JP4496735B2 - Biological treatment of BOD and nitrogen-containing wastewater - Google Patents

Biological treatment of BOD and nitrogen-containing wastewater Download PDF

Info

Publication number
JP4496735B2
JP4496735B2 JP2003304913A JP2003304913A JP4496735B2 JP 4496735 B2 JP4496735 B2 JP 4496735B2 JP 2003304913 A JP2003304913 A JP 2003304913A JP 2003304913 A JP2003304913 A JP 2003304913A JP 4496735 B2 JP4496735 B2 JP 4496735B2
Authority
JP
Japan
Prior art keywords
nitrogen
tank
bod
nitrite
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003304913A
Other languages
Japanese (ja)
Other versions
JP2005074253A (en
Inventor
英世 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003304913A priority Critical patent/JP4496735B2/en
Publication of JP2005074253A publication Critical patent/JP2005074253A/en
Application granted granted Critical
Publication of JP4496735B2 publication Critical patent/JP4496735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は、BOD及び窒素含有排水の生物的処理方法に係り、特にBOD及び窒素含有排水中の窒素分を、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性脱窒微生物(ANAMMOX菌)により、安価にかつ効率的に処理するBOD及び窒素含有排水の生物的処理方法に関する。   The present invention relates to a biological treatment method for BOD and nitrogen-containing wastewater, and in particular, the autotrophic nutrient using nitrogen content in BOD and nitrogen-containing wastewater as ammonia-type nitrogen as an electron donor and nitrite-type nitrogen as an electron acceptor. The present invention relates to a biological treatment method for BOD and nitrogen-containing wastewater, which is inexpensively and efficiently treated with anaerobic denitrifying microorganisms (ANAMMOX bacteria).

従来、排水中の窒素成分の生物的処理方法として、以下のような方法が知られているが、以下に説明するように、それぞれ一長一短がある。   Conventionally, the following methods are known as biological treatment methods for nitrogen components in wastewater, but each has advantages and disadvantages as described below.

(1) 硝化工程→脱窒工程
まず、好気処理によって原水中の窒素を硝酸性窒素に酸化し、その処理水を従属栄養性脱窒微生物と接触させて脱窒処理する方式である。この方法は、最終処理水の水質が良好で、確実な窒素の処理方式であるが、次のような欠点がある。
・硝化工程で原水中のBODも分解されてしまうので、硝化工程において曝気動力が多く必要である。
・脱窒工程で有機物(例えば、メタノール)を添加する必要がある。
・pH調整のために、硝化工程でアルカリ剤が、脱窒工程で酸剤がそれぞれ多量に必要である。
(1) Nitrification step → Denitrification step First, the aerobic treatment is performed to oxidize nitrogen in raw water to nitrate nitrogen, and the treated water is contacted with heterotrophic denitrification microorganisms for denitrification treatment. This method is a reliable nitrogen treatment method with good final treated water quality, but has the following disadvantages.
-Since BOD in raw water is also decomposed in the nitrification process, a large amount of aeration power is required in the nitrification process.
-It is necessary to add organic matter (for example, methanol) in the denitrification step.
In order to adjust pH, a large amount of alkaline agent is required in the nitrification step, and a large amount of acid agent is required in the denitrification step.

(2) 脱窒工程→硝化工程(硝化液の一部を脱窒工程へ循環)
原水中のBODを利用して脱窒処理を行うので、上記(1)の方法よりも合理的な処理方法であるが、次のような欠点がある。
・余剰汚泥の発生量が多く、硝化槽から脱窒槽への循環動力が多量に必要であり、窒素濃度によっては、上記(1)の方法に対する曝気動力の低減分と循環動力の増加分が相殺されてしまう場合もあり得る。
・原水中のBOD濃度が窒素濃度の約3倍よりも少ないと、脱窒用に有機物を添加する必要があり、逆に、BODが多い場合には、硝化工程の酸素供給量が増加し、曝気動力が嵩む。
・アルカリ剤使用量の低減、処理水質の向上を狙って脱窒槽、硝化槽を複数に分画する「ステップ脱窒法」も実用化されているが、この場合には、水槽の建設費用が高くなる、脱窒槽への溶存酸素の持込による脱窒性能の低下などの欠点がある。
(2) Denitrification process → Nitrification process (Circulating part of the nitrification solution into the denitrification process)
Since the denitrification process is performed using BOD in the raw water, this process is more rational than the above method (1), but has the following drawbacks.
・ A large amount of excess sludge is generated, and a large amount of circulation power is required from the nitrification tank to the denitrification tank. Depending on the nitrogen concentration, the reduction in aeration power and the increase in circulation power with respect to the above method (1) can be offset. It can happen.
-If the BOD concentration in the raw water is less than about 3 times the nitrogen concentration, it is necessary to add organic substances for denitrification. Conversely, if the BOD is large, the oxygen supply amount in the nitrification process will increase. Aeration power increases.
・ The “step denitrification method”, in which denitrification tanks and nitrification tanks are divided into multiple parts with the aim of reducing the use of alkaline agents and improving the quality of treated water, has been put into practical use. There are disadvantages such as a decrease in denitrification performance due to bringing dissolved oxygen into the denitrification tank.

(3) 亜硝酸型硝化工程→ANAMMOX脱窒工程
原水中のアンモニア性窒素の一部を亜硝酸性窒素とする亜硝酸型硝化を行った後、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性脱窒微生物であるANAMMOX菌により脱窒する方式である。
(3) Nitrite-type nitrification process → ANAMOX denitrification process After performing nitrite-type nitrification using a part of ammonia nitrogen in raw water as nitrite nitrogen, ammonia nitrogen is used as an electron donor, and nitrite This is a method of denitrification by ANAMMOX bacteria, which are autotrophic denitrifying microorganisms using nitrogen as an electron acceptor.

このANAMMOX菌を利用する生物脱窒プロセスは、Strous, M et. al., Appl. Environ. Microbiol., Vol.50,p589-596(1998)に報告されており、下記(I)式のような反応で1当量のアンモニア性窒素と1.3当量の亜硝酸性窒素とを反応させて窒素ガスに分解する反応である。
NH4 ++1.32NO2 -+0.066HCO3 -+0.13H+
→1.02N2+0.26NO3 -+0.066CH2O0.5N0.15+2.03H2O …(I)
This biological denitrification process using ANAMOX bacteria has been reported in Strous, M et. Al., Appl. Environ. Microbiol., Vol. 50, p589-596 (1998). In this reaction, 1 equivalent of ammonia nitrogen and 1.3 equivalent of nitrite nitrogen are reacted to decompose into nitrogen gas.
NH 4 + + 1.32NO 2 - + 0.066HCO 3 - + 0.13H +
→ 1.02N 2 + 0.26NO 3 - + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O ... (I)

この反応は従来の従属栄養性脱窒微生物による生物脱窒プロセスと違って、脱窒のために有機物を必要としない。従って、原水中に有機物を含まない、或いはその含有量が少ない場合でも脱窒用の有機物(例えば、メタノール)を添加する必要がないので、従来の従属栄養型の生物脱窒プロセスよりも合理的である。   This reaction does not require organic matter for denitrification, unlike the biological denitrification process with conventional heterotrophic denitrifying microorganisms. Therefore, it is not necessary to add organic matter for denitrification (eg, methanol) even when the raw water does not contain organic matter or its content is low, so it is more rational than the conventional heterotrophic biological denitrification process. It is.

しかし、原水中にBODが存在する場合には、前段の亜硝酸型硝化工程において、BODが好気性菌により分解されるため、上記(1)の方法と同様、酸素供給量が増大すると共に、汚泥発生量も多くなる。即ち、亜硝酸型硝化工程において、アンモニア性窒素の酸化のみに留まらず、BODも酸化分解されてしまうので、アンモニア性窒素の酸化分に加えてBODの酸化分解相当分の酸素を供給することが必要となる。また、好気性生物処理により分解されたBOD相当分の余剰汚泥も発生することとなる。このため、曝気動力が嵩み、運転費用が高騰すると共に汚泥処分費も高くつく。   However, when BOD is present in the raw water, since the BOD is decomposed by aerobic bacteria in the nitrite type nitrification step in the previous stage, the oxygen supply amount increases as in the method (1) above, The amount of sludge generated also increases. That is, in the nitrite-type nitrification step, not only the oxidation of ammonia nitrogen but also BOD is oxidatively decomposed, so that oxygen equivalent to the oxidative decomposition of BOD can be supplied in addition to the oxidized amount of ammonia nitrogen. Necessary. Moreover, the excess sludge equivalent to BOD decomposed | disassembled by the aerobic biological process will also generate | occur | produce. For this reason, aeration power increases, operation costs increase, and sludge disposal costs increase.

ところで、アンモニア性窒素を亜硝酸性窒素に酸化する反応では、アルカリ性のアンモニア性窒素が酸性の亜硝酸性窒素に酸化されるため、硝化槽内のpHは低下する。そして、pHが低下すると、アンモニア酸化細菌の活性が著しく低下するので、これを防ぐために、アルカリ剤を外部から添加してpH調整する必要がある。しかし、pH調整を行っても、硝化工程において安定的に亜硝酸性窒素を生成させる亜硝酸型硝化を行うことは困難である。即ち、原水中のアンモニア性窒素を生物的に酸化処理する場合、通常は硝酸性窒素にまで酸化されてしまい、酸化を亜硝酸性窒素に止める亜硝酸型硝化を安定的に行うことは困難である。   By the way, in the reaction of oxidizing ammonia nitrogen to nitrite nitrogen, alkaline ammonia nitrogen is oxidized to acidic nitrite nitrogen, so the pH in the nitrification tank is lowered. And when pH falls, since the activity of ammonia-oxidizing bacteria falls remarkably, in order to prevent this, it is necessary to adjust pH by adding an alkali agent from the outside. However, even if the pH is adjusted, it is difficult to perform nitrite type nitrification that stably generates nitrite nitrogen in the nitrification step. In other words, when biologically oxidizing ammonia nitrogen in raw water, it is usually oxidized to nitrate nitrogen, and it is difficult to stably perform nitrite type nitrification that stops oxidation to nitrite nitrogen. is there.

本出願人は、この亜硝酸型硝化を安定的に行う方法として、先に硝化槽のpH調整に、炭酸ナトリウム、炭酸水素ナトリウムなどの(重)炭酸塩型のアルカリ剤を用いることが有効であることを見出した(特願2003−44578)。   As a method for stably performing this nitrite-type nitrification, the applicant of the present invention is effective to use a (bi) carbonate type alkali agent such as sodium carbonate or sodium hydrogen carbonate for pH adjustment of the nitrification tank. It was found (Japanese Patent Application No. 2003-44578).

しかし、硝化槽のpH調整のために市販の(重)炭酸塩薬剤を注入することは、薬剤コストが嵩み、経済的に問題である。
特願2003−44578 Strous, M et. al., Appl. Environ. Microbiol., Vol.50,p589-596(1998)
However, injecting a commercially available (bi) carbonate drug for adjusting the pH of the nitrification tank increases the cost of the drug and is economically problematic.
Japanese Patent Application No. 2003-44578 Strous, M et. Al., Appl. Environ. Microbiol., Vol.50, p589-596 (1998)

本発明は上記従来の問題点を解決し、BOD及び窒素含有排水中の窒素分を、ANAMMOX脱窒プロセスにより安価に処理する方法を提供することを目的とする。即ち、本発明は、ANAMMOX脱窒プロセスにおける酸素供給量や汚泥発生量を増大させることなく、従って、曝気動力費、汚泥処分費等の運転費を抑えて、BODを含む窒素含有排水の効率的な処理を行う方法を提供することを目的とする。   The object of the present invention is to solve the above-mentioned conventional problems and to provide a method for treating the nitrogen content in BOD and nitrogen-containing wastewater at a low cost by the ANAMMOX denitrification process. That is, the present invention does not increase the oxygen supply amount and sludge generation amount in the ANAMOX denitrification process, and therefore suppresses the operating costs such as the aeration power cost and sludge disposal cost, and efficiently uses the nitrogen-containing wastewater containing BOD. An object of the present invention is to provide a method for performing various processing.

本発明はまた、硝化工程を亜硝酸型に維持するための(重)炭酸塩型薬剤費を低減するBOD及び窒素含有排水の生物的処理方法を提供することを目的とする。   Another object of the present invention is to provide a method for biological treatment of BOD and nitrogen-containing wastewater that reduces the (bi) carbonate type chemical cost for maintaining the nitrification step in the nitrite type.

本発明のBOD及び窒素含有排水の生物的処理方法は、BOD及び窒素含有排水を、嫌気性メタン発酵法によりBODを除去する嫌気処理工程、アンモニア性窒素の一部を亜硝酸性窒素とする亜硝酸型硝化工程、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性脱窒微生物と接触させて脱窒する脱窒工程の順に処理するBOD及び窒素含有排水の生物的処理方法であって、前記嫌気処理工程で発生したバイオガスをアルカリ性溶液と接触させて得た(重)炭酸塩含有アルカリ性溶液を、前記亜硝酸型硝化工程のpH調整に使用することを特徴とする。 The biological treatment method for BOD and nitrogen-containing wastewater according to the present invention comprises an anaerobic treatment step for removing BOD and nitrogen-containing wastewater by an anaerobic methane fermentation method, Nitrogen-type nitrification process, BOD and nitrogen-containing wastewater treated in the order of denitrification process in contact with autotrophic denitrification microorganisms using ammonia nitrogen as electron donor and nitrite nitrogen as electron acceptor A biological treatment method, wherein a (bi) carbonate-containing alkaline solution obtained by contacting biogas generated in the anaerobic treatment step with an alkaline solution is used for pH adjustment in the nitrite type nitrification step. Features.

本発明によれば、BOD及び窒素含有排水の処理に当たり、前段の嫌気処理工程で排水中のBODを除去するため、その後の亜硝酸型硝化工程における酸素供給量及び汚泥発生量を低減することができる。なお、嫌気性メタン発酵法は、処理したBODに対する余剰汚泥発生量が少ない点においても工業的に有利である。ただし、嫌気性メタン発酵処理では、アンモニア性窒素は殆ど除去されず、原水中の有機態窒素がアンモニア性窒素に分解されるため、嫌気性メタン発酵処理水のアンモニア濃度は、原水のアンモニア濃度よりも増加する場合もあり、従って、嫌気処理工程の後段の脱窒工程が必須となる。   According to the present invention, in the treatment of BOD and nitrogen-containing wastewater, the BOD in the wastewater is removed in the preceding anaerobic treatment step, so that the oxygen supply amount and sludge generation amount in the subsequent nitrite type nitrification step can be reduced. it can. The anaerobic methane fermentation method is industrially advantageous in that the amount of excess sludge generated with respect to the treated BOD is small. However, in the anaerobic methane fermentation treatment, ammonia nitrogen is hardly removed, and organic nitrogen in the raw water is decomposed into ammonia nitrogen. Therefore, the ammonia concentration in the anaerobic methane fermentation treatment water is higher than the ammonia concentration in the raw water. Therefore, a denitrification step after the anaerobic treatment step is essential.

また、脱窒処理には、従属栄養性微生物による生物脱窒プロセスも採用可能であるが、ANAMMOX脱窒プロセスであれば、前述の如く有機物の添加の必要がなく、余剰汚泥の発生量も少なく、工業的に有利である。   In addition, a biological denitrification process using heterotrophic microorganisms can be adopted for the denitrification treatment. However, the ANAMMOX denitrification process does not require the addition of organic substances as described above, and the amount of excess sludge generated is small. Industrially advantageous.

本発明においては、嫌気処理工程で発生したバイオガスをアルカリ性溶液と接触させて得た(重)炭酸塩含有アルカリ性溶液を、亜硝酸型硝化工程のpH調整に使用することにより、市販薬剤の炭酸ナトリウムや炭酸水素ナトリウムを用いる場合と同様に亜硝酸型硝化を安定に維持した上で、薬剤費の低減を図ることができる。 In the present invention, more biogas generated in the anaerobic treatment process is obtained by contacting with an alkaline solution (heavy) carbonate-containing alkaline solution to that you use to adjust the pH of the nitrite-type nitrification step, commercially available drugs Similarly to the case of using sodium carbonate or sodium hydrogen carbonate, the nitrite type nitrification can be stably maintained and the drug cost can be reduced.

なお、本明細書において「(重)炭酸」とは「炭酸及び/又は重炭酸(炭酸水素)」を意味するものとする。   In the present specification, “(bi) carbonic acid” means “carbonic acid and / or bicarbonate (hydrogen carbonate)”.

本発明に係るANAMMOX脱窒プロセスでは、前記(I)式に示されるように、副生成物として硝酸イオンが生成する。従って、ANAMMOX菌による脱窒工程の後段に従属栄養性微生物による脱窒処理を行い、更に再曝気処理を行うことにより、窒素濃度、更にはBOD濃度をより低減することが好ましい。   In the ANAMOX denitrification process according to the present invention, as shown in the formula (I), nitrate ions are generated as a by-product. Therefore, it is preferable to further reduce the nitrogen concentration and further the BOD concentration by performing a denitrification process with heterotrophic microorganisms after the denitrification process with the ANAMOX bacteria and further performing a re-aeration process.

本発明によれば、BOD及び窒素含有排水の生物的処理に当たり、酸素供給量、余剰汚泥発生量を低減して安価にかつ効率的に処理を行うことができる。   According to the present invention, in the biological treatment of BOD and nitrogen-containing wastewater, the amount of oxygen supply and the amount of excess sludge generated can be reduced and the treatment can be performed inexpensively and efficiently.

以下に図面を参照して本発明のBOD及び窒素含有排水の生物的処理方法の実施の形態を詳細に説明する。   Embodiments of the biological treatment method for BOD and nitrogen-containing wastewater of the present invention will be described in detail below with reference to the drawings.

図1は本発明の実施の形態を示す系統図である。   FIG. 1 is a system diagram showing an embodiment of the present invention.

原水(BOD及び窒素含有排水)は、まず、嫌気性メタン発酵槽1に導入され、嫌気性条件下でメタン発酵処理される。この嫌気性メタン発酵槽1の処理槽としては、嫌気性メタン発酵を行うことができるものであれば良く、任意の形式のものを採用することができる。例えば、浮遊式(懸濁式)嫌気性処理槽、固定床式嫌気性処理槽、上向流式スラッジブランケット型嫌気性処理槽などを用いることができ、酸発酵とメタン発酵とを1槽で行う1槽式であっても、これらを別々の槽で行う2槽式であっても良い。   Raw water (BOD and nitrogen-containing wastewater) is first introduced into the anaerobic methane fermentation tank 1 and subjected to methane fermentation under anaerobic conditions. As a processing tank of this anaerobic methane fermentation tank 1, what is necessary is just what can perform anaerobic methane fermentation, and the thing of arbitrary formats is employable. For example, a floating type (suspension type) anaerobic treatment tank, a fixed bed type anaerobic treatment tank, an upward flow sludge blanket type anaerobic treatment tank, etc. can be used, and acid fermentation and methane fermentation can be performed in one tank. Even if it is the 1 tank type to perform, the 2 tank type which performs these in a separate tank may be sufficient.

嫌気性メタン発酵槽1では、原水中のBOD成分が嫌気性メタン発酵処理されて通常その80〜90%程度が除去され、メタンガスと炭酸ガスを含むバイオガスが生成する。この嫌気性メタン発酵槽1で発生したバイオガスはガス吸収塔6に送給される。このガス吸収塔6内には充填材の充填層6Aが設けられており、また、上部の散水管6Bから、アルカリ貯槽7のアルカリ性溶液がポンプ7Pにより散水される。ガス吸収塔6に導入されたバイオガスは、充填層6Aにおいて、散水されたアルカリ性溶液と向流接触することにより、ガス中の炭酸ガスがアルカリ性溶液に吸収される。このガス吸収塔6において、塔内を流下したアルカリ性溶液は、塔底部からポンプ6Pにより散水管6Bに循環される。循環により、アルカリ性溶液のpHが低下すると、炭酸ガスの吸収効率が低下するので、塔内の液の一部をポンプ8Pより抜き出し、炭酸ガス吸収液貯留槽8に貯留すると共に、抜き出し量に見合う新規アルカリ性溶液をアルカリ貯槽7からガス吸収塔6に補給する。   In the anaerobic methane fermentation tank 1, the BOD component in the raw water is subjected to anaerobic methane fermentation treatment, and usually about 80 to 90% of the BOD component is removed, and biogas containing methane gas and carbon dioxide gas is generated. The biogas generated in the anaerobic methane fermentation tank 1 is fed to the gas absorption tower 6. A packed bed 6A of a filler is provided in the gas absorption tower 6, and the alkaline solution in the alkaline storage tank 7 is sprinkled by a pump 7P from the upper sprinkling pipe 6B. The biogas introduced into the gas absorption tower 6 makes countercurrent contact with the sprinkled alkaline solution in the packed bed 6A, so that carbon dioxide in the gas is absorbed by the alkaline solution. In this gas absorption tower 6, the alkaline solution flowing down in the tower is circulated from the bottom of the tower to the water sprinkling pipe 6B by a pump 6P. When the pH of the alkaline solution decreases due to the circulation, the carbon dioxide absorption efficiency decreases. Therefore, a part of the liquid in the tower is extracted from the pump 8P, stored in the carbon dioxide absorption liquid storage tank 8, and is commensurate with the extraction amount. A new alkaline solution is supplied to the gas absorption tower 6 from the alkali storage tank 7.

このガス吸収塔6で炭酸ガスを吸収し、炭酸ガス吸収液貯留槽8に貯留された炭酸ガス吸収液((重)炭酸塩含有アルカリ性溶液)は、ポンプ2Pにより、亜硝酸型硝化槽2に注入される。   Carbon dioxide gas is absorbed by the gas absorption tower 6 and the carbon dioxide absorption liquid ((heavy) carbonate-containing alkaline solution) stored in the carbon dioxide absorption liquid storage tank 8 is transferred to the nitrite nitrification tank 2 by the pump 2P. Injected.

また、ガス吸収塔6で炭酸ガスが吸収除去された後のバイオガスは、メタンガスを含むものであり、適宜補助燃料として回収される。   Moreover, the biogas after carbon dioxide gas is absorbed and removed by the gas absorption tower 6 contains methane gas and is appropriately recovered as auxiliary fuel.

なお、バイオガス中の炭酸ガスの吸収に用いるアルカリ性溶液としては特に制限はないが、0.1〜25重量%程度の苛性ソーダ水溶液が好適である。   In addition, although there is no restriction | limiting in particular as an alkaline solution used for absorption of the carbon dioxide gas in biogas, About 0.1-25 weight% caustic soda aqueous solution is suitable.

嫌気性メタン発酵槽1の流出液は、次いで亜硝酸型硝化槽(曝気槽)2に導入され、散気管2Aによる曝気下、硝化汚泥と接触して硝化処理され、硝化液が排出される。   The effluent from the anaerobic methane fermentation tank 1 is then introduced into a nitrite-type nitrification tank (aeration tank) 2, nitrified by contact with the nitrification sludge under aeration by the air diffuser 2 </ b> A, and the nitrification liquid is discharged.

この亜硝酸型硝化槽2にはpHセンサ2Bが設けられ、硝化槽2内液のpHが測定され、この測定結果に基づいて、炭酸ガス吸収液貯留槽8からの炭酸ガス吸収液の注入ポンプ2Pが制御される。   The nitrite type nitrification tank 2 is provided with a pH sensor 2B, and the pH of the liquid in the nitrification tank 2 is measured. Based on the measurement result, a carbon dioxide absorption liquid injection pump from the carbon dioxide absorption liquid storage tank 8 is measured. 2P is controlled.

この亜硝酸型硝化槽2では、(重)炭酸塩含有アルカリ性溶液を添加することにより、アンモニア性窒素の硝化で生成した亜硝酸性窒素によるpH低下を中和して硝化に適当なpHに調整すると共に、アンモニア酸化細菌を高濃度に維持して、その処理能力を高め、安定な亜硝酸型硝化を行うことを可能とする。このような作用機構の詳細は明確ではないが、(重)炭酸塩含有アルカリ性溶液により槽内の(重)炭酸イオン濃度を高く保つことにより、アンモニア酸化細菌の増殖、付着性が高められることによるものと考えられる。このようにアンモニア酸化細菌が繁茂しやすい環境を作ることにより、亜硝酸酸化細菌の生育が制限され、亜硝酸性窒素の硝酸化が抑制される。   In this nitrite-type nitrification tank 2, by adding a (bi) carbonate-containing alkaline solution, the pH drop due to nitrite nitrogen generated by nitrification of ammonia nitrogen is neutralized and adjusted to an appropriate pH for nitrification At the same time, ammonia oxidizing bacteria can be maintained at a high concentration to increase the treatment capacity and to perform stable nitrite type nitrification. The details of such a mechanism of action are not clear, but by keeping the (heavy) carbonate ion concentration in the tank high with the (bi) carbonate-containing alkaline solution, the growth and adhesion of ammonia-oxidizing bacteria is enhanced. It is considered a thing. By creating an environment in which ammonia-oxidizing bacteria easily grow in this way, the growth of nitrite-oxidizing bacteria is limited, and nitrification of nitrite nitrogen is suppressed.

亜硝酸型硝化槽2への(重)炭酸塩含有アルカリ性溶液の添加量は、原水のアンモニア性窒素に対する(重)炭酸塩の炭素換算モル比(C/N比。以下単に「C/N比」と称す。)で0.5以上、特に0.5〜2.0とすることが好ましい。C/N比が0.5未満では、(重)炭酸塩を添加することによる上記効果を十分に得ることができない場合がある。C/N比が2.0を超えると高pHとなり、アンモニア酸化細菌に阻害が出ることがあるため、C/N比は2.0以下とする。   The amount of the (bi) carbonate-containing alkaline solution added to the nitrite type nitrification tank 2 is the carbon equivalent molar ratio of the (bi) carbonate to the ammoniacal nitrogen of the raw water (C / N ratio. Hereinafter, simply referred to as “C / N ratio”). It is preferably 0.5 or more, particularly 0.5 to 2.0. When the C / N ratio is less than 0.5, the above-mentioned effect due to the addition of (bi) carbonate may not be sufficiently obtained. If the C / N ratio exceeds 2.0, the pH becomes high and the ammonia oxidizing bacteria may be inhibited, so the C / N ratio is set to 2.0 or less.

また、安定な亜硝酸型硝化を行うために、亜硝酸型硝化槽2から流出する硝化液のアンモニア性窒素濃度と亜硝酸性窒素濃度との比は1.0:1.0〜1.5、特に1.0:1.32〜1.4となるようにするのが好ましく、このためには、亜硝酸型硝化槽2内のpHを6〜8、特に7.3〜7.8となるように制御することが望ましい。   Moreover, in order to perform stable nitrite type nitrification, the ratio of ammonia nitrogen concentration and nitrite nitrogen concentration of the nitrification liquid flowing out from the nitrite type nitrification tank 2 is 1.0: 1.0 to 1.5. In particular, it is preferably 1.0: 1.32 to 1.4. For this purpose, the pH in the nitrite nitrification tank 2 is set to 6 to 8, particularly 7.3 to 7.8. It is desirable to control so that it becomes.

従って、バイオガスを吸収した(重)炭酸塩含有アルカリ性溶液の添加により上記C/N比とpH値を共に満たすことができるように、バイオガスの吸収に用いるアルカリ性溶液のアルカリ濃度やガス吸収塔6における接触条件等を適宜設定しておくことが好ましい。   Therefore, the alkali concentration of the alkaline solution used for biogas absorption and the gas absorption tower so that both the C / N ratio and the pH value can be satisfied by adding the (bi) carbonate-containing alkaline solution that has absorbed biogas. It is preferable to set the contact conditions and the like in 6 as appropriate.

また、安定な亜硝酸型硝化を行うためには、硝化処理の開始時に亜硝酸型硝化槽2内のアンモニア性窒素濃度が、300mg/L以上となるように、好ましくは500〜1,500mg/Lとなるように、亜硝酸型硝化槽2にアンモニア性窒素を添加することが好ましい。このような濃度でアンモニア性窒素を存在させることにより、アンモニア性窒素が亜硝酸酸化細菌に与える毒性の効果で良好な亜硝酸型硝化を行えるようになる。   In order to perform stable nitrite type nitrification, the ammoniacal nitrogen concentration in the nitrite type nitrification tank 2 is preferably 500 to 1,500 mg / L so that the concentration of ammoniacal nitrogen in the nitrite type nitrification tank 2 is 300 mg / L or more. It is preferable to add ammoniacal nitrogen to the nitrite type nitrification tank 2 so as to be L. The presence of ammonia nitrogen at such a concentration makes it possible to perform good nitrite type nitrification due to the toxic effect of ammonia nitrogen on nitrite oxidizing bacteria.

更に、安定な亜硝酸型硝化を行うために、この亜硝酸型硝化槽2内のDO濃度が0.5〜4mg/Lとなるように硝化槽2の曝気量を調節することが好ましい。この曝気量の調節は、例えば、硝化槽2内にDO計を設け、このDO計の測定結果に基いて、硝化槽2の散気管2Aに空気を供給するブロワの風量を制御することにより行うことができる。硝化槽2内のDO濃度が4mg/Lを超えるとDOが過剰となって、硝化反応が硝酸型となり、硝酸性窒素が生成するようになるため好ましくない。0.5mg/L未満では硝化に必要な酸素量が不足する。   Furthermore, in order to perform stable nitrite type nitrification, it is preferable to adjust the amount of aeration in the nitrification tank 2 so that the DO concentration in the nitrite type nitrification tank 2 is 0.5 to 4 mg / L. The adjustment of the aeration amount is performed, for example, by providing a DO meter in the nitrification tank 2 and controlling the air volume of the blower that supplies air to the air diffuser 2A of the nitrification tank 2 based on the measurement result of the DO meter. be able to. If the DO concentration in the nitrification tank 2 exceeds 4 mg / L, DO becomes excessive, the nitrification reaction becomes nitric acid type, and nitrate nitrogen is generated, which is not preferable. If it is less than 0.5 mg / L, the amount of oxygen necessary for nitrification is insufficient.

更に、安定な亜硝酸型硝化のために、亜硝酸型硝化槽2内の水温は10〜40℃とするのが好ましい。水温が40℃を超える場合、或いは10℃未満では硝化活性が劣るものとなる。   Further, for stable nitrite type nitrification, the water temperature in the nitrite type nitrification tank 2 is preferably 10 to 40 ° C. When the water temperature exceeds 40 ° C. or below 10 ° C., the nitrification activity is inferior.

亜硝酸型硝化槽2からの硝化液は、次いで、ANAMMOX脱窒槽3に導入され、アンモニア性窒素を電子供与体とし亜硝酸性窒素を電子受容体として脱窒反応を行うANAMMOX菌の作用により脱窒処理される。このANAMMOX菌による脱窒処理で、アンモニア性窒素と亜硝酸性窒素とを効率的に反応させて残留窒素を低減するために、亜硝酸型硝化槽2からの硝化液は、アンモニア性窒素:亜硝酸性窒素=1:1.32〜1.4モル比の硝化液であることが好ましい。   The nitrification solution from the nitrite type nitrification tank 2 is then introduced into the ANAMMOX denitrification tank 3, and denitrified by the action of ANAMMOX bacteria which performs a denitrification reaction using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. Nitrogenized. In order to reduce the residual nitrogen by efficiently reacting ammonia nitrogen and nitrite nitrogen by the denitrification treatment by the ANAMOX bacteria, the nitrification liquid from the nitrite type nitrification tank 2 is ammonia nitrogen: Nitrate nitrogen = 1: 1.32 to 1.4 molar ratio is preferred.

ANAMMOX脱窒槽3における処理条件には特に制限はないが、一般的には、次のような条件を採用することが好ましい。
pH :6〜9、特に6.5〜8.0
DO濃度 :0〜2.5mg/L、特に0〜0.2mg/L
温度 :10〜40℃、特に20〜35℃
BOD濃度:0〜50mg/L、特に0〜20mg/L
窒素負荷 :0.1〜10kg−N/m/日、特に0.2〜5kg−N/m/日
Although there is no restriction | limiting in particular in the treatment conditions in the ANAMOX denitrification tank 3, Generally, it is preferable to employ | adopt the following conditions.
pH: 6-9, especially 6.5-8.0
DO concentration: 0 to 2.5 mg / L, especially 0 to 0.2 mg / L
Temperature: 10-40 ° C, especially 20-35 ° C
BOD concentration: 0-50 mg / L, especially 0-20 mg / L
Nitrogen load: 0.1 to 10 kg-N / m 3 / day, especially 0.2 to 5 kg-N / m 3 / day

本発明で用いる亜硝酸型硝化槽2及びANAMMOX脱窒槽3の型式には特に制限はない。固定床、流動床、グラニュール法、担体添加法等の生物膜式の反応槽であれば、後段の固液分離のための沈殿槽を省略することができる。汚泥懸濁式の反応槽であれば、その流出水を沈殿槽や膜分離装置で固液分離して分離汚泥を該槽に返送することで系内に汚泥を保持することができる。また、亜硝酸型硝化槽2はエアリフト型曝気槽であっても良く、ANAMMOX脱窒槽3はエアの代りに窒素ガスを用いたガスリフト型反応槽であっても良い。また、ANAMMOX脱窒槽3は、ANAMMOX菌のグラニュール汚泥床を形成したUSB(Upflow Sludge Bed;上向流汚泥床)反応槽であっても良い。このような反応槽であれば、後段の沈殿槽を省略することができる。   There are no particular limitations on the types of the nitrite nitrification tank 2 and the ANAMOX denitrification tank 3 used in the present invention. In the case of a biofilm type reaction tank such as a fixed bed, fluidized bed, granule method, and carrier addition method, a subsequent precipitation tank for solid-liquid separation can be omitted. If it is a sludge suspension type reaction tank, sludge can be held in the system by separating the sludge from the effluent with a sedimentation tank or a membrane separator and returning the separated sludge to the tank. The nitrous acid type nitrification tank 2 may be an air lift type aeration tank, and the ANAMOX denitrification tank 3 may be a gas lift type reaction tank using nitrogen gas instead of air. The ANAMMOX denitrification tank 3 may be a USB (Upflow Sludge Bed) reaction tank in which a granular sludge bed of ANAMOX bacteria is formed. With such a reaction tank, the subsequent precipitation tank can be omitted.

図1の方法では、ANAMMOX脱窒槽の流出液は次いで更に脱窒槽(仕上げ脱窒槽)4に導入して、メタノール等の有機物を添加し、撹拌下、ANAMMOX反応で生成した硝酸や残留する亜硝酸性窒素を脱窒細菌により嫌気条件下で窒素ガスに分解する脱窒処理を行い、更に、この仕上げ脱窒槽4の流出液を再曝気槽5に導入して、散気管5Aによる曝気下、残留するBOD成分を好気処理するが、この仕上げ脱窒槽4及び再曝気槽5は必ずしも必要とされず、これを省略しても良い。   In the method of FIG. 1, the effluent from the ANAMMOX denitrification tank is then further introduced into a denitrification tank (finish denitrification tank) 4, and organic substances such as methanol are added thereto. Denitrification by denitrifying bacteria to decompose into nitrogen gas under anaerobic conditions, and the effluent of this finishing denitrification tank 4 is reintroduced into the aeration tank 5 and remains under aeration by the diffuser 5A Although the BOD component to be processed is aerobically treated, the finishing denitrification tank 4 and the re-aeration tank 5 are not necessarily required and may be omitted.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
図1に示す方法に従って、食品加工排水(BOD:2000ppm、NH−N:400ppm)を原水として処理を行った。
Example 1
In accordance with the method shown in FIG. 1, the food processing wastewater (BOD: 2000 ppm, NH 4 —N: 400 ppm) was used as raw water.

各槽の仕様、処理条件は次の通りである。
嫌気性メタン発酵槽:上向流式スラッジブランケット型嫌気性処理槽
COD負荷=7kg/m・day
亜硝酸型硝化槽:3mm角スポンジ担体にアンモニア酸化細菌を付着
N負荷=3kg/m・day
NOへの転換速度=1.5kg/m・day
pH=7.6に制御(嫌気性メタン発酵槽からのバイオガスを4重
量%NaOH水溶液に吸収させた液をpH調整剤とした。C/N比
=1.0〜1.5)
ANAMMOX脱窒槽:上向流式反応槽(ANAMMOX菌の自己造粒グラニュール
を使用)
T−N負荷=4kg/m・day
仕上げ脱窒槽:浮遊式脱窒槽(メタノール添加)
N負荷=1kg/m・day
再曝気槽:浮遊式曝気槽
HRT=0.5hr
The specifications and processing conditions of each tank are as follows.
Anaerobic methane fermentation tank: Upflow sludge blanket type anaerobic treatment tank
COD load = 7 kg / m 3 · day
Nitrite-type nitrification tank: Ammonia-oxidizing bacteria adhere to 3 mm square sponge carrier
N load = 3kg / m 3 · day
Conversion rate to NO 2 = 1.5 kg / m 3 · day
Control to pH = 7.6 (4 layers of biogas from anaerobic methane fermenter
A liquid absorbed in a volume% NaOH aqueous solution was used as a pH adjuster. C / N ratio
= 1.0-1.5)
ANAMMOX denitrification tank: Upflow type reaction tank (NAAMMOX self-granulating granule
use)
TN load = 4kg / m 3 · day
Finishing denitrification tank: floating denitrification tank (methanol added)
N load = 1kg / m 3 · day
Re-aeration tank: Floating aeration tank
HRT = 0.5 hr

その結果、次のような反応成績が得られた。   As a result, the following reaction results were obtained.

嫌気性メタン発酵槽では、原水中のBODの90%が除去され、その5%に相当する余剰汚泥が生成した。嫌気性メタン発酵槽の流出水中のBOD残留量は200mg/Lであった。亜硝酸型硝化槽では、アンモニア性窒素の60%(240mg/L)が亜硝酸性窒素に酸化された。従って、必要酸素量は、原水中のアンモニア性窒素の60%を亜硝酸性窒素に転換する分と、残留BOD200mg/Lを酸化分解する分との合計である。   In the anaerobic methane fermenter, 90% of the BOD in the raw water was removed, and surplus sludge corresponding to 5% was generated. The residual amount of BOD in the effluent of the anaerobic methane fermenter was 200 mg / L. In the nitrite type nitrification tank, 60% (240 mg / L) of ammonia nitrogen was oxidized to nitrite nitrogen. Therefore, the required oxygen amount is the total of the amount that converts 60% of ammonia nitrogen in the raw water to nitrite nitrogen and the amount that oxidatively decomposes residual BOD 200 mg / L.

その後のANAMMOX脱窒槽では、残留したアンモニア性窒素と亜硝酸性窒素とが反応して窒素ガスとなり、除去されたアンモニア性窒素(160mg/L)の26%が硝酸性窒素(約45mg/L)となった。   In the subsequent ANAMOX denitrification tank, the remaining ammonia nitrogen and nitrite nitrogen react to form nitrogen gas, and 26% of the removed ammonia nitrogen (160 mg / L) is nitrate nitrogen (about 45 mg / L). It became.

その後段の仕上げ脱窒槽ではメタノールを添加して残留硝酸性窒素(45mg/L)を脱窒した。   In the final finishing denitrification tank, methanol was added to denitrify residual nitrate nitrogen (45 mg / L).

この処理において、余剰汚泥は、嫌気性メタン発酵槽から95mg/L−原水、亜硝酸型硝化槽から30mg/L−原水、ANAMMOX脱窒槽から20mg/L−原水、仕上げ脱窒槽から40mg/L−原水、再曝気槽から5mg/L−原水、合計190mg/L−原水発生した。   In this treatment, excess sludge is 95 mg / L-raw water from the anaerobic methane fermentation tank, 30 mg / L-raw water from the nitrite type nitrification tank, 20 mg / L-raw water from the ANAMX denitrification tank, and 40 mg / L- from the finishing denitrification tank. A total of 190 mg / L-raw water was generated from the raw water and the re-aeration tank.

各工程の処理水の水質、酸素供給量、メタノール添加量、余剰汚泥発生量等を表1にまとめて示す。   Table 1 shows the quality of treated water, oxygen supply amount, methanol addition amount, surplus sludge generation amount, etc. in each step.

比較例1
実施例1において、嫌気性メタン発酵槽、亜硝酸型硝化槽及びANAMMOX脱窒槽の代りに、循環式硝化脱窒槽を設け、原水をまず脱窒槽に導入して原水中の硝酸性窒素を窒素ガスに分解し、この脱窒槽の流出水を硝化槽に送給して、アンモニア性窒素を硝酸性窒素に酸化し、この硝化槽の流出水の一部を脱窒槽に循環すると共に、残部を次の仕上げ脱窒槽及び再曝気槽に送給するようにしたこと以外は同様にして処理を行った。
Comparative Example 1
In Example 1, instead of the anaerobic methane fermentation tank, the nitrite type nitrification tank and the ANAMOX denitrification tank, a circulation type nitrification denitrification tank is provided, and the raw water is first introduced into the denitrification tank, and nitrate nitrogen in the raw water is converted into nitrogen gas. The effluent from this denitrification tank is fed to the nitrification tank, ammonia nitrogen is oxidized to nitrate nitrogen, and a part of the effluent from this nitrification tank is circulated to the denitrification tank, and the remainder is The treatment was performed in the same manner except that it was fed to the finishing denitrification tank and the re-aeration tank.

この処理では、前段の脱窒槽において、原水中のBODを利用して原水及び循環水中の硝酸性窒素が除去されるため、除去された硝酸性窒素に対応するBOD(窒素分の3倍)が消費される。また、硝化槽では、アンモニア性窒素の残量が硝酸性窒素に酸化される。硝化槽から脱窒槽への循環水量の関係により、水理学的に硝酸性窒素の除去率が90%となるので、硝酸性窒素40mg/Lが残留する。この硝酸性窒素は仕上げ脱窒槽でメタノール添加により脱窒される。   In this treatment, since nitrate nitrogen in raw water and circulating water is removed using BOD in raw water in the previous denitrification tank, BOD (three times the nitrogen content) corresponding to the removed nitrate nitrogen is obtained. Is consumed. In the nitrification tank, the remaining amount of ammonia nitrogen is oxidized to nitrate nitrogen. Due to the relationship between the amount of circulating water from the nitrification tank to the denitrification tank, the removal rate of nitrate nitrogen is hydraulically 90%, so nitrate nitrogen 40 mg / L remains. This nitrate nitrogen is denitrified by adding methanol in the finishing denitrification tank.

この処理において、余剰汚泥は、硝化脱窒槽から600mg/L−原水、仕上げ脱窒槽から35mg/L−原水、再曝気槽から5mg/L−原水、合計640mg/L−原水発生した。   In this treatment, surplus sludge was generated from the nitrification denitrification tank to 600 mg / L-raw water, from the final denitrification tank to 35 mg / L-raw water, and from the re-aeration tank to 5 mg / L-raw water, for a total of 640 mg / L-raw water.

各工程の処理水の水質、酸素供給量、メタノール添加量、余剰汚泥発生量等を表1にまとめて示す。   Table 1 shows the quality of treated water, oxygen supply amount, methanol addition amount, surplus sludge generation amount, etc. in each step.

Figure 0004496735
Figure 0004496735

表1より、本発明によれば、従来法に比べて酸素供給量及び汚泥発生量を格段に低減した上で、良好な水質の処理水を得ることができることが分かる。   From Table 1, it can be seen that according to the present invention, treated water with good water quality can be obtained while the oxygen supply amount and sludge generation amount are significantly reduced as compared with the conventional method.

本発明のBOD及び窒素含有排水の生物的処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment method of BOD and nitrogen containing waste_water | drain of this invention.

符号の説明Explanation of symbols

1 嫌気性メタン発酵槽
2 亜硝酸型硝化槽
3 ANAMMOX脱窒槽
4 仕上げ脱窒槽
5 再曝気槽
6 ガス吸収塔
7 アルカリ貯槽
8 炭酸ガス吸収液貯留槽
DESCRIPTION OF SYMBOLS 1 Anaerobic methane fermentation tank 2 Nitrite-type nitrification tank 3 ANAMMOX denitrification tank 4 Finishing denitrification tank 5 Re-aeration tank 6 Gas absorption tower 7 Alkali storage tank 8 Carbon dioxide gas absorption liquid storage tank

Claims (3)

BOD及び窒素含有排水を、
嫌気性メタン発酵法によりBODを除去する嫌気処理工程、
アンモニア性窒素の一部を亜硝酸性窒素とする亜硝酸型硝化工程、
アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性脱窒微生物と接触させて脱窒する脱窒工程
の順に処理するBOD及び窒素含有排水の生物的処理方法であって、
前記嫌気処理工程で発生したバイオガスをアルカリ性溶液と接触させて得た(重)炭酸塩含有アルカリ性溶液を、前記亜硝酸型硝化工程のpH調整に使用することを特徴とするBOD及び窒素含有排水の生物的処理方法。
BOD and nitrogen-containing wastewater
Anaerobic treatment process to remove BOD by anaerobic methane fermentation,
Nitrite-type nitrification process in which a part of ammonia nitrogen is nitrite nitrogen,
A biological treatment method for BOD and nitrogen-containing wastewater that is treated in the order of a denitrification process in which ammonia nitrogen is used as an electron donor and nitrite nitrogen is used as an electron acceptor in contact with an autotrophic denitrification microorganism. There,
BOD and nitrogen-containing wastewater characterized in that a (bi) carbonate-containing alkaline solution obtained by contacting biogas generated in the anaerobic treatment step with an alkaline solution is used for pH adjustment in the nitrite type nitrification step Biological treatment method.
請求項1において、前記亜硝酸型硝化工程への前記(重)炭酸塩含有アルカリ性溶液の添加量が、前記BOD及び窒素含有排水のアンモニア性窒素に対する(重)炭酸塩の炭素換算モル比で0.5〜2.0であることを特徴とするBOD及び窒素含有排水の生物的処理方法。 In Claim 1, the addition amount of the (heavy) carbonate-containing alkaline solution to the nitrite-type nitrification step is 0 as a carbon-converted molar ratio of the (heavy) carbonate to ammonia nitrogen in the BOD and nitrogen-containing wastewater. A biological treatment method of BOD and nitrogen-containing wastewater, characterized by being from 5 to 2.0 . 請求項1又は2において、前記脱窒工程の処理水を従属栄養性脱窒微生物により処理した後、曝気処理することを特徴とするBOD及び窒素含有排水の生物的処理方法。   The biological treatment method for BOD and nitrogen-containing wastewater according to claim 1 or 2, wherein the treated water in the denitrification step is treated with heterotrophic denitrification microorganisms and then aerated.
JP2003304913A 2003-08-28 2003-08-28 Biological treatment of BOD and nitrogen-containing wastewater Expired - Fee Related JP4496735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304913A JP4496735B2 (en) 2003-08-28 2003-08-28 Biological treatment of BOD and nitrogen-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304913A JP4496735B2 (en) 2003-08-28 2003-08-28 Biological treatment of BOD and nitrogen-containing wastewater

Publications (2)

Publication Number Publication Date
JP2005074253A JP2005074253A (en) 2005-03-24
JP4496735B2 true JP4496735B2 (en) 2010-07-07

Family

ID=34408474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304913A Expired - Fee Related JP4496735B2 (en) 2003-08-28 2003-08-28 Biological treatment of BOD and nitrogen-containing wastewater

Country Status (1)

Country Link
JP (1) JP4496735B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107098540A (en) * 2017-05-27 2017-08-29 中国矿业大学 The high ammonia nitrogen Denitrification of Coking Wastewater membrane processing method of short distance nitration Anammox

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074191A1 (en) * 2003-02-21 2004-09-02 Kurita Water Industries Ltd. Method for treating water containing ammonia nitrogen
JP4632356B2 (en) * 2005-03-29 2011-02-16 三菱重工環境・化学エンジニアリング株式会社 Biological nitrogen removal method and system
JP4966523B2 (en) * 2005-08-08 2012-07-04 株式会社タクマ Biomass processing system
JP4775944B2 (en) * 2005-08-24 2011-09-21 オルガノ株式会社 Wastewater treatment method and apparatus
JP4817056B2 (en) * 2006-03-13 2011-11-16 株式会社日立プラントテクノロジー Method and apparatus for treating nitrogen-containing water
WO2008068829A1 (en) 2006-12-04 2008-06-12 Incorporated Administrative Agency National Agriculture And Food Research Organization Method for producing biomineral-containing substance and organic hydroponics method
JP4671178B2 (en) * 2007-06-01 2011-04-13 株式会社日立プラントテクノロジー Nitrogen removal method and apparatus
JP4978841B2 (en) * 2007-07-23 2012-07-18 株式会社日立プラントテクノロジー Method and apparatus for producing liquid fertilizer
JP4835536B2 (en) * 2007-08-08 2011-12-14 株式会社日立プラントテクノロジー Removal of organic substances and nitrogen from liquid to be treated
JP2010054241A (en) * 2008-08-26 2010-03-11 Mitsui Eng & Shipbuild Co Ltd Methods for measurement and generation control of methane
JP5025020B2 (en) * 2008-11-07 2012-09-12 国立大学法人帯広畜産大学 Organic waste treatment system and method
JP4985628B2 (en) * 2008-12-10 2012-07-25 株式会社日立プラントテクノロジー Waste water treatment method and treatment apparatus
JP2012196588A (en) * 2011-03-18 2012-10-18 Kurita Water Ind Ltd Water treatment method and ultrapure water production method
JP5194151B2 (en) * 2011-07-20 2013-05-08 前澤工業株式会社 Waste water treatment equipment
JP5858763B2 (en) * 2011-12-09 2016-02-10 株式会社クボタ Nitrogen-containing organic wastewater treatment system and treatment method
JP5873744B2 (en) * 2012-03-15 2016-03-01 水ing株式会社 Organic wastewater and organic waste treatment method and treatment equipment
CN102718314B (en) * 2012-05-24 2013-07-24 北京工业大学 Method for quick starting of anaerobic ammonium oxidation technology at room temperature in low matrix
CN103588352B (en) * 2013-09-03 2015-01-07 北京工业大学 Two-stage backflow simultaneous nitrogen and phosphorus removal device and technology for denitrification phosphorus removal, shortcut nitrification and anaerobic ammonia oxidation of municipal sewage
CN103693807B (en) * 2013-12-13 2015-05-13 重庆大学 Combination method for treating pickled vegetable processing wastewater based on anaerobic ammonia oxidation
TWI586610B (en) * 2015-01-15 2017-06-11 黎明興技術顧問股份有限公司 Fluidized bed reactor for ammonia laden wastewater and method for treating ammonia laden wastewater
JP6475584B2 (en) * 2015-07-09 2019-02-27 鹿島建設株式会社 Organic waste treatment system and organic waste treatment method
CN114590951A (en) * 2020-12-04 2022-06-07 中国石油天然气集团有限公司 Nitrogen removal process and nitrogen removal system for rare earth tail water
CN112960773B (en) * 2021-02-01 2022-04-08 北京工商大学 Low C/N domestic sewage deep denitrification method based on normal state addition of oxidized nitrogen
CN113526668A (en) * 2021-06-02 2021-10-22 青岛大学 Device and method for simultaneously realizing urban sewage treatment and excess sludge reduction
CN114735819B (en) * 2022-03-08 2023-06-30 苏州科技大学 Method for treating domestic sewage by ABR pretreatment-short-range denitrification anaerobic ammonia oxidation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576892A (en) * 1991-09-25 1993-03-30 Ngk Insulators Ltd Treatment of organic waste water containing nitrogen component
JPH1177087A (en) * 1997-09-05 1999-03-23 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for anaerobic biotreatment of organic waste water
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576892A (en) * 1991-09-25 1993-03-30 Ngk Insulators Ltd Treatment of organic waste water containing nitrogen component
JPH1177087A (en) * 1997-09-05 1999-03-23 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for anaerobic biotreatment of organic waste water
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107098540A (en) * 2017-05-27 2017-08-29 中国矿业大学 The high ammonia nitrogen Denitrification of Coking Wastewater membrane processing method of short distance nitration Anammox
CN107098540B (en) * 2017-05-27 2018-06-12 中国矿业大学 The high ammonia nitrogen Denitrification of Coking Wastewater membrane processing method of short distance nitration-anaerobic ammoxidation

Also Published As

Publication number Publication date
JP2005074253A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
US7438816B2 (en) Method for treating water containing ammonium-nitrogen
JP4572504B2 (en) Biological denitrification method
JP6227509B2 (en) Waste water treatment apparatus and waste water treatment method
JP5347221B2 (en) Nitrogen-containing liquid processing method and apparatus
JP4691938B2 (en) Nitrogen-containing liquid processing method and apparatus
JP2009166044A (en) Method of treating ammonia-comprising waste water
JP4882175B2 (en) Nitrification method
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP5100091B2 (en) Water treatment method
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
JP5006845B2 (en) Method for suppressing generation of nitrous oxide
JP4872171B2 (en) Biological denitrification equipment
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP4867098B2 (en) Biological denitrification method and apparatus
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP4957229B2 (en) Waste water treatment method and waste water treatment apparatus
JP3933009B2 (en) Wastewater treatment method
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP3736397B2 (en) Method for treating organic matter containing nitrogen component
KR20110045812A (en) Apparatus and method for removing nitrogen from anaerobic digested waste water
KR20100083223A (en) Method for high class treatment of wastewater using gas permeable membrane-attached biofilm
JP3837757B2 (en) Method for treating selenium-containing water
JP2006088057A (en) Method for treating ammonia-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees