5) NOx性窒素濃度の減少が停止した時点を自己
消化の終点とする上記(1)ないし(4)のいずれかに
記載の集積方法。 (6) 亜硝酸性窒素およびアンモニア性窒素を含む被
処理水を、嫌気条件で請求項1ないし5のいずれかに記
載の集積方法で集積した独立栄養性脱窒微生物と接触さ
せて脱窒を行う生物学的窒素除去方法。
The present invention relates to the following methods for accumulating autotrophic denitrifying microorganisms and removing biological nitrogen. (1) A method for accumulating autotrophic denitrifying microorganisms in which denitrification is performed using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, wherein microbial sludge is prepared in an inorganic culture solution containing NOx nitrogen. The method for accumulating autotrophic denitrifying microorganisms, wherein the autotrophic denitrifying microorganism is cultured under anaerobic conditions, autolyzed, and then cultured under anaerobic conditions in an inorganic culture solution containing ammonium nitrogen and nitrite nitrogen. (2) An accumulation method of autotrophic denitrifying microorganisms for denitrification using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, wherein nitrifying sludge or denitrifying sludge is converted into NOx
After culturing under an anaerobic condition having a dissolved oxygen concentration of 1 mg / L or less in an inorganic culture solution containing 1 to 1000 mg / L of anaerobic nitrogen and autolyzing, 1 to 1000 mg of ammoniacal nitrogen /
A method for accumulating autotrophic denitrifying microorganisms, which is cultured under an anaerobic condition having a dissolved oxygen concentration of 0.5 mg / L or less in an inorganic culture solution containing L and nitrite nitrogen in an amount of 1 to 200 mg / L. (3) The method according to (1) or (2), wherein the NOx nitrogen is nitrate nitrogen. (4) The method according to any one of (1) to (3) above, wherein the time point at which the increase in the concentration of ammonia nitrogen has stopped is determined as the end point of autolysis. (5) The method according to any one of (1) to (4) above, wherein the point at which the decrease in the NOx nitrogen concentration stops is the end point of the autolysis. (6) Treated water containing nitrite nitrogen and ammonia nitrogen is brought into contact with autotrophic denitrifying microorganisms accumulated by the accumulation method according to any one of claims 1 to 5 under anaerobic conditions to perform denitrification. How to remove biological nitrogen.

【0007】本明細書において、「NOx」は硝酸およ
び/または亜硝酸を意味する。また「脱窒」は特に断ら
ない限り独立栄養性脱窒微生物による脱窒を意味する。
さらに自己消化のための培養を「前段の培養」、自己消
化後にアンモニア性窒素および亜硝酸性窒素を含む無機
培養液中で嫌気的に行う培養を「後段の培養」と称す
る。
[0007] As used herein, "NOx" refers to nitric acid and / or nitrous acid. "Denitrification" means denitrification by an autotrophic denitrifying microorganism unless otherwise specified.
Further, the culture for autolysis is referred to as “preculture”, and the culture performed anaerobically in an inorganic culture solution containing ammonia nitrogen and nitrite nitrogen after autolysis is referred to as “postculture”.

【0008】本発明の集積方法では、種汚泥となる微生
物汚泥を、NOx性窒素を含む培養液中で嫌気条件下で
培養して自己消化させる(前段の培養)。この時使用す
る微生物汚泥としては、排水の好気性処理が行われてい
る処理系から採取した活性汚泥、排水の生物学的脱窒処
理が行われている処理系から採取した硝化汚泥もしくは
脱窒汚泥、排水の嫌気性処理が行われている処理系から
採取した生物汚泥、およびこれらの混合物などが好まし
いが、これらに限定されない。これらの中では硝化汚泥
または脱窒汚泥が好ましく、特に汚泥滞留時間(SR
T)が長いものが好ましく、具体的にはSRTが10日
以上、好ましくは15日以上、さらに好ましくは20日
以上の硝化汚泥または脱窒汚泥が望ましい。
[0008] In the accumulating method of the present invention, microbial sludge as seed sludge is cultivated in a culture solution containing NOx nitrogen under anaerobic conditions and autolyzed (preculture). The microbial sludge used at this time includes activated sludge collected from a treatment system where aerobic treatment of wastewater is performed, nitrification sludge collected from a treatment system where biological treatment of wastewater is performed or denitrification. Sludge, biological sludge collected from a treatment system in which anaerobic treatment of wastewater is performed, and a mixture thereof are preferable, but not limited thereto. Among these, nitrification sludge or denitrification sludge is preferred, and sludge residence time (SR
T) is preferably long, and specifically, nitrification sludge or denitrification sludge having an SRT of 10 days or more, preferably 15 days or more, more preferably 20 days or more is desirable.

【0009】自己消化させる際に使用する(前段の培養
で使用する)培養液はNOx性窒素を含む無機培養液
(以下、単に培養液という場合がある)であり、NOx
性窒素濃度は1〜1000mg/Lであるのが望まし
い。NOx性窒素として硝酸性窒素を使用する場合硝酸
性窒素の濃度は好ましくは1〜1000mg/L、さら
に好ましくは5〜500mg/L、亜硝酸性窒素の場合
の濃度は1〜200mg/L、さらに好ましくは1〜1
00mg/Lであるのが望ましい。
[0009] The culture solution used for autolysis (used in the previous culture) is an inorganic culture solution containing NOx nitrogen (hereinafter sometimes simply referred to as a culture solution).
It is desirable that the nitrogen concentration be 1 to 1000 mg / L. When nitrate nitrogen is used as NOx nitrogen, the concentration of nitrate nitrogen is preferably 1 to 1000 mg / L, more preferably 5 to 500 mg / L, and the concentration of nitrite nitrogen is 1 to 200 mg / L. Preferably 1 to 1
Desirably, it is 00 mg / L.

【0010】前段の培養を継続するに伴って、培養液中
のNOx性窒素の濃度は減少するので、NOx性窒素の濃
度を常時1mg/L以上に保持し、上記範囲になるよう
に補給するのが好ましい。硝酸性窒素の場合は、前段の
培養開始時に上記範囲内で高濃度に調整した場合には補
給の必要はない場合もあるが、亜硝酸性窒素の場合は高
濃度に調整できないため通常補給が必要となる。前段の
培養を継続するに従って自己消化に伴うアンモニア性窒
素が増加するので、培養液にアンモニア性窒素を添加す
る必要はないが、添加することもできる。添加する場合
の初期濃度は1〜500mg/Lとするのが望ましい。
培養液には微生物の培養に用いられている公知の無機成
分を添加することもできる。培養液には有機物は添加し
ない。
Since the concentration of NOx nitrogen in the culture solution decreases as the culture at the first stage is continued, the concentration of NOx nitrogen is always maintained at 1 mg / L or more and replenished so as to be in the above range. Is preferred. In the case of nitrate nitrogen, supplementation may not be necessary if the concentration is adjusted to a high concentration within the above range at the start of the previous culture, but in the case of nitrite nitrogen, it cannot be adjusted to a high concentration, so normal supplementation is required. Required. Since ammonia nitrogen associated with autolysis is increased as the former culture is continued, it is not necessary to add ammonia nitrogen to the culture solution, but it can be added. When adding, the initial concentration is desirably 1 to 500 mg / L.
Known inorganic components used for culturing microorganisms can also be added to the culture solution. No organic matter is added to the culture.

【0011】前段の培養は嫌気性条件で行うが、好まし
くは溶存酸素濃度が1mg/L以下、さらに好ましくは
検出限界以下の嫌気条件下で培養するのが望ましい。溶
存酸素を除去するには、例えば次のような溶存酸素除去
装置を用いて行うことができる。
The culture at the first stage is performed under anaerobic conditions, but preferably under anaerobic conditions having a dissolved oxygen concentration of 1 mg / L or less, more preferably a detection limit or less. In order to remove dissolved oxygen, for example, the following dissolved oxygen removing device can be used.

【0012】1)被処理液に接触する気体の圧力を下げ
ることによって酸素の溶解度を下げ、被処理液中から溶
存酸素を除去する真空式脱気装置。 2)酸素を透過させ、水を透過させないガス分離膜を備
え、液と反対側を減圧することによって、被処理液中の
溶存酸素を減圧側に送り出す脱気膜装置。 3)被処理液に還元剤である水素ガスを注入溶解させた
後、脱酸素樹脂充填層に通液し、脱酸素樹脂の触媒作用
により脱酸素を行う脱酸素樹脂塔。 4)活性炭充填層に被処理液を通液し、溶存酸素を二酸
化炭素に変換して除去する活性炭塔。 5)窒素ガス、メタンガス、アルゴンガス、ヘリウムガ
ス、炭酸ガスまたはこれらの混合ガスなどの酸素を含ま
ないガスを曝気し、溶存酸素を除去する無酸素ガス曝気
装置。
1) A vacuum deaerator for lowering the solubility of oxygen by lowering the pressure of a gas in contact with a liquid to be treated to remove dissolved oxygen from the liquid to be treated. 2) A degassing membrane device provided with a gas separation membrane that allows oxygen to permeate and does not allow water to permeate, and sends out dissolved oxygen in the liquid to be treated to the reduced pressure side by reducing the pressure on the side opposite to the liquid. 3) An oxygen-absorbing resin tower that injects and dissolves a hydrogen gas as a reducing agent into the liquid to be treated, passes the solution through the oxygen-absorbing resin-packed layer, and deoxidizes by the catalytic action of the oxygen-absorbing resin. 4) An activated carbon tower that passes a liquid to be treated through an activated carbon packed bed and converts dissolved oxygen into carbon dioxide and removes it. 5) An oxygen-free gas aerator for aerating oxygen-free gas such as nitrogen gas, methane gas, argon gas, helium gas, carbon dioxide gas, or a mixture thereof to remove dissolved oxygen.

【0013】自己消化させる際の培養条件はpH5〜1
0、好ましくは6.5〜9、温度10〜50℃、好まし
くは25〜40℃であるのが望ましい。また暗所で培養
するのが好ましい。
The culture conditions for the autolysis are pH 5-1.
0, preferably 6.5 to 9, and a temperature of 10 to 50 ° C, preferably 25 to 40 ° C. It is also preferable to culture in a dark place.

