JP5006849B2 - Denitrification method of organic raw water by controlling nitrite type nitrification - Google Patents

Denitrification method of organic raw water by controlling nitrite type nitrification Download PDF

Info

Publication number
JP5006849B2
JP5006849B2 JP2008179674A JP2008179674A JP5006849B2 JP 5006849 B2 JP5006849 B2 JP 5006849B2 JP 2008179674 A JP2008179674 A JP 2008179674A JP 2008179674 A JP2008179674 A JP 2008179674A JP 5006849 B2 JP5006849 B2 JP 5006849B2
Authority
JP
Japan
Prior art keywords
nitrogen
nitrite
ammonia
raw water
nitrogen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008179674A
Other languages
Japanese (ja)
Other versions
JP2010017639A (en
Inventor
茂樹 武田
篤 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2008179674A priority Critical patent/JP5006849B2/en
Publication of JP2010017639A publication Critical patent/JP2010017639A/en
Application granted granted Critical
Publication of JP5006849B2 publication Critical patent/JP5006849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は亜硝酸型硝化の制御による有機性原水の脱窒方法に関するものである。   The present invention relates to a method for denitrifying organic raw water by controlling nitrite type nitrification.

窒素含有液の処理方法に関し、窒素含有液中のアンモニア性窒素(NH )の一部を亜硝酸性窒素(NO )に酸化する亜硝酸型硝化工程の後に、独立栄養性脱窒微生物(以下「アナモックス微生物」と称す)を利用する嫌気性アンモニア酸化反応工程(以下「アナモックス工程」と称す)を導入することにより、従来の硝化脱窒と比較して曝気量の低減、メタノール等の有機物添加量の削減、余剰汚泥の低減を図る技術が開示されている(特許文献1)。 Regarding a method for treating a nitrogen-containing liquid, an autotrophic denitrification is performed after a nitrite-type nitrification step in which a part of ammonia nitrogen (NH 4 + ) in the nitrogen-containing liquid is oxidized to nitrite nitrogen (NO 2 ). By introducing an anaerobic ammonia oxidation reaction process (hereinafter referred to as “anammox process”) that utilizes microorganisms (hereinafter referred to as “anammox microorganisms”), the amount of aeration is reduced compared to conventional nitrification denitrification, methanol, etc. A technology for reducing the amount of organic matter added and reducing excess sludge is disclosed (Patent Document 1).

アナモックス微生物とは、嫌気条件下でアンモニア性窒素を電子供与体、亜硝酸性窒素を電子受容体として両者を反応させ、窒素ガスを生成することができる脱窒微生物群であって、脱窒に際し有機物の添加が不要な独立栄養性脱窒微生物である。   Anammox microorganisms are a group of denitrifying microorganisms that can react with ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor under anaerobic conditions to generate nitrogen gas. An autotrophic denitrifying microorganism that does not require the addition of organic matter.

アナモックス微生物による嫌気性アンモニア酸化反応を利用したアナモックス工程では、以下の反応によってアンモニア性窒素と亜硝酸性窒素が窒素ガス(N2)に分解されると考えられている。 In the anammox process using the anaerobic ammonia oxidation reaction by anammox microorganisms, it is considered that ammonia nitrogen and nitrite nitrogen are decomposed into nitrogen gas (N 2 ) by the following reaction.

Figure 0005006849
Figure 0005006849

すなわち、上記アナモックス工程で効率よく脱窒を行うためには、アナモックス工程に導入する被処理水中のアンモニア性窒素と亜硝酸性窒素の含有比率がNO / NH =0.57/0.43=1.32である事が望ましい。当該含有率制御に関して、従来は図3に示すように亜硝酸型硝化工程の前後でサンプリングを行い、アンモニア性窒素濃度測定器2bで亜硝酸型硝化工程前アンモニア性窒素濃度C及び同工程後アンモニア性窒素濃度Cを測定し、以下の近似式(1)に従うように亜硝酸型硝化工程での亜硝酸型硝化率を制御し、アナモックス工程へ導入するアンモニア性窒素と亜硝酸性窒素の含有比率を前記含有比率(NO / NH =0.57/0.43=1.32)とする手法が採用されていた(特許文献2)。
NO / NH ≒(C−C)/C=1.32・・(1)
That is, in order to efficiently perform denitrification in the anammox process, the content ratio of ammonia nitrogen and nitrite nitrogen in the water to be treated introduced into the anammox process is NO 2 / NH 4 + = 0.57 / 0. It is desirable that .43 = 1.32. Regard the content of control, conventionally performs sampling before and after the nitrite type nitrification step as shown in FIG. 3, ammonia nitrogen concentration measuring device 2b nitrite type nitrification step before the ammonium nitrogen concentration C 1 and after the step measuring the ammonium nitrogen concentration C 2, the following controls nitrite type nitrification rate in the nitrite-type nitrification step to follow the approximate expression (1), ammonia nitrogen and nitrite nitrogen to be introduced into anammox process A technique was adopted in which the content ratio was the content ratio (NO 2 / NH 4 + = 0.57 / 0.43 = 1.32) (Patent Document 2).
NO 2 / NH 4 + ≈ (C 1 −C 2 ) / C 2 = 1.32 (1)

上記近似式(1)は亜硝酸型硝化工程ではアンモニア性窒素の酸化が全て亜硝酸性窒素段階で留まり、硝酸性窒素にまで酸化されないこと、及び窒素ガスにまで還元されないことを前提として、亜硝酸性窒素濃度をC−Cで近似するものである。 The above approximate expression (1) assumes that in the nitrite-type nitrification process, all of the oxidation of ammonia nitrogen remains in the nitrite nitrogen stage and is not oxidized to nitrate nitrogen and not reduced to nitrogen gas. the nitrate nitrogen concentration is to approximated by C 1 -C 2.

しかし被処理水が下水等の有機性原水であって、原水中にBOD成分が共存する場合には、亜硝酸化工程で発生した亜硝酸性窒素の酸化反応が更に進行して脱窒(N2↑)反応が生じたり、硝化反応や脱窒反応の副生成物として一酸化二窒素(N2O↑)が発生することが知られている(特許文献3)。 However, if the water to be treated is organic raw water such as sewage and the BOD component coexists in the raw water, the oxidation reaction of nitrite nitrogen generated in the nitritation process further proceeds to denitrify (N 2 ↑) It is known that reaction occurs and dinitrogen monoxide (N 2 O ↑) is generated as a by-product of nitrification reaction or denitrification reaction (Patent Document 3).

このように亜硝化槽内で亜硝酸型硝化反応と上記ガス化反応が共存する場合、近似式(1)の分子が表す値は、{亜硝酸性窒素(NO )濃度+窒素濃度(N2)+一酸化二窒素濃度(N2O)}であり、実際の亜硝酸性窒素(NO )濃度とのズレが生じることとなる。したがって、当該値を亜硝酸性窒素(NO )濃度とみなして前記近似式(1)による制御を行った場合、必要量の曝気が行われず、亜硝酸性窒素濃度が不足することとなる。 Thus, when the nitrite type nitrification reaction and the gasification reaction coexist in the nitrification tank, the value represented by the molecule of the approximate expression (1) is {nitrite nitrogen (NO 2 ) concentration + nitrogen concentration ( N 2 ) + Nitrous oxide concentration (N 2 O)}, and a deviation from the actual nitrite nitrogen (NO 2 ) concentration occurs. Therefore, when the value is regarded as the nitrite nitrogen (NO 2 ) concentration and the control according to the approximate expression (1) is performed, a necessary amount of aeration is not performed and the nitrite nitrogen concentration becomes insufficient. .

その結果、アナモックス工程へ導入される被処理水中でアンモニア性窒素(NH )濃度が過剰量となり、アナモックス工程において未反応のアンモニア性窒素が生じ、処理水にアンモニア性窒素が残留してしまう問題があった。
特開2003−33784号公報 特開2006−88092号公報 特開2001−179295号公報
As a result, the ammonia nitrogen (NH 4 + ) concentration becomes excessive in the water to be introduced into the anammox process, unreacted ammonia nitrogen is generated in the anammox process, and ammonia nitrogen remains in the treated water. There was a problem.
JP 2003-33784 A JP 2006-88092 A JP 2001-179295 A

本発明の目的は亜硝酸型硝化工程とアナモックス工程とからなる窒素含有液の処理方法において、亜硝酸性窒素とアンモニア性窒素の濃度比を正確に制御し、処理水中にアンモニア性窒素が残留することがないようにした亜硝酸型硝化の制御による有機性原水の脱窒方法を提供することである。   The object of the present invention is to accurately control the concentration ratio of nitrite nitrogen and ammonia nitrogen in a method for treating a nitrogen-containing liquid consisting of a nitrite type nitrification process and an anammox process, so that ammonia nitrogen remains in the treated water. An object of the present invention is to provide a method for denitrification of organic raw water by controlling nitrite type nitrification so as not to occur.

上記課題を解決するためになされた本発明に係る亜硝酸型硝化の制御による亜硝酸型硝化の制御による有機性原水の脱窒方法は、アンモニア性窒素を含有する有機性原水を亜硝化槽に導入し、アンモニア性窒素の一部をアンモニア酸化細菌の作用により亜硝酸性窒素に酸化する亜硝酸型硝化工程と、前記亜硝化槽からの流出水を嫌気性アンモニア酸化反応槽に導入し、前記亜硝酸性窒素を電子受容体とし、残存したアンモニア性窒素を電子供与体として独立栄養微生物の作用により窒素ガスを発生させる嫌気性アンモニア酸化反応工程とからなる有機性原水の脱窒方法において、前記亜硝化槽からの流出水中における亜硝酸性窒素とアンモニア性窒素の濃度比を、前記亜硝化槽からの流出水を自動サンプリングして、全窒素濃度測定器及びアンモニア性窒素濃度測定器により測定した全窒素濃度及びアンモニア性窒素濃度と、有機性原水の性状によって事前に決定される有機体窒素量と硝酸性窒素量の和(α)または有機体窒素濃度(β)とに基づいて算出し、該濃度比が目標値となるように亜硝酸型硝化工程を制御することを特徴とするものである。 The method for denitrifying organic raw water by controlling nitrite-type nitrification by controlling nitrite-type nitrification according to the present invention, which has been made to solve the above-mentioned problems, is to use organic raw water containing ammonia nitrogen in a nitrification tank. Introducing, a nitrite type nitrification step that oxidizes a part of ammonia nitrogen to nitrite nitrogen by the action of ammonia oxidizing bacteria, and introducing the effluent water from the nitrification tank into the anaerobic ammonia oxidation reaction tank, In the method for denitrifying organic raw water comprising an anaerobic ammonia oxidation reaction step of generating nitrogen gas by the action of autotrophic microorganisms using nitrite nitrogen as an electron acceptor and residual ammonia nitrogen as an electron donor, the concentration ratio of nitrite nitrogen and ammonia nitrogen in the water flowing out from the sub nitrification tank, and automatic sampling the effluent from the sub nitrification tank, the total nitrogen concentration measuring device and a Total nitrogen concentration and ammoniacal nitrogen concentration measured with a monia nitrogen concentration meter and the sum of organic nitrogen amount and nitrate nitrogen amount (α) or organic nitrogen concentration determined in advance according to the properties of organic raw water (organic nitrogen concentration ( and the nitrite type nitrification step is controlled so that the concentration ratio becomes a target value.

請求項2に記載の発明は、請求項1記載の亜硝酸型硝化の制御による有機性原水の脱窒方法において、亜硝酸性窒素とアンモニア性窒素の濃度比を、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−α)/アンモニア性窒素濃度測定値}の式により算出し、αが、有機性原水の性状によって事前に決定される有機体窒素量と硝酸性窒素量の和であることを特徴とするものである。   The invention according to claim 2 is the method of denitrifying organic raw water by controlling nitrite type nitrification according to claim 1, wherein the concentration ratio of nitrite nitrogen to ammonia nitrogen is determined by {(total nitrogen concentration measured value). -Ammonia nitrogen concentration measurement value -α) / Ammonia nitrogen concentration measurement value}, where α is the sum of the amount of organic nitrogen and the amount of nitrate nitrogen determined in advance by the properties of the organic raw water. It is characterized by being.

請求項3に記載の発明は、請求項1記載の亜硝酸型硝化の制御による有機性原水の脱窒方法において、更に、自動サンプリングした流出水中の硝酸性窒素濃度を、硝酸性窒素濃度測定器により測定し、亜硝酸性窒素とアンモニア性窒素の濃度比を、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−硝酸性窒素濃度測定値−β)/アンモニア性窒素濃度測定値}の式により算出し、βが、有機性原水の性状によって事前に決定される有機体窒素濃度であることを特徴とするαが、有機性原水の性状によって事前に決定される有機体窒素量と硝酸性窒素量の和であることを特徴とするものである。 The invention according to claim 3 is the method of denitrifying organic raw water by controlling the nitrite type nitrification according to claim 1, and further, the nitrate nitrogen concentration in the effluent water sampled is further converted into a nitrate nitrogen concentration measuring device. was measured by the concentration ratio of nitrite nitrogen and ammonia nitrogen, of {(total nitrogen concentration measurement - nitrate nitrogen concentration measurement-beta - ammonium nitrogen concentration measurement value) / ammonium nitrogen concentration measurement value} Calculated by the formula, β is the organic nitrogen concentration determined in advance by the properties of the organic raw water, and α is the amount of organic nitrogen and nitric acid determined in advance by the properties of the organic raw water It is the sum of the amount of sexual nitrogen.

請求項4に記載の発明は、アンモニア性窒素を含有する有機性原水を亜硝化槽に導入し、アンモニア性窒素の一部をアンモニア酸化細菌の作用により亜硝酸性窒素に酸化する亜硝酸型硝化工程と、前記亜硝化槽からの流出水を嫌気性アンモニア酸化反応槽に導入し、前記亜硝酸性窒素を電子受容体とし、残存したアンモニア性窒素を電子供与体として独立栄養微生物の作用により窒素ガスを発生させる嫌気性アンモニア酸化反応工程とからなる有機性原水の脱窒方法において、前記亜硝化槽からの流出水中の全窒素濃度及びアンモニア性窒素濃度を測定し、これらの測定値に基づいて算出した亜硝酸性窒素と、前記アンモニア性窒素の濃度比が目標値となるように亜硝酸型硝化工程を制御し、該濃度比は、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−α)/アンモニア性窒素濃度測定値}の式により算出され、αが、有機性原水の性状によって事前に決定される有機体窒素量と硝酸性窒素量の和であることを特徴とするものである。 The invention according to claim 4 is a nitrite type nitrification in which organic raw water containing ammonia nitrogen is introduced into a nitrification tank and a part of the ammonia nitrogen is oxidized to nitrite nitrogen by the action of ammonia oxidizing bacteria. And an effluent water from the nitrification tank is introduced into an anaerobic ammonia oxidation reaction tank, the nitrite nitrogen is used as an electron acceptor, and the remaining ammonia nitrogen is used as an electron donor by the action of autotrophic microorganisms. In an organic raw water denitrification method comprising an anaerobic ammonia oxidation reaction step for generating gas, the total nitrogen concentration and ammonia nitrogen concentration in the effluent from the nitrification tank are measured, and based on these measured values The nitrite-type nitrification process was controlled so that the calculated concentration ratio of nitrite nitrogen and ammonia nitrogen became a target value, and the concentration ratio was {(total nitrogen concentration measurement value−ammonia property). Nitrogen concentration measured value−α) / ammonia nitrogen concentration measured value} where α is the sum of the amount of organic nitrogen and the amount of nitrate nitrogen determined in advance by the properties of the organic raw water. It is a feature.

請求項5に記載の発明は、アンモニア性窒素を含有する有機性原水を亜硝化槽に導入し、アンモニア性窒素の一部をアンモニア酸化細菌の作用により亜硝酸性窒素に酸化する亜硝酸型硝化工程と、前記亜硝化槽からの流出水を嫌気性アンモニア酸化反応槽に導入し、前記亜硝酸性窒素を電子受容体とし、残存したアンモニア性窒素を電子供与体として独立栄養微生物の作用により窒素ガスを発生させる嫌気性アンモニア酸化反応工程とからなる有機性原水の脱窒方法において、前記亜硝化槽からの流出水中の全窒素濃度及びアンモニア性窒素濃度と硝酸性窒素濃度を測定し、これらの測定値に基づいて算出した亜硝酸性窒素と、前記アンモニア性窒素の濃度比が目標値となるように亜硝酸型硝化工程を制御し、該濃度比は、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−硝酸性窒素濃度測定値−β)/アンモニア性窒素濃度測定値}の式により算出され、βが、有機性原水の性状によって事前に決定される有機体窒素濃度であることを特徴とするものである。 The invention according to claim 5 is a nitrite type nitrification in which organic raw water containing ammonia nitrogen is introduced into a nitrification tank and a part of the ammonia nitrogen is oxidized to nitrite nitrogen by the action of ammonia oxidizing bacteria. And an effluent water from the nitrification tank is introduced into an anaerobic ammonia oxidation reaction tank, the nitrite nitrogen is used as an electron acceptor, and the remaining ammonia nitrogen is used as an electron donor by the action of autotrophic microorganisms. In an organic raw water denitrification method comprising an anaerobic ammonia oxidation reaction step for generating gas, the total nitrogen concentration, ammonia nitrogen concentration and nitrate nitrogen concentration in the effluent from the nitrification tank are measured, and these The nitrite type nitrification process was controlled so that the concentration ratio of nitrite nitrogen calculated based on the measurement value and the ammoniacal nitrogen would be the target value, and the concentration ratio was {(total nitrogen concentration measurement Value−ammonia nitrogen concentration measurement value−nitrate nitrogen concentration measurement value−β) / ammonia nitrogen concentration measurement value}, where β is an organic nitrogen concentration determined in advance according to the properties of the organic raw water It is characterized by being.

請求項6に記載の発明は、請求項1、4、5の何れかに記載の亜硝酸型硝化の制御による有機性原水の脱窒方法において亜硝酸性窒素とアンモニア性窒素の濃度比の目標値が、亜硝酸性窒素濃度:アンモニア性窒素濃度=0.57:0.43であることを特徴とするものである。 The invention according to claim 6 is a target of the concentration ratio of nitrite nitrogen to ammonia nitrogen in the method for denitrification of organic raw water by controlling nitrite type nitrification according to any one of claims 1, 4 and 5. The value is characterized in that nitrite nitrogen concentration: ammonia nitrogen concentration = 0.57: 0.43.

請求項7に記載の発明は、請求項1、4、5の何れかに記載の亜硝酸型硝化の制御による有機性原水の脱窒方法において亜硝酸型硝化工程の制御を亜硝化槽の曝気量の制御によって行なうことを特徴とするものである。 A seventh aspect of the present invention provides a method for denitrifying organic raw water by controlling nitrite type nitrification according to any one of claims 1, 4 and 5, wherein the control of the nitrite type nitrification step is performed in a nitrification tank. This is performed by controlling the amount.

請求項8に記載の発明は、請求項1、4、5の何れかに記載の亜硝酸型硝化の制御による有機性原水の脱窒方法において独立栄養微生物がアナモックス菌であることを特徴とするものである。 The invention according to claim 8 is characterized in that in the method for denitrifying organic raw water by controlling nitrite type nitrification according to any one of claims 1, 4 and 5, the autotrophic microorganism is anammox. Is.

本発明に係る亜硝酸型硝化の制御による有機性原水の脱窒方法では、亜硝化槽からの流出水中の全窒素濃度及びアンモニア性窒素濃度を測定し、これらの測定値に基づいて算出した亜硝酸性窒素とアンモニア性窒素の濃度比が目標値となるように亜硝酸型硝化工程を制御することにより、処理水にアンモニア性窒素が残留してしまう従来の問題が解消可能となる。   In the method for denitrification of organic raw water by controlling nitrite type nitrification according to the present invention, the total nitrogen concentration and ammonia nitrogen concentration in the effluent from the nitrification tank are measured, and the sublimation calculated based on these measured values is measured. By controlling the nitrite type nitrification step so that the concentration ratio of nitrate nitrogen and ammonia nitrogen becomes a target value, the conventional problem that ammonia nitrogen remains in the treated water can be solved.

前記制御に際し、下記αを有機性原水の性状によって事前に決定される有機体窒素量と硝酸性窒素量の和として、亜硝酸性窒素とアンモニア性窒素の濃度比を、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−α)/アンモニア性窒素濃度測定値}の式により算出することにより、制御精度を向上させることができる。   In the case of the above control, the following α is the sum of the amount of organic nitrogen and the amount of nitrate nitrogen determined in advance according to the properties of the organic raw water, and the concentration ratio of nitrite nitrogen and ammonia nitrogen is {(total nitrogen concentration measurement) The control accuracy can be improved by calculating according to the formula of value−ammonia nitrogen concentration measurement value−α) / ammonia nitrogen concentration measurement value}.

さらなる制御精度向上のためには、亜硝化槽からの流出水中について硝酸性窒素濃度の測定も追加し、下記βを有機性原水の性状によって事前に決定される有機体窒素量として、亜硝酸性窒素とアンモニア性窒素の濃度比を、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−硝酸性窒素量測定値−β)/アンモニア性窒素濃度測定値}の式により算出することが好ましい。   In order to further improve the control accuracy, measurement of nitrate nitrogen concentration in the effluent from the nitrification tank was also added, and the following β was determined as the amount of organic nitrogen determined in advance by the nature of the organic raw water, and nitrite properties The concentration ratio of nitrogen and ammonia nitrogen is preferably calculated by the formula {(total nitrogen concentration measurement value−ammonia nitrogen concentration measurement value−nitrate nitrogen amount measurement value−β) / ammonia nitrogen concentration measurement value}. .

本発明により制御された流出水を脱窒槽に導くことにより、アナモックス反応の反応率が上昇し、酸素必要量が低減する等アナモックス反応に特有の利点をより顕著とすることができる。   By introducing the effluent water controlled by the present invention to the denitrification tank, the advantages specific to the anammox reaction such as an increase in the reaction rate of the anammox reaction and a reduction in the required amount of oxygen can be made more remarkable.

(第1の実施形態)
図1は本発明を実施するのに好適な装置の一例を示す構成図である。図1において、1は亜硝酸型硝化工程に用いる亜硝化槽、2aは全窒素濃度測定器、2bはアンモニア性窒素濃度測定器、3はアナモックス工程に用いる嫌気性アンモニア酸化反応槽である。
(First embodiment)
FIG. 1 is a block diagram showing an example of an apparatus suitable for carrying out the present invention. In FIG. 1, 1 is a nitrification tank used in a nitrite type nitrification process, 2a is a total nitrogen concentration measuring device, 2b is an ammonia nitrogen concentration measuring device, and 3 is an anaerobic ammonia oxidation reaction tank used in an anammox process.

亜硝化槽1では導入される有機性原水に対し、底部に設けた曝気装置6から空気を供給している。また、亜硝化槽1の槽内にはアンモニア酸化細菌を担持させた担体5が分散させてある。ここで有機性原水とは、例えば下水等であって、原水中にBOD成分が共存するものをいう。アンモニア酸化細菌は、アンモニア性窒素の亜硝酸化に用いられる細菌であり、好気性下で以下の反応(化2)を促進する。下記反応に適した好気性状態を維持するために、曝気装置6からの酸素供給量が調整される。   In the nitrification tank 1, air is supplied from the aeration device 6 provided at the bottom to the organic raw water introduced. A carrier 5 carrying ammonia-oxidizing bacteria is dispersed in the nitrification tank 1. Here, the organic raw water refers to, for example, sewage or the like, in which the BOD component coexists in the raw water. Ammonia-oxidizing bacteria are bacteria used for nitritation of ammoniacal nitrogen, and promote the following reaction (chemical formula 2) under aerobic conditions. In order to maintain an aerobic state suitable for the following reaction, the oxygen supply amount from the aeration apparatus 6 is adjusted.

Figure 0005006849
Figure 0005006849

しかし、実際には亜硝化槽1内では、上記反応(化2)以外にも窒素ガス、二酸化窒素ガス、アンモニアガスおよび硝酸性窒素を発生する各反応も生じるため、亜硝化槽1に導入される有機性原水のアンモニア性窒素1モルに対し0.85モルの酸素を添加する方法では、0.57モルの亜硝酸性窒素と0.43モルのアンモニア性窒素を得ることはできない問題がある。なお、亜硝酸性窒素:アンモニア性窒素=0.57モル:0.43モルとする含有比は、後段のアナモックス工程における嫌気性アンモニア酸化細菌による脱窒反応に好適な含有比である。   However, in fact, in the nitrification tank 1, in addition to the above reaction (Chemical formula 2), various reactions that generate nitrogen gas, nitrogen dioxide gas, ammonia gas and nitrate nitrogen also occur. In the method of adding 0.85 mol of oxygen to 1 mol of ammonia nitrogen in organic raw water, there is a problem that 0.57 mol of nitrite nitrogen and 0.43 mol of ammonia nitrogen cannot be obtained. . The content ratio of nitrite nitrogen: ammonia nitrogen = 0.57 mol: 0.43 mol is a content ratio suitable for the denitrification reaction by anaerobic ammonia oxidizing bacteria in the subsequent anammox process.

本発明では、前記問題解消手段として亜硝化槽1からの流出水4を自動サンプリングして全窒素濃度測定器2a及びアンモニア性窒素(NH )濃度測定器2bにより全窒素濃度及びアンモニア性窒素濃度を測定し、これらの測定値データを制御装置7に伝達し、制御装置7において後段のアナモックス工程における嫌気性アンモニア酸化反応に好適な含有比を目標値として前記反応(化2)の進行を調整する手段を設けている。 In the present invention, the outflow water 4 from the nitrification tank 1 is automatically sampled as the above problem solving means, and the total nitrogen concentration and ammonia nitrogen are measured by the total nitrogen concentration measuring device 2a and the ammonia nitrogen (NH 4 + ) concentration measuring device 2b. Concentration is measured, and these measured value data are transmitted to the control device 7, and the progress of the reaction (Chemical Formula 2) is performed with the content ratio suitable for the anaerobic ammonia oxidation reaction in the subsequent Anammox process in the control device 7. Means for adjusting are provided.

制御装置7では、全窒素濃度測定器2a及びアンモニア性窒素濃度測定器2bから伝達された流出水4の全窒素濃度及びアンモニア性窒素濃度を、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−α)/アンモニア性窒素濃度測定値}の式に代入し、当該値の目標値を0.57/0.43とする制御を行う。具体的には、例えば前記目標値の分子が0.57よりも小さい場合には流出水中の亜硝酸性窒素濃度比率を上昇させるために曝気装置6の酸素供給量を増加する制御を行い、前記反応(化2)の進行を促進させる。一方、前記目標値の分子が0.57よりも大きい場合には流出水中のアンモニア性窒素濃度比率を上昇させるために曝気装置6の酸素供給量を抑制する制御を行う。   In the control device 7, the total nitrogen concentration and the ammonia nitrogen concentration of the effluent 4 transmitted from the total nitrogen concentration measuring device 2a and the ammonia nitrogen concentration measuring device 2b are determined by {(total nitrogen concentration measurement value−ammonia nitrogen concentration measurement). Substituting into the equation (value−α) / ammonia nitrogen concentration measurement value}, the control is performed so that the target value of the value is 0.57 / 0.43. Specifically, for example, when the numerator of the target value is smaller than 0.57, control is performed to increase the oxygen supply amount of the aeration apparatus 6 in order to increase the nitrite nitrogen concentration ratio in the effluent, The progress of the reaction (Chemical Formula 2) is promoted. On the other hand, when the numerator of the target value is larger than 0.57, control is performed to suppress the oxygen supply amount of the aeration apparatus 6 in order to increase the ammonia nitrogen concentration ratio in the effluent.

なお、前記式に用いたαとは、有機性原水の性状によって事前に決定される有機体窒素量と硝酸性窒素量の和であって、事前にサンプリングした試料について測定した値を制御装置7に入力した定数である。なお、α値は、有機性原水の性状によって変動するため、有機性原水の性状が変動する場合には、それに合わせてα値の設定を変更することにより、制御装置7の制御精度向上を図ることができる。   Note that α used in the above equation is the sum of the amount of organic nitrogen and the amount of nitrate nitrogen determined in advance according to the properties of the organic raw water, and the value measured for the sample sampled in advance is the control device 7. Is the constant entered in. Since the α value varies depending on the properties of the organic raw water, when the properties of the organic raw water fluctuate, the control accuracy of the control device 7 is improved by changing the α value setting accordingly. be able to.

(第2の実施形態)
図2は第2の実施形態に好適な装置の一例を示す構成図である。第2の実施形態は第1の実施形態に更に硝酸性窒素(NO )濃度測定器2cを設けたものである。第2の実施形態における酸素供給量の調整は、全窒素濃度測定器2a及びアンモニア性窒素濃度測定器2b及び硝酸性窒素濃度測定器2cを用いて各濃度測定を行い、制御装置7に伝達し、制御装置7では、流出水の全窒素濃度及びアンモニア性窒素濃度を、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−硝酸性窒素量測定値−β)/アンモニア性窒素濃度測定値}の式に代入し、当該値の目標値を0.57/0.43とする制御を行う。
(Second Embodiment)
FIG. 2 is a block diagram showing an example of an apparatus suitable for the second embodiment. In the second embodiment, a nitrate nitrogen (NO 3 ) concentration measuring device 2c is further provided in the first embodiment. The adjustment of the oxygen supply amount in the second embodiment is carried out by measuring each concentration using the total nitrogen concentration measuring device 2a, the ammonia nitrogen concentration measuring device 2b, and the nitrate nitrogen concentration measuring device 2c, and transmitting it to the control device 7. In the control device 7, the total nitrogen concentration and the ammonia nitrogen concentration in the effluent water are expressed as {(total nitrogen concentration measurement value−ammonia nitrogen concentration measurement value−nitrate nitrogen amount measurement value−β) / ammonia nitrogen concentration measurement value. } Is substituted into the expression, and control is performed so that the target value of the value is 0.57 / 0.43.

なお、前記式に用いたβとは、有機性原水の性状によって事前に決定される有機体窒素量であって、事前にサンプリングした試料について測定した値を制御装置に入力した定数である。なお、β値は、有機性原水の性状によって変動するため、有機性原水の性状が変動する場合には、それに合わせてβ値の設定を変更することにより、制御装置7の制御精度向上を図ることができる。   Note that β used in the above equation is the amount of organic nitrogen determined in advance according to the properties of the organic raw water, and is a constant obtained by inputting a value measured for a sample sampled in advance to the control device. Since the β value varies depending on the properties of the organic raw water, when the property of the organic raw water varies, the control accuracy of the control device 7 is improved by changing the setting of the β value accordingly. be able to.

第2の実施形態では、流出水の測定項目を、全窒素濃度、アンモニア性窒素濃度、硝酸性窒素濃度としたことにより、僅かな流出水中の硝酸性窒素濃度変動にも対応した酸素供給量の調整が可能となり制御精度の向上が図られる。   In the second embodiment, the measurement item of the effluent water is the total nitrogen concentration, ammonia nitrogen concentration, and nitrate nitrogen concentration, so that the oxygen supply amount corresponding to slight nitrate nitrogen concentration fluctuations in the effluent water can be obtained. Adjustment is possible and control accuracy is improved.

(実施例)
図1に示す本発明の実施に好適な装置を使用した脱窒反応を行い、亜硝化槽1および嫌気性アンモニア酸化槽3における槽内水の全窒素濃度、有機体窒素量、アンモニア性窒素濃度、亜硝酸性窒素量を各々測定した結果を下記の表1に示す。
(Example)
The denitrification reaction using the apparatus suitable for carrying out the present invention shown in FIG. 1 is performed, and the total nitrogen concentration, organic nitrogen content, and ammonia nitrogen concentration in the nitrification tank 1 and the anaerobic ammonia oxidation tank 3 The results of measuring the amounts of nitrite nitrogen are shown in Table 1 below.

Figure 0005006849
Figure 0005006849

(比較例)
図2に示した従来法の実施に用いられた装置を使用して、前記実施例と同じ原水の脱窒反応を行った結果を下記の表2に示す。
(Comparative example)
Table 2 below shows the results of performing the same denitrification reaction of the raw water as in the previous example using the apparatus used in the conventional method shown in FIG.

Figure 0005006849
Figure 0005006849

(表2)に示す従来技術では、嫌気性アンモニア酸化反応槽のアンモニア性窒素濃度が93mg/Lであるのに対して、(表1)に示す本発明の嫌気性アンモニア酸化反応槽のアンモニア性窒素濃度は6.4mg/Lと著しく低減し、本発明により処理水にアンモニア性窒素が残留してしまう問題が解消された。また、本発明によると脱窒率(92%)も従来技術(84%)に比べ向上している。   In the prior art shown in (Table 2), the ammoniacal nitrogen concentration in the anaerobic ammonia oxidation reaction tank is 93 mg / L, whereas the ammoniacality in the anaerobic ammonia oxidation reaction tank of the present invention shown in (Table 1). The nitrogen concentration was significantly reduced to 6.4 mg / L, and the problem that ammonia nitrogen remained in the treated water was solved by the present invention. In addition, according to the present invention, the denitrification rate (92%) is also improved compared to the prior art (84%).

本発明を実施するのに好適な装置の一例を示す構成図である。It is a block diagram which shows an example of an apparatus suitable for implementing this invention. 第2の実施形態に好適な装置の一例を示す構成図である。It is a block diagram which shows an example of an apparatus suitable for 2nd Embodiment. 従来法の実施に用いられた装置の一例を示す構成図である。It is a block diagram which shows an example of the apparatus used for implementation of the conventional method.

符号の説明Explanation of symbols

1 亜硝化槽
2a 全窒素濃度測定器
2b アンモニア性窒素(NH4 +-N)濃度測定器
2c 硝酸性窒素(NO3 -N)濃度測定器
3 嫌気性アンモニア酸化槽
4 亜硝化槽流出水
5 担体
6 曝気装置
7 制御装置

1 Nitrification tank 2a Total nitrogen concentration meter 2b Ammonia nitrogen (NH 4 + -N) concentration meter 2c Nitrate nitrogen (NO 3 -- N) concentration meter 3 Anaerobic ammonia oxidation tank 4 Nitrification tank effluent
5 Carrier
6 Aeration equipment
7 Control unit

Claims (8)

アンモニア性窒素を含有する有機性原水を亜硝化槽に導入し、アンモニア性窒素の一部をアンモニア酸化細菌の作用により亜硝酸性窒素に酸化する亜硝酸型硝化工程と、
前記亜硝化槽からの流出水を嫌気性アンモニア酸化反応槽に導入し、前記亜硝酸性窒素を電子受容体とし、残存したアンモニア性窒素を電子供与体として独立栄養微生物の作用により窒素ガスを発生させる嫌気性アンモニア酸化反応工程とからなる有機性原水の脱窒方法において、
前記亜硝化槽からの流出水中における亜硝酸性窒素とアンモニア性窒素の濃度比を、
前記亜硝化槽からの流出水を自動サンプリングして、全窒素濃度測定器及びアンモニア性窒素濃度測定器により測定した全窒素濃度及びアンモニア性窒素濃度と、有機性原水の性状によって事前に決定される有機体窒素量と硝酸性窒素量の和(α)または有機体窒素濃度(β)とに基づいて算出し、
該濃度比が目標値となるように亜硝酸型硝化工程を制御することを特徴とする亜硝酸型硝化の制御による有機性原水の脱窒方法。
A nitrite-type nitrification step in which organic raw water containing ammonia nitrogen is introduced into a nitrification tank, and a part of the ammonia nitrogen is oxidized to nitrite nitrogen by the action of ammonia oxidizing bacteria,
The effluent from the nitrification tank is introduced into an anaerobic ammonia oxidation reaction tank, and nitrogen gas is generated by the action of autotrophic microorganisms using the nitrite nitrogen as an electron acceptor and the remaining ammonia nitrogen as an electron donor. In the method of denitrifying organic raw water comprising an anaerobic ammonia oxidation reaction step,
The concentration ratio of nitrite nitrogen and ammoniacal nitrogen in the effluent from the nitrification tank,
The effluent water from the nitrification tank is automatically sampled and determined in advance according to the total nitrogen concentration and ammonia nitrogen concentration measured by the total nitrogen concentration measuring device and the ammonia nitrogen concentration measuring device, and the properties of the organic raw water. Calculated based on the sum of organic nitrogen and nitrate nitrogen (α) or organic nitrogen concentration (β) ,
A method for denitrifying organic raw water by controlling nitrite type nitrification, wherein the nitrite type nitrification step is controlled so that the concentration ratio becomes a target value.
亜硝酸性窒素とアンモニア性窒素の濃度比を、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−α)/アンモニア性窒素濃度測定値}の式により算出し、
αが、有機性原水の性状によって事前に決定される有機体窒素量と硝酸性窒素量の和であることを特徴とする請求項1記載の亜硝酸型硝化の制御による有機性原水の脱窒方法。
The concentration ratio of nitrite nitrogen and ammonia nitrogen is calculated by the formula {(total nitrogen concentration measurement value−ammonia nitrogen concentration measurement value−α) / ammonia nitrogen concentration measurement value},
2. The denitrification of organic raw water by controlling nitrite type nitrification according to claim 1, wherein α is the sum of the amount of organic nitrogen and the amount of nitrate nitrogen determined in advance according to the properties of the organic raw water Method.
更に、自動サンプリングした流出水中の硝酸性窒素濃度を、硝酸性窒素濃度測定器により測定し、亜硝酸性窒素とアンモニア性窒素の濃度比を、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−硝酸性窒素濃度測定値−β)/アンモニア性窒素濃度測定値}の式により算出し、
βが、有機性原水の性状によって事前に決定される有機体窒素濃度であることを特徴とする請求項1記載の亜硝酸型硝化の制御による有機性原水の脱窒方法。
Furthermore, the nitrate nitrogen concentration in the automatically sampled effluent is measured with a nitrate nitrogen concentration meter, and the concentration ratio of nitrite nitrogen and ammonia nitrogen is determined by {(total nitrogen concentration measurement value−ammonia nitrogen concentration measurement). Value−nitrate nitrogen concentration measurement value−β) / ammonia nitrogen concentration measurement value}
2. The method of denitrifying organic raw water by controlling nitrite type nitrification according to claim 1, wherein β is an organic nitrogen concentration determined in advance according to the properties of the organic raw water.
アンモニア性窒素を含有する有機性原水を亜硝化槽に導入し、アンモニア性窒素の一部をアンモニア酸化細菌の作用により亜硝酸性窒素に酸化する亜硝酸型硝化工程と、A nitrite-type nitrification step in which organic raw water containing ammonia nitrogen is introduced into a nitrification tank, and a part of the ammonia nitrogen is oxidized to nitrite nitrogen by the action of ammonia oxidizing bacteria,
前記亜硝化槽からの流出水を嫌気性アンモニア酸化反応槽に導入し、前記亜硝酸性窒素を電子受容体とし、残存したアンモニア性窒素を電子供与体として独立栄養微生物の作用により窒素ガスを発生させる嫌気性アンモニア酸化反応工程とからなる有機性原水の脱窒方法において、The effluent from the nitrification tank is introduced into an anaerobic ammonia oxidation reaction tank, and nitrogen gas is generated by the action of autotrophic microorganisms using the nitrite nitrogen as an electron acceptor and the remaining ammonia nitrogen as an electron donor. In the method of denitrifying organic raw water comprising an anaerobic ammonia oxidation reaction step,
前記亜硝化槽からの流出水中の全窒素濃度及びアンモニア性窒素濃度を測定し、これらの測定値に基づいて算出した亜硝酸性窒素と、前記アンモニア性窒素の濃度比が目標値となるように亜硝酸型硝化工程を制御し、The total nitrogen concentration and ammonia nitrogen concentration in the effluent water from the nitrification tank are measured, and the concentration ratio of nitrite nitrogen calculated based on these measured values and the ammonia nitrogen concentration is set to a target value. Control the nitrite type nitrification process,
該濃度比は、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−α)/アンモニア性窒素濃度測定値}の式により算出され、The concentration ratio is calculated by the equation {(total nitrogen concentration measurement value−ammonia nitrogen concentration measurement value−α) / ammonia nitrogen concentration measurement value}.
αが、有機性原水の性状によって事前に決定される有機体窒素量と硝酸性窒素量の和であることを特徴とするα is the sum of the amount of organic nitrogen and the amount of nitrate nitrogen determined in advance according to the properties of the organic raw water
亜硝酸型硝化の制御による有機性原水の脱窒方法。Denitrification method of organic raw water by controlling nitrite type nitrification.
アンモニア性窒素を含有する有機性原水を亜硝化槽に導入し、アンモニア性窒素の一部をアンモニア酸化細菌の作用により亜硝酸性窒素に酸化する亜硝酸型硝化工程と、A nitrite-type nitrification step in which organic raw water containing ammonia nitrogen is introduced into a nitrification tank, and a part of the ammonia nitrogen is oxidized to nitrite nitrogen by the action of ammonia oxidizing bacteria,
前記亜硝化槽からの流出水を嫌気性アンモニア酸化反応槽に導入し、前記亜硝酸性窒素を電子受容体とし、残存したアンモニア性窒素を電子供与体として独立栄養微生物の作用により窒素ガスを発生させる嫌気性アンモニア酸化反応工程とからなる有機性原水の脱窒方法において、The effluent from the nitrification tank is introduced into an anaerobic ammonia oxidation reaction tank, and nitrogen gas is generated by the action of autotrophic microorganisms using the nitrite nitrogen as an electron acceptor and the remaining ammonia nitrogen as an electron donor. In the method of denitrifying organic raw water comprising an anaerobic ammonia oxidation reaction step,
前記亜硝化槽からの流出水中の全窒素濃度及びアンモニア性窒素濃度と硝酸性窒素濃度を測定し、これらの測定値に基づいて算出した亜硝酸性窒素と、前記アンモニア性窒素の濃度比が目標値となるように亜硝酸型硝化工程を制御し、The total nitrogen concentration, ammonia nitrogen concentration and nitrate nitrogen concentration in the effluent water from the nitrification tank are measured, and the concentration ratio of nitrite nitrogen calculated based on these measured values and the ammonia nitrogen concentration is the target. Control the nitrite type nitrification process so that
該濃度比は、{(全窒素濃度測定値−アンモニア性窒素濃度測定値−硝酸性窒素濃度測定値−β)/アンモニア性窒素濃度測定値}の式により算出され、The concentration ratio is calculated by the formula {(total nitrogen concentration measurement value−ammonia nitrogen concentration measurement value−nitrate nitrogen concentration measurement value−β) / ammonia nitrogen concentration measurement value}.
βが、有機性原水の性状によって事前に決定される有機体窒素濃度であることを特徴とする亜硝酸型硝化の制御による有機性原水の脱窒方法。A method of denitrifying organic raw water by controlling nitrite type nitrification, wherein β is an organic nitrogen concentration determined in advance according to the properties of the organic raw water.
亜硝酸性窒素とアンモニア性窒素の濃度比の目標値が、亜硝酸性窒素濃度:アンモニア性窒素濃度=0.57:0.43であることを特徴とする請求項1、4、5の何れかに記載の亜硝酸型硝化の制御による有機性原水の脱窒方法。 Target value of the concentration ratio of nitrite nitrogen and ammonia nitrogen, nitrite nitrogen concentration ammonium nitrogen concentration = 0.57: any claim 1,4,5, characterized in that 0.43 denitrification method of organic raw water by the control of the nitrite type nitrification according to any. 亜硝酸型硝化工程の制御を、亜硝化槽の曝気量の制御によって行なうことを特徴とする請求項1、4、5の何れかに記載の亜硝酸型硝化の制御による有機性原水の脱窒方法。 6. The denitrification of organic raw water by controlling nitrite type nitrification according to claim 1, wherein the nitrite type nitrification step is controlled by controlling the amount of aeration in the nitrite tank. Method. 独立栄養微生物がアナモックス菌である請求項1、4、5の何れかに記載の亜硝酸型硝化の制御による有機性原水の脱窒方法。 The method for denitrifying organic raw water by controlling nitrite type nitrification according to any one of claims 1, 4, and 5 , wherein the autotrophic microorganism is anammox.
JP2008179674A 2008-07-10 2008-07-10 Denitrification method of organic raw water by controlling nitrite type nitrification Active JP5006849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179674A JP5006849B2 (en) 2008-07-10 2008-07-10 Denitrification method of organic raw water by controlling nitrite type nitrification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179674A JP5006849B2 (en) 2008-07-10 2008-07-10 Denitrification method of organic raw water by controlling nitrite type nitrification

Publications (2)

Publication Number Publication Date
JP2010017639A JP2010017639A (en) 2010-01-28
JP5006849B2 true JP5006849B2 (en) 2012-08-22

Family

ID=41703043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179674A Active JP5006849B2 (en) 2008-07-10 2008-07-10 Denitrification method of organic raw water by controlling nitrite type nitrification

Country Status (1)

Country Link
JP (1) JP5006849B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112945A (en) * 2013-02-25 2013-05-22 北京工业大学 SBR (Sequencing batch reactor) nitrosation quick start method
JP2015029981A (en) * 2013-08-07 2015-02-16 新日鐵住金株式会社 Nitrite-type nitrification method of ammoniac nitrogen-containing effluent
JP2016077954A (en) * 2014-10-15 2016-05-16 新日鐵住金株式会社 Biological nitrogen removal method
CN106045031A (en) * 2016-07-10 2016-10-26 彭永臻 Device and method for synchronous advanced treatment of secondary effluent water and urban sewage of sidestream of urban sewage treatment plant
KR101840548B1 (en) * 2016-05-31 2018-05-08 주식회사 일신에코솔루션 Wastewater treatment system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5424789B2 (en) * 2008-09-19 2014-02-26 メタウォーター株式会社 Nitrous oxide emission control method for nitrogen-containing wastewater treatment
JP6046373B2 (en) * 2012-04-24 2016-12-14 パナソニック株式会社 Nitrogen-containing wastewater treatment equipment
EP4279459A3 (en) * 2012-09-13 2023-12-13 D.C. Water & Sewer Authority Method and apparatus for nitrogen removal in wastewater treatment
CN103803711A (en) * 2012-11-14 2014-05-21 上海纳米技术及应用国家工程研究中心有限公司 Method for treating ammonia-nitrogen wastewater by using immobilized microorganism
CN103482762B (en) * 2013-08-27 2015-07-01 西安建筑科技大学 Sulfide wastewater anaerobic desulfurization method capable of enhancing conversion rate of simple substance sulfur
CN103819001A (en) * 2014-02-28 2014-05-28 天津机科环保科技有限公司 Anaerobic ammonia oxidation device used after shortcut nitrification of high-ammonia-nitrogen wastewater
CN105330023B (en) * 2015-12-01 2017-10-20 杭州师范大学 A kind of integrated gravity flow biological denitrificaion sulphur removal reactor
JP7465545B2 (en) 2019-10-25 2024-04-11 国立大学法人広島大学 Nitrite bacteria immobilized polymer gel, method for producing the nitrite bacteria immobilized polymer gel, and water treatment method
CN113248016B (en) * 2021-05-30 2022-05-20 福建省环境科学研究院(福建省排污权储备和技术中心) Method for strengthening one-stage completely autotrophic nitrogen removal process by embedded cathode dynamic membrane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292658B2 (en) * 2001-07-04 2013-09-18 栗田工業株式会社 A method for nitrification of ammonia nitrogen-containing water
JP4453397B2 (en) * 2004-03-01 2010-04-21 栗田工業株式会社 Biological nitrogen removal method
JP2007117902A (en) * 2005-10-28 2007-05-17 Japan Organo Co Ltd Method and apparatus for treating ammonium ion-containing wastewater
JP4644107B2 (en) * 2005-12-05 2011-03-02 株式会社タクマ Method for treating wastewater containing ammonia

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112945A (en) * 2013-02-25 2013-05-22 北京工业大学 SBR (Sequencing batch reactor) nitrosation quick start method
JP2015029981A (en) * 2013-08-07 2015-02-16 新日鐵住金株式会社 Nitrite-type nitrification method of ammoniac nitrogen-containing effluent
JP2016077954A (en) * 2014-10-15 2016-05-16 新日鐵住金株式会社 Biological nitrogen removal method
KR101840548B1 (en) * 2016-05-31 2018-05-08 주식회사 일신에코솔루션 Wastewater treatment system
CN106045031A (en) * 2016-07-10 2016-10-26 彭永臻 Device and method for synchronous advanced treatment of secondary effluent water and urban sewage of sidestream of urban sewage treatment plant
CN106045031B (en) * 2016-07-10 2019-03-22 彭永臻 A kind of municipal sewage plant's effluent synchronizes the apparatus and method of advanced treating secondary water outlet and municipal sewage

Also Published As

Publication number Publication date
JP2010017639A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5006849B2 (en) Denitrification method of organic raw water by controlling nitrite type nitrification
Massara et al. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water
JP5347221B2 (en) Nitrogen-containing liquid processing method and apparatus
JP4951826B2 (en) Biological nitrogen removal method
Han et al. Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification
TWI402221B (en) Nitration of ammonia - containing nitrogen water and its treatment
JP5006845B2 (en) Method for suppressing generation of nitrous oxide
JP5100091B2 (en) Water treatment method
JP5424789B2 (en) Nitrous oxide emission control method for nitrogen-containing wastewater treatment
JP4882175B2 (en) Nitrification method
JP4453397B2 (en) Biological nitrogen removal method
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP5292658B2 (en) A method for nitrification of ammonia nitrogen-containing water
JP4302341B2 (en) Biological nitrogen removal method and apparatus
Kanders et al. Full-scale comparison of N2O emissions from SBR N/DN operation versus one-stage deammonification MBBR treating reject water–and optimization with pH set-point
JP2014104416A (en) Water treatment apparatus and water treatment method
Weissenbacher et al. NOx monitoring of a simultaneous nitrifying–denitrifying (SND) activated sludge plant at different oxidation reduction potentials
JP5148642B2 (en) Wastewater nitrogen treatment method and equipment
US10947141B2 (en) Systems and methods for controlling denitrification in a denitrifying biological reactor
JP4867099B2 (en) Biological denitrification method
WO2019244964A1 (en) Water treatment method and water treatment device
JP7050204B1 (en) Wastewater treatment equipment and wastewater treatment method for wastewater containing high-concentration organic matter
JP2003053382A (en) Nitrification-denitrification treatment method
JP7251526B2 (en) Method for treating coke oven wastewater
JPH11253990A (en) Treatment of nitrogen-containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5006849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250