JP2015128747A - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP2015128747A
JP2015128747A JP2014001129A JP2014001129A JP2015128747A JP 2015128747 A JP2015128747 A JP 2015128747A JP 2014001129 A JP2014001129 A JP 2014001129A JP 2014001129 A JP2014001129 A JP 2014001129A JP 2015128747 A JP2015128747 A JP 2015128747A
Authority
JP
Japan
Prior art keywords
tank
liquid
water treatment
treatment
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014001129A
Other languages
Japanese (ja)
Inventor
岳志 山川
Takeshi Yamakawa
岳志 山川
葛 甬生
Yosei Katsu
甬生 葛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2014001129A priority Critical patent/JP2015128747A/en
Publication of JP2015128747A publication Critical patent/JP2015128747A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment apparatus and a water treatment method capable of performing more stable water treatment by suppressing exfoliation of microbe from a carrier inputted into a reaction tank.SOLUTION: A water treatment apparatus includes: a treatment tank (denitrification tank 5) for storing a microbe catalyst 10 formed by immobilizing self-granulation type anaerobic microbe on the outer surface of a carrier, and liquid to be treated, and treating the liquid to be treated under an anaerobic condition; and gas agitation means 51 for agitating the liquid to be treated and the microbe catalyst 10 by supplying inert gas into the treatment tank.

Description

本発明は、水処理装置及び水処理方法に関し、特に自己造粒する特性を有する嫌気性微生物を利用した水処理装置及び水処理方法に関する。   The present invention relates to a water treatment apparatus and a water treatment method, and more particularly to a water treatment apparatus and a water treatment method using an anaerobic microorganism having a characteristic of self-granulating.

近年注目されている技術に嫌気性アンモニア酸化技術がある。例えば、特開2011−251255号公報(特許文献1)には、亜硝酸性窒素及びアンモニア性窒素を含む廃液ERとアナモックスグラニュールAGとを処理槽内に収容し、回転式の撹拌部材を用いて処理槽内に液流を発生させることにより、廃液中の窒素成分を窒素ガスとして除去する廃液処理方法及び装置が記載されている。   An anaerobic ammonia oxidation technique is a technique that has attracted attention in recent years. For example, in JP 2011-251255 A (Patent Document 1), a waste liquid ER containing nitrite nitrogen and ammonia nitrogen and anamox granule AG are accommodated in a treatment tank, and a rotary stirring member is used. A waste liquid treatment method and apparatus for removing a nitrogen component in a waste liquid as nitrogen gas by generating a liquid flow in the treatment tank are described.

国際公開第2010/074008号(特許文献2)には、図3に示すように、亜硝酸型硝化菌を外側に配置し、嫌気性アンモニア酸化菌を亜硝酸型硝化菌の内側に配置した二層構造の微生物膜を担持した担体を、図2に示すようなインペラーとドラフトチューブを備えた反応槽内に投入し、反応槽内で撹拌により担体を流動させながら被処理水の脱窒を行う生物学的窒素除去方法及び装置が記載されている。   In International Publication No. 2010/074008 (Patent Document 2), as shown in FIG. 3, a nitrite type nitrifying bacterium is arranged outside, and an anaerobic ammonia oxidizing bacterium is arranged inside the nitrite type nitrifying bacterium. A carrier carrying a layered microbial membrane is put into a reaction vessel equipped with an impeller and a draft tube as shown in FIG. 2, and denitrification of the water to be treated is performed while the carrier is flowed by stirring in the reaction vessel. A biological nitrogen removal method and apparatus are described.

特許第5150993号公報(特許文献3)では、粒状担体の内部に独立栄養性脱窒微生物を入り込ませて付着させ、三次元的に担持した担持汚泥を脱窒槽に保持して浮遊させながら被処理液と嫌気状態で接触させることにより、脱窒処理することが可能な脱窒方法及び装置が記載されている。   In Japanese Patent No. 5150993 (Patent Document 3), an autotrophic denitrifying microorganism is allowed to enter and adhere to the inside of a granular carrier, and the treated sludge supported three-dimensionally is held in a denitrification tank and floated. A denitrification method and apparatus capable of performing a denitrification process by contacting the liquid in an anaerobic state are described.

特開2011−251255号公報JP 2011-251255 A 国際公開第2010/074008号International Publication No. 2010/074008 特許第5150993号公報Japanese Patent No. 5150993

嫌気性アンモニア酸化を効率良く行わせるためには、基質と微生物とを効率良く接触させる必要があり、そのためには適切な撹拌が必要である。現在一般的に用いられる手法は、特許文献1〜3に記載されるような撹拌機を用いた機械撹拌である。   In order to perform anaerobic ammonia oxidation efficiently, it is necessary to efficiently bring the substrate and the microorganism into contact with each other, and for this purpose, appropriate stirring is required. The method generally used at present is mechanical stirring using a stirrer as described in Patent Documents 1 to 3.

しかしながら、例えば嫌気性アンモニア酸化処理方法に用いられる嫌気性アンモニア酸化菌などの微生物は、自己造粒塊を形成する特性を有することが知られている。このような自己造粒する微生物をその表面上に固定化した結合固定化担体に対し、特許文献1〜3に記載されるような機械撹拌を行うと、微生物が担体から剥離して反応槽外へと流出する現象が発生することが分かった。その結果、反応槽内に一定量以上の微生物を常に保持させることが難しくなり、安定した水処理を行うことが困難になる場合があった。   However, it is known that microorganisms such as anaerobic ammonia oxidizing bacteria used for an anaerobic ammonia oxidation treatment method have a characteristic of forming a self-granulated mass. When mechanical agitation as described in Patent Documents 1 to 3 is performed on a binding-immobilized carrier in which such self-granulating microorganisms are immobilized on the surface, the microorganisms are peeled off from the carrier and removed from the reaction vessel. It was found that a phenomenon that flows into As a result, it is difficult to always keep a certain amount or more of microorganisms in the reaction tank, and it may be difficult to perform stable water treatment.

上記課題を鑑み、本発明は、反応槽内に投入された担体からの微生物の剥離を抑制し、より安定した水処理を行うことが可能な水処理装置及び水処理方法を提供する。   In view of the above problems, the present invention provides a water treatment apparatus and a water treatment method capable of suppressing detachment of microorganisms from a carrier charged into a reaction tank and performing more stable water treatment.

本発明者らは、微生物を担体に固定化した微生物触媒の特性と撹拌との関係について鋭意検討したところ、自己造粒する嫌気性微生物を担体の外表面上に固定化した微生物触媒に対して特定の撹拌手段を採用することにより、担体からの微生物の剥離を抑制できることが分かった。その結果、担体から剥離する微生物の反応槽外への流出を有意に抑制でき、従来に比べてより安定した脱窒処理を行うことが可能な水処理装置及び水処理方法が得られることが分かった。   The present inventors diligently investigated the relationship between the characteristics of a microbial catalyst in which microorganisms are immobilized on a carrier and agitation, and found that the self-granulating anaerobic microorganisms were immobilized on the outer surface of the carrier. It has been found that the use of a specific stirring means can suppress detachment of microorganisms from the carrier. As a result, it has been found that a water treatment apparatus and a water treatment method capable of significantly suppressing the outflow of microorganisms detached from the carrier to the outside of the reaction tank and capable of performing a more stable denitrification treatment than in the past can be obtained. It was.

以上の知見を基礎として完成した本発明は一側面において、自己造粒型の嫌気性微生物を担体の外表面上に固定化した微生物触媒と被処理液とを収容し、嫌気性条件下で被処理液を処理する処理槽と、処理槽内に不活性ガスを供給することにより被処理液及び微生物触媒を撹拌するガス撹拌手段とを備える水処理装置が提供される。   The present invention completed on the basis of the above knowledge, in one aspect, contains a microbial catalyst in which self-granulating anaerobic microorganisms are immobilized on the outer surface of a carrier and a liquid to be treated, and is subjected to an anaerobic condition. There is provided a water treatment apparatus comprising a treatment tank for treating a treatment liquid, and a gas stirring means for stirring the liquid to be treated and the microbial catalyst by supplying an inert gas into the treatment tank.

本発明に係る水処理装置は一実施態様において、微生物触媒の最表面には不規則な凹凸を有する。   In one embodiment, the water treatment apparatus according to the present invention has irregular irregularities on the outermost surface of the microbial catalyst.

本発明に係る水処理装置は一実施態様において、微生物触媒は、担体の外表面上に最大厚さ100μm以上の嫌気性微生物を含む微生物膜を備える。   In one embodiment of the water treatment apparatus according to the present invention, the microbial catalyst comprises a microbial membrane containing anaerobic microorganisms having a maximum thickness of 100 μm or more on the outer surface of the carrier.

本発明に係る水処理装置は別の一実施態様において、微生物触媒は、最表面からの深さが50μm以上の凹部が少なくとも1つ以上形成されていることを含む。   In another embodiment of the water treatment apparatus according to the present invention, the microbial catalyst includes that at least one recess having a depth from the outermost surface of 50 μm or more is formed.

本発明に係る水処理装置は更に別の一実施態様において、嫌気性微生物が嫌気性アンモニア酸化菌である。   In still another embodiment of the water treatment apparatus according to the present invention, the anaerobic microorganism is an anaerobic ammonia oxidizing bacterium.

本発明に係る水処理装置は更に別の一実施態様において、ガス撹拌手段が、不活性ガスを10〜450L/(m2・分)で処理槽内に供給することを含む。 In still another embodiment of the water treatment apparatus according to the present invention, the gas stirring means includes supplying an inert gas into the treatment tank at 10 to 450 L / (m 2 · min).

本発明に係る水処理装置は更に別の一実施態様において、処理槽内に供給した不活性ガスを処理槽内へ循環させるガス循環手段を更に備える。   In still another embodiment, the water treatment apparatus according to the present invention further includes gas circulation means for circulating the inert gas supplied into the treatment tank into the treatment tank.

本発明は別の一側面において、被処理液中に含まれるアンモニア性の窒素の一部を亜硝酸菌の作用により亜硝酸性窒素に部分酸化して亜硝酸化処理液を得る亜硝酸化槽と、亜硝酸化処理液中のアンモニア性窒素を、自己造粒型の嫌気性微生物を担体の外表面上に固定した微生物触媒を用いて嫌気的に酸化処理する脱窒槽と、脱窒槽内に不活性ガスを供給することにより亜硝酸化処理液及び微生物触媒を撹拌するガス撹拌手段とを備える水処理装置が提供される。   In another aspect, the present invention provides a nitrification tank for obtaining a nitritation treatment liquid by partially oxidizing a part of ammonia nitrogen contained in a liquid to be treated into nitrite nitrogen by the action of nitrite bacteria. And a denitrification tank that anaerobically oxidizes nitrogen in the nitritation solution using a microbial catalyst in which self-granulating anaerobic microorganisms are immobilized on the outer surface of the carrier, and a denitrification tank. There is provided a water treatment apparatus comprising a gas stirring means for stirring a nitritation treatment liquid and a microbial catalyst by supplying an inert gas.

本発明は更に別の一側面において、窒素及び有機物を含有する被処理液を、従属栄養性細菌を用いた脱窒反応により嫌気的に脱窒処理して第1脱窒処理液を得る第1脱窒槽と、第1脱窒処理液中に含まれるアンモニア性窒素の一部を亜硝酸菌の作用により亜硝酸性窒素に酸化して亜硝酸化処理液を得る亜硝酸化槽と、亜硝酸化処理液の一部を第1脱窒槽へ循環する亜硝酸化処理液循環手段と、亜硝酸化処理液中のアンモニア性窒素を、自己造粒型の嫌気性微生物を担体の外表面上に固定した微生物触媒を用いて嫌気的に酸化処理する第2脱窒槽と、第2脱窒槽中に不活性ガスを供給することにより亜硝酸化処理液及び微生物触媒を撹拌するガス撹拌手段とを備える水処理装置が提供される。   In yet another aspect of the present invention, a first denitrification liquid is obtained by anaerobically denitrifying a liquid to be treated containing nitrogen and organic matter by a denitrification reaction using heterotrophic bacteria. A denitrification tank, a nitrification tank for oxidizing a part of ammonia nitrogen contained in the first denitrification treatment liquid into nitrite nitrogen by the action of nitrite bacteria to obtain a nitritation treatment liquid, and nitrous acid Nitrifying solution circulating means for circulating a part of the nitrifying solution to the first denitrification tank, ammonia nitrogen in the nitrating solution, and self-granulating anaerobic microorganisms on the outer surface of the carrier A second denitrification tank that performs anaerobic oxidation treatment using a fixed microbial catalyst, and a gas stirring means that stirs the nitritation solution and the microbial catalyst by supplying an inert gas into the second denitrification tank. A water treatment device is provided.

本発明は更に別の一側面において、自己造粒型の嫌気性微生物を担体の外表面上に固定化した微生物触媒と被処理液とを処理槽内に収容し、処理槽内に不活性ガスを供給することにより嫌気性条件下で微生物触媒と被処理液とを撹拌させて被処理液を処理することを含む水処理方法が提供される。   In another aspect of the present invention, a microbial catalyst in which self-granulating anaerobic microorganisms are immobilized on the outer surface of a carrier and a liquid to be treated are accommodated in a treatment tank, and the inert gas is contained in the treatment tank. A water treatment method including treating the liquid to be treated by stirring the microbial catalyst and the liquid to be treated under anaerobic conditions is provided.

本発明に係る水処理方法は一実施態様において、嫌気性微生物が嫌気性アンモニア酸化菌である。   In one embodiment of the water treatment method according to the present invention, the anaerobic microorganism is an anaerobic ammonia oxidizing bacterium.

本発明によれば、反応槽内に投入された担体からの微生物の剥離を抑制し、より安定した水処理を行うことが可能な水処理装置及び水処理方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the water treatment apparatus and water treatment method which can suppress peeling of the microorganisms from the support | carrier thrown into the reaction tank and can perform more stable water treatment can be provided.

本発明の実施の形態に係る水処理装置の一例を表す概略図である。It is the schematic showing an example of the water treatment apparatus which concerns on embodiment of this invention. 図1の脱窒槽に採用可能な撹拌手段の例を表す説明図である。It is explanatory drawing showing the example of the stirring means employable for the denitrification tank of FIG. 図1の脱窒槽に採用可能な別の撹拌手段の例を表す説明図である。It is explanatory drawing showing the example of another stirring means employable for the denitrification tank of FIG. 図4(a)は、本発明の実施の形態に係る微生物触媒の一例を表す断面図であり、図4(b)は、図4(a)の微生物触媒の一部の微生物膜が剥離した状態を表す断面図であり、図4(c)は従来の包括固定化担体の断面図を表し、図4(d)は本発明の実施の形態に係る微生物触媒の他の例を表す断面図である。FIG. 4A is a cross-sectional view showing an example of the microbial catalyst according to the embodiment of the present invention, and FIG. 4B is a diagram in which a part of the microbial film of the microbial catalyst in FIG. FIG. 4C is a cross-sectional view showing a state, FIG. 4C is a cross-sectional view of a conventional entrapping immobilization support, and FIG. 4D is a cross-sectional view showing another example of a microbial catalyst according to an embodiment of the present invention. It is. 本発明の実施の形態に係る微生物触媒の断面の一例を示す写真である。It is a photograph which shows an example of the cross section of the microbial catalyst which concerns on embodiment of this invention. 本発明の実施の形態に係る微生物触媒の最表面の凹凸の深さを表す写真である。It is a photograph showing the depth of the unevenness | corrugation of the outermost surface of the microbial catalyst which concerns on embodiment of this invention. 本発明の実施の形態の変形例に係る水処理装置の一例を表す概略図である。It is the schematic showing an example of the water treatment apparatus which concerns on the modification of embodiment of this invention.

以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention specifies the structure, arrangement, etc. of components as follows. Not what you want.

以下の説明においては、本発明に係る水処理装置及び水処理方法として、嫌気性アンモニア酸化処理に関わる装置及び方法を例示する。しかしながら、自己造粒する特性を有する嫌気性微生物を担体の該表面に固定化した微生物触媒を利用する他の装置及び方法にも本発明が適用可能であることは勿論である。   In the following description, an apparatus and a method related to an anaerobic ammonia oxidation treatment will be exemplified as the water treatment apparatus and the water treatment method according to the present invention. However, it goes without saying that the present invention can also be applied to other apparatuses and methods that use a microbial catalyst in which an anaerobic microorganism having a self-granulating property is immobilized on the surface of a carrier.

図1に示すように、本発明の実施の形態に係る水処理装置は、亜硝酸化槽3と、亜硝酸化槽3に接続された沈降槽4と、沈降槽4を介して亜硝酸化槽3に接続された脱窒槽5(嫌気性アンモニア酸化槽)とを備える。   As shown in FIG. 1, a water treatment apparatus according to an embodiment of the present invention includes a nitritation tank 3, a sedimentation tank 4 connected to the nitritation tank 3, and nitritation via the sedimentation tank 4. And a denitrification tank 5 (anaerobic ammonia oxidation tank) connected to the tank 3.

亜硝酸化槽3では、被処理液(原水)中に含まれるアンモニア性窒素(NH4−N)の一部を亜硝酸菌の働きにより、亜硝酸性窒素(NO2−N)に変換する部分亜硝酸化処理が行われる。部分亜硝酸化処理では、亜硝酸菌としてのアンモニア酸化菌を安定して亜硝酸化槽3内に維持することが望ましい。アンモニア酸化菌を安定して維持するための方法としては、亜硝酸化槽3内にアンモニア酸化菌を付着固定できる流動担体を添加すること等が挙げられる。 In the nitritation tank 3, a part of ammonia nitrogen (NH 4 -N) contained in the liquid to be treated (raw water) is converted into nitrite nitrogen (NO 2 -N) by the action of nitrite bacteria. Partial nitritation treatment is performed. In the partial nitritation treatment, it is desirable to stably maintain ammonia oxidizing bacteria as nitrite bacteria in the nitritation tank 3. Examples of a method for stably maintaining the ammonia-oxidizing bacteria include adding a fluid carrier capable of adhering and fixing the ammonia-oxidizing bacteria in the nitritation tank 3.

亜硝酸化槽3に充填する流動担体としては、ポリエチレングリコール(PEG)やポリビニルアルコール(PVA)、ポリアクリルアミド、光硬化性樹脂等の合成高分子、カラギーナン、アルギン酸ソーダ等の高分子を用いたゲル担体、ポリエチレンやポリウレタン、ポリポロピレン等からなる担体、或いは活性炭からなる担体などが挙げられる。   Gels using synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyacrylamide, and photocurable resin, and polymers such as carrageenan and sodium alginate as a fluid carrier filled in the nitritation tank 3 Examples thereof include a carrier, a carrier made of polyethylene, polyurethane, polypropylene, or a carrier made of activated carbon.

担体の形状としては球形、四角形、円筒形の何れも使用可能でありその有効径は、亜硝酸化槽3の出口に設けられたスクリーンより安定して分離できる2〜20mmであり、より好ましくは3〜15mm、更に好ましくは3〜10mmが好ましい。担体比重は曝気状態において均一に流動可能となる1.01〜1.15、より好ましくは1.01〜1.10、更に好ましくは1.01〜1.05であるものが好ましい。担体充填量は均一に混合流動可能となる5〜30V%であるのが好ましく、より好ましくは10〜20V%である。   As the shape of the carrier, any of a spherical shape, a square shape, and a cylindrical shape can be used, and the effective diameter thereof is 2 to 20 mm that can be stably separated from the screen provided at the outlet of the nitritation tank 3, and more preferably It is preferably 3 to 15 mm, more preferably 3 to 10 mm. The specific gravity of the carrier is preferably 1.01 to 1.15, more preferably 1.01 to 1.10, and still more preferably 1.01 to 1.05, which enables uniform flow in the aerated state. The carrier filling amount is preferably 5 to 30 V%, and more preferably 10 to 20 V%, which enables uniform flow of mixing.

亜硝酸化槽3では、担体添加と浮遊活性汚泥の共存が望ましい。浮遊活性汚泥の共存により、亜硝酸化槽3に流入する原水の水質が変動しても、活性汚泥処理による平均化が可能である。そのため、アンモニア酸化菌付着の微生物担体への影響がほとんど無く、安定した亜硝酸化処理が得られる。   In the nitritation tank 3, it is desirable that the carrier is added and the suspended activated sludge coexists. Even if the quality of the raw water flowing into the nitritation tank 3 fluctuates due to the coexistence of the floating activated sludge, it can be averaged by the activated sludge treatment. Therefore, there is almost no influence on the microorganism carrier due to the adhesion of ammonia oxidizing bacteria, and a stable nitritation treatment can be obtained.

沈降槽4では、亜硝酸化処理液中に含まれる浮遊活性汚泥を沈降分離する。沈降分離により得られた上澄み液は、脱窒槽5へ送られる。沈降槽4内で沈降分離された汚泥の一部は返送汚泥として亜硝酸化槽3へ供給可能である。沈降槽4内で発生する余剰汚泥の一部は汚泥処理設備へ送られる。   In the settling tank 4, the suspended activated sludge contained in the nitritation solution is settled and separated. The supernatant liquid obtained by sedimentation separation is sent to the denitrification tank 5. A part of the sludge settled and separated in the settling tank 4 can be supplied to the nitritation tank 3 as return sludge. Part of the excess sludge generated in the settling tank 4 is sent to the sludge treatment facility.

脱窒槽5は、浮遊活性汚泥分離後の亜硝酸化処理液中のアンモニア性窒素を、微生物触媒を用いて嫌気的に酸化処理する処理槽である。脱窒槽5には、亜硝酸化処理液と微生物触媒とを槽内で撹拌するための撹拌手段として、脱窒槽5に不活性ガスを供給することにより亜硝酸化処理液と微生物触媒10とを撹拌するガス撹拌手段51が配置される。   The denitrification tank 5 is a treatment tank that anaerobically oxidizes ammoniacal nitrogen in the nitritation solution after separation of suspended activated sludge using a microbial catalyst. In the denitrification tank 5, as a stirring means for stirring the nitritation treatment liquid and the microbial catalyst in the tank, the nitritation treatment liquid and the microbial catalyst 10 are supplied by supplying an inert gas to the denitrification tank 5. A gas stirring means 51 for stirring is arranged.

ガス撹拌手段51の詳細は特に制限されないが、例えば液にガスを供給する送風機やコンプレッサと散気装置(散気管やディフューザ、スパージャ、散気板、メンブレン)等で構成されることができる。例えば図2に示すように、脱窒槽5の底部にガス供給口51Aを設け、ガス供給口51Aから脱窒槽5の上方へ向けて不活性ガスを供給し、亜硝酸化処理液と微生物触媒との混合液体中に液流(回旋流)を発生させるための装置も好適に採用可能である。   The details of the gas agitating means 51 are not particularly limited, but can be constituted by, for example, a blower that supplies gas to the liquid, a compressor, and a diffuser (a diffuser, a diffuser, a sparger, a diffuser plate, a membrane) or the like. For example, as shown in FIG. 2, a gas supply port 51A is provided at the bottom of the denitrification tank 5, an inert gas is supplied upward from the gas supply port 51A to the denitrification tank 5, An apparatus for generating a liquid flow (rotating flow) in the mixed liquid can also be suitably employed.

或いは、図3に示すように、脱窒槽5の底部に設けたガス供給口51Bの上方にドラフトチューブ52Bを配置し、亜硝酸化処理液と微生物触媒との混合液体中に液流を発生させるための装置もガス撹拌手段51として好適に利用可能である。   Alternatively, as shown in FIG. 3, a draft tube 52B is disposed above the gas supply port 51B provided at the bottom of the denitrification tank 5, and a liquid flow is generated in the liquid mixture of the nitritation solution and the microbial catalyst. The apparatus for this can also be used suitably as the gas stirring means 51.

図1に示すように、脱窒槽5内に供給した不活性ガスを脱窒槽5内へ再び循環させるガス循環手段53を更に備えていてもよい。ガス循環手段53を配置することにより、撹拌に用いたガスを有効利用できるため、不活性ガスの使用量を低減でき、より効率の良い処理を行うことができる。また、嫌気性アンモニア酸化の場合は、処理で発生する窒素ガス自体が不活性ガスのため、処理で発生した窒素ガスを循環して利用することによってより効率の良い処理を行うことができる。   As shown in FIG. 1, a gas circulation means 53 that circulates the inert gas supplied into the denitrification tank 5 again into the denitrification tank 5 may be further provided. By disposing the gas circulation means 53, the gas used for stirring can be used effectively, so the amount of inert gas used can be reduced and more efficient processing can be performed. In the case of anaerobic ammonia oxidation, since the nitrogen gas generated in the process itself is an inert gas, a more efficient process can be performed by circulating and using the nitrogen gas generated in the process.

ガス撹拌手段51は、窒素ガス等の不活性ガスからなる圧縮ガスを脱窒槽5内に供給することが好ましい。圧縮ガスの供給量は、例えば10〜450L/m2・分、より好ましくは30〜300L/m2・分、更に好ましくは50〜150L/m2・分で脱窒槽5内に供給することが望ましい。 The gas stirring means 51 preferably supplies a compressed gas made of an inert gas such as nitrogen gas into the denitrification tank 5. Supply of compressed gas, for example 10~450L / m 2 · min, more preferably 30~300L / m 2 · min, more preferably be fed to the denitrification tank 5 at 50~150L / m 2 · min desirable.

本実施形態に用いられる微生物触媒10の概略図を図4(a)に示す。脱窒槽5内には、自己造粒する特性を有する(以下「自己造粒型」と称する)嫌気性微生物を担体10Aの外表面S1上に固定した微生物触媒10が供給される。自己造粒型の嫌気性微生物としては、嫌気性アンモニア酸化処理の場合は嫌気性アンモニア酸化菌が好適に利用される。   A schematic diagram of the microbial catalyst 10 used in the present embodiment is shown in FIG. The denitrification tank 5 is supplied with a microbial catalyst 10 in which an anaerobic microorganism having a characteristic of self-granulation (hereinafter referred to as “self-granulation type”) is fixed on the outer surface S1 of the carrier 10A. In the case of anaerobic ammonia oxidation treatment, an anaerobic ammonia oxidizing bacterium is preferably used as the self-granulating anaerobic microorganism.

図4(a)に示すように、微生物触媒10は、担体10Aと、担体10Aの外表面S1上に配置された微生物膜10Bとを備える。担体10Aの材料としては、ポリビニルアルコール(PVA)やポリエチレングリコール(PEG)、ポリアクリルアミド、光硬化性樹脂等の合成高分子、カラギーナン、アルギン酸ソーダ等の高分子を用いたゲル担体、ポリエチレンやポリウレタン、ポリポロピレン等からなる担体、或いは粒状活性炭等が挙げられる。   As shown in FIG. 4A, the microbial catalyst 10 includes a carrier 10A and a microbial membrane 10B disposed on the outer surface S1 of the carrier 10A. Examples of the material of the carrier 10A include polyvinyl alcohol (PVA), polyethylene glycol (PEG), polyacrylamide, a synthetic polymer such as a photocurable resin, a gel carrier using a polymer such as carrageenan and sodium alginate, polyethylene, polyurethane, Examples thereof include a carrier made of polypropylene or the like, or granular activated carbon.

担体10Aの形状としては球形、四角形、円筒形の何れも使用可能であり、その有効径は脱窒槽出口のスクリーンより安定して分離できる1〜20mmが好ましい。担体として表面に微細孔径を多く有するもの、表面に無数の凹凸を有するものが嫌気性アンモニア酸化菌の付着固定が速く、短期間で高い脱窒性能が得られる。さらに長期間、脱窒槽内嫌気性アンモニア酸化菌を高濃度に維持できることから、安定した脱窒性能が得られる。   As the shape of the carrier 10A, any of a spherical shape, a square shape, and a cylindrical shape can be used, and the effective diameter is preferably 1 to 20 mm that can be stably separated from the screen at the outlet of the denitrification tank. A carrier having a large number of fine pores on the surface and an infinite number of irregularities on the surface can quickly attach and fix the anaerobic ammonia-oxidizing bacteria, and high denitrification performance can be obtained in a short time. Furthermore, since the anaerobic ammonia oxidizing bacteria in the denitrification tank can be maintained at a high concentration for a long period of time, stable denitrification performance can be obtained.

担体10Aの比表面積は、200〜10000m2/m3、より好ましくは、200〜20000m2/m3、更に好ましくは200〜30000m2/m3であるものが好ましい。担体比重は嫌気状態において撹拌より均一流動できる1.01〜1.15、より好ましくは、1.01〜1.10、更に好ましくは1.01〜1.05であるものが好ましい。担体充填量は均一に混合流動可能となる5〜30V%であるのが好ましく、より好ましくは10〜30V%、更に好ましくは10〜20V%である。 The specific surface area of the carrier 10A is preferably 200 to 10000 m 2 / m 3 , more preferably 200 to 20000 m 2 / m 3 , still more preferably 200 to 30000 m 2 / m 3 . The carrier specific gravity is preferably 1.01 to 1.15, more preferably 1.01 to 1.10, and still more preferably 1.01 to 1.05, which can flow uniformly by stirring in an anaerobic state. The carrier filling amount is preferably 5 to 30 V% which enables uniform mixing and flow, more preferably 10 to 30 V%, still more preferably 10 to 20 V%.

嫌気性アンモニア酸化菌の働きにより脱窒槽5内には窒素が発生する。反応によって生じる窒素が嫌気性アンモニア酸化菌から離脱しない場合には、嫌気性アンモニア酸化菌が浮上しやすくなり、脱窒槽5外へ流出する恐れがある。本実施形態では、水より比重の重い上記の担体10Aに嫌気性微生物を固定化することにより、嫌気性微生物が脱窒槽5外へ流出するという現象を抑制できるため、脱窒槽5内で嫌気性微生物を安定的に保持することができる。   Nitrogen is generated in the denitrification tank 5 by the action of the anaerobic ammonia oxidizing bacteria. When the nitrogen produced by the reaction does not leave from the anaerobic ammonia oxidizing bacteria, the anaerobic ammonia oxidizing bacteria can easily float and flow out of the denitrification tank 5. In the present embodiment, the phenomenon that the anaerobic microorganisms flow out of the denitrification tank 5 can be suppressed by immobilizing the anaerobic microorganisms on the carrier 10A having a specific gravity higher than that of water. Microorganisms can be stably retained.

本実施形態に用いられる担体10Aとしては、結合固定化担体であることが好ましい。「結合固定化担体」とは、主として担体10Aの外表面上に微生物を付着又は成長させる結合固定化法によって微生物を固定化した担体を意味する。嫌気性アンモニア酸化処理において結合固定化担体を用いることで、基質の微生物への輸送効率が上昇し、反応速度の向上をもたらす。また、反応で発生した窒素ガスを液中に放出し易くなる効果も得られる。なお、もう一方の固定化方法である包括固定化担体の場合は、微生物を多く保持させすぎると担体内部に保持された微生物から発生する窒素ガスで担体が内部から崩壊する可能性があるため、この点において、反応でガスを発生する微生物には、結合固定化担体がより有効である。   The carrier 10A used in this embodiment is preferably a bound and immobilized carrier. The “bound immobilization carrier” means a carrier on which microorganisms are immobilized mainly by a binding immobilization method in which microorganisms adhere or grow on the outer surface of the carrier 10A. By using the bound and immobilized carrier in the anaerobic ammonia oxidation treatment, the transport efficiency of the substrate to the microorganism is increased, and the reaction rate is improved. Moreover, the effect which becomes easy to discharge | release the nitrogen gas generated by reaction into a liquid is also acquired. In the case of the entrapping immobilization carrier that is the other immobilization method, if too much microorganisms are retained, the carrier may collapse from the inside with nitrogen gas generated from the microorganisms retained inside the carrier, In this respect, the bound and immobilized carrier is more effective for microorganisms that generate gas in the reaction.

しかしながら、嫌気性アンモニア酸化菌等のような自己造粒型の嫌気性微生物は不定形に自己造粒する微生物であることが知られており、このような微生物に対して結合固定化法により微生物触媒10を作製すると、微生物膜10Bの最表面S2には、大小の凹凸を含む不規則な凹凸が形成される。   However, it is known that self-granulating anaerobic microorganisms such as anaerobic ammonia-oxidizing bacteria are microorganisms that self-granulate in an indefinite form. When the catalyst 10 is produced, irregular irregularities including large and small irregularities are formed on the outermost surface S2 of the microorganism membrane 10B.

従来の機械撹拌による撹拌では、微生物触媒10が撹拌羽根と衝突する。図4(a)に示すように、微生物膜10Bの最表面S2には不規則な凹凸が形成されているため、この凹凸に撹拌羽根が引っ掛かると、図4(b)に示すように、微生物膜10Bの一部分が引き剥がされる。また、撹拌羽根との直接的な接触のみならず、撹拌羽根付近で発生する強い乱流によって、微生物膜10Bの最表面S2の凹凸から微生物膜10Bの一部が剥離を引き起こす場合も考えられる。本発明では、機械撹拌の代わりに、ガス撹拌手段51による撹拌を行うことにより、微生物触媒10の微生物膜10Bの一部剥離を効果的に抑制することが可能となる。   In conventional stirring by mechanical stirring, the microbial catalyst 10 collides with the stirring blade. As shown in FIG. 4 (a), irregular irregularities are formed on the outermost surface S2 of the microbial membrane 10B. When the stirring blades are caught in the irregularities, the microorganisms as shown in FIG. 4 (b). A part of the film 10B is peeled off. Further, not only direct contact with the stirring blade but also strong turbulence generated in the vicinity of the stirring blade may cause a part of the microbial membrane 10B to peel off from the unevenness of the outermost surface S2 of the microbial membrane 10B. In the present invention, partial peeling of the microbial membrane 10B of the microbial catalyst 10 can be effectively suppressed by performing stirring by the gas stirring means 51 instead of mechanical stirring.

一方、現在嫌気性アンモニア酸化技術で一般的に用いられる自己造粒型の嫌気性微生物の利用に関しては、図4(c)に示すように、微生物を光固定化樹脂などで包括し、樹脂の内部に取り込み固定化する「包括固定化法」によって固定化した担体11(図4(c)において担体11内部のドット部分は樹脂内部に固定化された微生物を示す)を利用する手法が取られているが、包括固定化法によって固定された担体を流動させる手法では、微生物が樹脂で包括されているために樹脂が直接撹拌羽根と衝突する機会が無く、機械撹拌による微生物膜剥離の問題はあまり生じない。また、別の利用方法である、自己造粒化した微生物集塊そのものを微生物触媒として用いる方法(グラニュール法)では、担体に微生物を付着させているわけではないので、微生物膜の剥離と言う問題自体が存在しない。   On the other hand, regarding the use of self-granulating anaerobic microorganisms commonly used in the present anaerobic ammonia oxidation technology, as shown in FIG. A method using the carrier 11 immobilized by the “entrapping immobilization method” that takes in and immobilizes inside (the dot portion inside the carrier 11 in FIG. 4C indicates a microorganism immobilized inside the resin) is used. However, in the method of flowing the carrier fixed by the entrapping immobilization method, since the microorganisms are entrapped by the resin, there is no opportunity for the resin to directly collide with the stirring blade, and the problem of microbial membrane peeling by mechanical stirring is It does not occur very much. Another method of using a self-granulated microorganism agglomerate itself as a microbial catalyst (granule method) does not cause microorganisms to adhere to the carrier, so it is called detachment of the microbial film. The problem itself does not exist.

本発明の実施の形態においては、特に以下の表面性状を有する微生物触媒10に対して有効な微生物膜10Bの剥離抑制効果が得られる。   In the embodiment of the present invention, the effect of suppressing separation of the microbial membrane 10B that is particularly effective for the microbial catalyst 10 having the following surface properties can be obtained.

図4(a)に示すように、微生物触媒10の微生物膜10Bが最も厚く形成されている部分の膜の厚さを「微生物膜10Bの最大厚さ(Tmax)」と規定した場合、ガス撹拌手段51による撹拌は、微生物膜10Bの最大厚さ(Tmax)が100μm以上、更には150μm以上、更には200μm以上の微生物触媒10に対して特に有効な微生物膜10Bの剥離抑制効果が得られる。なお、微生物膜10Bの最大厚さTmaxの上限は、有効径1〜20mmの担体10Aを使用する場合において一般的には10mm程度である。   As shown in FIG. 4A, when the thickness of the portion of the microbial catalyst 10 where the microbial membrane 10B is formed to be the thickest is defined as “the maximum thickness (Tmax) of the microbial membrane 10B”, gas stirring is performed. Agitation by the means 51 provides a microbial membrane 10B peeling suppression effect that is particularly effective for the microbial catalyst 10 having a maximum thickness (Tmax) of the microbial membrane 10B of 100 μm or more, more preferably 150 μm or more, and even 200 μm or more. The upper limit of the maximum thickness Tmax of the microbial membrane 10B is generally about 10 mm when the carrier 10A having an effective diameter of 1 to 20 mm is used.

このような生物触媒10の微生物膜10Bの最小厚さ(Tmin)は少なくとも10μmである。なお、微生物膜10Bの最大厚さ、最小厚さ(Tmax、Tmin)は例えば、微生物触媒10を写真撮影してその厚さを評価するか、或いは微生物触媒10を切断して断面状態を観察(図5参照)することにより評価することができる。   The minimum thickness (Tmin) of the microbial membrane 10B of such a biocatalyst 10 is at least 10 μm. Note that the maximum thickness and the minimum thickness (Tmax, Tmin) of the microbial membrane 10B are evaluated by, for example, taking a photograph of the microbial catalyst 10 and evaluating its thickness, or observing a cross-sectional state by cutting the microbial catalyst 10 ( (See FIG. 5).

本発明に好適な微生物触媒10は、図6に示すように、その最表面S2に不規則な凹凸を有している。例えば、領域Rに見られるように、最表面からの深さが50μm以上の凹部が1個以上、より具体的には1〜106個、更には10〜104個程度に形成された粒状体である(なお、図6の1区画は1mmを表す)。ここで「最表面からの深さ」とは、凹みの底と周囲の高い部分との高低差を測定した場合の大きさとして定義される。このような凹部は、担体10Aの表面積50mm2内に1つ以上、より具体的には5〜10000個存在している。 As shown in FIG. 6, the microbial catalyst 10 suitable for the present invention has irregular irregularities on the outermost surface S2. For example, as seen in the region R, the granularity formed with one or more, more specifically 1 to 10 6 , and more preferably about 10 to 10 4 recesses having a depth from the outermost surface of 50 μm or more. It is a body (one section of FIG. 6 represents 1 mm). Here, the “depth from the outermost surface” is defined as the size when the height difference between the bottom of the dent and the surrounding high portion is measured. There are one or more, more specifically 5 to 10,000, such recesses in the surface area of 50 mm 2 of the carrier 10A.

本発明の実施の形態に係る水処理装置によれば、機械撹拌の代わりに、ガス撹拌手段51を配置することにより、脱窒槽5内に投入された微生物触媒10からの微生物膜10Bの剥離を抑制することができる。これにより、脱窒槽5内には常時一定の微生物が存在することとなり、これにより従来に比べてより安定した水処理を行うことが可能な水処理装置及び水処理方法が提供できる。   According to the water treatment apparatus according to the embodiment of the present invention, the microbial membrane 10B is detached from the microbial catalyst 10 introduced into the denitrification tank 5 by arranging the gas stirring means 51 instead of mechanical stirring. Can be suppressed. Thereby, constant microorganisms always exist in the denitrification tank 5, thereby providing a water treatment apparatus and a water treatment method capable of performing more stable water treatment than in the prior art.

(変形例)
本発明の変形例に係る水処理装置を図7に示す。水処理装置は、窒素及び有機物を含有する原水(被処理液)を濃縮処理及び脱水処理することにより、原水中の浮遊物質(SS)成分を除去する濃縮・脱水装置1と、濃縮・脱水装置1から得られた被処理液を従属栄養性細菌を用いた脱窒反応により嫌気的に脱窒処理して第1脱窒処理液を得る第1脱窒槽2と、第1脱窒処理液中に含まれるアンモニア性窒素の一部を亜硝酸菌の作用により亜硝酸性窒素に酸化して亜硝酸化処理液を得る亜硝酸化槽3と、亜硝酸化処理液の一部を第1脱窒槽2へ循環する亜硝酸化処理液循環手段7と、亜硝酸化処理液中のアンモニア性窒素を、自己造粒型の嫌気性微生物を担体の外表面上に固定した微生物触媒10を用いて嫌気的に酸化処理する第2脱窒槽5とを備え、第2の脱窒槽5が、第2の脱窒槽5中に不活性ガスを供給することにより被処理液及び微生物触媒10を撹拌するガス撹拌手段51を備えている。
(Modification)
A water treatment apparatus according to a modification of the present invention is shown in FIG. The water treatment apparatus is a concentration / dehydration apparatus 1 that removes suspended solids (SS) components in the raw water by concentrating and dehydrating raw water (liquid to be treated) containing nitrogen and organic matter, and a concentration / dehydration apparatus. A first denitrification tank 2 which obtains a first denitrification treatment liquid by anaerobically denitrifying the treatment liquid obtained from 1 by a denitrification reaction using heterotrophic bacteria; and in the first denitrification treatment liquid A part of the ammonia nitrogen contained in the nitrite is oxidized to nitrite nitrogen by the action of nitrite bacteria to obtain a nitrite treatment solution, and a part of the nitrite treatment solution is first removed. Using the nitrite treatment liquid circulating means 7 circulating to the nitriding tank 2, and the microbial catalyst 10 in which ammonia nitrogen in the nitrite treatment liquid is fixed on the outer surface of the carrier with a self-granulating anaerobic microorganism. A second denitrification tank 5 that performs anaerobic oxidation treatment, and the second denitrification tank 5 is in the second denitrification tank 5. And a gas stirring means 51 for stirring the liquid to be treated and the microbial catalyst 10 by supplying an inert gas.

即ち、図7に示す水処理装置は、図1の亜硝酸化槽3の前段に濃縮・脱水装置1及び第1脱窒槽2を更に備えており、亜硝酸化槽3で得られた亜硝酸化処理液を第1脱窒槽2へ循環する循環手段7を備え、沈降槽6が脱窒槽5の出口側に配置されている点が、図1に示す水処理装置と異なる。   That is, the water treatment apparatus shown in FIG. 7 is further provided with a concentration / dehydration apparatus 1 and a first denitrification tank 2 upstream of the nitritation tank 3 of FIG. 1 is different from the water treatment apparatus shown in FIG. 1 in that a circulation means 7 for circulating the treatment liquid to the first denitrification tank 2 is provided, and the sedimentation tank 6 is disposed on the outlet side of the denitrification tank 5.

濃縮・脱水装置1としては、種々の装置を用いることができる。例えば原水として、し尿と浄化槽汚泥混合液を利用する場合は、一般的にはし尿と浄化槽汚泥混合液に対する濃縮・脱水処理は別々に行うことが好ましい。予め、汚泥の濃縮処理を行い、濃縮した汚泥に対して脱水処理を行えば、含水率の低い脱水汚泥が得られる。   As the concentrating / dehydrating apparatus 1, various apparatuses can be used. For example, when a human waste and a septic tank sludge mixed solution are used as raw water, it is generally preferable to separately perform concentration and dehydration treatment on the human waste and the septic tank sludge mixed solution. If the sludge is concentrated in advance and the dehydrated sludge is dehydrated, dehydrated sludge having a low water content can be obtained.

濃縮方式としては、重力濃縮、機械濃縮の何れも有効な濃縮方式である。高分子凝集剤を添加した濃縮処理を行うと、濃縮汚泥濃度を最大10%程度にすることができる。この濃縮汚泥に対して脱水処理を行えば、含水率70%以下の脱水汚泥が得られて顕著な汚泥減容効果が得られる。この低含水率脱水汚泥のカロリーは高く、焼却処理において補助燃料無での自燃が可能であり、省エネ、低コストとなる。   As the concentration method, both gravity concentration and mechanical concentration are effective concentration methods. When the concentration treatment with the addition of the polymer flocculant is performed, the concentrated sludge concentration can be increased to about 10% at the maximum. If this concentrated sludge is dehydrated, a dehydrated sludge having a moisture content of 70% or less is obtained, and a remarkable sludge volume reduction effect is obtained. This low moisture content dehydrated sludge has a high calorie, and self-combustion without auxiliary fuel is possible in incineration, resulting in energy saving and low cost.

濃縮・脱水装置1で濃縮・脱水が行われた被処理液は、BOD、SS等の有機物濃度が大きく低減されることから、後段の各処理槽の容積をコンパクト化できる。特に、被処理液のBOD/T−N比が3より低い場合、図7の水処理装置による嫌気性アンモニア酸化方式の適用メリットが高くなる。   Since the liquid to be processed that has been concentrated / dehydrated by the concentration / dehydration apparatus 1 has a greatly reduced concentration of organic substances such as BOD and SS, the volume of each treatment tank in the subsequent stage can be made compact. In particular, when the BOD / TN ratio of the liquid to be treated is lower than 3, the application merit of the anaerobic ammonia oxidation method by the water treatment apparatus of FIG.

第1脱窒槽2では、従属栄養性細菌である脱窒菌を用いて、被処理液中の有機物を電子供与体として利用しながら窒素ガスを発生させる従属栄養脱窒反応を進行させる。従属栄養脱窒反応により脱窒できるNOx−N量は、第1脱窒槽2に流入されるBOD量に依存する。通常は、NOx−Nが1gに対しBODが約3g必要となる。第1脱窒槽2に流入するBODは、被処理液のBODを測定することにより予め測定できる。このため、後述する亜硝酸化槽3から第1脱窒槽2へ循環する亜硝酸化処理液に含まれるNOx−N量が、第1脱窒槽2における脱窒処理により処理される被処理液中のBOD量に対して理論上必要量(例えば約1/3倍)となるように、亜硝酸化処理液の循環流量を調整すれば、第1脱窒槽2でNOx−Nを確実に除去できる上、被処理液中のBODも同時に消費して、被処理液中のBODを小さくすることができる。 In the 1st denitrification tank 2, the heterotrophic denitrification reaction which generate | occur | produces nitrogen gas is advanced using the denitrifying bacteria which are heterotrophic bacteria, using the organic substance in a to-be-processed liquid as an electron donor. The amount of NO x -N that can be denitrified by the heterotrophic denitrification reaction depends on the amount of BOD that flows into the first denitrification tank 2. Normally, about 3 g of BOD is required for 1 g of NO x -N. The BOD flowing into the first denitrification tank 2 can be measured in advance by measuring the BOD of the liquid to be treated. Therefore, the liquid to be treated NO x -N amount contained nitrite treatment liquid circulating nitrite of tank 3 to be described later to the first denitrification tank 2, which is processed by the denitrification process in the first denitrification tank 2 so that theoretically required amount (e.g., about 1/3) with respect to BOD content in, by adjusting the amount of circulating nitrite treatment liquid, the NO x -N reliably in the first denitrification tank 2 In addition to being able to be removed, the BOD in the liquid to be treated can be consumed at the same time, and the BOD in the liquid to be treated can be reduced.

その結果、第1脱窒槽2から得られる第1脱窒処理液は、BOD残留が少なく、窒素成分として、主にアンモニア性窒素(NH4−N)を含有することとなる。また、第1脱窒槽2で処理された第1脱窒処理液の全窒素濃度(T−N)は、亜硝酸化処理液を循環させない場合に比べて低減されていることから、後述する第2脱窒槽5(嫌気性アンモニア酸化槽)のT−N負荷も低減でき、第2脱窒槽5がコンパクトとなる。 As a result, the first denitrification treatment liquid obtained from the first denitrification tank 2 has little BOD residue, and mainly contains ammoniacal nitrogen (NH 4 -N) as a nitrogen component. Moreover, since the total nitrogen concentration (TN) of the 1st denitrification process liquid processed by the 1st denitrification tank 2 is reduced compared with the case where a nitritation process liquid is not circulated, it mentions later. The TN load of 2 denitrification tank 5 (anaerobic ammonia oxidation tank) can also be reduced, and the 2nd denitrification tank 5 becomes compact.

第2脱窒槽5で得られた第2脱窒処理液は、第2脱窒処理液循環手段8を介して第1脱窒槽2へ循環してもよい。これにより循環手段7のみを備える場合に比べて、より高い窒素除去率を達成可した処理水が得られる。   The second denitrification treatment liquid obtained in the second denitrification tank 5 may be circulated to the first denitrification tank 2 via the second denitrification treatment liquid circulation means 8. Thereby, compared with the case where only the circulation means 7 is provided, treated water that can achieve a higher nitrogen removal rate is obtained.

沈降槽6で濃縮沈降した活性汚泥は返送汚泥9として第1脱窒槽2に返送してもよい。返送汚泥9の返送流量としては、汚泥沈降性や必要汚泥濃度に応じて、被処理液の第1脱窒槽2への流入流量に対する比率として一般的に0.25〜1.0倍とすることができる。   The activated sludge concentrated and settled in the settling tank 6 may be returned to the first denitrification tank 2 as the return sludge 9. The return flow rate of the return sludge 9 is generally set to 0.25 to 1.0 times as a ratio to the inflow rate of the liquid to be treated into the first denitrification tank 2 according to the sludge settling property and the required sludge concentration. Can do.

本発明の実施の形態に係る水処理装置の変形例によれば、最終的に得られる処理水中の窒素濃度をより低減することができるとともに、各反応槽における処理を安定して進めることができる。   According to the modification of the water treatment apparatus according to the embodiment of the present invention, the nitrogen concentration in the finally obtained treated water can be further reduced, and the treatment in each reaction tank can be stably advanced. .

(その他の変形例)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。
(Other variations)
Although the present invention has been described according to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention.

例えば、上記の実施の形態では、自己造粒型の嫌気性微生物として、嫌気性アンモニア酸化菌を用いる例を説明した。しかしながら、自己造粒型の嫌気性微生物としては、例えば、メタン発酵に利用されるメタン発酵菌群等の他の細菌を利用することも可能である。   For example, in the above embodiment, an example in which an anaerobic ammonia oxidizing bacterium is used as the self-granulating anaerobic microorganism has been described. However, as the self-granulating anaerobic microorganism, for example, other bacteria such as a group of methane fermentation bacteria used for methane fermentation can be used.

また、図4(a)に示す微生物触媒10では、複数の微生物集塊が担体表面で再集合した状態の断面図を示しているが、図4(d)に示すように、複数の微生物集塊が一体化して成長するような形態も本実施態様に含まれ得ることは勿論である。   In addition, the microbial catalyst 10 shown in FIG. 4 (a) shows a cross-sectional view of a state in which a plurality of microbial conglomerates are reassembled on the surface of the carrier. However, as shown in FIG. It is needless to say that this embodiment can also include a form in which the mass grows integrally.

また、反応槽に充填されている微生物触媒全てが、上記実施形態において規定された形状を満たす必要は無い。一部でも、その形状を満たす微生物触媒が存在すれば、機械撹拌を行った場合に該微生物触媒が剥離を起こし、処理性能の低下を引き起こすため、反応槽に充填された一部の微生物触媒が上記実施形態において規定された形状を満たす場合にも、本発明は適用可能である。   Moreover, it is not necessary that all the microbial catalysts filled in the reaction tank satisfy the shape defined in the above embodiment. In some cases, if there is a microbial catalyst satisfying the shape, when the mechanical stirring is performed, the microbial catalyst is peeled off, resulting in a decrease in processing performance. The present invention can also be applied when the shape defined in the above embodiment is satisfied.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

(実施例)
図1に示す嫌気性アンモニア酸化装置において、下水汚泥を消化槽で消化した後の汚泥を脱水機等で脱水する際に発生する下水消化汚泥脱水ろ液を被処理液として水処理を実施した。亜硝酸化槽内には平均粒径4.2mm、比重1.02、ポリエチレングリコール主体の高分子ゲル担体(PEG担体)を20V%添加した。脱窒槽には、亜硝酸化槽内で得られた亜硝酸化処理液を入れ、その中に平均粒径4.0mm、比重1.02、ポリビニルアルコール主体の結合固定化担体(PVA担体)を20V%添加した。各反応槽水温はほぼ25〜30℃とした。
(Example)
In the anaerobic ammonia oxidation apparatus shown in FIG. 1, water treatment was performed using the sewage digested sludge dehydrated filtrate generated when the sludge after digesting the sewage sludge in the digestion tank was dehydrated with a dehydrator or the like as the liquid to be treated. In the nitritation tank, an average particle size of 4.2 mm, a specific gravity of 1.02, and a polymer gel carrier (PEG carrier) mainly composed of polyethylene glycol (20 V%) were added. In the denitrification tank, the nitritation treatment solution obtained in the nitritation tank is put, and in that, the average particle diameter of 4.0 mm, the specific gravity of 1.02, and the polyvinyl alcohol-based bond-immobilized support (PVA support). 20V% was added. The water temperature in each reactor was approximately 25-30 ° C.

脱窒槽の底部から窒素ガスからなる圧縮ガスを、100L/(m2・分)で供給して亜硝酸化処理液と微生物触媒とを撹拌し、PVA担体の外表面上に嫌気性アンモニア酸化菌を最大厚さ2,000μmで付着させたところで定常状態に達したため、微生物触媒を取り出してその表面性状を観察した。その結果、微生物膜の剥離が生じた微生物触媒の個数は全体の10%以下であった。 A compressed gas composed of nitrogen gas is supplied from the bottom of the denitrification tank at 100 L / (m 2 · min) to stir the nitritation solution and the microbial catalyst, and anaerobic ammonia-oxidizing bacteria on the outer surface of the PVA carrier When a maximum thickness of 2,000 μm was deposited, a steady state was reached, and the microbial catalyst was removed and its surface properties were observed. As a result, the number of microbial catalysts in which the microbial membrane peeled was 10% or less of the total.

(比較例)
一方、撹拌手段として、撹拌羽根を有する機械撹拌で亜硝酸化処理液と微生物触媒とを撹拌した以外は実施例と同様の条件としたところ、微生物膜の剥離が生じた微生物触媒の個数は触媒全体の20〜30%程度であった。
(Comparative example)
On the other hand, as the stirring means, except that the nitrite treatment liquid and the microbial catalyst were stirred by mechanical stirring having a stirring blade, the conditions were the same as in the example. It was about 20 to 30% of the whole.

1…濃縮・脱水装置
2…脱窒槽(第1脱窒槽)
3…亜硝酸化槽
4…沈降槽
5…脱窒槽(第2脱窒槽)
6…沈降槽
7…亜硝酸化処理液循環手段
8…脱窒処理液循環手段
9…返送汚泥
10…微生物触媒
10A…担体
10B…微生物膜
51…ガス撹拌手段
51A…ガス供給口(ガス撹拌手段)
51B…ガス供給口(ガス撹拌手段)
52B…ドラフトチューブ
53…ガス循環手段
1 ... Concentration / dehydration device 2 ... Denitrification tank (first denitrification tank)
3 ... nitritation tank 4 ... settling tank 5 ... denitrification tank (second denitrification tank)
6 ... Settling tank 7 ... Nitrite treatment liquid circulation means 8 ... Denitrification treatment liquid circulation means 9 ... Return sludge 10 ... Microbial catalyst 10A ... Carrier 10B ... Microbial membrane 51 ... Gas stirring means 51A ... Gas supply port (gas stirring means) )
51B ... Gas supply port (gas stirring means)
52B ... Draft tube 53 ... Gas circulation means

Claims (11)

自己造粒型の嫌気性微生物を担体の外表面上に固定化した微生物触媒と被処理液とを収容し、嫌気性条件下で前記被処理液を処理する処理槽と、
前記処理槽内に不活性ガスを供給することにより前記被処理液及び前記微生物触媒を撹拌するガス撹拌手段と
を備えることを特徴とする水処理装置。
Containing a microbial catalyst in which self-granulating anaerobic microorganisms are immobilized on the outer surface of the carrier and a liquid to be treated, and a treatment tank for treating the liquid to be treated under anaerobic conditions;
A water treatment apparatus comprising: a gas stirring means for stirring the liquid to be treated and the microbial catalyst by supplying an inert gas into the treatment tank.
前記微生物触媒の最表面には不規則な凹凸が形成されている請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein irregular irregularities are formed on the outermost surface of the microbial catalyst. 前記微生物触媒は、前記担体の外表面上に最大厚さ100μm以上の前記嫌気性微生物を含む微生物膜を備える請求項1又は2に記載の水処理装置。   The water treatment apparatus according to claim 1 or 2, wherein the microbial catalyst includes a microbial film containing the anaerobic microorganisms having a maximum thickness of 100 µm or more on an outer surface of the carrier. 前記微生物触媒は、最表面からの深さが50μm以上の凹部が少なくとも1つ以上形成されていることを含む請求項1〜3のいずれか1項に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the microbial catalyst includes at least one recess having a depth of 50 μm or more from the outermost surface. 前記嫌気性微生物が嫌気性アンモニア酸化菌である請求項1〜4のいずれか1項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 4, wherein the anaerobic microorganism is an anaerobic ammonia oxidizing bacterium. 前記ガス撹拌手段が、前記不活性ガスを10〜450L/(m2・分)で前記処理槽内に供給することを含む請求項1〜5のいずれか1項に記載の水処理装置。 The water treatment device according to any one of claims 1 to 5, wherein the gas stirring means includes supplying the inert gas into the treatment tank at 10 to 450 L / (m 2 · min). 前記処理槽内に供給した前記不活性ガスを前記処理槽内へ循環させるガス循環手段を更に備える請求項1〜6のいずれか1項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 6, further comprising a gas circulation means for circulating the inert gas supplied into the treatment tank into the treatment tank. 被処理液中に含まれるアンモニア性の窒素の一部を亜硝酸菌の作用により亜硝酸性窒素に部分酸化して亜硝酸化処理液を得る亜硝酸化槽と、
前記亜硝酸化処理液中のアンモニア性窒素を、自己造粒型の嫌気性微生物を担体の外表面上に固定した微生物触媒を用いて嫌気的に酸化処理する脱窒槽と、
前記脱窒槽内に不活性ガスを供給することにより前記亜硝酸化処理液及び前記微生物触媒を撹拌するガス撹拌手段と
を備えることを特徴とする水処理装置。
A nitritation tank that partially oxidizes a part of ammonia nitrogen contained in the liquid to be treated into nitrite nitrogen by the action of nitrite bacteria to obtain a nitritation treatment liquid;
A denitrification tank that anaerobically oxidizes the nitrogen in the nitrite treatment solution using a microbial catalyst in which a self-granulating anaerobic microorganism is fixed on the outer surface of the carrier;
A water treatment apparatus comprising: a gas stirring means for stirring the nitritation treatment liquid and the microbial catalyst by supplying an inert gas into the denitrification tank.
窒素及び有機物を含有する被処理液を、従属栄養性細菌を用いた脱窒反応により嫌気的に脱窒処理して第1脱窒処理液を得る第1脱窒槽と、
前記第1脱窒処理液中に含まれるアンモニア性窒素の一部を亜硝酸菌の作用により亜硝酸性窒素に酸化して亜硝酸化処理液を得る亜硝酸化槽と、
前記亜硝酸化処理液の一部を前記第1脱窒槽へ循環する亜硝酸化処理液循環手段と、
前記亜硝酸化処理液中のアンモニア性窒素を、自己造粒型の嫌気性微生物を担体の外表面上に固定した微生物触媒を用いて嫌気的に酸化処理する第2脱窒槽と、
前記第2脱窒槽中に不活性ガスを供給することにより前記亜硝酸化処理液及び前記微生物触媒を撹拌するガス撹拌手段と
を備えることを特徴とする水処理装置。
A first denitrification tank that obtains a first denitrification treatment liquid by anaerobically denitrifying the treatment liquid containing nitrogen and organic matter by a denitrification reaction using heterotrophic bacteria;
A nitritation tank that oxidizes a part of ammonia nitrogen contained in the first denitrification treatment liquid to nitrite nitrogen by the action of nitrite bacteria to obtain a nitritation treatment liquid;
A nitrite treatment liquid circulating means for circulating a part of the nitrite treatment liquid to the first denitrification tank;
A second denitrification tank for anaerobically oxidizing ammonia nitrogen in the nitritation solution using a microbial catalyst in which a self-granulating anaerobic microorganism is fixed on the outer surface of the carrier;
A water treatment apparatus comprising: a gas stirring unit that stirs the nitritation solution and the microbial catalyst by supplying an inert gas into the second denitrification tank.
自己造粒型の嫌気性微生物を担体の外表面上に固定化した微生物触媒と被処理液とを処理槽内に収容し、前記処理槽内に不活性ガスを供給することにより嫌気性条件下で前記微生物触媒と前記被処理液とを撹拌させて前記被処理液を処理することを含むことを特徴とする水処理方法。   A microorganism catalyst in which self-granulating anaerobic microorganisms are immobilized on the outer surface of the carrier and a liquid to be treated are accommodated in a treatment tank, and an inert gas is supplied into the treatment tank to perform anaerobic conditions. And treating the liquid to be treated by stirring the microbial catalyst and the liquid to be treated. 前記嫌気性微生物が嫌気性アンモニア酸化菌である請求項10に記載の水処理方法。   The water treatment method according to claim 10, wherein the anaerobic microorganism is an anaerobic ammonia oxidizing bacterium.
JP2014001129A 2014-01-07 2014-01-07 Water treatment apparatus and water treatment method Pending JP2015128747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014001129A JP2015128747A (en) 2014-01-07 2014-01-07 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014001129A JP2015128747A (en) 2014-01-07 2014-01-07 Water treatment apparatus and water treatment method

Publications (1)

Publication Number Publication Date
JP2015128747A true JP2015128747A (en) 2015-07-16

Family

ID=53759942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001129A Pending JP2015128747A (en) 2014-01-07 2014-01-07 Water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP2015128747A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180116805A (en) * 2017-04-18 2018-10-26 두산중공업 주식회사 Bio-reactor for sewage treatment and sewage treatment system comprising the same
JP2018187577A (en) * 2017-05-09 2018-11-29 水ing株式会社 Method for setting up nitrogen-containing wastewater treatment system
US10494282B2 (en) 2017-04-18 2019-12-03 DOOSAN Heavy Industries Construction Co., LTD Bioreactor for treating sewage and sewage treatment system comprising the same
US10626035B2 (en) 2017-04-18 2020-04-21 DOOSAN Heavy Industries Construction Co., LTD Sequencing batch reactor for sewage treatment and sewage treatment system comprising same
JP2021122806A (en) * 2020-02-07 2021-08-30 水ing株式会社 Anaerobic treatment apparatus and anaerobic treatment method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320189A (en) * 1993-05-18 1994-11-22 Komatsu Ltd Treatment of waste water
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003266095A (en) * 2002-03-14 2003-09-24 Univ Waseda Method for forming nitrification granules
JP2006082053A (en) * 2004-09-17 2006-03-30 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing drainage
JP2006088092A (en) * 2004-09-27 2006-04-06 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing liquid
WO2006049322A1 (en) * 2004-11-05 2006-05-11 Ebara Corporation Biological denitrification method and apparatus
JP2006272172A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Method and apparatus for biologically treating nitrogen-containing water
JP2006289347A (en) * 2005-03-16 2006-10-26 Hitachi Plant Technologies Ltd Method and apparatus for treating waste water
WO2011148949A1 (en) * 2010-05-25 2011-12-01 メタウォーター株式会社 Method for biological denitrification using anaerobic ammonia oxidation reaction

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320189A (en) * 1993-05-18 1994-11-22 Komatsu Ltd Treatment of waste water
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003266095A (en) * 2002-03-14 2003-09-24 Univ Waseda Method for forming nitrification granules
JP2006082053A (en) * 2004-09-17 2006-03-30 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing drainage
JP2006088092A (en) * 2004-09-27 2006-04-06 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing liquid
WO2006049322A1 (en) * 2004-11-05 2006-05-11 Ebara Corporation Biological denitrification method and apparatus
JP2008518753A (en) * 2004-11-05 2008-06-05 株式会社荏原製作所 Biological denitrification method and apparatus
JP2006289347A (en) * 2005-03-16 2006-10-26 Hitachi Plant Technologies Ltd Method and apparatus for treating waste water
JP2006272172A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Method and apparatus for biologically treating nitrogen-containing water
WO2011148949A1 (en) * 2010-05-25 2011-12-01 メタウォーター株式会社 Method for biological denitrification using anaerobic ammonia oxidation reaction

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180116805A (en) * 2017-04-18 2018-10-26 두산중공업 주식회사 Bio-reactor for sewage treatment and sewage treatment system comprising the same
US10494282B2 (en) 2017-04-18 2019-12-03 DOOSAN Heavy Industries Construction Co., LTD Bioreactor for treating sewage and sewage treatment system comprising the same
US10626035B2 (en) 2017-04-18 2020-04-21 DOOSAN Heavy Industries Construction Co., LTD Sequencing batch reactor for sewage treatment and sewage treatment system comprising same
KR102164624B1 (en) * 2017-04-18 2020-10-12 두산중공업 주식회사 Bio-reactor for sewage treatment and sewage treatment system comprising the same
US11001517B2 (en) 2017-04-18 2021-05-11 DOOSAN Heavy Industries Construction Co., LTD Bioreactor for treating sewage and sewage treatment system comprising the same
US11180392B2 (en) 2017-04-18 2021-11-23 Doosan Heavy Industries & Construction Co. Ltd. Sequencing batch reactor for sewage treatment and sewage treatment system comprising same
JP2018187577A (en) * 2017-05-09 2018-11-29 水ing株式会社 Method for setting up nitrogen-containing wastewater treatment system
JP2021122806A (en) * 2020-02-07 2021-08-30 水ing株式会社 Anaerobic treatment apparatus and anaerobic treatment method

Similar Documents

Publication Publication Date Title
CN107108293B (en) Method and apparatus for removing nitrogen from nitrogen-containing wastewater
Zhou et al. Microbubble-and nanobubble-aeration for upgrading conventional activated sludge process: A review
KR101274721B1 (en) Method for biological disposal of organic wastewater and biological disposal apparatus
JP2015128747A (en) Water treatment apparatus and water treatment method
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP2012110821A (en) Method for treatment of organic wastewater
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP6821498B2 (en) How to set up a nitrogen-containing wastewater treatment system
WO2019198388A1 (en) Nitrogen treatment method
JP5858769B2 (en) Suspended organic matter-containing wastewater treatment system and treatment method
JP6425467B2 (en) Anaerobic ammonia oxidation treatment method, anaerobic ammonia oxidation treatment device and denitrification treatment method of organic wastewater
JP3841394B2 (en) High concentration organic wastewater treatment method and equipment
JP3136902B2 (en) Wastewater treatment method
JP2010207657A (en) Wastewater treatment apparatus and wastewater treatment method
JP2001009498A (en) Treatment of waste water and treating device therefor
JP2015160202A (en) Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water
JP2010253404A (en) Method and apparatus of denitrifying digested sludge separation liquid
JP5466864B2 (en) Water treatment apparatus and water treatment method
WO2012017834A1 (en) Anaerobic digestion method
JP7200248B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP5126691B2 (en) Wastewater treatment method
JPH1085783A (en) Denitrification method and apparatus for drainage containing nitric acid type nitrogen
KR101715389B1 (en) Bio-film media having improved adhesive property of microorganism and advanced water treatment process using the same
JP5469947B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109