【0014】硝化菌は嫌気性条件では硝化反応を行うこ
とはできず、自己消化して有機物とアンモニア性窒素に
なり、徐々に減少し、ついには死滅する。また脱窒菌や
その他の従属栄養性微生物はNOxを利用して培養液中
の有機物を消費するが、有機物は添加されないために徐
々に自己消化して有機物とアンモニア性窒素になり、そ
の有機物を利用してNOxを還元するが、しだいに減少
し、ついには死滅する。目的とする独立栄養性脱窒微生
物は、上記培養液中に存在するアンモニア性窒素とNO
xを基質として上記培養条件で生育することができる。
従って、前段の培養を継続していくと、独立栄養性脱窒
微生物以外の微生物は自己消化により減少し、ついには
死滅する。
[0014] Nitrifying bacteria cannot undergo a nitrification reaction under anaerobic conditions, and self-digest to organic matter and ammonia nitrogen, gradually decrease, and finally die. Denitrifying bacteria and other heterotrophic microorganisms use NOx to consume organic matter in the culture solution, but since organic matter is not added, it gradually digests itself into organic matter and ammonia nitrogen, and uses that organic matter. It reduces NOx, but gradually decreases and eventually dies. The target autotrophic denitrifying microorganism is composed of ammonia nitrogen and NO present in the culture solution.
It can be grown under the above culture conditions using x as a substrate.
Therefore, when the former culture is continued, microorganisms other than the autotrophic denitrifying microorganisms are reduced by autolysis and eventually die.

【0015】自己消化の終点は、硝化菌、従属栄養性の
脱窒菌およびその他の従属栄養性微生物がほぼ完全に死
滅した時点とするのが好ましい。自己消化の終点の指標
としては、アンモニア性窒素濃度の上昇が停止した時点
とすることができる。またNOx性窒素濃度の減少が停
止した時点とすることができる。
[0015] The end point of autolysis is preferably at the time when nitrifying bacteria, heterotrophic denitrifying bacteria and other heterotrophic microorganisms have almost completely died. As an index of the end point of the autolysis, the time point at which the increase in the concentration of ammonia nitrogen has stopped can be determined. In addition, it can be the time when the reduction of the NOx nitrogen concentration is stopped.

【0016】自己消化させた後はアンモニア性窒素およ
び亜硝酸性窒素を含む無機培養液中で嫌気条件下に培養
する(後段の培養)。培養条件は独立栄養性脱窒微生物
の増殖に適した培養条件を選択するのが好ましい。
After self-digestion, the cells are cultured under anaerobic conditions in an inorganic culture solution containing ammonium nitrogen and nitrite nitrogen (the latter stage of culture). It is preferable to select culture conditions suitable for the growth of autotrophic denitrifying microorganisms.

【0017】後段の培養に使用する培養液は、アンモニ
ア性窒素の濃度1〜1000mg/L、亜硝酸性窒素の
濃度1〜200mg/L、好ましくはアンモニア性窒素
の濃度1〜600mg/L、亜硝酸性窒素の濃度1〜9
0mg/Lであるのが望ましい。
[0017] The culture solution used for the subsequent cultivation may have a concentration of 1 to 1000 mg / L of ammonia nitrogen, a concentration of 1 to 200 mg / L of nitrite nitrogen, preferably a concentration of 1 to 600 mg / L of ammonia nitrogen. Nitrate nitrogen concentration 1-9
Desirably, it is 0 mg / L.

【0018】後段の培養は嫌気性条件で行うが、溶存酸
素濃度が0.5mg/L以下、好ましくは検出限界以下
の嫌気条件下で培養するのが望ましい。培養条件はpH
5.5〜9.5、好ましくは6.5〜9、温度10〜5
0℃、好ましくは25〜40℃であるのが望ましい。ま
た暗所で培養するのが好ましい。
The latter stage of the culture is performed under anaerobic conditions, but it is desirable to perform the culture under anaerobic conditions having a dissolved oxygen concentration of 0.5 mg / L or less, preferably a detection limit or less. Culture conditions are pH
5.5-9.5, preferably 6.5-9, temperature 10-5
It is desirably 0 ° C, preferably 25 to 40 ° C. It is also preferable to culture in a dark place.

【0019】このようにして後段の培養を継続し、アン
モニア性窒素の濃度および亜硝酸性窒素の濃度が減少
し、その減少速度が徐々に上昇する場合は、独立栄養性
脱窒微生物が増殖し、集積していると認められる。アン
モニア性窒素および亜硝酸性窒素は上記範囲の濃度を維
持するように補給する。アンモニア性窒素の濃度および
亜硝酸性窒素の濃度がほとんど変動しない場合もある
が、この場合は種汚泥中に独立栄養性脱窒微生物が存在
していなかったと認められる。
When the subsequent culture is continued in this way, and the concentration of ammonia nitrogen and the concentration of nitrite nitrogen decrease, and the rate of decrease gradually increases, autotrophic denitrifying microorganisms proliferate. It is recognized that it has accumulated. Ammoniacal nitrogen and nitrite nitrogen are replenished to maintain concentrations in the above range. In some cases, the concentration of ammonia nitrogen and the concentration of nitrite nitrogen hardly fluctuate. In this case, it is recognized that the autotrophic denitrifying microorganism was not present in the seed sludge.

【0020】なお前段の自己消化を省略して、種汚泥を
直接後段の培養条件で培養しても、種々雑多な微生物が
存在する状態では従属栄養性微生物により即座に亜硝酸
が消費されるので、独立栄養性脱窒微生物の増殖に好適
な条件を保持することができず、独立栄養性脱窒微生物
を集積させることはできない。
Even if the autolysis of the former stage is omitted and the seed sludge is directly cultivated under the culture conditions of the latter stage, nitrite is immediately consumed by heterotrophic microorganisms in the presence of various microorganisms. However, conditions suitable for the growth of autotrophic denitrifying microorganisms cannot be maintained, and autotrophic denitrifying microorganisms cannot be accumulated.

【0021】本発明の集積方法により集積させた独立栄
養性脱窒微生物は、排水の生物学的窒素除去に用いる生
物汚泥として利用することができる。独立栄養性脱窒微
生物を利用して排水の生物学的窒素除去を行うことによ
り、メタノールなどの添加有機物が不要となるともに、
酸素供給量も少なくすることができるので、低コストで
処理することが可能となり、また余剰汚泥の生成量が少
なくなる。
The autotrophic denitrifying microorganisms accumulated by the accumulation method of the present invention can be used as biological sludge used for removing biological nitrogen from wastewater. The use of autotrophic denitrifying microorganisms to remove biological nitrogen from wastewater eliminates the need for additional organic substances such as methanol,
Since the amount of supplied oxygen can be reduced, the treatment can be performed at low cost, and the amount of excess sludge generated is reduced.

【0022】本発明の生物学的窒素除去方法は、亜硝酸
性窒素およびアンモニア性窒素を含む被処理水を、脱窒
反応槽において、嫌気条件で、前記本発明の集積方法で
集積した独立栄養性脱窒微生物と接触させて脱窒を行う
生物学的窒素除去方法である。本発明の生物学的窒素除
去方法の処理の対象となる被処理水としては、下水、し
尿、嫌気消化の脱離液、食品工場排水、半導体洗浄排
水、電力コンデミ排水、肥料工場排水などのアンモニア
含有水があげられる。被処理水は、有機物、硝酸性窒
素、その他の不純物などを含んでいてもよい。有機性窒
素化合物を含む被処理水は嫌気性処理または好気性処理
などにより有機性窒素化合物をアンモニア性窒素に変換
したのち、本発明の方法に供することができる。
According to the biological nitrogen removal method of the present invention, there is provided a method for autotrophic treatment wherein the water to be treated containing nitrite nitrogen and ammonia nitrogen is accumulated in the denitrification reactor under anaerobic conditions by the accumulation method of the invention. This is a biological nitrogen removal method in which denitrification is performed by contact with a sexually denitrifying microorganism. The target water to be treated by the biological nitrogen removal method of the present invention includes sewage, human waste, anaerobic digestion desorbent, food factory effluent, semiconductor cleaning effluent, power condensate effluent, and ammonia such as fertilizer factory effluent. Water content. The water to be treated may contain organic matter, nitrate nitrogen, other impurities, and the like. The water to be treated containing an organic nitrogen compound can be subjected to the method of the present invention after converting the organic nitrogen compound into ammonia nitrogen by anaerobic treatment or aerobic treatment.

【0023】本発明の生物学的窒素除去方法は、嫌気性
条件下でアンモニア性窒素を電子供与体、亜硝酸性窒素
を電子受容体とし、有機物を必要とすることなく、被処
理水中の窒素を脱窒することができる。処理条件は、脱
窒反応槽の槽内液のアンモニア性窒素濃度5〜1000
mg/L、亜硝酸性窒素濃度5〜200mg/L、モル
比でアンモニア性窒素1に対して亜硝酸性窒素0.5〜
2、好ましくは1〜1.5、溶存酸素濃度0.5mg/
L、好ましくは0.1mg/L、pH5.5〜9.5、
温度10〜50℃とするのが好ましい。
The method for removing biological nitrogen according to the present invention uses ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor under anaerobic conditions. Can be denitrified. The treatment conditions were such that the concentration of ammoniacal nitrogen in the solution in the denitrification reactor was 5 to 1000.
mg / L, nitrite nitrogen concentration 5 to 200 mg / L, molar ratio of ammonia nitrogen 1 to nitrite nitrogen 0.5 to
2, preferably 1 to 1.5, dissolved oxygen concentration 0.5 mg /
L, preferably 0.1 mg / L, pH 5.5-9.5,
The temperature is preferably 10 to 50 ° C.

【0024】なお、被処理水に亜硝酸性窒素が含まれて
いない場合は、脱窒反応槽の前段でアンモニア性窒素を
亜硝酸性窒素まで酸化し、この酸化処理水と被処理水と
を混合し、アンモニア性窒素と亜硝酸性窒素とのモル比
が前記範囲になるように調整して脱窒反応槽に導入する
のが好ましい。また、被処理水のアンモニア性窒素の一
部を亜硝酸性窒素に酸化して脱窒反応槽に導入すること
もできる。さらに、脱窒反応槽の内部にアンモニア酸化
細菌と独立栄養性脱窒微生物とを共存させ、アンモニア
酸化細菌によるアンモニア性窒素の酸化と、独立栄養性
脱窒微生物による脱窒とを一槽の脱窒反応槽で行うこと
もできる。
If the water to be treated does not contain nitrite nitrogen, ammonia nitrogen is oxidized to nitrite nitrogen in the preceding stage of the denitrification reaction tank, and the oxidized water and the water to be treated are separated. It is preferable to mix and adjust so that the molar ratio between ammoniacal nitrogen and nitrite nitrogen falls within the above range and introduce the mixture into the denitrification reactor. Further, a part of the ammonia nitrogen in the water to be treated can be oxidized to nitrite nitrogen and introduced into the denitrification reaction tank. Furthermore, ammonia oxidizing bacteria and autotrophic denitrifying microorganisms coexist inside the denitrification reaction tank, and the oxidation of ammonia nitrogen by the ammonia oxidizing bacteria and the denitrification by autotrophic denitrifying microorganisms are removed in one tank. It can also be performed in a nitrogen reaction tank.

【0025】本発明の生物学的窒素除去方法では、脱窒
するアンモニア性窒素濃度に対して、モル比で0.1〜
0.4倍の硝酸性窒素が生成されるので、脱窒反応槽の
後段に従属栄養性の脱窒菌を利用し、メタノールなどの
有機物を添加して硝酸性窒素を脱窒処理する後処理槽を
設けることが好ましい。あるいは、本発明の生物学的窒
素除去を行う脱窒反応槽内に、独立栄養性の脱窒微生物
と従属栄養性の脱窒菌とを共存させ、独立栄養性脱窒微
生物による脱窒反応で生成される硝酸性窒素の濃度に応
じてメタノール等の有機物を添加することにより、従属
栄養性脱窒菌により硝酸性窒素を脱窒することもでき
る。この場合、後処理槽は省略することができる。
In the method for removing biological nitrogen according to the present invention, the molar ratio of the ammonia nitrogen to be denitrified is 0.1-0.1.
Since 0.4 times nitrate nitrogen is generated, a post-treatment tank that uses a heterotrophic denitrifying bacterium and adds an organic substance such as methanol to denitrify nitrate nitrogen using the latter stage of the denitrification reaction tank Is preferably provided. Alternatively, autotrophic denitrifying microorganisms and heterotrophic denitrifying bacteria are allowed to coexist in a denitrification reaction tank for removing biological nitrogen according to the present invention, and are produced by a denitrification reaction by autotrophic denitrifying microorganisms. By adding an organic substance such as methanol according to the concentration of the nitrate nitrogen to be produced, the nitrate nitrogen can also be denitrified by heterotrophic denitrifying bacteria. In this case, the post-treatment tank can be omitted.

【0026】[0026]

【発明の効果】本発明の独立栄養性脱窒微生物の集積方
法は、種汚泥を自己消化させた後、独立栄養性脱窒微生
物の生育に好適な条件で培養しているので、独立栄養性
脱窒微生物を短期間で効率よく集積することができる。
According to the method for accumulating autotrophic denitrifying microorganisms of the present invention, seed sludge is self-digested and then cultured under conditions suitable for the growth of autotrophic denitrifying microorganisms. Denitrifying microorganisms can be efficiently accumulated in a short period of time.

【0027】本発明の生物学的窒素除去方法は、上記独
立栄養性脱窒微生物を使用しているので、低コストでし
かも余剰汚泥の生成量を少なくして効率よく排水を処理
することができる。
In the method for removing biological nitrogen of the present invention, since the above-mentioned autotrophic denitrifying microorganism is used, wastewater can be efficiently treated at a low cost with a reduced amount of excess sludge generated. .

【0028】[0028]

【発明の実施の形態】次に本発明の実施例について説明
する。
Next, an embodiment of the present invention will be described.

【0029】実施例1 培養を始める種汚泥としては、排水の生物学的窒素除去
処理を行っている処理系から採取したSRTが1か月の
硝化脱窒汚泥および5日の硝化脱窒汚泥を使用した。培
養液としては表1に示す無機成分を含む無機培養液を使
用した。ただし、NOx性窒素の供給源としてはNaN
2またはNaNO3のどちらか一方を使用した。
Example 1 As seed sludge to start cultivation, nitrification denitrification sludge of 1 month and nitrification denitrification sludge of 5 days collected from a treatment system for biological nitrogen removal treatment of wastewater were used. used. As the culture solution, an inorganic culture solution containing the inorganic components shown in Table 1 was used. However, the source of NOx nitrogen is NaN
O 2 or by using either of NaNO 3.

【0030】[0030]

【表1】 [Table 1]

【0031】種汚泥を表1の無機培養液に懸濁させ、3
つの300mlフラスコに入れた(それぞれRUN1、
RUN2、RUN3という)。窒素ガスを曝気して溶存
酸素を除去した後、表2に示す培地成分を添加し、30
℃で暗所において静地培養した。ガスが発生するため、
フラスコは密閉せず、発生ガスを回収するためのシリン
ジを設置した。NH4−N濃度、NO2−N濃度およびN
3−N濃度は数日おきに測定し、NO2−NまたはNO
3−N濃度が1.0mg/L以下になった場合には添加
するものとした。
Seed sludge was suspended in the inorganic culture solution shown in Table 1 and
Into three 300 ml flasks (RUN1, RUN1, respectively)
RUN2, RUN3). After aerating nitrogen gas to remove dissolved oxygen, the medium components shown in Table 2 were added, and 30
The culture was carried out in the dark at ℃. Because gas is generated,
The flask was not sealed, and a syringe for collecting generated gas was installed. NH 4 -N concentration, NO 2 -N concentration and N
O 3 -N concentrations were measured every few days and were measured for NO 2 -N or NO
When the concentration of 3- N became 1.0 mg / L or less, it was added.

【0032】NO2−N濃度またはNO3−N濃度の変化
がなくなった時点で自己消化が終了したと判断し、この
時点で培養液中の固形分を表1に示す無機培養液に移
し、表2に示す培地成分を添加し、30℃で暗所におい
て静地培養を継続した。NH4−N濃度およびNO2−N
濃度を数日おきに測定し、これらの濃度が低下している
場合には硫酸アンモニウムまたは亜硝酸ナトリウム水溶
液を添加した。培養条件を表2にまとめる。
When the change in the NO 2 -N concentration or the NO 3 -N concentration has ceased, it is determined that the autolysis has been completed. At this time, the solid content in the culture solution is transferred to the inorganic culture solution shown in Table 1. The medium components shown in Table 2 were added, and the static culture was continued at 30 ° C. in a dark place. NH 4 -N concentration and NO 2 -N
The concentrations were measured every few days, and if these concentrations were decreasing, an aqueous solution of ammonium sulfate or sodium nitrite was added. The culture conditions are summarized in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】自己消化期間中のNH4−N濃度、NO2
N濃度およびNO3−N濃度の変化を図1に示す。また
自己消化後の培養期間中のNH4−N濃度およびNO2
N濃度の変化を図2に示す。
NH 4 —N concentration during autolysis, NO 2
FIG. 1 shows changes in the N concentration and the NO 3 -N concentration. In addition, NH 4 —N concentration and NO 2
FIG. 2 shows the change in the N concentration.

【0035】図1および図2の結果からわかるように、
NO3−Nを高濃度に添加したRUN1では、自己消化
期間中に追加の添加は必要なかった。90日後、NO3
−Nの消費はほとんどなくなり、NH4−N濃度も一定
になったので、この時点で自己消化の終点と判断した。
自己消化後の汚泥を無機培地に移してさらに培養を継続
したところ、NH4−NおよびNO2−Nの同時除去が認
められ、除去速度は徐々に上昇した。このことから、独
立栄養性脱窒微生物が集積したと認められる。
As can be seen from the results of FIGS. 1 and 2,
In RUN1 was added NO 3 -N in high concentrations, the addition of added during autolysis period was required. 90 days later, NO 3
Since almost no -N was consumed and the NH 4 -N concentration became constant, it was judged at this point that the autolysis was terminated.
When the sludge after autolysis was transferred to an inorganic medium and the culture was further continued, simultaneous removal of NH 4 —N and NO 2 —N was recognized, and the removal rate gradually increased. This indicates that autotrophic denitrifying microorganisms have accumulated.

【0036】NO2−Nを添加したRUN2では、消費
速度が速く自己消化期間中に何度も追加の添加を行う必
要があった。90日後あたりからNO2−Nの消費速度
は徐々に小さくなり、約115日後からNH4−Nがわ
ずかに減少し始めるとともにNO2−Nの消費が停止し
たので、この時点で自己消化の終点と判断した。自己消
化後の汚泥を無機培地に移してさらに培養を継続したと
ころ、NH4−NおよびNO2−Nの同時除去が認めら
れ、除去速度は徐々に上昇した。このことから、独立栄
養性脱窒微生物が集積したと認められる。
In the case of RUN2 to which NO 2 -N was added, the consumption rate was high, and it was necessary to perform additional addition many times during the autolysis period. About 90 days later, the consumption rate of NO 2 -N gradually decreased, and after about 115 days, NH 4 -N began to decrease slightly and the consumption of NO 2 -N stopped. Was determined. When the sludge after autolysis was transferred to an inorganic medium and the culture was further continued, simultaneous removal of NH 4 —N and NO 2 —N was recognized, and the removal rate gradually increased. This indicates that autotrophic denitrifying microorganisms have accumulated.

【0037】RUN3でも自己消化後の汚泥を無機培地
に移してさらに培養を継続したが、NH4−NおよびN
2−Nの同時除去が認められなかった。このことか
ら、種汚泥中に独立栄養性脱窒微生物がいなかったと認
められる。
[0037] While the sludge after autolysis even RUN3 was continued for an additional culture was transferred to mineral medium, NH 4 -N and N
Simultaneous removal of O 2 -N was observed. This indicates that no autotrophic denitrifying microorganisms were present in the seed sludge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の結果を示すグラフである。(a)は
RUN1、(b)はRUN2、(c)はRUN3の結果
を示す。
FIG. 1 is a graph showing the results of Example 1. (A) shows the result of RUN1, (b) shows the result of RUN2, and (c) shows the result of RUN3.

【図2】実施例1の結果を示すグラフである。(a)は
RUN1、(b)はRUN2、(c)はRUN3の結果
を示す。
FIG. 2 is a graph showing the results of Example 1. (A) shows the result of RUN1, (b) shows the result of RUN2, and (c) shows the result of RUN3.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア性窒素を電子供与体、亜硝酸
性窒素を電子受容体として脱窒を行う独立栄養性脱窒微
生物の集積方法であって、 微生物汚泥を、NOx性窒素を含む無機培養液中で、嫌
気条件下で培養して自己消化させた後、アンモニア性窒
素および亜硝酸性窒素を含む無機培養液中で嫌気条件下
に培養する独立栄養性脱窒微生物の集積方法。
1. A method for accumulating autotrophic denitrifying microorganisms, wherein denitrification is carried out using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, wherein the microbial sludge is converted into an inorganic culture containing NOx nitrogen. A method for accumulating autotrophic denitrifying microorganisms, which is cultured under anaerobic conditions in a liquid and autolyzed, and then cultured under anaerobic conditions in an inorganic culture solution containing ammonium nitrogen and nitrite nitrogen.
【請求項2】 アンモニア性窒素を電子供与体、亜硝酸
性窒素を電子受容体として脱窒を行う独立栄養性脱窒微
生物の集積方法であって、 硝化汚泥または脱窒汚泥を、NOx性窒素1〜1000
mg/Lを含む無機培養液中で、溶存酸素濃度が1mg
/L以下の嫌気条件下で培養して自己消化させた後、ア
ンモニア性窒素1〜1000mg/Lおよび亜硝酸性窒
素1〜200mg/Lを含む無機培養液中で、溶存酸素
濃度が0.5mg/L以下の嫌気条件下で培養する独立
栄養性脱窒微生物の集積方法。
2. A method for accumulating autotrophic denitrifying microorganisms, wherein denitrification is performed using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. 1 to 1000
In the inorganic culture solution containing mg / L, the dissolved oxygen concentration is 1 mg.
After culturing under anaerobic conditions of not more than 1 / L and autolyzing, the dissolved oxygen concentration is 0.5 mg in an inorganic culture solution containing 1 to 1000 mg / L of ammonia nitrogen and 1 to 200 mg / L of nitrite nitrogen. / A method for accumulating autotrophic denitrifying microorganisms cultured under anaerobic conditions of not more than / L.
【請求項3】 NOx性窒素が硝酸性窒素である請求項
1または2記載の集積方法。
3. The method according to claim 1, wherein the NOx nitrogen is nitrate nitrogen.
【請求項4】 アンモニア性窒素濃度の上昇が停止した
時点を自己消化の終点とする請求項1ないし3のいずれ
かに記載の集積方法。
4. The accumulation method according to claim 1, wherein the time point at which the increase of the ammonia nitrogen concentration stops is regarded as the end point of the autolysis.
【請求項5】 NOx性窒素濃度の減少が停止した時点
を自己消化の終点とする請求項1ないし4のいずれかに
記載の集積方法。
5. The accumulation method according to claim 1, wherein a point in time when the reduction of the NOx nitrogen concentration stops is regarded as an end point of the autolysis.
【請求項6】 亜硝酸性窒素およびアンモニア性窒素を
含む被処理水を、嫌気条件で請求項1ないし5のいずれ
かに記載の集積方法で集積した独立栄養性脱窒微生物と
接触させて脱窒を行う生物学的窒素除去方法。
6. A method comprising removing treated water containing nitrite nitrogen and ammonia nitrogen by contacting with an autotrophic denitrifying microorganism accumulated by the accumulation method according to claim 1 under anaerobic conditions. A biological nitrogen removal method that performs nitriding.
JP2000342363A 2000-11-09 2000-11-09 Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal Expired - Fee Related JP4529277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000342363A JP4529277B2 (en) 2000-11-09 2000-11-09 Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000342363A JP4529277B2 (en) 2000-11-09 2000-11-09 Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal

Publications (2)

Publication Number Publication Date
JP2002143888A true JP2002143888A (en) 2002-05-21
JP4529277B2 JP4529277B2 (en) 2010-08-25

Family

ID=18816938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000342363A Expired - Fee Related JP4529277B2 (en) 2000-11-09 2000-11-09 Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal

Country Status (1)

Country Link
JP (1) JP4529277B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033786A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification by living organisms
JP2003033796A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Biological denitration method
JP2004074111A (en) * 2002-08-22 2004-03-11 Kurita Water Ind Ltd Waste liquid treatment method
JP2004283758A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd Biological denitrification method
JP2006281003A (en) * 2005-03-31 2006-10-19 Hitachi Zosen Corp Biological waste water treatment method
JP2006289347A (en) * 2005-03-16 2006-10-26 Hitachi Plant Technologies Ltd Method and apparatus for treating waste water
JP2010201377A (en) * 2009-03-04 2010-09-16 Hitachi Plant Technologies Ltd System and method for preserving anaerobic microorganism immobilizing carrier
JP2012000587A (en) * 2010-06-18 2012-01-05 Japan Organo Co Ltd Method and apparatus for treating perchlorate ion-containing water
CN102126789B (en) * 2010-01-18 2013-03-27 中国科学院沈阳应用生态研究所 Method and device for removing nitrates from drinking water
CN115180724A (en) * 2022-06-15 2022-10-14 南华大学 Hydrogen autotrophic microorganism denitrification and uranium fixation domestication device and domestication method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501099A (en) * 1988-02-05 1991-03-14 ギスト ブロカデス ナームローゼ フェンノートチャップ Anoxic oxidation of ammonia
JPH08192185A (en) * 1995-01-17 1996-07-30 Ebara Corp Biologically nitrifying and denitrifying method
JP2000117289A (en) * 1998-10-14 2000-04-25 Meidensha Corp Treatment of dehydration-separated liquid from anaerobic-digested sludge and equipment therefor
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501099A (en) * 1988-02-05 1991-03-14 ギスト ブロカデス ナームローゼ フェンノートチャップ Anoxic oxidation of ammonia
JPH08192185A (en) * 1995-01-17 1996-07-30 Ebara Corp Biologically nitrifying and denitrifying method
JP2000117289A (en) * 1998-10-14 2000-04-25 Meidensha Corp Treatment of dehydration-separated liquid from anaerobic-digested sludge and equipment therefor
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010011332, MARC STROUS, ERIC VAN GERVEN, PING ZHENG, J.GIJS KUENEN, MIKE S.M.JETTEN, "AMMONIUM REMOVAL FROM CONCENTRATED WASTE STREAMS WITH THE ANAEROBIC AMMONIUM OXIDATION(ANAMMOX)PROCE", WaterResarch, 1997, Vol.31,No.8, p.1955−p.1962, GB, ELsevier Science Ltd *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033786A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification by living organisms
JP2003033796A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Biological denitration method
JP2004074111A (en) * 2002-08-22 2004-03-11 Kurita Water Ind Ltd Waste liquid treatment method
JP2004283758A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd Biological denitrification method
JP4572504B2 (en) * 2003-03-24 2010-11-04 栗田工業株式会社 Biological denitrification method
JP2006289347A (en) * 2005-03-16 2006-10-26 Hitachi Plant Technologies Ltd Method and apparatus for treating waste water
JP2006281003A (en) * 2005-03-31 2006-10-19 Hitachi Zosen Corp Biological waste water treatment method
JP2010201377A (en) * 2009-03-04 2010-09-16 Hitachi Plant Technologies Ltd System and method for preserving anaerobic microorganism immobilizing carrier
CN102126789B (en) * 2010-01-18 2013-03-27 中国科学院沈阳应用生态研究所 Method and device for removing nitrates from drinking water
JP2012000587A (en) * 2010-06-18 2012-01-05 Japan Organo Co Ltd Method and apparatus for treating perchlorate ion-containing water
CN115180724A (en) * 2022-06-15 2022-10-14 南华大学 Hydrogen autotrophic microorganism denitrification and uranium fixation domestication device and domestication method

Also Published As

Publication number Publication date
JP4529277B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
Turk et al. Benefits of using selective inhibition to remove nitrogen from highly nitrogenous wastes
JP3776315B2 (en) Method for treating wastewater containing ammonia
JP4951826B2 (en) Biological nitrogen removal method
Stüven et al. Nitrification and denitrification as a source for NO and NO2 production in high-strength wastewater
KR101018772B1 (en) Method for treating water containing ammonia nitrogen
US8323487B2 (en) Waste water treatment apparatus
JP4784873B2 (en) Anaerobic ammonia oxidation treatment method and apparatus
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP5100091B2 (en) Water treatment method
Shin et al. The removal of nitrogen using an autotrophic hybrid hollow-fiber membrane biofilm reactor
JP4872171B2 (en) Biological denitrification equipment
KR20190119344A (en) Method and apparatus for removing biological nitrogen
JP4453397B2 (en) Biological nitrogen removal method
JP2006325512A (en) Waste water-treating system
JPH08192185A (en) Biologically nitrifying and denitrifying method
JP4529277B2 (en) Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP2003053385A (en) Biological denitrification equipment
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
KR100670231B1 (en) System for processing waste water using rumination sbr
KR100578408B1 (en) Method of Denitrification Using Anearobic Granule Sludge
KR20110059692A (en) Apparatus for removing nitrogen from anaerobic digested waste water
KR101045975B1 (en) Method for removing nitrogen from anaerobic digested waste water
KR100446577B1 (en) Method for Eliminating Nitrogen Using Granule of Nitrifying Microorganisms
JP5199794B2 (en) Nitrogen-containing organic wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees