JP4691938B2 - Nitrogen-containing liquid processing method and apparatus - Google Patents

Nitrogen-containing liquid processing method and apparatus Download PDF

Info

Publication number
JP4691938B2
JP4691938B2 JP2004279413A JP2004279413A JP4691938B2 JP 4691938 B2 JP4691938 B2 JP 4691938B2 JP 2004279413 A JP2004279413 A JP 2004279413A JP 2004279413 A JP2004279413 A JP 2004279413A JP 4691938 B2 JP4691938 B2 JP 4691938B2
Authority
JP
Japan
Prior art keywords
nitrogen
denitrification
tank
liquid
partial nitritation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004279413A
Other languages
Japanese (ja)
Other versions
JP2006088092A (en
Inventor
孝明 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004279413A priority Critical patent/JP4691938B2/en
Publication of JP2006088092A publication Critical patent/JP2006088092A/en
Application granted granted Critical
Publication of JP4691938B2 publication Critical patent/JP4691938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、窒素含有液の処理方法および装置に関し、特にアンモニア性窒素を含む窒素含有液を、アンモニア酸化細菌により部分的に亜硝酸化し、亜硝酸化工程の処理液中の亜硝酸性窒素とアンモニア性窒素とをアナモックス細菌により反応させて窒素ガスに転換し脱窒する窒素含有液の処理方法および装置に関するものである。   The present invention relates to a method and apparatus for treating a nitrogen-containing liquid, and in particular, a nitrogen-containing liquid containing ammonia nitrogen is partially nitrified by ammonia-oxidizing bacteria, and nitrite nitrogen in the treatment liquid of the nitritation step The present invention relates to a method and apparatus for treating a nitrogen-containing liquid in which ammonia nitrogen is reacted with anammox bacteria to be converted into nitrogen gas and denitrified.

窒素含有排液中に含まれる窒素成分、特にアンモニア性窒素は河川、湖沼及び海洋などにおける富栄養化の原因物質の一つであり、排液処理工程で効率的に除去する必要がある。一般に、窒素含有液中の有機性窒素成分は、生物学的な分解を受けてそのほとんどがアンモニア性窒素に転換される。従来の窒素含有液の処理方法では、アンモニア性窒素をアンモニア酸化細菌の働きにより亜硝酸性窒素に酸化し、さらに亜硝酸性窒素を亜硝酸酸化細菌によりアンモニア性窒素を硝酸性窒素に酸化する硝化工程と、これらの亜硝酸性窒素および硝酸性窒素を従属栄養性細菌である脱窒細菌によりメタノール等の有機物を電子供与体として利用して窒素ガスにまで転換する脱窒工程との2段階の生物反応を経て排水中から除去する生物学的硝化脱窒法が一般的であった。このような従属栄養性細菌を利用する硝化脱窒処理では、メタノール等の有機物が必要であるほか、アンモニア性窒素は亜硝酸性窒素を経て硝酸性窒素にまで硝酸化するため、多くの曝気動力が必要になる。   Nitrogen components contained in the nitrogen-containing effluent, in particular ammonia nitrogen, are one of the causative substances of eutrophication in rivers, lakes, and the ocean, and must be efficiently removed in the effluent treatment process. In general, most of the organic nitrogen component in the nitrogen-containing liquid undergoes biological decomposition and is converted to ammoniacal nitrogen. In the conventional treatment method for nitrogen-containing liquids, nitrification is performed by oxidizing ammonia nitrogen to nitrite nitrogen by the action of ammonia oxidizing bacteria, and further oxidizing nitrite nitrogen to nitrate nitrogen by nitrite oxidizing bacteria. And a denitrification process in which these nitrite nitrogen and nitrate nitrogen are converted to nitrogen gas by using an organic substance such as methanol as an electron donor by denitrifying bacteria which are heterotrophic bacteria. Biological nitrification and denitrification, which is removed from wastewater through biological reactions, is common. In nitrification and denitrification treatment using such heterotrophic bacteria, organic matter such as methanol is required, and ammonia nitrogen is nitrated to nitrite nitrogen through nitrite nitrogen. Is required.

このような点を改善する処理方法として、例えば特許文献1により、独立栄養性脱窒細菌を利用する硝化脱窒処理方法が知られている。この方法は、嫌気条件下でアンモニア性窒素を電子供与体、硝酸または亜硝酸性窒素を電子受容体として両者を反応させ、窒素ガスを生成することができる独立栄養性の脱窒微生物群を利用して脱窒する方法であり、有機物の添加は不要とされている。特許文献1では、硝酸イオンを添加してアンモニアと反応させて脱窒する場合について、脱窒反応槽の処理液の一部を脱窒反応槽に循環する例が記載されているが、部分硝化および亜硝酸化については具体的な実施例に基づく記載はない。   As a treatment method for improving such a point, for example, Patent Document 1 discloses a nitrification denitrification treatment method using autotrophic denitrification bacteria. This method utilizes autotrophic denitrifying microorganisms that can generate nitrogen gas by reacting ammonia nitrogen as an electron donor and nitric acid or nitrite nitrogen as an electron acceptor under anaerobic conditions. Thus, it is a denitrification method, and it is not necessary to add organic substances. Patent Document 1 describes an example in which a part of the treatment liquid in the denitrification reaction tank is circulated to the denitrification reaction tank when nitrate ions are added and reacted with ammonia to denitrify, but partial nitrification is described. There is no description of nitritation based on specific examples.

特許文献2には、アンモニア性窒素の一部を硝酸および/または亜硝酸に酸化し、部分硝化液中の硝酸および/または亜硝酸性窒素とアンモニア性窒素とを独立栄養性脱窒細菌により反応させて窒素ガスに転換する脱窒方法が記載されている。そして部分硝化工程と脱窒工程との間にpH調整槽を設け、脱窒工程の脱窒処理液をpH調整槽に循環して、脱窒処理に適したpH7〜8に調整する処理方法が記載されている。ここではpH調整槽はpH調整の役割と同時に、結合酸素脱窒素菌を適切なpH条件で増量培養し、脱窒工程に送り込む役割を兼ねている。特許文献2では、アンモニア性窒素の一部を硝酸性窒素に酸化し、これをアンモニア性窒素と反応させて脱窒する場合について記載されており、この場合、脱窒に必要な硝酸化率約40%を達成するに必要なpHは6.0近傍であり、一方脱窒処理に適したpH7〜8であるため、脱窒反応槽の処理液の一部を脱窒反応槽に循環する例が記載されている。しかし亜硝酸化およびそのための部分硝化については具体的な実施例に基づく記載はない。   In Patent Document 2, a part of ammonia nitrogen is oxidized to nitric acid and / or nitrous acid, and nitric acid and / or nitrite nitrogen in the partial nitrification solution and ammonia nitrogen are reacted by autotrophic denitrifying bacteria. And a denitrification method in which it is converted to nitrogen gas is described. And the processing method which provides a pH adjustment tank between the partial nitrification process and the denitrification process, circulates the denitrification process liquid of a denitrification process to a pH adjustment tank, and adjusts to pH 7-8 suitable for a denitrification process. Are listed. Here, the pH adjusting tank has the role of adjusting the pH and, at the same time, increasing the amount of bound oxygen denitrifying bacteria under appropriate pH conditions and feeding it into the denitrifying step. Patent Document 2 describes a case where a part of ammonia nitrogen is oxidized to nitrate nitrogen, and this is reacted with ammonia nitrogen for denitrification. In this case, the nitrification rate required for denitrification is about Example of circulating a part of the treatment liquid in the denitrification reaction tank to the denitrification reaction tank because the pH required to achieve 40% is around 6.0 while the pH is 7 to 8 suitable for the denitrification treatment. Is described. However, nitritation and partial nitrification therefor are not described based on specific examples.

特許文献1および2の方法は、いずれも脱窒処理に適したpHに調整するために、部分硝化工程と脱窒工程との中間に直接またはpH調整槽を設けて、脱窒工程の脱窒処理液を循環しpH調整しているが、これは硝酸性窒素にまで酸化する場合に、硝化に適したpHと脱窒に適したpHが大きく相違するからであると推測される。また特許文献2では、pH調整剤の添加なしにpH調整が可能であるとされているが、これも硝酸性窒素にまで酸化する場合に特有の現象であると推測される。しかし亜硝酸性窒素に酸化し、硝酸化は行わない部分亜硝酸化の場合、部分亜硝酸化工程のpH調整をしないと、亜硝酸化の進行に伴ってアンモニア酸化細菌の活性が低下し、亜硝酸化が停止して脱窒が行えなくなる。そして亜硝酸化工程でpH調整剤(アルカリ)を注入すると、脱窒工程ではpH調整剤(酸)の注入が必要になり、薬剤コストが高くなるという問題点がある。
特表平3−501099号公報 特開平8−192185号公報
In both methods of Patent Documents 1 and 2, in order to adjust the pH to be suitable for the denitrification treatment, a denitrification process in the denitrification process is performed by providing a pH adjustment tank directly or between the partial nitrification process and the denitrification process. The pH is adjusted by circulating the treatment liquid, which is presumed to be because the pH suitable for nitrification and the pH suitable for denitrification differ greatly when oxidized to nitrate nitrogen. Further, in Patent Document 2, it is supposed that pH adjustment is possible without adding a pH adjusting agent, but this is also presumed to be a phenomenon peculiar when oxidizing to nitrate nitrogen. However, in the case of partial nitritation that oxidizes to nitrite nitrogen and does not perform nitrification, if the pH of the partial nitritation process is not adjusted, the activity of ammonia oxidizing bacteria decreases with the progress of nitritation, Nitrite is stopped and denitrification cannot be performed. When a pH adjuster (alkali) is injected in the nitritation step, it is necessary to inject a pH adjuster (acid) in the denitrification step, which increases the cost of the drug.
Japanese National Patent Publication No. 3-501099 JP-A-8-192185

本発明の課題は、硝化のための曝気動力が少なく、pH調整が容易で、pH調整槽およびpH調整剤のコストを小さくし、効率よく処理を行って、高水質の処理液を得るとともに、発生汚泥量を少なくすることができる窒素含有液の処理方法および装置を提供することである。   The problem of the present invention is that the aeration power for nitrification is small, pH adjustment is easy, the cost of the pH adjustment tank and the pH adjuster is reduced, and the treatment is efficiently performed to obtain a high-quality treatment solution, The object is to provide a method and apparatus for treating a nitrogen-containing liquid that can reduce the amount of generated sludge.

本発明は、次の窒素含有液の処理方法および装置である。
(1) アンモニア性窒素含有液をアンモニア酸化細菌の存在下に曝気し、アンモニア性窒素成分の50〜60%を亜硝酸性窒素にまで酸化する部分亜硝酸化工程と、
アナモックス細菌の存在下に、部分亜硝酸化工程の処理液中の亜硝酸性窒素とアンモニア性窒素とを反応させて窒素ガスに転換する脱窒工程と、
脱窒工程の処理液を部分亜硝酸化工程に循環して、部分亜硝酸化工程の反応液のpHを6.8〜8.7に調整するとともに、脱窒工程の入口での亜硝酸性窒素の濃度500mg/L以下になるように調整するpH調整工程と
を含む窒素含有液の処理方法。
(2) 部分亜硝酸化工程にさらにアルカリを注入してpH調整する上記(1)記載の方法。
(3) アンモニア性窒素含有液をアンモニア酸化細菌の存在下に曝気し、アンモニア性窒素成分の50〜60%を亜硝酸性窒素にまで酸化する部分亜硝酸化槽と、
アナモックス細菌の存在下に、部分亜硝酸化槽の処理液中の亜硝酸性窒素とアンモニア性窒素とを反応させて窒素ガスに転換する脱窒槽と、
脱窒槽の処理液を部分亜硝酸化槽に循環して、部分亜硝酸化槽の反応液のpHを6.8〜8.7に調整するとともに、脱窒槽の入口での亜硝酸性窒素の濃度500mg/L以下になるように調整するpH調整装置と
を含む窒素含有液の処理装置。
(4) pH調整装置が、脱窒槽の処理液を部分亜硝酸化槽に循環する循環路と、部分亜硝酸化槽にアルカリを注入する薬注路とを含む上記(3)記載の装置。
The present invention is the following method and apparatus for treating a nitrogen-containing liquid.
(1) A partial nitritation step of aeration of an ammoniacal nitrogen-containing liquid in the presence of ammonia-oxidizing bacteria and oxidizing 50 to 60% of the ammoniacal nitrogen component to nitrite nitrogen;
A denitrification step of reacting nitrite nitrogen and ammoniacal nitrogen in the treatment liquid of the partial nitritation step in the presence of anammox bacteria to convert to nitrogen gas;
The treatment liquid in the denitrification process is circulated to the partial nitritation process to adjust the pH of the reaction liquid in the partial nitritation process to 6.8 to 8.7, and the nitrite property at the inlet of the denitrification process . And a pH adjusting step for adjusting the nitrogen concentration to be 500 mg / L or less.
(2) The method according to (1) above, wherein the pH is adjusted by further injecting an alkali into the partial nitritation step.
(3) A partial nitritation tank that aerated ammonia nitrogen-containing liquid in the presence of ammonia-oxidizing bacteria and oxidizes 50 to 60% of the ammonia nitrogen component to nitrite nitrogen;
A denitrification tank that reacts nitrite nitrogen and ammonia nitrogen in the treatment liquid of the partial nitrification tank in the presence of anammox bacteria to convert to nitrogen gas;
The treatment liquid in the denitrification tank is circulated to the partial nitritation tank to adjust the pH of the reaction liquid in the partial nitritation tank to 6.8 to 8.7, and the nitrite nitrogen at the inlet of the denitrification tank is adjusted. A nitrogen-containing liquid treatment apparatus comprising: a pH adjustment apparatus that adjusts the concentration to be 500 mg / L or less.
(4) The apparatus according to (3) above, wherein the pH adjusting device includes a circulation path for circulating the treatment liquid in the denitrification tank to the partial nitritation tank and a chemical injection path for injecting alkali into the partial nitritation tank.

本発明において処理の対象となる被処理液は、アンモニア性窒素を含む窒素含有液であり、亜硝酸性窒素、有機性窒素、その他の窒素を含んでいてもよく、下水、し尿、食品排水、肥料工場排水、その他の産業排水などがあげられる。これらの窒素含有液は本発明の処理方法および装置で処理する段階でアンモニア性窒素を含有する被処理液であればよく、有機性窒素を含む場合はあらかじめ嫌気性処理または好気性処理により有機性窒素をアンモニア性窒素に分解して本発明の処理に供することができる。硝酸性窒素は含有しないものが好ましい。   The liquid to be treated in the present invention is a nitrogen-containing liquid containing ammoniacal nitrogen, which may contain nitrite nitrogen, organic nitrogen, and other nitrogen, sewage, human waste, food wastewater, Examples include fertilizer factory wastewater and other industrial wastewater. These nitrogen-containing liquids may be liquids to be treated containing ammoniacal nitrogen at the stage of treatment by the treatment method and apparatus of the present invention. When organic nitrogen is contained, the organic liquid is treated by anaerobic treatment or aerobic treatment in advance. Nitrogen can be decomposed into ammoniacal nitrogen and subjected to the treatment of the present invention. What does not contain nitrate nitrogen is preferable.

本発明においてアンモニア性窒素の亜硝酸化に用いられるアンモニア酸化細菌は、アンモニア性窒素の亜硝酸化に用いられる細菌であって、好気性下にアンモニア性窒素を酸化して亜硝酸性窒素に転換する細菌である。このようなアンモニア酸化細菌は、アンモニア性窒素を含む被処理液を好気性下に酸化することにより発生させることができるが、有機性廃水処理の亜硝酸化工程より採取した汚泥をそのまま、または担体に付着させて使用することができる。   In the present invention, the ammonia-oxidizing bacterium used for nitritation of ammonia nitrogen is a bacterium used for nitritation of ammonia nitrogen, which oxidizes ammonia nitrogen and converts it to nitrite nitrogen under aerobic conditions. Bacteria to do. Such ammonia-oxidizing bacteria can be generated by aerobically oxidizing a liquid to be treated containing ammoniacal nitrogen, but the sludge collected from the nitritation step of organic wastewater treatment is used as it is or as a carrier. It can be used by adhering to.

本発明において脱窒に用いられるアナモックス細菌は、Planctomycetesに属す細菌であって、嫌気性雰囲気でアンモニア性窒素と亜硝酸性窒素を反応させて直接窒素ガスに変換させる脱窒細菌であり、アンモニア性窒素と硝酸性窒素の反応は行わない細菌である。このようなアナモックス細菌は従来の脱窒に用いられた従属栄養性の脱窒細菌とは異なり、独立栄養性の細菌であるため、脱窒に際して従来の脱窒細菌には必要であったメタノール等の栄養源の添加を必要としない。またアナモックス細菌は、アンモニア性窒素と亜硝酸性窒素を反応させて直接窒素ガスに変換させるため、アンモニア性窒素と亜硝酸性窒素を同時に除去でき、しかも有害な廃棄物を生成しない。このようなアナモックス細菌はアンモニア性窒素と亜硝酸性窒素を含む被処理液を嫌気性下に反応させて脱窒することにより発生させることができるが、窒素含有液の脱窒工程より採取した汚泥をそのまま、または担体に付着させて使用することができる。   The anammox bacterium used for denitrification in the present invention is a bacterium belonging to Plantomycetes, which is a denitrification bacterium that reacts ammonia nitrogen and nitrite nitrogen in an anaerobic atmosphere to directly convert to nitrogen gas, and is ammoniacal. It is a bacterium that does not react with nitrogen and nitrate nitrogen. Unlike the heterotrophic denitrification bacteria used for conventional denitrification, such anammox bacteria are autotrophic bacteria, so methanol and the like that were necessary for conventional denitrification bacteria during denitrification No additional nutritional sources are required. In addition, the anammox bacterium reacts ammonia nitrogen and nitrite nitrogen and converts them directly into nitrogen gas, so that ammonia nitrogen and nitrite nitrogen can be removed at the same time, and no harmful waste is generated. Such anammox bacteria can be generated by anaerobic reaction of denitrified liquid containing ammonia nitrogen and nitrite nitrogen, but sludge collected from the denitrification process of nitrogen-containing liquids. Can be used as is or attached to a carrier.

本発明では、まず部分亜硝酸化工程として、被処理液を部分亜硝酸化槽に導入してアンモニア酸化細菌の存在下に曝気し、アンモニア性窒素成分の一部を亜硝酸性窒素にまで酸化する。この場合、アンモニア酸化細菌を含む生物汚泥と被処理液を好気状態で接触させることにより、部分亜硝酸化を行う。上記の処理は連続式、回分式、半回分式など、任意の処理方式を採用できる。アンモニア酸化細菌は増殖速度が遅いので、担体を槽内に投入してアンモニア酸化細菌を担持させるのが好ましい。担体としてはスポンジのような連続気泡を有する軽質の粒状の材料が好ましいが、他の担体でもよい。粒状担体の粒径は任意であるが、例えば1〜5mm程度の粒状担体が使用できる。   In the present invention, as a partial nitritation step, first, a liquid to be treated is introduced into a partial nitritation tank and aerated in the presence of ammonia-oxidizing bacteria to oxidize a part of the ammonia nitrogen component to nitrite nitrogen. To do. In this case, partial nitritation is performed by bringing biological sludge containing ammonia-oxidizing bacteria into contact with the liquid to be treated in an aerobic state. The processing described above may employ any processing method such as a continuous method, a batch method, or a semi-batch method. Since the ammonia-oxidizing bacteria have a slow growth rate, it is preferable that the ammonia-oxidizing bacteria are loaded by introducing a carrier into the tank. As the carrier, a light granular material having open cells such as sponge is preferable, but other carriers may be used. The particle size of the granular carrier is arbitrary, but for example, a granular carrier of about 1 to 5 mm can be used.

曝気は被処理液中のアンモニア性窒素の50〜60%、好ましくは55〜58%、さらに好ましくは56〜57%が亜硝酸性窒素に酸化されるような条件で行う。このような亜硝酸化率となるように部分亜硝酸化を行うためには、部分亜硝酸化工程の入口と出口のアンモニア性窒素濃度を測定し、入口と出口のアンモニア性窒素濃度比が上記亜硝酸化率に対応するように曝気量(酸素供給量)を制御することが好ましいが、他の制御手段によってもよい。本発明では、アンモニア性窒素を亜硝酸性窒素にまで酸化すればよいので、アンモニア性窒素を硝酸性窒素にまで酸化する場合に比べて、酸化のための酸素供給量は少なくてよく、このため硝化のための曝気動力が少なくなり、処理コストが低下する。   Aeration is performed under the condition that 50 to 60%, preferably 55 to 58%, more preferably 56 to 57% of ammonia nitrogen in the liquid to be treated is oxidized to nitrite nitrogen. In order to perform partial nitritation so as to achieve such a nitritation rate, the ammonia nitrogen concentration at the inlet and outlet of the partial nitritation process is measured, and the ammonia nitrogen concentration ratio at the inlet and outlet is the above. It is preferable to control the amount of aeration (oxygen supply amount) so as to correspond to the nitritation rate, but other control means may be used. In the present invention, ammonia nitrogen may be oxidized to nitrite nitrogen, so that the amount of oxygen supplied for oxidation may be smaller than that in the case of oxidizing ammonia nitrogen to nitrate nitrogen. The aeration power for nitrification decreases, and the processing cost decreases.

さらに曝気はアンモニア酸化細菌の活性が低下せず、また亜硝酸性窒素が硝酸性窒素にまで酸化されるのを防ぐため、亜硝酸酸化細菌が増加しない条件で行う。このような条件として、例えば、炭酸塩または重炭酸塩を添加して無機炭酸濃度を50mg−C/L以上に維持しつつ曝気を行う運転条件や、原水のアンモニアに対してC/N比で0.5以上となるように炭酸塩または重炭酸塩を添加する運転条件などが挙げられる。硝化槽のpH条件としては、pH6.8〜8.7、好ましくはpH7.0〜8.0、さらに好ましくは7.5〜8.0となるようにpHを調整して曝気を行う。   Further, aeration is performed under the condition that the activity of the ammonia-oxidizing bacteria does not decrease and the nitrite-oxidizing bacteria do not increase in order to prevent the nitrite nitrogen from being oxidized to nitrate nitrogen. Such conditions include, for example, operating conditions in which aeration is performed while adding carbonate or bicarbonate to maintain the inorganic carbonate concentration at 50 mg-C / L or more, or at a C / N ratio with respect to ammonia in raw water. The operating condition etc. which add carbonate or bicarbonate so that it may become 0.5 or more are mentioned. As a pH condition of the nitrification tank, aeration is performed by adjusting the pH so as to be pH 6.8 to 8.7, preferably pH 7.0 to 8.0, and more preferably 7.5 to 8.0.

部分亜硝酸化工程に続く脱窒工程では、脱窒槽においてアナモックス細菌の存在下に部分亜硝酸化工程の処理液を嫌気状態に維持して、部分亜硝酸化工程で生成した亜硝酸性窒素と残留するアンモニア性窒素とを、アナモックス細菌の作用により反応させ、窒素ガスに転換して脱窒する。この場合、攪拌状態を保ち、アナモックス細菌を含む生物汚泥と部分亜硝酸化工程の処理液を接触させる。アナモックス細菌も増殖速度が遅いので、担体に担持させたり、あるいはグラニュール汚泥を形成するのが好ましい。グラニュール汚泥を形成する場合、微生物だけではグラニュール形成に期間を要するので、核となる物質を添加し、その核の周りにアナモックス細菌の生物膜を形成させることが望ましい。この場合、核として、例えば微生物グラニュールや非生物的な担体を挙げることができる。   In the denitrification process following the partial nitritation process, the treatment liquid of the partial nitritation process is maintained in an anaerobic state in the presence of anammox bacteria in the denitrification tank, and the nitrite nitrogen produced in the partial nitritation process The remaining ammoniacal nitrogen is reacted by the action of anammox bacteria, converted to nitrogen gas, and denitrified. In this case, the stirring state is maintained, and the biological sludge containing anammox bacteria is brought into contact with the treatment liquid of the partial nitritation step. Since anammox bacteria also have a slow growth rate, it is preferable to support them on a carrier or to form granular sludge. When granule sludge is formed, it takes a period of time for granule formation only with microorganisms. Therefore, it is desirable to add a substance serving as a nucleus and form a biofilm of anammox bacteria around the nucleus. In this case, examples of the nucleus include microbial granules and abiotic carriers.

核として用いられる微生物グラニュールとしては、メタン菌グラニュール等の嫌気性徴生物や従属栄養性脱窒菌グラニュール等を挙げることができる。メタン菌グラニュールは、UASB (Upflow Anaerobic Sludge Blanket ; 上向流嫌気性汚泥床)法もしくはEGSB (Expanded Granule Sludge Bed ; 展開粒状汚泥床)法でメタン発酵が行われているメタン発酵槽で使用されているものを適用できる。また、従属栄養性脱窒グラニュールは、USB方式の通常の脱窒槽で利用されるものを適用できる。これらのグラニュールはそのままの状態で、またはその破砕物として用いることができる。アナモックス細菌はこのような微生物グラニュールに付着しやすく、グラニュールの形成に要する時間が短縮される、核として非生物的な材料を用いるよりも経済的である。
核として用いられる非生物的な材料としては、例えば、活性炭、ゼオライト、ケイ砂、ケイソウ土、焼成セラミック、イオン交換樹脂等、好ましくは活性炭、ゼオライト等よりなる、粒径50〜200μm、好ましくは50〜100μm で、平均比重1.01〜2.5、好ましくは1.1〜2.0の担体を挙げることができる。
Examples of the microbial granules used as the nucleus include anaerobic organisms such as methane bacteria granules and heterotrophic denitrifying granules. Methane granule is used in methane fermentation tanks where methane fermentation is performed by UASB (Upflow Anaerobic Sludge Blanket) method or EGSB (Expanded Granule Sludge Bed) method. You can apply what you have. The heterotrophic denitrification granules can be those used in a normal USB denitrification tank. These granules can be used as they are or as crushed materials thereof. Anammox bacteria are more economical than using abiotic materials as nuclei, which tend to adhere to such microbial granules and reduce the time required to form the granules.
Examples of the abiotic material used as the core include activated carbon, zeolite, silica sand, diatomaceous earth, fired ceramic, ion exchange resin, and the like, preferably made of activated carbon, zeolite, and the like, and a particle size of 50 to 200 μm, preferably 50. A carrier having an average specific gravity of 1.01 to 2.5, preferably 1.1 to 2.0, can be mentioned.

このような担体あるいはグラニュール汚泥等の核となる物質にアナモックス細菌の生物膜を形成するには、アナモックス細菌が存在する脱窒槽に核となる物質を添加し、嫌気状態に維持して脱窒処理を行うことにより、生物膜を形成した生物汚泥を生成させることができる。
担体あるいはグラニュール汚泥にアナモックス細菌の生物膜を形成した生物汚泥を用いて脱窒処理を行う場合、UASB法もしくはEGSB法のように生物汚泥を展開流動化した状態で、部分亜硝酸化工程の処理液と生物汚泥を嫌気状態において接触させる。これによりアナモックス細菌の作用によって、部分亜硝酸化工程の処理液中の亜硝酸性窒素とアンモニア性窒素とが反応して、窒素ガスに転換されて脱窒が行われる。
In order to form a biofilm of anammox bacteria on such a carrier or granulated material such as granule sludge, the core substance is added to a denitrification tank in which anammox bacteria are present and maintained in an anaerobic state for denitrification. By performing the treatment, biological sludge having a biofilm formed thereon can be generated.
When denitrification treatment is performed using biological sludge in which a biofilm of anammox bacteria is formed on a carrier or granule sludge, the biological sludge is developed and fluidized as in the UASB method or EGSB method. The treatment liquid and biological sludge are brought into contact in an anaerobic state. Thereby, nitrite nitrogen and ammonia nitrogen in the treatment liquid of the partial nitritation step react with each other by the action of the anammox bacteria, and are converted into nitrogen gas for denitrification.

部分亜硝酸化工程におけるアンモニア酸化細菌による亜硝酸化反応は、以下の式(1)に示され、酸(亜硝酸)が生成してpHが低下する。また脱窒工程におけるアナモックス細菌による脱窒反応は、以下の式(2)に示され、アンモニア性窒素と亜硝酸性窒素がほぼ1:1.32で反応し、アルカリが生成してpHが上昇する。式(1)および式(2)を経る全体の反応では、酸の生成量の方が多く、脱窒液のアルカリを全部回収したとしてもpHが低下する。   The nitritation reaction by ammonia-oxidizing bacteria in the partial nitritation step is represented by the following formula (1), where acid (nitrite) is generated and the pH is lowered. In addition, the denitrification reaction by anammox bacteria in the denitrification process is represented by the following formula (2), where ammonia nitrogen and nitrite nitrogen react at about 1: 1.32, and alkali is generated to increase the pH. To do. In the overall reaction via Formula (1) and Formula (2), the amount of acid produced is greater, and the pH decreases even if all the alkali in the denitrification solution is recovered.

NH4 ++3/2O2 - → NO2 -+H2O+2H+・・・(1)
1.0NH4 ++1.32NO2 -+0.066HCO3 -
1.02N2+0.26NO3 -+0.066CH20.50.15+2.03H2O+0.13OH-・・・(2)
NH 4 + + 3 / 2O 2 → NO 2 + H 2 O + 2H + (1)
1.0NH 4 + + 1.32NO 2 + 0.066HCO 3
1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O + 0.13OH (2)

このように部分亜硝酸化工程では、アンモニアが酸化される際に酸が生成してpHが低下するため、アルカリ剤を添加する必要があり、また脱窒工程ではアルカリが生成してpHが上昇するため、酸剤を添加する必要がある。また独立栄養性脱窒を行うアナモックス細菌は高濃度の亜硝酸によって阻害を受けるため、従来は部分亜硝酸化工程処理液中の窒素濃度が高濃度の場合には、脱窒工程の処理液を循環して脱窒槽入り口付近の亜硝酸濃度を低下させていた。循環される処理液は既にpHが高い状態となっているため、循環工程の途中や、硝化工程と脱窒工程の間にpH調整槽を設け、薬品(酸)を添加してpH調整を行う必要があった。特に被処理液のアンモニア性窒素濃度が高濃度の場合、これに比例して循環量も多くなりpH調整のための薬品が大量に必要であった。   In this way, in the partial nitritation process, when ammonia is oxidized, acid is generated and the pH is lowered, so it is necessary to add an alkali agent, and in the denitrification process, alkali is generated and the pH is raised. Therefore, it is necessary to add an acid agent. In addition, since anammox bacteria that perform autotrophic denitrification are inhibited by high concentrations of nitrous acid, conventionally, if the nitrogen concentration in the partial nitritation process treatment solution is high, the treatment solution of the denitrification step is used. It was circulated to reduce the nitrous acid concentration near the entrance of the denitrification tank. Since the treatment liquid to be circulated is already in a high pH state, a pH adjustment tank is provided in the middle of the circulation process or between the nitrification process and the denitrification process, and a chemical (acid) is added to adjust the pH. There was a need. In particular, when the ammoniacal nitrogen concentration of the liquid to be treated was high, the circulation amount increased in proportion to this, and a large amount of chemicals for pH adjustment were required.

本発明では、部分亜硝酸化工程のpHを上昇させるため、ならびに高濃度の亜硝酸による阻害を防ぐために、前段の部分亜硝酸化工程に脱窒工程の処理液を循環させる。これにより、pH調整槽を設けることなく独立栄養性脱窒工程流入水のpHを調整することが可能となる。特許文献2の硝酸性窒素にまで酸化する部分硝酸化工程では、硝酸化率約40%の達成に必要なpHは6.0近傍であり、pH調整は必要ないとされているが、アンモニア酸化細菌による部分亜硝酸化工程では、被処理液中のアンモニア性窒素の50〜60%を部分亜硝酸化するのに必要なpHは6.8〜8.7であることが分かった。このため部分亜硝酸化工程においてpH調整が必要であるが、pHの高い脱窒工程の処理液を循環させると、pH調整と希釈を兼ねることができる。また部分亜硝酸化工程では反応でpHが低下するため、従来技術では必要であった脱窒工程の処理液への酸剤の投入が不要となり、酸剤のコストおよび貯留設備、投入設備などを省略することができる。   In the present invention, in order to increase the pH of the partial nitritation step and to prevent inhibition by high concentration of nitrous acid, the treatment liquid of the denitrification step is circulated in the previous partial nitritation step. Thereby, it becomes possible to adjust the pH of the inflow water of an autotrophic denitrification process, without providing a pH adjustment tank. In the partial nitrification step of oxidizing to nitrate nitrogen in Patent Document 2, the pH required to achieve a nitrification rate of about 40% is around 6.0, and pH adjustment is not necessary. In the partial nitritation step by bacteria, it was found that the pH required for partial nitritation of 50 to 60% of ammoniacal nitrogen in the liquid to be treated was 6.8 to 8.7. For this reason, pH adjustment is required in the partial nitritation step, but if the treatment liquid in the denitrification step having a high pH is circulated, pH adjustment and dilution can be performed. In addition, since the pH in the partial nitritation process decreases due to the reaction, it is not necessary to input an acid agent to the treatment liquid in the denitrification process, which was necessary in the prior art. Can be omitted.

前述のとおり、アナモックス細菌による脱窒工程において、高濃度の亜硝酸が流入すると脱窒反応が進行し難くなるという観点からは、脱窒工程の入口での亜硝酸性窒素の濃度が500mg/L以下、好ましくは400mg/L以下、さらに好ましくは300mg/L以下となるように循環する処理液の量を調整する。一方、部分亜硝酸化工程における速やかな反応を実現するという観点からは、被処理液と循環処理液との混合液のアンモニア性窒素濃度が50mg/L以上、好ましくは100mg/L以上、さらに好ましくは200mg/L以上となるように、循環処理液の量を調整するのが好ましい。 As described above, the concentration of nitrite nitrogen at the inlet of the denitrification step is 500 mg / L from the viewpoint that in a denitrification step by anammox bacteria, if a high concentration of nitrous acid flows, the denitrification reaction does not proceed easily. or less, preferably 400 mg / L or less, more preferably you adjust the amount of the processing solution circulating to be equal to or less than 300 mg / L. On the other hand, from the viewpoint of realizing a rapid reaction in the partial nitritation step, the ammoniacal nitrogen concentration of the mixed liquid of the liquid to be treated and the circulating treatment liquid is 50 mg / L or more, preferably 100 mg / L or more, more preferably It is preferable to adjust the amount of the circulating treatment liquid so that the concentration is 200 mg / L or more.

このように脱窒工程の処理液を部分亜硝酸化工程に循環してpH調整しても、部分亜硝酸化工程における酸の生成量が多くpHが低下するので、部分亜硝酸化工程では、水酸化ナトリウム、炭酸水素ナトリウム等のアルカリ剤を添加して、後段の脱窒工程に適するpH(6.8〜8.7)に調整するのが好ましい。この場合でも、循環処理液はアルカリ性であるため、従来方法と比較してアルカリ剤の使用量を減じることができる。部分亜硝酸化工程に適するpH範囲と脱窒工程に適するpH範囲はほぼ一致するので、部分亜硝酸化工程と脱窒工程の中間にpH調整槽を設けて、pH調整槽に処理液を循環するような従来の操作は不要になる。   Thus, even if the pH of the denitrification process is circulated to the partial nitritation process and the pH is adjusted, the amount of acid generated in the partial nitritation process is large and the pH is lowered. It is preferable to adjust to a pH (6.8 to 8.7) suitable for the subsequent denitrification step by adding an alkali agent such as sodium hydroxide or sodium bicarbonate. Even in this case, since the circulating treatment liquid is alkaline, the amount of the alkaline agent used can be reduced as compared with the conventional method. Since the pH range suitable for the partial nitritation process and the pH range suitable for the denitrification process are almost the same, a pH adjustment tank is provided between the partial nitritation process and the denitrification process, and the treatment liquid is circulated in the pH adjustment tank. Such conventional operation is not necessary.

このような部分亜硝酸化工程におけるpHを調整するためのpH調整装置は、脱窒工程の処理液を部分亜硝酸化工程に循環してpH調整するように構成され、脱窒槽の処理液を部分亜硝酸化槽に循環する循環路と、部分亜硝酸化槽にアルカリを注入する薬注路とを含むように構成することができる。循環路および薬注路はいずれもポンプを備えることができるが、循環路のポンプはほぼ前記pH範囲および前記濃度範囲となるように一定量の処理液を循環するように設定され、薬注路のポンプは正確に前記pH範囲になるようにpH計により制御されるものが好ましい。   The pH adjusting device for adjusting the pH in such a partial nitritation step is configured to adjust the pH by circulating the treatment liquid in the denitrification step to the partial nitritation step, and the treatment liquid in the denitrification tank It can comprise so that the circulation path circulating to a partial nitritation tank and the chemical injection path | route which inject | pours an alkali into a partial nitritation tank may be included. Both the circulation path and the chemical injection path can be equipped with a pump, but the circulation path pump is set so as to circulate a constant amount of the processing solution so as to be approximately in the pH range and the concentration range. It is preferable that the pump is controlled by a pH meter so as to be accurately in the pH range.

上記の処理により、まず部分亜硝酸化工程において、被処理液は部分亜硝酸化槽に導入され、アンモニア酸化細菌の存在下に曝気されて、アンモニア性窒素成分の一部が亜硝酸性窒素にまで酸化される。部分亜硝酸化工程に続く脱窒工程では、亜硝酸化工程の処理液は脱窒槽に導入され、アナモックス細菌の存在下に嫌気状態に維持されて、部分亜硝酸化工程で生成した亜硝酸性窒素と、残留するアンモニア性窒素とが、アナモックス細菌の作用により生物反応して窒素ガスに転換されて無害化し、脱窒が行われる。脱窒工程の処理液は一部(大部分)は部分亜硝酸化工程に循環して反応液のpHを調整に用いられ、他の一部は系外に放流される。   By the above treatment, first, in the partial nitritation step, the liquid to be treated is introduced into the partial nitritation tank and aerated in the presence of ammonia-oxidizing bacteria, so that a part of the ammonia nitrogen component is converted into nitrite nitrogen. Until oxidized. In the denitrification process following the partial nitritation process, the nitrite treatment solution is introduced into the denitrification tank and maintained in an anaerobic state in the presence of anammox bacteria, and the nitrite produced in the partial nitritation process Nitrogen and the remaining ammoniacal nitrogen are bioreacted by the action of anammox bacteria, converted into nitrogen gas, detoxified, and denitrified. A part (most part) of the treatment liquid in the denitrification process is circulated in the partial nitritation process to be used for adjusting the pH of the reaction liquid, and the other part is discharged out of the system.

上記の処理では、アンモニア性窒素の一部を亜硝酸性窒素にまで酸化すればよいので硝化のための曝気動力が少なくなり、アナモックス細菌による独立栄養型の脱窒により効率よくアンモニア性窒素の処理を行って、高水質の処理液を得ることができる。そしてアナモックス細菌は増殖速度が遅いため、発生汚泥量を少なくすることができる。   In the above treatment, it is only necessary to oxidize part of ammonia nitrogen to nitrite nitrogen, so the aeration power for nitrification is reduced, and ammonia nitrogen is efficiently treated by autotrophic denitrification by anammox bacteria. A high-quality treatment liquid can be obtained. And since anammox bacteria have a slow growth rate, the amount of generated sludge can be reduced.

以上のとおり、本発明の窒素含有液の処理方法によれば、部分亜硝酸化工程において、アンモニア性窒素含有液をアンモニア酸化細菌の存在下に曝気してアンモニア性窒素成分の50〜60%を亜硝酸性窒素にまで酸化し、脱窒工程において、アナモックス細菌の存在下に、部分亜硝酸化工程の処理液中の亜硝酸性窒素とアンモニア性窒素とを反応させて窒素ガスに転換し、pH調整工程において、脱窒工程の処理液を部分亜硝酸化工程に循環して、部分亜硝酸化工程の反応液のpHを6.8〜8.7に調整するとともに、脱窒工程の入口での亜硝酸性窒素の濃度を500mg/L以下に調整するようにしたので、硝化のための曝気動力が少なく、pH調整が容易で、pH調整槽およびpH調整剤のコストを小さくし、効率よく処理を行って、高水質の処理液を得るとともに、発生汚泥量を少なくすることができる。 As described above, according to the method for treating a nitrogen-containing liquid of the present invention, in the partial nitritation step, the ammoniacal nitrogen-containing liquid is aerated in the presence of ammonia-oxidizing bacteria to reduce 50-60% of the ammoniacal nitrogen component. It is oxidized to nitrite nitrogen, and in the denitrification process, in the presence of anammox bacteria, nitrite nitrogen and ammonia nitrogen in the treatment liquid of the partial nitritation process are reacted to convert to nitrogen gas, In the pH adjustment process, the treatment liquid in the denitrification process is circulated to the partial nitritation process to adjust the pH of the reaction liquid in the partial nitritation process to 6.8 to 8.7, and at the inlet of the denitrification process. Since the concentration of nitrite nitrogen in the tank is adjusted to 500 mg / L or less, there is little aeration power for nitrification, pH adjustment is easy, the cost of the pH adjustment tank and pH adjuster is reduced, and efficiency Process well, With obtaining the treating solution for water quality, it is possible to reduce the generation amount of sludge.

また本発明の窒素含有液の処理装置によれば、アンモニア性窒素含有液をアンモニア酸化細菌の存在下に曝気し、アンモニア性窒素成分の50〜60%を亜硝酸性窒素にまで酸化する部分亜硝酸化槽と、アナモックス細菌の存在下に、部分亜硝酸化槽の処理液中の亜硝酸性窒素とアンモニア性窒素とを反応させて窒素ガスに転換する脱窒槽と、脱窒槽の処理液を部分亜硝酸化槽に循環して、部分亜硝酸化工程の反応液のpHを6.8〜8.7に調整するとともに、脱窒工程の入口での亜硝酸性窒素の濃度500mg/L以下になるように調整するpH調整装置とを含むため、上記の処理を効率よく行うことができる。 Moreover, according to the nitrogen-containing liquid treatment apparatus of the present invention, the ammonia-containing nitrogen-containing liquid is aerated in the presence of ammonia-oxidizing bacteria to oxidize 50 to 60% of the ammoniacal nitrogen component to nitrite nitrogen. In the presence of nitrification tank, anammox bacteria, denitrification tank that reacts nitrite nitrogen and ammonia nitrogen in reaction liquid of partial nitritation tank to convert into nitrogen gas, and treatment liquid of denitrification tank Circulating in the partial nitritation tank, the pH of the reaction liquid in the partial nitritation process is adjusted to 6.8 to 8.7, and the concentration of nitrite nitrogen at the inlet of the denitrification process is 500 mg / L. Since the pH adjusting device is adjusted so as to be as follows, the above treatment can be performed efficiently.

以下、本発明の実施の形態を図面により説明する。図1は本発明の実施形態による窒素含有液の処理方法および装置を示すフロー図である。図1において、1は部分亜硝酸化槽、2は脱窒槽、3は中継槽である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing a method and apparatus for treating a nitrogen-containing liquid according to an embodiment of the present invention. In FIG. 1, 1 is a partial nitritation tank, 2 is a denitrification tank, and 3 is a relay tank.

部分亜硝酸化槽1は反応液4を収容し、スポンジのような連続気泡を有する軽質の粒状の担体にアンモニア酸化細菌を付着させた亜硝酸化汚泥5を反応液4に分散させており、底部に曝気装置6、上部にスクリーン7が設けられている。部分亜硝酸化槽1には、被処理液導入路L1、循環路L2、および薬注路L3が上部に連絡し、曝気装置6に空気供給路L4が連絡し、分離液部8から移送路L5が中継槽3に連絡している。脱窒槽2は反応液11を収容し、グラニュール汚泥にアナモックス細菌を付着させた脱窒汚泥12を反応液11にスラッジブランケット状に形成し、上部に固−気−液分離器13を備えている。中継槽3から移送路L6が脱窒槽2の底部に連絡し、固−気−液分離器13から循環路L2が部分亜硝酸化槽1に連絡し、処理液取出路L7が系外に連絡している。pHはpH計、P1〜P3はポンプである。   The partial nitritation tank 1 contains the reaction solution 4, and nitrite sludge 5 in which ammonia-oxidizing bacteria are attached to a light granular carrier having open cells such as sponge is dispersed in the reaction solution 4. An aeration device 6 is provided at the bottom and a screen 7 is provided at the top. The partial nitritation tank 1 is connected to the liquid introduction path L 1, the circulation path L 2, and the chemical injection path L 3, and the air supply path L 4 is connected to the aeration apparatus 6. L5 communicates with the relay tank 3. The denitrification tank 2 contains a reaction liquid 11, a denitrification sludge 12 in which anammox bacteria are adhered to granule sludge is formed in a sludge blanket shape in the reaction liquid 11, and a solid-gas-liquid separator 13 is provided at the top. Yes. The transfer path L6 from the relay tank 3 communicates with the bottom of the denitrification tank 2, the circulation path L2 communicates from the solid-gas-liquid separator 13 to the partial nitritation tank 1, and the processing liquid take-out path L7 communicates outside the system. is doing. The pH is a pH meter, and P1 to P3 are pumps.

図1の装置による窒素含有液の処理方法は、まず部分亜硝酸化工程として、部分亜硝酸化槽1に被処理液導入路L1から被処理液を導入し、循環路L2から処理液を循環して混合し、空気供給路L4から空気を供給して曝気装置6により曝気して、アンモニア酸化細菌を付着させた亜硝酸化汚泥5と反応液4を好気性下に接触させて、アンモニア性窒素成分の一部を亜硝酸性窒素にまで酸化する。部分亜硝酸化槽1の処理液はスクリーン7を通して、亜硝酸化汚泥5の流出を防止しながら分離液部8取出し、移送路L5から中継槽3に導入して貯留し、ポンプP1により移送路L6から脱窒槽2の底部に導入する。
In the method for treating a nitrogen-containing liquid by the apparatus of FIG. 1, first, as a partial nitritation step, the liquid to be treated is introduced into the partial nitritation tank 1 from the liquid introduction path L1 and the treatment liquid is circulated from the circulation path L2. Then, the air is supplied from the air supply path L4 and aerated by the aeration apparatus 6, and the nitrite sludge 5 to which ammonia-oxidizing bacteria are attached is brought into contact with the reaction solution 4 in an aerobic manner, thereby producing ammonia. Part of the nitrogen component is oxidized to nitrite nitrogen. The treatment liquid in the partial nitritation tank 1 is taken out through the screen 7 to the separation liquid section 8 while preventing the nitrite sludge 5 from flowing out, introduced into the relay tank 3 from the transfer path L5, stored, and transferred by the pump P1. It introduce | transduces into the bottom part of the denitrification tank 2 from the path | route L6.

脱窒槽2では、脱窒工程として、アナモックス細菌を付着させた脱窒汚泥12と部分亜硝酸化処理液とを嫌気状態で接触させて、部分亜硝酸化工程で生成した亜硝酸性窒素と、残留するアンモニア性窒素とを、アナモックス細菌の作用により生物反応させて窒素ガスに転換させて無害化し、脱窒を行う。脱窒槽2を上昇して処理を受ける反応液11は、固−気−液分離器13において固−気−液分離を受け、固体および気体を分離した処理液14は、一部(大部分)は循環路L2からポンプP2により部分亜硝酸化槽1に循環して反応液4のpHを調整するとともに、脱窒槽2の入口での亜硝酸性窒素の濃度の調整に用いられ、他の一部は処理液取出路L7から系外に放流される。部分亜硝酸化槽1ではpH計pHにより反応液4のpHを測定し、pH6.8〜8.7になるようにポンプP3を制御して、薬注路L3から不足分のアルカリ剤を注入してpH調整する。
In the denitrification tank 2, as the denitrification step, the denitrification sludge 12 to which the anammox bacteria are attached is brought into contact with the partial nitritation treatment solution in an anaerobic state, and nitrite nitrogen generated in the partial nitritation step; The remaining ammoniacal nitrogen is bioreacted by the action of anammox bacteria, converted into nitrogen gas, detoxified, and denitrified. The reaction liquid 11 that is treated by raising the denitrification tank 2 is subjected to solid-gas-liquid separation in the solid-gas-liquid separator 13, and a part (most) of the processing liquid 14 that has separated the solid and gas. Is circulated from the circulation path L2 to the partial nitritation tank 1 by the pump P2 to adjust the pH of the reaction solution 4, and is used to adjust the concentration of nitrite nitrogen at the inlet of the denitrification tank 2. The part is discharged out of the system from the processing liquid outlet L7. In the partial nitritation tank 1, the pH of the reaction solution 4 is measured with a pH meter pH, and the pump P3 is controlled so that the pH becomes 6.8 to 8.7, and an insufficient amount of alkaline agent is injected from the drug injection path L3. To adjust the pH.

図2は参考例として、図1の装置に特許文献2のpH調整法を適用した例を示し、図1の装置において、中継槽3に替えてpH調整槽15を設け、循環路L2から処理液を循環するように連絡するとともに、pH計pH2を設けてポンプP4を制御し、薬注路L8から酸を注入するように連絡している。
この装置による窒素含有液の処理方法は図1の場合とほぼ同様に行われるが、部分亜硝酸化槽1ではpH計pHによりポンプP3を制御し、薬注路L3からアルカリを注入してpH調整し、pH調整槽15では、循環路L2から処理液を循環してpH調整するとともに、pH計pH2によりポンプP4を制御し、薬注路L8から酸を注入して循環する処理液のpHを下げるように調整する。このため図1の場合に比べ、pH調整は複雑であり、pH調整用の薬剤の量も多くなる。
FIG. 2 shows an example in which the pH adjustment method of Patent Document 2 is applied to the apparatus of FIG. 1 as a reference example. In the apparatus of FIG. 1, a pH adjustment tank 15 is provided instead of the relay tank 3, and treatment is performed from the circulation path L2. In addition to communicating to circulate the liquid, a pH meter pH2 is provided to control the pump P4 and communicate to inject the acid from the medicinal channel L8.
The treatment method of the nitrogen-containing liquid by this apparatus is carried out in substantially the same manner as in FIG. 1, but in the partial nitritation tank 1, the pump P3 is controlled by the pH meter pH, and alkali is injected from the drug injection path L3. In the pH adjustment tank 15, the treatment liquid is circulated from the circulation path L2 to adjust the pH, and the pH P2 is controlled by the pH meter pH2, and the pH of the treatment liquid circulated by injecting the acid from the drug injection path L8. Adjust to lower. For this reason, compared with the case of FIG. 1, pH adjustment is complicated and the quantity of the chemical | medical agent for pH adjustment also increases.

実施例1:
図1の装置により処理を行った。被処理液は硫酸アンモニウム主体の合成排水であり、NH4-N濃度1000mg/Lである。部分亜硝酸化槽1として、容量6Lの曝気槽を使用し、槽内に体積として40%のスポンジ担体を投入して、アンモニア酸化細菌を付着させた。担体を含む亜硝酸化汚泥5と処埋液の固液分離するスクリーン7としてはウェッジワイヤスクリーンを用いた。また脱窒槽2として、容量3Lの上向流型の反応槽を使用し、槽内に独立栄養性脱窒細菌のグラニュールを2L投入して、アナモックス細菌を付着させた。脱窒槽2の脱窒工程処理液は部分亜硝酸化槽1に循環した。その他の実験条件を表1に示す。
Example 1:
Processing was performed with the apparatus of FIG. The liquid to be treated is a synthetic waste water mainly composed of ammonium sulfate, and has an NH 4 —N concentration of 1000 mg / L. As the partial nitritation tank 1, an aeration tank with a capacity of 6L was used, and a 40% sponge carrier was introduced into the tank to attach ammonia oxidizing bacteria. A wedge wire screen was used as the screen 7 for solid-liquid separation of the nitrite sludge 5 containing the carrier and the treatment liquid. As the denitrification tank 2, an up-flow type reaction tank with a capacity of 3L was used, and 2L of granule of autotrophic denitrification bacteria was introduced into the tank to attach anammox bacteria. The denitrification process treatment liquid in the denitrification tank 2 was circulated to the partial nitritation tank 1. Other experimental conditions are shown in Table 1.

Figure 0004691938
Figure 0004691938

比較例1:
図2の装置により、実施例1と同じ容量の反応槽を用い、同じ被処理液について処理を行った。脱窒槽2の処理液をpH調整槽15に循環して、部分亜硝酸化工程処埋液と混合したのちに脱窒槽2に導入した。pH調整槽15内液はpH7.6に調整した。
Comparative Example 1:
The same liquid to be treated was processed using the reaction tank having the same capacity as that of Example 1 using the apparatus shown in FIG. The treatment liquid in the denitrification tank 2 was circulated to the pH adjustment tank 15, mixed with the partial nitritation process treatment liquid, and then introduced into the denitrification tank 2. The solution in the pH adjusting tank 15 was adjusted to pH 7.6.

実施例1および比較例1の結果、
実施例1および比較例1のいずれも、処理は良好に行うことができたが、薬品の使用量に差があった。すなわち実施例1では酸を使用することなく、比較例1と同等の処理が可能であり、またアルカリ剤の使用量が約10%削減できた。
実施例1および比較例1の各工程の処理液の水質を表2に示す。
As a result of Example 1 and Comparative Example 1,
In both Example 1 and Comparative Example 1, the treatment could be performed satisfactorily, but there was a difference in the amount of chemical used. That is, in Example 1, the same treatment as in Comparative Example 1 was possible without using an acid, and the amount of alkaline agent used was reduced by about 10%.
Table 2 shows the water quality of the treatment liquid in each step of Example 1 and Comparative Example 1.

Figure 0004691938
Figure 0004691938

アンモニア性窒素を含有する窒素含有液を生物学的に脱窒する処理方法および装置に利用可能である。   The present invention can be used in a treatment method and apparatus for biologically denitrifying a nitrogen-containing liquid containing ammoniacal nitrogen.

本発明の実施形態による窒素含有液の処理方法および装置を示すフロー図である。It is a flowchart which shows the processing method and apparatus of the nitrogen containing liquid by embodiment of this invention. 参考例として、図1の装置に特許文献2のpH調整法を適用した例を示すフロー図である。As a reference example, it is a flowchart which shows the example which applied the pH adjustment method of patent document 2 to the apparatus of FIG.

符号の説明Explanation of symbols

1 部分亜硝酸化槽
2 脱窒槽
3 中継槽
4 反応液
5 亜硝酸化汚泥
6 曝気装置
7 スクリーン
8 分離液部
11 反応液
12 脱窒汚泥
13 固−気−液分離器
14 処理液
15 pH調整槽
DESCRIPTION OF SYMBOLS 1 Partial nitritation tank 2 Denitrification tank 3 Relay tank 4 Reaction liquid 5 Nitrite sludge 6 Aeration apparatus 7 Screen 8 Separation liquid part 11 Reaction liquid 12 Denitrification sludge 13 Solid-gas-liquid separator 14 Treatment liquid 15 pH adjustment Tank

Claims (4)

アンモニア性窒素含有液をアンモニア酸化細菌の存在下に曝気し、アンモニア性窒素成分の50〜60%を亜硝酸性窒素にまで酸化する部分亜硝酸化工程と、
アナモックス細菌の存在下に、部分亜硝酸化工程の処理液中の亜硝酸性窒素とアンモニア性窒素とを反応させて窒素ガスに転換する脱窒工程と、
脱窒工程の処理液を部分亜硝酸化工程に循環して、部分亜硝酸化工程の反応液のpHを6.8〜8.7に調整するとともに、脱窒工程の入口での亜硝酸性窒素の濃度500mg/L以下になるように調整するpH調整工程と
を含む窒素含有液の処理方法。
A partial nitritation step of aeration of an ammoniacal nitrogen-containing liquid in the presence of ammonia oxidizing bacteria to oxidize 50 to 60% of the ammoniacal nitrogen component to nitrite nitrogen;
A denitrification step of reacting nitrite nitrogen and ammoniacal nitrogen in the treatment liquid of the partial nitritation step in the presence of anammox bacteria to convert to nitrogen gas;
The treatment liquid in the denitrification process is circulated to the partial nitritation process to adjust the pH of the reaction liquid in the partial nitritation process to 6.8 to 8.7, and the nitrite property at the inlet of the denitrification process . And a pH adjusting step for adjusting the nitrogen concentration to be 500 mg / L or less.
部分亜硝酸化工程にさらにアルカリを注入してpH調整する請求項1記載の方法。 The method according to claim 1, wherein the pH is adjusted by further injecting an alkali into the partial nitritation step. アンモニア性窒素含有液をアンモニア酸化細菌の存在下に曝気し、アンモニア性窒素成分の50〜60%を亜硝酸性窒素にまで酸化する部分亜硝酸化槽と、
アナモックス細菌の存在下に、部分亜硝酸化槽の処理液中の亜硝酸性窒素とアンモニア性窒素とを反応させて窒素ガスに転換する脱窒槽と、
脱窒槽の処理液を部分亜硝酸化槽に循環して、部分亜硝酸化槽の反応液のpHを6.8〜8.7に調整するとともに、脱窒槽の入口での亜硝酸性窒素の濃度500mg/L以下になるように調整するpH調整装置と
を含む窒素含有液の処理装置。
A partial nitritation tank in which an ammoniacal nitrogen-containing liquid is aerated in the presence of ammonia-oxidizing bacteria to oxidize 50 to 60% of the ammoniacal nitrogen component to nitrite nitrogen;
A denitrification tank that reacts nitrite nitrogen and ammonia nitrogen in the treatment liquid of the partial nitrification tank in the presence of anammox bacteria to convert to nitrogen gas;
The treatment liquid in the denitrification tank is circulated to the partial nitritation tank to adjust the pH of the reaction liquid in the partial nitritation tank to 6.8 to 8.7, and the nitrite nitrogen at the inlet of the denitrification tank is adjusted. A nitrogen-containing liquid treatment apparatus comprising: a pH adjustment apparatus that adjusts the concentration to be 500 mg / L or less.
pH調整装置が、脱窒槽の処理液を部分亜硝酸化槽に循環する循環路と、部分亜硝酸化槽にアルカリを注入する薬注路とを含む請求項3記載の装置。   The apparatus according to claim 3, wherein the pH adjusting device includes a circulation path for circulating the treatment liquid of the denitrification tank to the partial nitritation tank and a chemical injection path for injecting alkali into the partial nitritation tank.
JP2004279413A 2004-09-27 2004-09-27 Nitrogen-containing liquid processing method and apparatus Active JP4691938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279413A JP4691938B2 (en) 2004-09-27 2004-09-27 Nitrogen-containing liquid processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279413A JP4691938B2 (en) 2004-09-27 2004-09-27 Nitrogen-containing liquid processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2006088092A JP2006088092A (en) 2006-04-06
JP4691938B2 true JP4691938B2 (en) 2011-06-01

Family

ID=36229566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279413A Active JP4691938B2 (en) 2004-09-27 2004-09-27 Nitrogen-containing liquid processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4691938B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104817223A (en) * 2015-04-09 2015-08-05 浙江大学 Chemical-biological combined ammonium nitrogen and ammonia nitrogen removal reactor
CN108585190A (en) * 2018-04-27 2018-09-28 北京交通大学 Integral anaerobic ammoxidation handles the device of coal-ethylene glycol sewage

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997460B2 (en) * 2007-04-26 2012-08-08 国立大学法人 熊本大学 Wastewater treatment system
JP5100529B2 (en) * 2008-06-23 2012-12-19 大阪市 Denitrification method of organic raw water incorporating scale prevention
WO2010074008A1 (en) 2008-12-28 2010-07-01 メタウォーター株式会社 Method and device for removing biological nitrogen and support therefor
JP5186420B2 (en) * 2009-03-12 2013-04-17 日鉄住金環境株式会社 Waste water treatment method and waste water treatment equipment
JP5582388B2 (en) * 2010-03-12 2014-09-03 三菱レイヨン株式会社 Biological treatment system and biological treatment method
JP5631090B2 (en) * 2010-07-26 2014-11-26 水ing株式会社 Waste water treatment apparatus and waste water treatment method
JP5742195B2 (en) * 2010-12-06 2015-07-01 株式会社明電舎 Method and system for processing ammoniacal nitrogen-containing liquid
CN102167475A (en) * 2011-03-09 2011-08-31 桂林理工大学 Nitrogen-containing waster water purification method
JP5614368B2 (en) * 2011-05-10 2014-10-29 株式会社石垣 Wastewater treatment equipment containing hydrogen peroxide and ammonia nitrogen
JP5194151B2 (en) * 2011-07-20 2013-05-08 前澤工業株式会社 Waste water treatment equipment
JP6209388B2 (en) * 2013-08-07 2017-10-04 新日鐵住金株式会社 Nitrite-type nitrification method for wastewater containing ammonia nitrogen
CN103539317B (en) * 2013-10-28 2015-06-17 北京工业大学 Device and method for nitrogen and phosphorus removal treatment by denitrification on high-ammonia nitrogen anaerobic ammonia oxidation effluent and domestic sewage
CN103601287B (en) * 2013-11-17 2016-03-09 北京工业大学 A kind of cultural method of aerobic nitrosated granular sludge
CN103663680B (en) * 2013-11-25 2015-01-07 北京工业大学 Method for cultivating aerobic half-nitrosation granular sludge in continuous flow manner
CN103723827B (en) * 2013-12-18 2015-12-30 青岛思普润水处理股份有限公司 A kind of Anammox anaerobism starting method based on MBBR
CN103723828B (en) * 2013-12-18 2015-11-18 青岛思普润水处理股份有限公司 A kind of Anammox intermission aerobic starting method based on MBBR
JP2015128747A (en) * 2014-01-07 2015-07-16 水ing株式会社 Water treatment apparatus and water treatment method
JP6475584B2 (en) * 2015-07-09 2019-02-27 鹿島建設株式会社 Organic waste treatment system and organic waste treatment method
JP2017024973A (en) * 2015-07-17 2017-02-02 株式会社アイエイアイ Manufacturing method and manufacturing apparatus of organic fertilizer nutritious liquid
CN110606575A (en) * 2019-10-11 2019-12-24 江西省科学院能源研究所 Synchronous short-cut denitrification-partial nitrosation-anaerobic ammonia oxidation system and method for sewage
CN112850894B (en) * 2021-01-28 2022-07-08 北京坦思环保科技有限公司 Device and method for advanced denitrification of industrial wastewater through anaerobic ammonia oxidation
CN114409077B (en) * 2021-12-16 2022-12-23 南京环保产业创新中心有限公司 Device and method for treating wastewater with low carbon-nitrogen ratio

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316100A (en) * 1986-07-07 1988-01-23 Ebara Infilco Co Ltd Biological nitraification and denitrification for drainage containing ammonia
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2003154390A (en) * 2001-11-22 2003-05-27 Ebara Corp Method and apparatus for treating ammonia-containing sewage
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP2005324131A (en) * 2004-05-14 2005-11-24 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for treating waste water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316100A (en) * 1986-07-07 1988-01-23 Ebara Infilco Co Ltd Biological nitraification and denitrification for drainage containing ammonia
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2003154390A (en) * 2001-11-22 2003-05-27 Ebara Corp Method and apparatus for treating ammonia-containing sewage
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP2005324131A (en) * 2004-05-14 2005-11-24 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for treating waste water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104817223A (en) * 2015-04-09 2015-08-05 浙江大学 Chemical-biological combined ammonium nitrogen and ammonia nitrogen removal reactor
CN104817223B (en) * 2015-04-09 2016-08-17 浙江大学 Chemical-biological combined removal nitrate nitrogen and the reactor of ammonia nitrogen
CN108585190A (en) * 2018-04-27 2018-09-28 北京交通大学 Integral anaerobic ammoxidation handles the device of coal-ethylene glycol sewage

Also Published As

Publication number Publication date
JP2006088092A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4691938B2 (en) Nitrogen-containing liquid processing method and apparatus
JP6227509B2 (en) Waste water treatment apparatus and waste water treatment method
JP5347221B2 (en) Nitrogen-containing liquid processing method and apparatus
JP5890374B2 (en) Biological nitrogen removal apparatus and water treatment system
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
JP4572504B2 (en) Biological denitrification method
CN107108293B (en) Method and apparatus for removing nitrogen from nitrogen-containing wastewater
KR101176437B1 (en) Bio-electrochemical wastewater treating apparatus for a simultaneous removal of ammonia and organics and wastewater treatment method using the apparatus
JP4872171B2 (en) Biological denitrification equipment
JP4882175B2 (en) Nitrification method
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP4867098B2 (en) Biological denitrification method and apparatus
CN111072233A (en) Ion type rare earth ore wastewater treatment device and process
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP2005246135A (en) Method for biologically removing nitrogen
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP4848144B2 (en) Waste water treatment equipment
JP5292659B2 (en) A method for nitrification of ammonia nitrogen-containing water
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP2012024707A (en) Denitrification method and denitrification device for ammoniacal nitrogen waste liquid
JP4867099B2 (en) Biological denitrification method
JP2007117842A (en) Method and apparatus for removing nitrogen of high concentration organic waste water
JP4329359B2 (en) Denitrification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4691938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250