JP7251526B2 - Method for treating coke oven wastewater - Google Patents

Method for treating coke oven wastewater Download PDF

Info

Publication number
JP7251526B2
JP7251526B2 JP2020117357A JP2020117357A JP7251526B2 JP 7251526 B2 JP7251526 B2 JP 7251526B2 JP 2020117357 A JP2020117357 A JP 2020117357A JP 2020117357 A JP2020117357 A JP 2020117357A JP 7251526 B2 JP7251526 B2 JP 7251526B2
Authority
JP
Japan
Prior art keywords
tank
coke oven
nitrification
ammonia
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020117357A
Other languages
Japanese (ja)
Other versions
JP2022014802A (en
Inventor
東洋司 山口
亮太 村井
悟郎 奥山
敦晴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020117357A priority Critical patent/JP7251526B2/en
Publication of JP2022014802A publication Critical patent/JP2022014802A/en
Application granted granted Critical
Publication of JP7251526B2 publication Critical patent/JP7251526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、コークス炉での石炭乾留時に発生するコークス炉排水の処理方法に関し、特に、コークス炉排水に含まれるアンモニア性窒素の生物脱窒処理に関するものである。 TECHNICAL FIELD The present invention relates to a method for treating coke oven wastewater generated during carbonization of coal in a coke oven, and more particularly to biological denitrification treatment of ammoniacal nitrogen contained in coke oven wastewater.

コークス炉での石炭乾留時に発生するコークス炉排水(安水)は、フェノールを主成分とする多量の化学的酸素要求量(Chemical Oxygen Demand、COD)成分およびアンモニアを含有しており、系外に放流する前に適切な処理が必要となる。 Coke oven wastewater (ammonia water) generated during coal carbonization in coke ovens contains a large amount of chemical oxygen demand (COD) components, which are mainly composed of phenol, and ammonia. Appropriate treatment is required before release.

日本では主として、アンモニアストリッピング処理を行って安水のアンモニア濃度を低減したのち、生物処理を行ってCOD成分を分解している。この生物処理は、一般的に曝気等を行って酸素を排水に溶解させ、生物呼吸を利用してCOD成分を除去するものである。このため、生物によるアンモニアから亜硝酸、硝酸への硝化、および無酸素槽を設けることによる脱窒、すなわち窒素成分の除去についても、COD成分の除去とともに期待されている。 In Japan, ammonia stripping treatment is mainly performed to reduce the concentration of ammonia in ammonia water, and then biological treatment is performed to decompose COD components. In this biological treatment, aeration or the like is generally performed to dissolve oxygen in the wastewater, and the COD components are removed using biological respiration. Therefore, nitrification from ammonia to nitrite and nitric acid by living organisms, and denitrification by providing an oxygen-free tank, ie, removal of nitrogen components, are expected together with removal of COD components.

例えば、特許文献1には、アンモニアストリッピング処理を行ったのち、脱窒(無酸素)-硝化(好気)の硝化液循環型生物脱窒処理を組み合わせた処理が記載されている。また、特許文献2には、アンモニアストリッピング処理、脱窒(無酸素)処理、硝化(好気)処理において、ストリッピング処理後のアンモニア濃度および反応槽のpHを規定して、高濃度のアンモニア性窒素を含む排水から窒素を効率的に安定して除去する方法が記載されている。 For example, Patent Document 1 describes a treatment in which ammonia stripping treatment is followed by a combination of denitrification (oxygen-free)-nitrification (aerobic) nitrifying solution circulating biological denitrification treatment. In addition, in Patent Document 2, in ammonia stripping treatment, denitrification (anoxic) treatment, and nitrification (aerobic) treatment, the ammonia concentration after stripping treatment and the pH of the reaction tank are specified, and high-concentration ammonia A method for the efficient and stable removal of nitrogen from effluents containing toxic nitrogen is described.

また、特許文献3では、同様の処理法で、ストリッピング後のCOD/N比を規定して、CODとアンモニア性窒素を含む廃水から窒素を効率的に安定して除去する方法が記載されている。また、特許文献4には、原水を海水で希釈することにより、窒素処理後の汚泥の沈降性が改善することが記載されている。 In addition, Patent Document 3 describes a method for efficiently and stably removing nitrogen from wastewater containing COD and ammonia nitrogen by specifying the COD/N ratio after stripping in a similar treatment method. there is Further, Patent Document 4 describes that diluting raw water with seawater improves the sedimentation properties of sludge after nitrogen treatment.

元来、生物学的窒素処理は、下水処理などでは一般的な方法であり、多くの実施設建設、稼働が行われている。しかしながら、安水の処理においては、安水の強い毒性や、難分解性のCOD成分のため、広く普及するに至っていない。 Originally, biological nitrogen treatment is a common method in sewage treatment and the like, and many actual facilities are being constructed and operated. However, the treatment of ammonia water has not been widely used because of its strong toxicity and persistent COD components.

例えば、非特許文献1には、アンモニア酸化細菌Nitrosomonasと亜硝酸酸化細菌Nitrobacterの硝化速度と処理槽pHとの関係について記載されている。そして、槽内アンモニア濃度が高い状態でpHが高くなる(8.3~)と、遊離アンモニアが増加し、硝化菌に対してかなり強い阻害が認められている。また、非特許文献2には、原水中シアン濃度と硝化率との関係を整理し、シアン濃度の上昇とともに硝化率が低下することが報告されている。 For example, Non-Patent Document 1 describes the relationship between the nitrification rate of ammonia-oxidizing bacteria Nitrosomonas and nitrite-oxidizing bacteria Nitrobacter and the pH of the treatment tank. When the ammonia concentration in the tank is high and the pH increases (from 8.3), the amount of free ammonia increases and the nitrifying bacteria are significantly inhibited. In addition, Non-Patent Document 2 summarizes the relationship between the cyanide concentration and the nitrification rate in the raw water, and reports that the nitrification rate decreases as the cyanide concentration increases.

また、特許文献5には、処理が良好に行われる条件として、アンモニア性窒素と共に、シアン濃度、硝化槽への全窒素負荷が規定されている。非特許文献3には、フェノール、チオ硫酸の分解は速い一方、チオシアンの分解は遅く、負荷や処理条件の変動に敏感で主要な管理項目である旨記載されている。 In addition, Patent Document 5 defines the concentration of cyanide and the total nitrogen load to the nitrification tank as well as ammonia nitrogen as conditions for good treatment. Non-Patent Document 3 describes that while phenol and thiosulfate decompose quickly, thiocyanate decomposes slowly and is sensitive to fluctuations in load and treatment conditions, which is a major control item.

チオ硫酸、チオシアン等の硫黄化合物は、脱窒の際の水素供与体として利用することができる。硫黄化合物の処理と同時に、メタノールなど外部からの水素供与体の添加も削減することができるため、硫黄化合物の水素供与体としての利用に関する研究も実施されている。例えば、特許文献6、7には、チオシアンを脱窒の際の水素供与体として用いる方法が記載されている。また、特許文献8、9には、固定床型バイオリアクターに硫黄酸化細菌を付着させ、亜硝酸、硝酸を脱窒する際の水素供与体として硫黄酸化物を利用することが記載されている。 Sulfur compounds such as thiosulfuric acid and thiocyanate can be used as hydrogen donors during denitrification. Since the addition of an external hydrogen donor such as methanol can be reduced at the same time as the treatment of sulfur compounds, research is also being conducted on the use of sulfur compounds as hydrogen donors. For example, Patent Documents 6 and 7 describe methods of using thiocyanate as a hydrogen donor during denitrification. Further, Patent Documents 8 and 9 describe that sulfur-oxidizing bacteria are attached to a fixed-bed bioreactor, and sulfur oxides are used as hydrogen donors in denitrification of nitrous acid and nitric acid.

安水の生物学的窒素処理の最大の問題点は、硝化が亜硝酸で停止することにある。亜硝酸が従属栄養細菌に対して毒性が強く、処理に阻害的に働くことは広く知られている(例えば、特許文献7参照)。実際の処理では、酸素供給が過剰になると硝化が生じ、アンモニアが亜硝酸に酸化されるが、安水の毒性で硝酸までは酸化されないため、亜硝酸が蓄積してチオシアンの処理が悪化することが経験的に報告されている。このため、特許文献10に記載されているように、曝気槽における曝気(酸素供給)を調整し、COD分解は生じるがアンモニアの酸化は生じないような酸化還元電位に制御することによって、水質を維持しているのが多くの現状となっている。 The biggest problem with biological nitrogen treatment of ammonia is that nitrification stops at nitrite. It is widely known that nitrous acid is highly toxic to heterotrophic bacteria and acts as an inhibitor to treatment (see, for example, Patent Document 7). In actual treatment, when oxygen supply becomes excessive, nitrification occurs and ammonia is oxidized to nitrite, but nitric acid is not oxidized due to the toxicity of ammonia water, so nitrite accumulates and the treatment of thiocyanate deteriorates. has been empirically reported. For this reason, as described in Patent Document 10, water quality is improved by adjusting the aeration (oxygen supply) in the aeration tank and controlling the oxidation-reduction potential so that COD decomposition occurs but ammonia oxidation does not occur. Much of the status quo remains.

また、亜硝酸は、CODとしても検出されるため、直接的に水質悪化の原因となっている。非特許文献4によれば、亜硝酸の理論CODは1.14g/gであり、また実際にCODを測定すると、その96.5%がCODとして検出されると報告している。一方、アンモニアはほとんど酸化されないため、CODとして検出されない。安定な形態である硝酸も、当然のことながらCODとして検出されない。 In addition, since nitrous acid is also detected as COD, it directly causes deterioration of water quality. Non-Patent Document 4 reports that the theoretical COD of nitrous acid is 1.14 g/g, and that 96.5% of the actual COD is detected as COD. On the other hand, since ammonia is hardly oxidized, it is not detected as COD. Nitric acid, which is in a stable form, is naturally not detected as COD.

安水の硝化反応にてアンモニアの酸化が亜硝酸で停止する理由として、いくつかの理由が挙げられているが、1つにはチオ硫酸による阻害がある。非特許文献5には、人工安水を使用した実験によって、300mg/Lのチオ硫酸が阻害的に働き、チオ硫酸添加時に亜硝酸が蓄積することを確認している。 There are several reasons why the oxidation of ammonia is stopped by nitrous acid in the nitrification reaction of ammonia, one of which is inhibition by thiosulfuric acid. Non-Patent Document 5 confirms that 300 mg/L of thiosulfuric acid acts as an inhibitor in an experiment using artificial ammonia, and that nitrous acid accumulates when thiosulfuric acid is added.

特許文献11では、硫黄化合物を添加することにより積極的に亜硝酸で硝化を停止させようとしており、また非特許文献6においても、亜硝酸で反応を停止させることについて、汚泥負荷を高くできること、アンモニア酸化細菌Nitrosomonasの方が亜硝酸酸化細菌Nitrobacterよりも耐性が高いこと、亜硝酸で停止した場合に酸素消費が少なくエネルギー的に有利であること、脱窒に必要な水素供与体が少ないこと等の利点が述べられている。しかしながら、亜硝酸自体の毒性が高いことから、原水の性状や運転条件に制約が多く、実用化に至っていない。 In Patent Document 11, nitrous acid is actively used to stop nitrification by adding a sulfur compound. The ammonia-oxidizing bacterium Nitrosomonas is more resistant than the nitrite-oxidizing bacterium Nitrobacter, it consumes less oxygen when stopped by nitrous acid, which is advantageous in terms of energy, and the number of hydrogen donors required for denitrification is small. advantages are stated. However, since nitrous acid itself is highly toxic, there are many restrictions on the properties of raw water and operating conditions, and it has not been put to practical use.

非特許文献7、8には、前段で毒性物質含むCOD成分を粗除去し、後段で硝化、脱窒を行わせるプロセスも提案されている。しかしながら、この方式では槽の多段化が避けられず、建設コストや、設置面積の点から適用が制限される。また前段でCOD成分をほとんど除去してしまうため、後段の脱窒のための水素供与体はほぼ全量を外部からの添加に頼らざるを得ず、運転コストも上昇する。また高窒素除去率を狙って後段を硝化-脱窒の順番とすると、最後の脱窒行程にて残留した水素供与体のCOD成分を除去するため、特許文献12にあるような更なるCOD除去工程の追加が必要となり、これもコストを圧迫する。 Non-Patent Documents 7 and 8 also propose a process in which COD components including toxic substances are roughly removed in the former stage, and nitrification and denitrification are carried out in the latter stage. However, in this method, multistage tanks cannot be avoided, and application is limited in terms of construction cost and installation area. Moreover, since most of the COD components are removed in the former stage, almost all of the hydrogen donor for denitrification in the latter stage must be added from the outside, which increases the operating cost. In addition, if the latter stage is performed in the order of nitrification and denitrification aiming at a high nitrogen removal rate, the COD component of the hydrogen donor remaining in the final denitrification process is removed, so further COD removal as described in Patent Document 12 An additional process is required, which also puts pressure on the cost.

特開平8-141552号公報JP-A-8-141552 特開2001-212592号公報Japanese Patent Application Laid-Open No. 2001-212592 特開2003-53383号公報JP-A-2003-53383 特開平9-290292号公報JP-A-9-290292 特開平9-290296号公報JP-A-9-290296 特開平9-290290号公報JP-A-9-290290 特開2001-79593号公報JP-A-2001-79593 特開平11-299481号公報JP-A-11-299481 特開2015-136677号公報JP 2015-136677 A 特開昭54-152351号公報JP-A-54-152351 特開2005-211832号公報JP 2005-211832 A

生物学的脱窒素法の歴史的考察 遠矢泰典 用水と廃水 Vol.13 No.11 10-22 1971.Historical Consideration of Biological Denitrification Method Yasunori Toya, Water and Wastewater Vol.13 No.11 10-22 1971. 生物学的硝化脱窒法のコークス炉排水への適用 十亀ら 鉄と鋼 Vol.82 No.5 103-108 1996.Application of biological nitrification and denitrification to coke oven effluent Togame et al. Tetsu to Hagane Vol.82 No.5 103-108 1996. ガス液処理活性汚泥法について 佐藤ら 水処理技術 Vol.19 No.7 65-71 1978.Gas-Liquid Treatment Activated Sludge Process Sato et al. Water Treatment Technology Vol.19 No.7 65-71 1978. し尿処理水等において無機性窒素がCODMn値に及ぼす影響 林伸幸 廃棄物学会誌 Vol.4 No.1 84-89 1993.Effect of Inorganic Nitrogen on CODMn Value in Treated Human Waste Water, etc. Nobuyuki Hayashi Journal of Waste Management Society Vol.4 No.1 84-89 1993. Behavior of nitrite oxidizers in the nitrification/denitrification process for the treatment of simulated coke-oven wastewater Takasaki, Y., et.al. J. Water Environ. Technol. Vol.5 No.1 29-36 2007.Behavior of nitrite oxidizers in the nitrification/denitrification process for the treatment of simulated coke-oven wastewater Takasaki, Y., et.al. J. Water Environ. Technol. Vol.5 No.1 29-36 2007. ガス液の窒素除去に関する研究 佐藤ら 水処理技術 Vol.21 No.3 41-50 1980.Study on Nitrogen Removal from Gas Liquid Sato et al. Water Treatment Technology Vol.21 No.3 41-50 1980. Biological nitrogen removal from coke plant wastewater with external carbon addition. Lee, M. W. et.al. Water Environ. Res. Vol.70 No.5 1090-1095 1998.Biological nitrogen removal from coke plant wastewater with external carbon addition. Lee, M. W. et.al. Water Environ. Res. Vol.70 No.5 1090-1095 1998. Control of External Carbon Addition in Biological Nitrogen Removal Process for the Treatment of Coke-Plant Wastewater. Lee, M. W. et.al. Water Environ. Res. Vol.73 No.4 415-425 2001.Control of External Carbon Addition in Biological Nitrogen Removal Process for the Treatment of Coke-Plant Wastewater. Lee, M. W. et.al. Water Environ. Res. Vol.73 No.4 415-425 2001.

上述のように、安水の生物学的脱窒素法は、広く普及するに至っていない。その主要な理由は、安水の毒性により、アンモニアの硝化が亜硝酸で停止することにより、直接、間接に処理水質の悪化を招くことによる。 As mentioned above, the biological denitrification of ammonia water has not become widespread. The main reason is that ammonia nitrification stops with nitrous acid due to the toxicity of ammonia water, which directly or indirectly deteriorates the quality of treated water.

本発明は、上記の事情に鑑みて開発されたものであり、コークス炉排水に対して簡便な設備構成で生物学的に脱窒素処理を施すことができる方法を提供することを目的とする。 The present invention has been developed in view of the above circumstances, and an object of the present invention is to provide a method for biologically denitrifying coke oven wastewater with a simple equipment configuration.

さて発明者らは、工場から実際に排出される安水を用いて、効率的な生物学的窒素処理を実施できる新規な技術を探索すべく、種々検討を重ねた。具体的には、安水処理設備に隣接する形でベンチプラントを作製し、長期間に渡って安水を連続的に処理し、種々の条件にて安水の処理挙動、特に窒素挙動について調査を行った。その結果、安水中のアンモニアを硝酸まで硝化させることにより、安定して水質を得られる生物学的窒素処理方法に想到した。 The inventors have made various studies to search for a novel technique that can effectively perform biological nitrogen treatment using the ammonia water actually discharged from the factory. Specifically, we constructed a bench plant adjacent to the ammonia water treatment facility, continuously treated the ammonia water over a long period of time, and investigated the treatment behavior of the ammonia water, especially nitrogen behavior, under various conditions. did As a result, by nitrifying the ammonia in the ammonia to nitric acid, the inventors came up with a biological nitrogen treatment method that can stably obtain water quality.

本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
[1]アンモニア性窒素を含むコークス炉排水を無酸素雰囲気である脱窒槽に導入し、前記脱窒槽を経た処理液を好気性雰囲気である硝化槽に導入して前記処理液に含まれるアンモニア性窒素を硝酸態窒素に酸化処理した後、得られた硝化液の一部を抜き出して固液分離して処理水を得ながら沈殿した汚泥を前記脱窒槽に返送する一方、前記硝化液の残りを前記脱窒槽に戻して、前記硝化液に含まれる硝酸態窒素を脱窒して、前記コークス炉排水を前記脱窒槽と前記硝化槽との間を循環させ、前記コークス炉排水に含まれるアンモニア性窒素を処理するコークス炉排水を処理する方法において、
前記脱窒槽に導入するコークス炉排水を予め所定の水質に調整しておくとともに、前記硝化槽において十分な馴養期間をとることにより、前記硝化槽において硝酸発生型の硝化反応を行わせることを特徴とするコークス炉排水の処理方法。
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[1] Coke oven effluent containing ammonia nitrogen is introduced into a denitrification tank having an oxygen-free atmosphere, and the treatment liquid that has passed through the denitrification tank is introduced into a nitrification tank having an aerobic atmosphere to remove ammonia contained in the treatment liquid. After the nitrogen is oxidized to nitrate nitrogen, part of the resulting nitrified liquid is extracted and solid-liquid separated to obtain treated water while the precipitated sludge is returned to the denitrification tank, while the remainder of the nitrified liquid is removed. It is returned to the denitrification tank to denitrify the nitrate nitrogen contained in the nitrification liquid, circulate the coke oven effluent between the denitrification tank and the nitrification tank, and remove ammonia contained in the coke oven effluent. In a method of treating coke oven effluent treated with nitrogen,
The coke oven waste water to be introduced into the denitrification tank is adjusted in advance to have a predetermined water quality, and a sufficient acclimation period is taken in the nitrification tank to cause a nitric acid generation type nitrification reaction to occur in the nitrification tank. A method for treating coke oven wastewater.

[2]前記所定の水質が、アンモニア性窒素1000mg/L以下、COD/除去窒素量に対するCODの比が2以上、チオ硫酸イオン100mg/L以下である、前記[1]に記載のコークス炉排水の処理方法。 [2] The coke oven waste water according to [1] above, wherein the predetermined water quality is 1000 mg/L or less of ammonia nitrogen, a ratio of COD to the amount of COD/removed nitrogen is 2 or more, and 100 mg/L or less of thiosulfate ions. How to handle.

[3]前記馴養期間が、1か月以上である、前記[1]または[2]に記載のコークス炉排水の処理方法。 [3] The method for treating coke oven wastewater according to [1] or [2], wherein the acclimatization period is one month or longer.

[4]前記硝化槽における処理液のpHが7以上8以下である、前記[1]~[3]のいずれか一項に記載のコークス炉排水の処理方法。 [4] The method for treating coke oven wastewater according to any one of [1] to [3], wherein the pH of the treatment liquid in the nitrification tank is 7 or more and 8 or less.

本発明によれば、コークス炉排水に対して簡便な設備構成で生物学的に脱窒素処理を施すことができる。 According to the present invention, coke oven waste water can be biologically denitrified with a simple equipment configuration.

本発明によるコークス炉排水の処理方法のフロー図である。1 is a flow diagram of a method for treating coke oven wastewater according to the present invention; FIG. 本発明の実施例における硝化槽内の窒素系濃度の推移図である。FIG. 4 is a transition diagram of the concentration of nitrogen in the nitrification tank in the example of the present invention. 本発明の実施例における脱窒槽内の窒素系濃度の推移図である。FIG. 4 is a transition diagram of nitrogen concentration in a denitrification tank in an example of the present invention. 本発明の実施例における生物処理前後の全窒素濃度のプロット図である。FIG. 4 is a plot of total nitrogen concentrations before and after biological treatment in Examples of the present invention. 本発明の実施例における、硝酸発生が優勢な時期のフェノール類の原水(生物処理直前)、脱窒槽、硝化槽、処理水の分析結果を示す図である。FIG. 2 is a diagram showing analysis results of phenolic raw water (immediately before biological treatment), denitrification tank, nitrification tank, and treated water in a period when nitric acid generation is dominant in the example of the present invention. 本発明の実施例における、硝酸発生が優勢な時期のチオシアン酸イオンの原水(生物処理直前)、脱窒槽、硝化槽、処理水の分析結果を示す図である。FIG. 4 is a diagram showing analysis results of raw water (immediately before biological treatment), denitrification tank, nitrification tank, and treated water of thiocyanate ions in a period when nitric acid generation is dominant in the example of the present invention. 本発明の実施例における、硝酸発生が優勢な時期のチオ硫酸イオンの原水(生物処理直前)、脱窒槽、硝化槽、処理水の分析結果を示す図である。FIG. 3 is a diagram showing analysis results of raw water (immediately before biological treatment), a denitrification tank, a nitrification tank, and treated water for thiosulfate ions when nitric acid generation is predominant, in an example of the present invention.

以下、本発明について具体的に説明する。本発明の具体的な手順を図1に示す。以下、この手順に基づき説明する。まず、コークス炉排水である安水1は、アンモニアストリッピング工程2にてアンモニアの1次除去が行われる。アンモニアは排ガス3として除去される。この時のストリッピング処理の条件は、処理後の水質を鑑みて適宜決定する。 The present invention will be specifically described below. A specific procedure of the present invention is shown in FIG. The following description is based on this procedure. First, ammonia is primarily removed from ammonia water 1, which is coke oven waste water, in an ammonia stripping step 2. Ammonia is removed as exhaust gas 3 . The conditions for the stripping treatment at this time are appropriately determined in consideration of the water quality after the treatment.

ストリッピング処理後の安水1は、水質に応じて海水や工水4と混合して希釈することができ、希釈することなく後段の処理を行うこともできる。希釈後の安水のアンモニア性窒素濃度は、1000mg/L以下であることが好ましい。アンモニア性窒素濃度が1000mg/L以下であれば、後段の生物処理において、遊離アンモニアが増加して処理水が毒性等を有するのを防止することができる。ただし、アンモニア性窒素を過剰に除去しようとすると、ストリッピングコストの増大を招くため、除去性能とコストのバランスで運転条件を決定すればよい。 The ammonia water 1 after the stripping treatment can be diluted by mixing with seawater or industrial water 4 depending on the water quality, and the subsequent treatment can be performed without dilution. The concentration of ammonia nitrogen in the diluted ammonia water is preferably 1000 mg/L or less. If the ammoniacal nitrogen concentration is 1000 mg/L or less, it is possible to prevent the treated water from becoming toxic due to an increase in free ammonia in the subsequent biological treatment. However, excessive removal of ammonia nitrogen results in an increase in stripping cost, so the operating conditions should be determined by balancing removal performance and cost.

このようにして調製された安水1は、後段の生物処理工程に導入される。後段の生物処理工程は、従来の標準的な硝化液循環式の生物処理工程とすることができる。以下、従来の生物処理工程について簡単に説明する。 The ammonia water 1 thus prepared is introduced into the subsequent biological treatment process. The subsequent biological treatment process can be a conventional standard nitrifying liquid circulation type biological treatment process. A conventional biological treatment process will be briefly described below.

まず、アンモニアストリッピング処理後の安水1を脱窒槽5に送液し、後段の硝化槽6から脱窒槽5に循環される硝化液に添加される。脱窒槽5では、添加された安水1中のCOD成分、主にフェノール等の有機物を利用して、硝化液中に含有されている硝酸、亜硝酸を窒素ガスに変換して脱窒する。 First, the ammonia-stripped ammonia water 1 is sent to the denitrification tank 5 and added to the nitrification liquid circulated from the nitrification tank 6 in the subsequent stage to the denitrification tank 5 . In the denitrification tank 5, COD components in the added ammonia water 1, mainly organic substances such as phenol, are used to convert nitric acid and nitrous acid contained in the nitrifying liquid into nitrogen gas for denitrification.

この時、除去される窒素量に対する脱窒槽5内の安水1に含まれるCODの比、COD/除去Nの値は、2以上が好ましく、3以上がより好ましい。COD/除去Nの値を2以上とすることにより、除去されるNに対してCODが不足するのを防止して、外部からメタノールなどの有機物を別途添加することなく処理することができる。一方、COD/除去Nの値は、4以下が好ましく、3.5以下がより好ましい。これにより、CODの量が過剰のために、硝酸および亜硝酸を処理しきれなくなるのを防止することができる。なお、上記COD/除去Nの値は、脱窒槽5内に導入する段階で安水1に含まれるCODに関する値である。 At this time, the ratio of COD contained in the ammonia water 1 in the denitrification tank 5 to the amount of nitrogen removed, that is, COD/removed N, is preferably 2 or more, more preferably 3 or more. By setting the value of COD/removed N to 2 or more, it is possible to prevent the shortage of COD with respect to the removed N, and to perform the treatment without adding an organic substance such as methanol from the outside. On the other hand, the value of COD/removed N is preferably 4 or less, more preferably 3.5 or less. As a result, it is possible to prevent the nitric acid and nitrous acid from being completely treated due to an excessive amount of COD. The value of COD/removed N is a value related to COD contained in the ammonia water 1 at the stage of introduction into the denitrification tank 5 .

脱窒槽5は、硝酸呼吸を行わせるために無酸素条件で運転する。そのため、安水1に含まれるアンモニア性窒素は脱窒槽5では反応せず、越流によって後段の硝化槽6に送られる。硝化槽6では、好気的な条件下でアンモニア性窒素が亜硝酸、硝酸にまで酸化される。これら硝酸態窒素を含む硝化反応完了後の硝化液を循環ライン7を経由して脱窒槽5に循環させ、硝化液を脱窒させることによって、安水からの窒素除去が行われる。また同時に、残留したCOD成分も、硝化槽6にて好気的に分解処理され、低減される。 The denitrification tank 5 is operated under anoxic conditions to allow nitric acid respiration. Therefore, the ammoniacal nitrogen contained in the ammonia water 1 does not react in the denitrification tank 5 and is sent to the nitrification tank 6 in the latter stage by the overflow. In the nitrification tank 6, ammonia nitrogen is oxidized to nitrous acid and nitric acid under aerobic conditions. Nitrogen is removed from the ammonia water by circulating the nitrifying liquid containing nitrate nitrogen after completion of the nitrification reaction through the circulation line 7 to the denitrification tank 5 to denitrify the nitrifying liquid. At the same time, remaining COD components are also aerobically decomposed in the nitrification tank 6 and reduced.

上記循環の傍ら、一部の硝化液を硝化槽6から沈殿槽8に導入し、固液分離して処理水9とする。その際に沈殿した汚泥を、返送汚泥10として脱窒槽5に返送しつつ、一部を余剰汚泥11として系外に引き抜くことにより、硝化槽6内の活性汚泥濃度(Mixed Liquor Suspended Solids、MLSS)を一定に維持する。 Along with the above circulation, a portion of the nitrifying liquid is introduced from the nitrifying tank 6 into the sedimentation tank 8 and solid-liquid separated to obtain treated water 9 . The sludge precipitated at that time is returned to the denitrification tank 5 as the return sludge 10, and a part of it is withdrawn as excess sludge 11 from the system, thereby increasing the concentration of activated sludge (Mixed Liquor Suspended Solids, MLSS) in the nitrification tank 6. is kept constant.

ところが、従来の安水の処理においては、前述のように種々の毒性物質が混入しているため、硝化槽6での処理において硝化が毒性のある亜硝酸までで停止する。その結果、亜硝酸を含有する硝化液が脱窒槽5と硝化槽6との間を循環することによって微生物がダメージを受け、処理水質が悪化する。特に、チオシアンの処理が亜硝酸により悪化しやすく、運転管理上の問題となっている。硝化を亜硝酸で停止させる主要な毒性物質として、チオ硫酸が知られている。 However, in the conventional treatment of ammonia, various toxic substances are mixed in as described above, so in the treatment in the nitrification tank 6, nitrification is stopped up to toxic nitrous acid. As a result, the nitrification solution containing nitrous acid circulates between the denitrification tank 5 and the nitrification tank 6, causing damage to the microorganisms and deteriorating the quality of the treated water. In particular, the treatment of thiocyanate is likely to be deteriorated by nitrous acid, which poses a problem in terms of operation management. Thiosulfuric acid is known as a major toxic substance that stops nitrification with nitrous acid.

国内の主たる安水生物処理のように、曝気を行って好気的に処理を行っている汚泥を種汚泥として硝化液循環処理を始めると、亜硝酸が生成して処理水質が悪化する。しかしながら、発明者らは、適正な水質の安水1を長期間処理しながら馴養を続けると、亜硝酸から硝酸への酸化反応が誘導され、処理水質が改善されることを見出した。 If the nitrifying solution circulation treatment is started with the sludge that is aerated and aerobically treated as the seed sludge, as in the main ammonia water treatment in Japan, nitrous acid is generated and the quality of the treated water deteriorates. However, the inventors have found that if acclimatization is continued while treating Ammonia Water 1 of appropriate water quality for a long period of time, an oxidation reaction from nitrous acid to nitric acid is induced, and the treated water quality is improved.

すなわち、従来の好気的な処理においては、硝化阻害物質であるチオ硫酸は、以下のような式(1)に従って好気的に分解(酸化)されていると考えられている(例えば、特許文献11参照)。
S2O3 2- + 2O2 + H2O → 2SO4 2- + 2H+ (1)
That is, in conventional aerobic treatment, thiosulfuric acid, which is a nitrification inhibitor, is considered to be aerobically decomposed (oxidized) according to the following formula (1) (for example, patent Reference 11).
S2O32- + 2O2 + H2O2SO42- + 2H + (1)

従って、チオ硫酸は、無酸素条件である脱窒槽5では分解できずに硝化槽6に流入し、硝化を阻害して亜硝酸で停止させ、蓄積した亜硝酸はCOD処理に悪影響を及ぼす。 Therefore, thiosulfuric acid cannot be decomposed in the denitrification tank 5 under oxygen-free conditions and flows into the nitrification tank 6, inhibiting nitrification and stopping it with nitrous acid, and the accumulated nitrous acid adversely affects COD treatment.

ところが、馴養によって硝酸利用が可能な硫黄酸化細菌が誘導されると、以下の式(2)および式(3)に従って、無酸素条件である脱窒槽5でもチオ硫酸の処理が可能になる(例えば、特許文献9参照)。
5S2O3 2- + 8NO3 - + H2O → 10SO4 2- + 4N2↑+ 2H+ (2)
3S2O3 2- + 8NO2 - + 2H+ → 6SO4 2- + 4N2↑ + H2O (3)
However, when sulfur-oxidizing bacteria capable of using nitric acid are induced by acclimation, thiosulfuric acid can be treated even in the denitrification tank 5 under anoxic conditions according to the following formulas (2) and (3) (for example, , see Patent Document 9).
5S2O32- + 8NO3- + H2O10SO42- + 4N2+ 2H + (2)
3S 2 O 3 2- + 8NO 2 - + 2H + → 6SO 4 2- + 4N 2 ↑ + H 2 O (3)

このような硫黄酸化によってチオ硫酸が処理されるため、後段の硝化槽6へのチオ硫酸の流入を著しく低減することができ、硝化槽6での硝化反応を亜硝酸で停止させずに、硝酸まで反応を進行させることができる。しかしながら、処理速度には限界があり、多量のチオ硫酸の存在下では、脱窒槽5での硫黄酸化に多くの時間を要する。 Since thiosulfuric acid is treated by such sulfur oxidation, the inflow of thiosulfuric acid into the nitrification tank 6 in the latter stage can be significantly reduced, and the nitrification reaction in the nitrification tank 6 can be The reaction can proceed up to However, there is a limit to the processing speed, and sulfur oxidation in the denitrification tank 5 takes a long time in the presence of a large amount of thiosulfuric acid.

発明者らの検討では、一般的な脱窒槽5での滞留時間1-2日においては、好ましくは安水中のチオ硫酸イオン濃度100mg/L以下、より好ましくは80mg/L以下において、硝酸発生型硝化反応がより誘導されやすくなる。チオ硫酸イオンの濃度は、石炭の硫黄含有率、ストリッピンの条件などによって決定される。 According to the study of the inventors, when the retention time in the general denitrification tank 5 is 1 to 2 days, the nitric acid generation type Nitrification reaction is more likely to be induced. The concentration of thiosulfate ions is determined by the sulfur content of coal, stripping conditions, and the like.

馴養を継続すると、チオ硫酸のみならず、チオシアンについても、硝酸利用可能な硫黄酸化細菌により、無酸素条件下で処理が行われる(例えば、特許文献9、11参照)。 When acclimatization is continued, not only thiosulfate but also thiocyanate are processed under anoxic conditions by sulfur-oxidizing bacteria that can utilize nitric acid (see, for example, Patent Documents 9 and 11).

従来の好気的硫黄酸化は、以下の式(4)の通りである。
SCN-+2O2+2H2O→SO4 2-+CO2+NH4 + (4)
Conventional aerobic sulfur oxidation is as shown in Equation (4) below.
SCN- + 2O2 + 2H2OSO42- + CO2 + NH4 + (4)

これに対して、無酸素的硫黄酸化反応は、以下の式(5)および式(6)の通りである。
5SCN-+8NO3 -+H2O→5SO4 2-+5CNO-+4N2↑+2H+ (5)
3SCN-+8NO2 -+2H+→3SO4 2-+3CNO-+4N2↑+H2O (6)
In contrast, the anoxic sulfur oxidation reaction is as shown in Equations (5) and (6) below.
5SCN - +8NO 3 - +H 2 O→5SO 4 2- +5CNO - +4N 2 ↑ +2H + (5)
3SCN - +8NO 2 - +2H + →3SO 4 2- +3CNO - +4N 2 ↑ +H 2 O (6)

さらに、これらの反応を生じさせる無酸素的硫黄酸化細菌は、亜硝酸等の毒性物質に対する耐性が好気的硫黄酸化を行う細菌よりも著しく高いことが知られている(例えば、特許文献7参照)。したがって、脱窒槽5に硝化槽6からの亜硝酸が循環されても、従来技術(非特許文献3参照)のようにチオシアン等の処理が急激に悪化するのを防ぐことができる。 Furthermore, anoxic sulfur-oxidizing bacteria that cause these reactions are known to have significantly higher resistance to toxic substances such as nitrous acid than bacteria that perform aerobic sulfur oxidation (see, for example, Patent Document 7). ). Therefore, even if the nitrous acid from the nitrification tank 6 is circulated to the denitrification tank 5, it is possible to prevent the treatment of thiocyanate from rapidly deteriorating as in the prior art (see Non-Patent Document 3).

このようにして、コークス炉排水を処理するにあたり、硝酸発生型の硝化を発現させ、アンモニア性窒素の脱窒素処理とCODの処理とを高い次元で両立させることができる。 In this way, when coke oven wastewater is treated, nitric acid-producing nitrification can be developed, and denitrification of ammonia nitrogen and treatment of COD can be achieved at a high level.

従来の好気的な安水処理汚泥から馴養を行った場合、十分な馴養期間を設けることが必要となる。馴養期間は、好ましくは1か月以上、より好ましくは3か月以上である。 When acclimatization is performed from conventional aerobic ammoniated water-treated sludge, it is necessary to provide a sufficient acclimatization period. The acclimation period is preferably 1 month or longer, more preferably 3 months or longer.

硝化槽6における処理液のpHは、重要な調整パラメータとなる。生物活性を維持できるpHの範囲でも、高すぎる場合には、アンモニア濃度によっては遊離アンモニアが増加して毒性が強まる場合がある。また、アンモニア酸化細菌と亜硝酸酸化細菌の至適pHが少しずれており、至適pHは亜硝酸酸化細菌の方がアンモニア細菌のそれよりも少し低い場合がある。したがって、硝化槽6のpHは慎重に設定する必要があるが、pHは7以上8以下に設定するのが好ましく、その範囲で微調整することによって、最適な処理条件を決定することが好ましい。また、脱窒槽5における処理液のpHは、脱窒によるアルカリ度の上昇により硝化槽6より幾分高い数値になるが、特に調整の必要はなく、脱窒反応を阻害するようなことはない。上記pHの調整は、水酸化ナトリウムなどのアルカリを添加することによって、行うことができる。 The pH of the treated liquid in the nitrification tank 6 is an important adjustment parameter. Even if the pH is within the range where biological activity can be maintained, if the pH is too high, depending on the ammonia concentration, free ammonia may increase and toxicity may increase. In addition, the optimum pH of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria is slightly different, and the optimum pH of nitrite-oxidizing bacteria may be slightly lower than that of ammonia bacteria. Therefore, it is necessary to carefully set the pH of the nitrification tank 6, but it is preferable to set the pH to 7 or more and 8 or less, and it is preferable to determine the optimum treatment conditions by making fine adjustments within that range. The pH of the treated liquid in the denitrification tank 5 becomes somewhat higher than that in the nitrification tank 6 due to the increase in alkalinity due to denitrification, but there is no particular need for adjustment and the denitrification reaction is not hindered. . The above pH adjustment can be performed by adding an alkali such as sodium hydroxide.

本発明により、安水中のアンモニアの生物学的脱窒処理において、簡便な設備構成を用いて、毒性もなくCODに影響もしない硝酸まで硝化を行うことによって、長期間安定した処理水質を得ることが可能となる。本発明は、安水からのアンモニア性窒素の除去を実用的な方法で実現するものであることから、工業上の意味は極めて大きい。 According to the present invention, in the biological denitrification treatment of ammonia in ammonia water, a simple equipment configuration is used to nitrify to nitric acid that is neither toxic nor has an effect on COD, thereby obtaining treated water quality that is stable for a long period of time. becomes possible. INDUSTRIAL APPLICABILITY The present invention realizes the removal of ammoniacal nitrogen from ammonia water by a practical method, and therefore has great industrial significance.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these.

図1に示したフロー構成図に従ってコークス炉排水を処理した。まず、コークス炉(図示せず)から排出された安水1をアンモニアストリッピング工程2に送り、安水1に含まれるアンモニアを排ガス3として除去し、安水1中のアンモニア濃度を低減させた。次いで、工水あるいは海水4による希釈は行わずに、アンモニア濃度を低減させた安水1に対して後段の生物処理を実施した。これに先立ち、コークス炉にて処理する石炭種の配合比率を含めた種々運転条件を調整して、生物処理直前の安水1の水質を表1のように調整した。 Coke oven wastewater was treated according to the flow diagram shown in FIG. First, the ammonia water 1 discharged from the coke oven (not shown) is sent to the ammonia stripping process 2, the ammonia contained in the ammonia water 1 is removed as the exhaust gas 3, and the ammonia concentration in the ammonia water 1 is reduced. . Subsequently, without diluting with industrial water or seawater 4, ammonia concentration-reduced ammonia water 1 was subjected to subsequent biological treatment. Prior to this, various operating conditions including the mixing ratio of the coal species to be treated in the coke oven were adjusted, and the water quality of the ammonia water 1 immediately before the biological treatment was adjusted as shown in Table 1.

Figure 0007251526000001
Figure 0007251526000001

表1のように水質を調整した安水1をそのまま脱窒槽5に導入し、安水1のCOD成分を用いて硝化槽6より循環されてきた硝化液に含まれる硝酸態窒素を窒素ガスに変換し、脱窒をさせた。その際、メタノール等の外部からのCOD源は添加しなかったが、微量栄養元素として少量の米ぬかを定期的に加えた。 Ammonia water 1 whose water quality is adjusted as shown in Table 1 is introduced into the denitrification tank 5 as it is, and the nitrate nitrogen contained in the nitrified liquid circulated from the nitrification tank 6 is converted into nitrogen gas using the COD component of the ammonia water 1. Transformed and denitrified. At that time, no external COD source such as methanol was added, but a small amount of rice bran was periodically added as a micronutrient element.

安水1は、脱窒槽5から硝化槽6に越流させ、硝化槽6において曝気によって供給された酸素を利用してアンモニアを硝酸態窒素に変換する硝化反応を行わせた。硝化槽6内の汚泥は、一部を循環ライン7により脱窒槽5に循環させながら、残りを沈殿槽8に導き、沈殿槽8にて固液分離を行った。その後、汚泥部分は一部を返送汚泥10として脱窒槽5に返送しながら、残りを余剰汚泥11として引き抜いた。沈殿槽8における清澄な上澄み水は、処理水9として系外へ除去した。処理条件を表2に示す。 Ammonia water 1 was allowed to overflow from the denitrification tank 5 to the nitrification tank 6, and in the nitrification tank 6, oxygen supplied by aeration was used to carry out a nitrification reaction in which ammonia was converted to nitrate nitrogen. A part of the sludge in the nitrification tank 6 was circulated to the denitrification tank 5 through a circulation line 7, while the rest was introduced to the sedimentation tank 8, where solid-liquid separation was performed. Thereafter, part of the sludge portion was returned to the denitrification tank 5 as returned sludge 10, and the rest was withdrawn as surplus sludge 11. Clear supernatant water in the sedimentation tank 8 was removed out of the system as treated water 9 . Table 2 shows the treatment conditions.

Figure 0007251526000002
Figure 0007251526000002

硝化槽6内の処理水は、水酸化ナトリウムによってpHを7.8±0.2に制御した。これに対して、脱窒槽5については、pHの制御を行わなかった。また、硝化槽6、脱窒槽5ともに、処理水の温度はヒーターで加温して30℃に制御した。 The pH of the treated water in the nitrification tank 6 was controlled to 7.8±0.2 with sodium hydroxide. On the other hand, the pH of the denitrification tank 5 was not controlled. In both the nitrification tank 6 and the denitrification tank 5, the temperature of the treated water was controlled at 30° C. by heating with a heater.

なお、処理開始時には、硝化、脱窒は実施せず、COD処理しかしていない装置より汚泥を脱窒槽5および硝化槽6に導入した。そのため、導入後しばらくは安水1を処理させず、脱窒槽5と硝化槽6との間を循環させた。2週間ほどすると、硝化反応が観察されたため、安水1の投入を開始し、投入量を設定の0.5倍量、1倍量と増加させ、処理を継続した。 At the start of the treatment, sludge was introduced into the denitrification tank 5 and the nitrification tank 6 from an apparatus in which only COD treatment was performed without nitrification or denitrification. Therefore, for a while after introduction, the ammonia water 1 was not treated, and was circulated between the denitrification tank 5 and the nitrification tank 6 . After about two weeks, a nitrification reaction was observed, so the addition of ammonia water 1 was started, and the amount added was increased to 0.5 and 1 times the set amount, and the treatment was continued.

図2は、投入量1倍量、すなわち設定値にて運転した際の、硝化槽6の槽内窒素系濃度の推移を示している。図2から明らかなように、処理初期には硝酸(NO3-N)はほとんど生成せず、亜硝酸(NO2-N)が優勢であり、槽内窒素系濃度(T-N)のほとんどを亜硝酸(NO2-N)が占めていた。ところが馴養を続けると、2.5か月ほど経過した後から硝酸(NO3-N)が生成し始め、ついには硝酸が優勢な処理が確立された。 FIG. 2 shows the transition of the in-tank nitrogen concentration in the nitrification tank 6 when the input amount is 1, that is, when the operation is performed at the set value. As is clear from FIG. 2, almost no nitric acid (NO 3 —N) is produced in the initial stage of treatment, nitrous acid (NO 2 —N) is predominant, and most of the nitrogen concentration (TN) in the tank is was accounted for by nitrous acid (NO 2 -N). However, if acclimatization was continued, nitric acid (NO 3 --N) began to form after about 2.5 months, and finally a treatment in which nitric acid was dominant was established.

図3は、脱窒槽5内の窒素系濃度の推移を示している。図3から、循環された硝酸態窒素はすべて脱窒され、槽内に硝酸体窒素が残留しておらず、良好な窒素処理が行われていたことが分かる。 FIG. 3 shows changes in the concentration of nitrogen in the denitrification tank 5 . From FIG. 3, it can be seen that all of the circulated nitrate nitrogen was denitrified, no nitrate nitrogen remained in the tank, and a good nitrogen treatment was carried out.

図4は、生物処理前の窒素濃度および処理後の窒素濃度を示している。図4から、窒素除去率は、硝化液循環方式の上限である60-70%付近と、良好な処理が維持されていたことが分かる。 FIG. 4 shows the nitrogen concentration before biological treatment and the nitrogen concentration after treatment. From FIG. 4, it can be seen that the nitrogen removal rate was around 60-70%, which is the upper limit of the nitrifying liquid circulation system, and good treatment was maintained.

図5-7は、硝酸発生が優勢な時期におけるフェノール類(図5)、チオシアン酸イオン(図6)、チオ硫酸イオン(図7)について、原水(生物処理直前)、脱窒槽5、硝化槽6、処理水の分析結果(それぞれ計4回実施)を示している。 Fig. 5-7 shows phenols (Fig. 5), thiocyanate ions (Fig. 6), and thiosulfate ions (Fig. 7) in the period when nitric acid generation is dominant, raw water (immediately before biological treatment), denitrification tank 5, nitrification tank 6, shows the analysis results of the treated water (4 times in total).

図5から、フェノール類は脱窒としてのCOD源として利用され、脱窒槽5においてほぼすべて消費されていることが確認された。また、図6から、チオシアン酸イオンも脱窒槽5において多くが脱窒のために消費されており、硫黄酸化細菌による酸化が確認された。同様に、チオ硫酸についても、図7に示した通り、脱窒槽5ですでに定量下限を下回っており、硝化槽6には流入していないことが確認された。 From FIG. 5, it was confirmed that the phenols were used as a COD source for denitrification and were almost completely consumed in the denitrification tank 5 . Further, from FIG. 6, it was confirmed that most of the thiocyanate ions were also consumed for denitrification in the denitrification tank 5, and that thiocyanate ions were oxidized by sulfur-oxidizing bacteria. Similarly, as for thiosulfuric acid, as shown in FIG.

このように、生物処理前の安水1の水質を適切に調整することにより、安水の生物学的窒素処理において、硝酸発生型の硝化反応を行うことができた。これにより、亜硝酸の蓄積による処理悪化を防止することができ、安水の安定な処理を実現できる。 Thus, by appropriately adjusting the water quality of the ammonia water 1 before biological treatment, a nitric acid-producing nitrification reaction could be carried out in the biological nitrogen treatment of the ammonia water. As a result, deterioration of the treatment due to accumulation of nitrous acid can be prevented, and stable treatment of ammonia water can be realized.

本発明によれば、コークス炉排水に対して簡便な設備構成で生物学的に脱窒素処理を施すことができるため、製鉄業において有用である。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to biologically denitrify coke oven waste water with a simple equipment configuration, which is useful in the steel industry.

1 コークス炉排水(安水)
2 アンモニアストリッピング工程
3 排ガス
4 工水または海水
5 脱窒槽
6 硝化槽
7 循環ライン
8 沈殿槽
9 処理水
10 返送汚泥
11 余剰汚泥
1 Coke oven wastewater (ammonia water)
2 Ammonia stripping process 3 Exhaust gas 4 Industrial water or seawater 5 Denitrification tank 6 Nitrification tank 7 Circulation line 8 Sedimentation tank 9 Treated water 10 Returned sludge 11 Excess sludge

Claims (3)

アンモニア性窒素を含むコークス炉排水を無酸素雰囲気である脱窒槽に導入し、前記脱窒槽を経た処理液を好気性雰囲気である硝化槽に導入して前記処理液に含まれるアンモニア性窒素を硝酸態窒素に酸化処理した後、得られた硝化液の一部を抜き出して固液分離して処理水を得ながら沈殿した汚泥を前記脱窒槽に返送する一方、前記硝化液の残りを前記脱窒槽に戻して、前記硝化液に含まれる硝酸態窒素を脱窒して、前記コークス炉排水を前記脱窒槽と前記硝化槽との間を循環させ、前記コークス炉排水に含まれるアンモニア性窒素を処理するコークス炉排水を処理する方法において、
前記脱窒槽に導入するコークス炉排水を予め所定の水質に調整しておくとともに、前記硝化槽において十分な馴養期間をとることにより、前記硝化槽において硝酸発生型の硝化反応を行わせ
前記所定の水質が、アンモニア性窒素1000mg/L以下、COD/除去窒素量に対するCODの比が2以上4以下、チオ硫酸イオン80mg/L以下であることを特徴とするコークス炉排水の処理方法。
Coke oven effluent containing ammonia nitrogen is introduced into a denitrification tank having an oxygen-free atmosphere, and the treated liquid that has passed through the denitrification tank is introduced into a nitrification tank having an aerobic atmosphere to convert the ammonia nitrogen contained in the treatment liquid into nitric acid. After oxidizing to form nitrogen, part of the obtained nitrified liquid is extracted and solid-liquid separated to obtain treated water, and the precipitated sludge is returned to the denitrification tank, while the rest of the nitrified liquid is returned to the denitrification tank. to denitrify the nitrate nitrogen contained in the nitrifying liquid, circulate the coke oven effluent between the denitrification tank and the nitrification tank, and treat the ammonia nitrogen contained in the coke oven effluent. In the method of treating coke oven wastewater,
The coke oven wastewater to be introduced into the denitrification tank is adjusted in advance to have a predetermined water quality, and a sufficient acclimation period is taken in the nitrification tank to cause a nitric acid generation type nitrification reaction in the nitrification tank ,
A method for treating coke oven wastewater, wherein the predetermined water quality is 1000 mg/L or less of ammonia nitrogen, a ratio of COD to the amount of COD/removed nitrogen is 2 or more and 4 or less, and thiosulfate ion is 80 mg/L or less. .
前記馴養期間が、1か月以上である、請求項に記載のコークス炉排水の処理方法。 The method for treating coke oven wastewater according to claim 1 , wherein the acclimatization period is one month or more. 前記硝化槽における処理水のpHが7以上8以下である、請求項1または2に記載のコークス炉排水の処理方法。 The method for treating coke oven wastewater according to claim 1 or 2 , wherein the treated water in the nitrification tank has a pH of 7 or more and 8 or less.
JP2020117357A 2020-07-07 2020-07-07 Method for treating coke oven wastewater Active JP7251526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020117357A JP7251526B2 (en) 2020-07-07 2020-07-07 Method for treating coke oven wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020117357A JP7251526B2 (en) 2020-07-07 2020-07-07 Method for treating coke oven wastewater

Publications (2)

Publication Number Publication Date
JP2022014802A JP2022014802A (en) 2022-01-20
JP7251526B2 true JP7251526B2 (en) 2023-04-04

Family

ID=80120415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020117357A Active JP7251526B2 (en) 2020-07-07 2020-07-07 Method for treating coke oven wastewater

Country Status (1)

Country Link
JP (1) JP7251526B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212592A (en) 2000-02-02 2001-08-07 Nippon Steel Corp Method for removing nitrogen from wastewater
JP2003053383A (en) 2001-08-17 2003-02-25 Nippon Steel Corp Method for removing nitrogen from waste water
JP2009142787A (en) 2007-12-17 2009-07-02 Nippon Steel Corp Method for removing nitrogen and cod component from ammoniacal liquor
JP2014061470A (en) 2012-09-20 2014-04-10 Kobelco Eco-Solutions Co Ltd Treatment method and treatment apparatus of to-be-treated water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212592A (en) 2000-02-02 2001-08-07 Nippon Steel Corp Method for removing nitrogen from wastewater
JP2003053383A (en) 2001-08-17 2003-02-25 Nippon Steel Corp Method for removing nitrogen from waste water
JP2009142787A (en) 2007-12-17 2009-07-02 Nippon Steel Corp Method for removing nitrogen and cod component from ammoniacal liquor
JP2014061470A (en) 2012-09-20 2014-04-10 Kobelco Eco-Solutions Co Ltd Treatment method and treatment apparatus of to-be-treated water

Also Published As

Publication number Publication date
JP2022014802A (en) 2022-01-20

Similar Documents

Publication Publication Date Title
CN108483655B (en) Method for deep denitrification by coupling shortcut nitrification and denitrification with anaerobic ammonia oxidation and sulfur autotrophic denitrification
JP3737410B2 (en) High concentration organic wastewater treatment method and apparatus using biomaker
JP5211675B2 (en) Method for removing ammoniacal nitrogen and COD components from ammonia water
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
JP5592677B2 (en) Biological nitrogen treatment method of ammonia containing wastewater
CN101941782B (en) Method for treating leather wastewater
JP5100091B2 (en) Water treatment method
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
JP4882175B2 (en) Nitrification method
JP4106203B2 (en) How to remove nitrogen from water
JP4532315B2 (en) Biological nitrification denitrification treatment system and denitrification treatment method
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP4570069B2 (en) Method for removing ammonia nitrogen from wastewater
JP2002011495A (en) Method for removing nitrogen and phosphor from wastewater
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
Bernat et al. The treatment of anaerobic digester supernatant by combined partial ammonium oxidation and denitrification
JP3958900B2 (en) How to remove nitrogen from wastewater
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP2000308900A (en) Treatment of ammonia-containing waste water
JP5722087B2 (en) Biological nitrogen treatment method of ammonia containing wastewater
CN105693006A (en) A combined process coupling aerobic biochemical treatment, ozone catalytic oxidation and biological denitrogenation for acrylonitrile wastewater
JP7251526B2 (en) Method for treating coke oven wastewater
JP2003071490A (en) Method for removing nitrogen from wastewater
JP2001212592A (en) Method for removing nitrogen from wastewater
JP2023093216A (en) Treatment method of coke oven waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7251526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150