JP2003033785A - Method and device for denitrification - Google Patents

Method and device for denitrification

Info

Publication number
JP2003033785A
JP2003033785A JP2001226185A JP2001226185A JP2003033785A JP 2003033785 A JP2003033785 A JP 2003033785A JP 2001226185 A JP2001226185 A JP 2001226185A JP 2001226185 A JP2001226185 A JP 2001226185A JP 2003033785 A JP2003033785 A JP 2003033785A
Authority
JP
Japan
Prior art keywords
denitrification
tank
carbon dioxide
gas
denitrification tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001226185A
Other languages
Japanese (ja)
Other versions
JP4876343B2 (en
Inventor
Hidenari Yasui
英斉 安井
Takaaki Tokutomi
孝明 徳富
Rei Imashiro
麗 今城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001226185A priority Critical patent/JP4876343B2/en
Publication of JP2003033785A publication Critical patent/JP2003033785A/en
Application granted granted Critical
Publication of JP4876343B2 publication Critical patent/JP4876343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To make it possible to easily regulate to a favorable pH range without using an acid for adjusting a pH level and without strictly performing addition nor controlling of an ammoniacal nitrogen-containing raw water in the presence of nitrite nitrogen by the action of denitrifying microorganisms with ammoniacal nitrogen acting as an electron donor and nitrite nitrogen as an electron acceptor and perform efficient denitrification treatment by efficiently stirring the granules within the denitrification tank and making them flow. SOLUTION: Denitrification is performed by controlling the pH level within a denitrification tank 1 to which carbon dioxide is supplied. Biogas generated as a result of anaerobic living-organism treatment of organic wastes is used as a source of carbon dioxide. By circulating the carbon dioxide or denitrified waste gas the granules within the denitrification tank 1 are stirred and made to flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア性窒素
を含有する原水を、アンモニア性窒素を電子供与体と
し、亜硝酸性窒素を電子受容体とする脱窒微生物の作用
により、亜硝酸性窒素の存在下に脱窒する方法及び装置
に係り、特に、この方法において、脱窒槽内のpH調整
を容易かつ安価に行う脱窒方法及び脱窒装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses raw water containing ammoniacal nitrogen as a source of denitrifying microorganisms using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. The present invention relates to a denitrification method and a denitrification apparatus, and more particularly to a denitrification method and a denitrification apparatus for easily and inexpensively adjusting pH in a denitrification tank in this method.

【0002】[0002]

【従来の技術】排液中に含まれるアンモニア性窒素は河
川、湖沼及び海洋などにおける富栄養化の原因物質の一
つであり、排液処理工程で効率的に除去する必要があ
る。一般に、排水中のアンモニア性窒素は、アンモニア
性窒素をアンモニア酸化細菌により亜硝酸性窒素に酸化
し、更にこの亜硝酸性窒素を亜硝酸酸化細菌により硝酸
性窒素に酸化する硝化工程と、これらの亜硝酸性窒素及
び硝酸性窒素を従属栄養性細菌である脱窒菌により、有
機物を電子供与体として利用して窒素ガスにまで分解す
る脱窒工程との2段階の生物反応を経て窒素ガスにまで
分解される。
2. Description of the Related Art Ammoniacal nitrogen contained in drainage is one of the causative substances of eutrophication in rivers, lakes and oceans, and it is necessary to remove it efficiently in the drainage treatment process. Generally, ammoniacal nitrogen in wastewater is a nitrification process in which ammoniacal nitrogen is oxidized to nitrite nitrogen by ammonia-oxidizing bacteria, and this nitrite nitrogen is further oxidized to nitrate nitrogen by nitrite-oxidizing bacteria. Nitrogen gas and nitrogen gas are transformed into nitrogen gas by a denitrification process in which organic substances are used as electron donors to decompose them into nitrogen gas by denitrifying bacteria, which are heterotrophic bacteria. Be disassembled.

【0003】しかし、このような従来の硝化脱窒法で
は、脱窒工程において電子供与体としてメタノールなど
の有機物を多量に必要とし、また硝化工程では多量の酸
素が必要であるため、ランニングコストが高いという欠
点がある。
However, in such a conventional nitrification denitrification method, a large amount of an organic substance such as methanol is required as an electron donor in the denitrification step, and a large amount of oxygen is required in the nitrification step, so that the running cost is high. There is a drawback that.

【0004】これに対して、近年、アンモニア性窒素を
電子供与体とし、亜硝酸性窒素を電子受容体とする独立
栄養性微生物(自己栄養細菌)を利用し、アンモニア性
窒素と亜硝酸性窒素とを反応させて脱窒する方法が提案
された。この方法であれば、有機物の添加は不要である
ため、従属栄養性の脱窒菌を利用する方法と比べて、コ
ストを低減することができる。また、独立栄養性の微生
物は収率が低く、汚泥の発生量が従属栄養性微生物と比
較すると著しく少ないので、余剰汚泥の発生量を抑える
ことができる。更に、従来の硝化脱窒法で観察されるN
Oの発生がなく、環境に対する負荷を低減できるとい
った特長もある。
On the other hand, in recent years, ammoniacal nitrogen and nitrite nitrogen have been utilized by utilizing an autotrophic microorganism (autotrophic bacterium) having ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A method of denitrifying by reacting with was proposed. This method does not require addition of organic matter, and thus can reduce the cost as compared with the method using heterotrophic denitrifying bacteria. In addition, the yield of autotrophic microorganisms is low, and the amount of sludge generated is significantly smaller than that of heterotrophic microorganisms, so that the amount of excess sludge generated can be suppressed. Furthermore, N observed by the conventional nitrification denitrification method
It also has the feature that it does not generate 2 O and can reduce the load on the environment.

【0005】この独立栄養性脱窒微生物(以下「ANA
MMOX微生物」と称す場合がある。)を利用する生物
脱窒プロセスは、Strous, M, et al., Appl. Microbio
l. Biotechnol., 50, p.589-596 (1998) に報告されて
おり、以下のような反応でアンモニア性窒素と亜硝酸性
窒素が反応して窒素ガスに分解されると考えられてい
る。
This autotrophic denitrifying microorganism (hereinafter referred to as "ANA
Sometimes referred to as "MMOX microorganism". ) Is used in Strous, M, et al., Appl. Microbio
l. Biotechnol., 50, p.589-596 (1998), it is believed that ammoniacal nitrogen and nitrite nitrogen react with each other in the following reaction to decompose into nitrogen gas. .

【0006】[0006]

【化1】 [Chemical 1]

【0007】この反応では、水素イオンが消費されるた
め、脱窒処理液のpHは増加する。一方、この脱窒反応
を円滑に進行させるためには、至適pH範囲があり、通
常はpH6〜9、好ましくはpH6.5〜7.5の範囲
に制御する必要がある。pHを制御しない場合には、最
終的にpHは9.0以上に上昇し、脱窒活性は著しく低
下する。このpH調整には、通常、硫酸や塩酸などの無
機酸が使用される。しかし、これらの酸は、(1)薬品
として購入する必要があり、運転コスト上昇の一因とな
る、(2)脱窒槽内液のアルカリ度が低いため、厳密な
薬注制御を行わないと、pHが下がりすぎる場合がある
などの欠点がある。特に、pHが下がり過ぎた場合に
は、ANAMMOX微生物が失活し、脱窒処理を行えな
くなる。
Since hydrogen ions are consumed in this reaction, the pH of the denitrification treatment liquid increases. On the other hand, in order to allow the denitrification reaction to proceed smoothly, there is an optimum pH range, and it is usually necessary to control the pH to be in the range of 6 to 9, preferably pH 6.5 to 7.5. When the pH is not controlled, the pH finally rises to 9.0 or higher, and the denitrification activity remarkably decreases. Inorganic acids such as sulfuric acid and hydrochloric acid are usually used for this pH adjustment. However, these acids (1) need to be purchased as chemicals, which contributes to an increase in operating costs. (2) Since the alkalinity of the liquid inside the denitrification tank is low, strict chemical injection control must be performed. However, there is a drawback that the pH may drop too much. In particular, when the pH is too low, the ANAMMOX microorganism is inactivated and denitrification cannot be performed.

【0008】ところで、有価物としてメタンガスを回収
することができる工業的に有利なプロセスとして、有機
性廃棄物の嫌気性生物処理が広く一般に行われている。
By the way, as an industrially advantageous process capable of recovering methane gas as a valuable resource, anaerobic biological treatment of organic waste is widely performed.

【0009】嫌気性生物処理では、有機物がメタンガス
と炭酸ガスに分解され、多くの場合、微量の硫化水素ガ
スも発生する。通常は、嫌気性生物処理で発生したメタ
ンガス、炭酸ガス及び微量の硫化水素ガスを含むバイオ
ガスは、脱硫装置で硫化水素ガスを除去した後、ボイラ
等でメタンガスをエネルギーとして回収再利用している
が、従来において、炭酸ガスを有効利用する例は殆どな
い。
In the anaerobic biological treatment, organic substances are decomposed into methane gas and carbon dioxide gas, and in many cases, a trace amount of hydrogen sulfide gas is also generated. Normally, biogas containing methane gas, carbon dioxide gas, and a trace amount of hydrogen sulfide gas generated by anaerobic biological treatment, after removing hydrogen sulfide gas with a desulfurization device, recovers and reuses methane gas as energy in a boiler or the like. However, heretofore, there have been few examples of effectively utilizing carbon dioxide gas.

【0010】ANAMMOX微生物は、その収率が低い
分、増殖速度が遅く、反応槽内に高濃度に保持すること
が困難であり、このために処理効率を高めることができ
ないという問題があった。
[0010] The ANAMMOX microorganism has a problem that it is difficult to maintain a high concentration in the reaction tank because of its low yield and a slow growth rate, which makes it impossible to enhance the treatment efficiency.

【0011】一方、従属栄養性細菌である脱窒菌を利用
する従来の硝化脱窒法では、原水を反応槽の下部より上
向流で流入させ、菌の付着担体を用いることなく、汚泥
をブロック化又は粒状化させて粒径1〜数mmのグラニ
ュール汚泥の汚泥床(スラッジブランケット)を形成さ
せ、反応槽中に高濃度の微生物を保持して、高負荷処理
を行うUSB (Upflow Sludge Bed;上向流汚泥床)方
式で処理が行われている。
On the other hand, in the conventional nitrifying denitrification method utilizing denitrifying bacteria, which are heterotrophic bacteria, raw water is made to flow upward from the lower part of the reaction tank, and sludge is blocked without using a carrier to which the bacteria adhere. Alternatively, a granular sludge bed (sludge blanket) of granule sludge having a particle size of 1 to several mm is formed by granulation, and a high-concentration microorganism is retained in the reaction tank to perform high load treatment USB (Upflow Sludge Bed; Upflow sludge bed) is used for treatment.

【0012】従って、ANAMMOX微生物について
も、上向流反応槽やSBR(回分式反応槽)で造粒した
グラニュール汚泥を用いて、USB方式で高負荷で生物
脱窒処理を行うことが考えられる。
Therefore, it is conceivable that the ANAMMOX microorganisms are also subjected to biodenitrification treatment under a high load by the USB method by using the granulated sludge granulated in the upflow reaction tank or the SBR (batch type reaction tank). .

【0013】USB方式で処理を行う場合、造粒したグ
ラニュール汚泥は沈降し易いため、汚泥と処理液との分
離を効率的に行えるという利点があるが、一方で反応槽
内において、原水と汚泥とを効率的に接触させると共
に、グラニュール汚泥を適度な粒径に造粒して維持する
ために、反応槽内でグラニュール汚泥を十分に撹拌する
と共に展開させて流動させる必要がある。このために、
処理水の一部を循環水として反応槽の底部に循環させて
槽内の上向流速を高めたり、また、活性汚泥による好気
性処理の場合には、空気曝気による撹拌でグラニュール
汚泥を撹拌、流動させている。しかしながら、ANAM
MOX微生物は酸素により阻害を受けるため、活性汚泥
の場合のような空気曝気を適用することはできない。
[0013] When the treatment is carried out by the USB method, the granulated sludge that has been granulated tends to settle, so that there is an advantage that the sludge and the treatment liquid can be efficiently separated. In order to make efficient contact with the sludge and to granulate and maintain the granule sludge to have an appropriate particle size, it is necessary to sufficiently stir the granule sludge in the reaction tank and to develop and fluidize it. For this,
A part of the treated water is circulated to the bottom of the reaction tank as circulating water to increase the upward flow velocity in the tank, and in the case of aerobic treatment with activated sludge, the granulated sludge is agitated by air aeration. , Is flowing. However, ANAM
Since MOX microorganisms are inhibited by oxygen, air aeration cannot be applied as in the case of activated sludge.

【0014】[0014]

【発明が解決しようとする課題】従って、本発明はpH
調整用の酸を用いることなく、しかも、厳密な添加制御
を行うことなく、ANAMMOX脱窒槽内を容易に好適
なpH範囲に調整することができる脱窒方法及び脱窒装
置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention is not limited to pH.
An object of the present invention is to provide a denitrification method and a denitrification device capable of easily adjusting the inside of the ANAMMOX denitrification tank to a suitable pH range without using an acid for adjustment and without performing strict addition control. And

【0015】本発明はまた、脱窒槽内のグラニュールを
効率的に撹拌、流動させて効率的な脱窒処理を行うこと
ができる脱窒方法及び脱窒装置を提供することを目的と
する。
It is another object of the present invention to provide a denitrification method and a denitrification apparatus which can efficiently stir and flow the granules in the denitrification tank to perform an efficient denitrification process.

【0016】[0016]

【課題を解決するための手段】本発明(請求項1)の脱
窒方法は、アンモニア性窒素を含有する原水を脱窒槽に
導入し、該脱窒槽内の、アンモニア性窒素を電子供与体
とし、亜硝酸性窒素を電子受容体とする脱窒微生物の作
用により、亜硝酸性窒素の存在下に脱窒する方法におい
て、該脱窒槽に炭酸ガスを供給することにより、該脱窒
槽内のpHを制御して脱窒を行うことを特徴とする。
According to the denitrification method of the present invention (Claim 1), raw water containing ammoniacal nitrogen is introduced into a denitrification tank, and the ammoniacal nitrogen in the denitrification tank is used as an electron donor. In the method of denitrifying in the presence of nitrite nitrogen by the action of a denitrifying microorganism having nitrite nitrogen as an electron acceptor, by supplying carbon dioxide gas to the denitrification tank, the pH in the denitrification tank is increased. It is characterized by performing denitrification by controlling.

【0017】炭酸ガスは下記のようにpH緩衝能を有す
るため、pH調整用の酸として炭酸ガスを用いることに
より、pHが下がり過ぎることを防止して、容易に好適
なpH範囲に調整することができる。
Since carbon dioxide has a pH buffering ability as described below, by using carbon dioxide as an acid for pH adjustment, it is possible to prevent the pH from falling too low and to easily adjust it to a suitable pH range. You can

【0018】[0018]

【化2】 [Chemical 2]

【0019】この炭酸ガスとしては、有機性廃棄物の嫌
気性生物処理で発生するバイオガス中の炭酸ガスを有効
利用することができ、これにより、薬品としての酸を不
要として、処理コストを低減することができる。
As the carbon dioxide gas, carbon dioxide gas in the biogas generated in the anaerobic biological treatment of organic waste can be effectively used, whereby the acid as a chemical is unnecessary and the treatment cost is reduced. can do.

【0020】しかも、バイオガスに含まれる硫化水素を
脱窒槽内で吸収することができるため、脱硫装置で使用
する脱硫剤の節減を図ることもできる。
Moreover, since hydrogen sulfide contained in biogas can be absorbed in the denitrification tank, the desulfurizing agent used in the desulfurizer can be saved.

【0021】本発明では、脱窒槽内をpH6〜9に調整
することが好ましい。
In the present invention, it is preferable to adjust the inside of the denitrification tank to pH 6-9.

【0022】請求項4の脱窒方法は、脱窒槽が、その内
部に前記脱窒微生物が担体粒子表面に生物膜を形成した
もの、又は前記脱窒微生物が自己造粒によりグラニュー
ルになったものを保有するものであり、脱窒処理で生成
する脱窒排ガスの一部を該脱窒槽の底部へ循環供給する
ことにより、前記脱窒微生物が表面に生物膜を形成した
担体粒子又は前記グラニュールを撹拌して流動させるこ
とを特徴とするものであり、この方法であれば脱窒排ガ
スを用いて、脱窒槽内の表面に生物膜が形成された担体
粒子又はグラニュールを効果的に撹拌して流動、展開さ
せることができる。
In the denitrification method of claim 4, the denitrification tank has a biofilm formed on the surface of carrier particles by the denitrification microorganisms, or the denitrification microorganisms are granulated by self-granulation. The carrier particles or the granules in which the denitrifying microorganisms have formed a biofilm on the surface by circulating and supplying a part of the denitrification exhaust gas generated in the denitrification treatment to the bottom of the denitrification tank. This method is characterized by stirring and flowing the granules.With this method, the denitrification exhaust gas is used to effectively stir the carrier particles or granules with the biofilm formed on the surface in the denitrification tank. It can be flowed and expanded.

【0023】請求項5の脱窒方法は、脱窒槽が、その内
部に前記脱窒微生物が担体粒子表面に生物膜を形成した
もの、又は前記脱窒微生物が自己造粒によりグラニュー
ルになったものを保有するものであり、前記炭酸ガスを
pH調整に必要な当量よりも過剰に該脱窒槽の底部に供
給することにより、前記脱窒微生物が表面に生物膜を形
成した担体粒子又は前記グラニュールを撹拌して流動さ
せることを特徴とするものであり、この方法によれば、
バイオガス等の炭酸ガスを用いて、脱窒槽内の表面に生
物膜が形成された担体粒子又はグラニュールを効果的に
撹拌して流動、展開させることができる。
In the denitrification method of claim 5, the denitrification tank has a biofilm formed on the surface of carrier particles by the denitrification microorganisms, or the denitrification microorganisms are granulated by self-granulation. The carbon dioxide gas is supplied to the bottom of the denitrification tank in excess of the equivalent amount necessary for pH adjustment, so that the denitrifying microorganisms have carrier particles having a biofilm formed on the surface or the granules. It is characterized by stirring and fluidizing the resin, and according to this method,
By using carbon dioxide gas such as biogas, the carrier particles or granules having the biofilm formed on the surface in the denitrification tank can be effectively stirred to flow and spread.

【0024】この場合において、脱窒槽内に導入された
ガスのLV(空塔線速度)は0.1〜10m/分である
ことが好ましい。
In this case, the LV (vacuum linear velocity) of the gas introduced into the denitrification tank is preferably 0.1 to 10 m / min.

【0025】本発明の脱窒装置は、アンモニア性窒素を
含有する原水を、アンモニア性窒素を電子供与体とし、
亜硝酸性窒素を電子受容体とする脱窒微生物の作用によ
り、亜硝酸性窒素の存在下に脱窒する脱窒装置であっ
て、前記脱窒微生物が担体粒子表面に生物膜を形成した
もの、又は前記脱窒微生物が自己造粒によりグラニュー
ルになったものを保有する脱窒槽と、該脱窒槽内のpH
を測定するpH測定手段と、該脱窒槽に炭酸ガスを供給
する炭酸ガス供給手段と、前記pH測定手段の測定値に
基づいて該炭酸ガス供給手段の炭酸ガス供給量を制御す
る手段と、該脱窒槽における脱窒処理で生成する脱窒ガ
スを脱窒槽から排出する手段と、排出された脱窒排ガス
の一部を該脱窒槽の底部へ循環する手段とを備えてなる
ことを特徴とするものである。
The denitrification apparatus of the present invention uses raw water containing ammoniacal nitrogen as the electron donor with ammoniacal nitrogen,
A denitrification device that denitrifies in the presence of nitrite nitrogen by the action of a denitrification microorganism that uses nitrite nitrogen as an electron acceptor, wherein the denitrification microorganism forms a biofilm on the surface of carrier particles. Or a denitrification tank containing the denitrification microorganisms granulated by self-granulation, and a pH in the denitrification tank
PH measuring means for measuring, carbon dioxide gas supplying means for supplying carbon dioxide gas to the denitrification tank, means for controlling the carbon dioxide gas supply amount of the carbon dioxide gas supplying means based on the measured value of the pH measuring means, It is characterized by comprising means for discharging the denitrification gas generated by the denitrification treatment in the denitrification tank from the denitrification tank, and means for circulating a part of the discharged denitrification exhaust gas to the bottom of the denitrification tank. It is a thing.

【0026】この脱窒装置であれば、バイオガス等の炭
酸ガスにより脱窒槽内をpH調整すると共に、脱窒排ガ
スを用いて、脱窒槽内の表面に生物膜が形成された担体
粒子又はグラニュールを効果的に撹拌して流動、展開さ
せることができる。
With this denitrification device, the pH of the denitrification tank is adjusted with carbon dioxide gas such as biogas, and the denitrification exhaust gas is used to form carrier particles or granules having a biofilm formed on the surface of the denitrification tank. Can be effectively stirred to flow and spread.

【0027】なお、以下において、本発明に係る脱窒微
生物が担体粒子表面に生物膜を形成したもの、及び自己
造粒によりグラニュールになったものをあわせて「グラ
ニュール」と称す場合がある。
In the following, the denitrifying microorganisms according to the present invention in which a biofilm is formed on the surface of carrier particles and those which are granulated by self-granulation may be collectively referred to as "granule". .

【0028】[0028]

【発明の実施の形態】以下に図面を参照して本発明の脱
窒方法及び脱窒装置の実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the denitrification method and denitrification apparatus of the present invention will be described in detail below with reference to the drawings.

【0029】図1は本発明の脱窒装置の実施の形態を示
す模式的な断面図である。
FIG. 1 is a schematic sectional view showing an embodiment of the denitrification apparatus of the present invention.

【0030】図1(a)の脱窒装置は、脱窒槽として、
内部にANAMMOX微生物のグラニュール汚泥床が形
成されたUSB反応槽1を有し、この反応槽1の底部に
原水の流入配管2が接続されている。反応槽1の上部に
は気液固分離装置3が設けられ、この気液固分離装置3
から、処理水の排出配管4と、処理水の一部を循環水と
して原水流入配管2に戻す循環配管5が引き出されてい
る。
The denitrification apparatus of FIG. 1 (a) is used as a denitrification tank.
A USB reaction tank 1 in which a granulated sludge bed of ANAMMOX microorganisms is formed is provided inside, and a raw water inflow pipe 2 is connected to the bottom of the reaction tank 1. A gas-liquid solid separation device 3 is provided above the reaction tank 1.
From this, a discharge pipe 4 for treated water and a circulation pipe 5 for returning a part of the treated water to the raw water inflow pipe 2 as circulating water are drawn out.

【0031】反応槽1の頂部には脱窒排ガスのガス排出
管6が設けられ、このガス排出管6に分岐して、脱窒排
ガスの一部を反応槽1の底部に循環させるブロワB
備えるガス循環配管7が設けられている。また、pH調
整のための炭酸ガス(CO)を反応槽1の底部に供給
するブロワBを備えるCOガス(バイオガスであっ
ても良い。)供給配管8が設けられている。
A gas exhaust pipe 6 for denitrifying exhaust gas is provided at the top of the reaction tank 1, and a blower B 1 is branched to this gas exhaust pipe 6 to circulate a part of the denitrifying exhaust gas to the bottom of the reaction tank 1. A gas circulation pipe 7 is provided. Further, a CO 2 gas (or biogas may be used) supply pipe 8 including a blower B 2 for supplying carbon dioxide (CO 2 ) for pH adjustment to the bottom of the reaction tank 1 is provided.

【0032】反応槽1には、槽内液のpHを測定するp
H計9が設けられ、このpH計9の測定結果に基づい
て、COガス供給配管8のブロワBの作動が制御さ
れ、COガス供給量が調節されるように構成されてい
る。
In the reaction tank 1, p for measuring the pH of the liquid in the tank is used.
An H meter 9 is provided, and the operation of the blower B 2 of the CO 2 gas supply pipe 8 is controlled based on the measurement result of the pH meter 9, and the CO 2 gas supply amount is adjusted.

【0033】この脱窒装置において、原水は、配管5か
らの循環水と共に配管2からUSB反応槽1の底部に導
入される。USB反応槽1に導入された原水は、ANA
MMOX微生物のグラニュール汚泥床を上向流で上昇す
る間に、ANAMMOX微生物により生物脱窒処理さ
れ、処理水が配管4より系外へ排出される。また、処理
水の一部は配管5より原水導入配管2に循環される。
In this denitrification device, raw water is introduced from the pipe 2 to the bottom of the USB reaction tank 1 together with the circulating water from the pipe 5. The raw water introduced into the USB reaction tank 1 is ANA
While the granule sludge bed of MMOX microorganisms is rising in the upward flow, biodenitrification treatment is performed by the ANAMMOX microorganisms, and the treated water is discharged from the system through the pipe 4. A part of the treated water is circulated from the pipe 5 to the raw water introduction pipe 2.

【0034】図1(a)の脱窒装置では、pH計9に連
動するブロワBにより配管8を経てCOガスが反応
槽1の底部から導入され、これにより反応槽1の槽内液
が所定のpHに調整される。
In the denitrification apparatus of FIG. 1 (a), CO 2 gas is introduced from the bottom of the reaction tank 1 through the pipe 8 by the blower B 2 which is interlocked with the pH meter 9, whereby the liquid inside the tank of the reaction tank 1 is introduced. Is adjusted to a predetermined pH.

【0035】ANAMMOX微生物による脱窒反応を効
果的に促進させるために、反応槽1内のpHは6〜9、
特に6.5〜7.5に制御することが好ましい。
In order to effectively promote the denitrification reaction by the ANAMMOX microorganism, the pH in the reaction tank 1 is 6-9.
In particular, it is preferable to control to 6.5 to 7.5.

【0036】また、このCOガスにより、反応槽1内
にはCOガスの上昇流が形成され、この上昇流により
槽内のグラニュールが撹拌、流動され、良好な造粒汚泥
が形成されると共に、汚泥と原水との接触効率が高めら
れ、効率的な脱窒処理を行える。
Further, this CO 2 gas, the reaction tank 1 upward flow of CO 2 gas is formed, granules in the bath is stirred, is fluidized by the upward flow, good granulation sludge formed In addition, the efficiency of contact between the sludge and the raw water is improved, and efficient denitrification treatment can be performed.

【0037】このような、汚泥の造粒を促進すると共
に、汚泥と原水とを効率的に接触させるために、反応槽
1内にLV(ガス空塔速度)0.1〜10m/分のガス
の上昇流を形成することが望ましい。従って、反応槽1
内へのCOガスの導入は、このようなガスの上昇流が
形成されるように行うことが望まれるが、pH調整用の
COガスのみでは、十分なガスの上昇流を形成し得な
い場合には、次のような方法でガス流速を確保すること
が望ましい。 (1) 脱窒排ガスの一部をブロワBにより配管7を
経て反応槽1の底部に循環させ、この循環ガスと導入さ
れるCOガスとで所定のガス流速を得る。なお、この
場合、脱窒排ガス中には、未溶解のCOガスが含まれ
ており、このCO ガスも循環によりpH調整に寄与す
ることとなる。 (2) COガスを窒素ガス等の酸素を含有しないガ
スで希釈して反応槽1に導入する。これにより、pH調
整に必要なガス量が増加し、所定のガス流速を得ること
ができるようになる。 (3) COガスを反応槽1内に散気する散気管とし
て粗大気泡を吐出させるものを用いる。これにより、C
ガスは反応槽1内に粗大気泡として散気され、液中
への炭酸ガスの溶解効率が低下する。このため、pH調
整に必要な当量のCOガス量よりも多いガス量でCO
ガスを供給してもpH調整が可能となり、所定のガス
流速を得ることができるようになる。
It is common to promote such sludge granulation.
In order to efficiently contact the sludge with the raw water, the reaction tank
LV (gas superficial velocity) 0.1 to 10 m / min gas in 1
It is desirable to form an upflow of Therefore, the reaction tank 1
CO intoTwoThe introduction of gas is such an upward flow of gas
It is desirable to do so as to form, but for pH adjustment
COTwoGas alone may not be sufficient to form an upward flow of gas
If not, secure the gas flow velocity by the following method.
Is desirable. (1) A part of the denitrification exhaust gas is blower B1Pipe 7
It is then circulated to the bottom of the reaction tank 1 and introduced with this circulating gas.
COTwoA predetermined gas flow rate is obtained with the gas. In addition, this
In this case, undissolved CO is contained in the denitrification exhaust gas.TwoGas included
And this CO TwoGas also contributes to pH adjustment by circulation
The Rukoto. (2) COTwoUse a gas that does not contain oxygen such as nitrogen gas.
It is diluted with soot and introduced into the reaction tank 1. This will adjust the pH
The amount of gas required for adjustment is increased, and a predetermined gas flow rate is obtained.
Will be able to. (3) COTwoAs an air diffuser that diffuses gas into the reaction tank 1.
A device that discharges large bubbles is used. This gives C
OTwoThe gas is diffused in the reaction tank 1 as coarse bubbles and
The efficiency of dissolution of carbon dioxide into the water decreases. Therefore, the pH adjustment
Equivalent CO required for adjustmentTwoCO in a gas amount larger than the gas amount
TwoEven if gas is supplied, the pH can be adjusted and the specified gas
The flow velocity can be obtained.

【0038】上記(1)〜(3)は2以上を組み合わせ
て採用しても良い。
The above items (1) to (3) may be employed in combination of two or more.

【0039】COガスは、pH緩衝能を有し、pHを
大きく変動させることがないため、反応槽1内のpH調
整に用いるCOガス量では、反応槽1内に形成される
ガス流速が大き過ぎることは殆どないが、ガス流速が大
き過ぎる場合には、反応槽1内にCOガスを散気する
散気管として微細気孔を吐出させるものを用い、CO
ガスの溶解効率を高めれば良い。また、薬品としての酸
を併用しても良い。
COTwoGas has a pH buffering capacity,
Since it does not fluctuate significantly, pH adjustment in the reaction tank 1
CO used for adjustmentTwoWith the amount of gas, it is formed in the reaction tank 1.
Gas flow velocity is rarely too high, but gas flow velocity is high
If too much, COTwoDiffuse gas
Use a diffuser tube that discharges fine pores and use CO Two
It is only necessary to increase the gas dissolution efficiency. Also, acid as a chemical
You may use together.

【0040】図1(b)に示す脱窒装置は、脱窒槽とし
て、内部に上下に開放した内管(ドラフトチューブ)1
2が同軸的に配置された二重管構造のエアリフト型反応
槽(ただし、エアではなくバイオガスや脱窒排ガスによ
りエアリフトと同様な上昇流が形成される。)11を用
いたものであり、内筒12の下部に散気部13を有し、
内筒12に曝気による上昇流が発生するように構成され
ている。この内筒12には、ANAMMOX微生物のグ
ラニュール汚泥が保持されている。
The denitrification apparatus shown in FIG. 1 (b) is an inner tube (draft tube) 1 which is opened vertically inside as a denitrification tank.
2 is an air lift type reaction tank having a double tube structure arranged coaxially (however, ascending flow similar to an air lift is formed not by air but by biogas or denitrifying exhaust gas) 11. Having an air diffuser 13 at the bottom of the inner cylinder 12,
The inner cylinder 12 is configured to generate an upward flow due to aeration. The inner cylinder 12 holds granule sludge of ANAMMOX microorganisms.

【0041】この脱窒装置では、嫌気性消化装置20か
らのバイオガスがCOガスとして導入されるように構
成されている。図1(b)の脱窒装置のその他の構成
は、図1(a)の脱窒装置と同様であり、同一機能を奏
する部材に同一符号を付してその説明を省略する。
In this denitrification device, the biogas from the anaerobic digester 20 is introduced as CO 2 gas. The other configurations of the denitrification device of FIG. 1B are the same as those of the denitrification device of FIG. 1A, and members having the same functions are designated by the same reference numerals and the description thereof will be omitted.

【0042】この脱窒装置において、原水は配管2よ
り、反応槽11の底部に導入され、散気部13からのバ
イオガス及び必要に応じて循環される脱窒排ガスの曝気
による上昇流で内筒2内を上向流で流れ、その間にグラ
ニュールと接触して脱窒処理される。
In this denitrification apparatus, raw water is introduced from the pipe 2 to the bottom of the reaction tank 11, and the biogas from the air diffuser 13 and an ascending flow of the denitrification exhaust gas circulated as needed due to aeration. It flows in the cylinder 2 in an upward flow, and in the meanwhile, it contacts the granules for denitrification.

【0043】内筒12内の上昇流は一部が処理水として
配管4より排出され、残部は内筒12と反応槽11の内
壁との間に形成される下降部を下降し、反応槽11の下
部から導入される原水と共に循環処理される。
A part of the ascending flow in the inner cylinder 12 is discharged from the pipe 4 as treated water, and the remaining part descends in the descending part formed between the inner cylinder 12 and the inner wall of the reaction tank 11, and the reaction tank 11 It is circulated together with the raw water introduced from the bottom of the.

【0044】この反応槽1においても、pH計9と連動
するブロワBにより、槽内のpHが好ましくは6〜
9、より好ましくは6.5〜7.5となるようにバイオ
ガスの供給量が調整される。
Also in this reaction tank 1, the pH inside the tank is preferably 6 to 6 by the blower B 2 which works in conjunction with the pH meter 9.
The amount of biogas supplied is adjusted so as to be 9, and more preferably 6.5 to 7.5.

【0045】また、このバイオガスの上昇流のみでは十
分な槽内LVを確保し得ない場合には、脱窒排ガスの一
部を循環する等の前述の(1)〜(3)の方法により、
LV0.1〜10m/分となるようにガス流速が調整さ
れる。
When it is not possible to secure a sufficient LV in the tank with only the upward flow of biogas, the above-mentioned methods (1) to (3), such as circulating a part of the denitrification exhaust gas, are used. ,
The gas flow rate is adjusted so that the LV is 0.1 to 10 m / min.

【0046】本発明において、処理対象となる原水は、
アンモニア性窒素及び亜硝酸性窒素を含む水であり、有
機物及び有機性窒素を含むものであってもよいが、これ
らは脱窒処理前に予めアンモニア性窒素になる程度まで
分解しておくことが好ましく、また、溶存酸素濃度が高
い場合には、必要に応じて溶存酸素を除去しておくこと
が好ましい。原水は無機物を含んでいてもよい。また、
原水はアンモニア性窒素を含む液と亜硝酸性窒素を含む
液を混合したものであってもよい。例えば、アンモニア
性窒素を含む排水をアンモニア酸化微生物の存在下に好
気性処理を行い、アンモニア性窒素の一部、好ましくは
その約1/2を亜硝酸に部分酸化したものを原水とする
ことができる。更には、アンモニア性窒素を含む排水の
一部をアンモニア酸化微生物の存在下に好気性処理を行
い、アンモニア性窒素を亜硝酸に酸化し、アンモニア性
窒素を含む排水の残部と混合したものを原水としても良
い。
In the present invention, the raw water to be treated is
Water containing ammoniacal nitrogen and nitrite nitrogen, which may contain organic matter and organic nitrogen, but these must be decomposed in advance to the extent of becoming ammoniacal nitrogen before denitrification treatment. Preferably, when the dissolved oxygen concentration is high, it is preferable to remove the dissolved oxygen as needed. Raw water may contain an inorganic substance. Also,
The raw water may be a mixture of a liquid containing ammoniacal nitrogen and a liquid containing nitrite nitrogen. For example, wastewater containing ammoniacal nitrogen may be subjected to aerobic treatment in the presence of ammonia-oxidizing microorganisms, and a part of the ammoniacal nitrogen, preferably about 1/2 of that partially oxidized to nitrous acid, may be used as raw water. it can. Furthermore, part of the wastewater containing ammoniacal nitrogen is subjected to aerobic treatment in the presence of ammonia-oxidizing microorganisms, the ammoniacal nitrogen is oxidized to nitrous acid, and the mixture with the rest of the wastewater containing ammoniacal nitrogen is used as raw water. Also good.

【0047】一般的には、下水、し尿、嫌気性消化脱離
液等のアンモニア性窒素、有機性窒素及び有機物を含む
排水が処理対象となる場合が多いが、この場合、これら
を好気性又は嫌気性処理して有機物を分解し、有機性窒
素をアンモニア性窒素に分解し、さらに部分亜硝酸化或
いは、一部についての亜硝酸化を行った液を原水とする
ことが好ましい。
In general, wastewater containing ammonia nitrogen, organic nitrogen and organic matter such as sewage, night soil, anaerobic digestion and desorption liquid, etc. is often treated, but in this case, these are aerobic or It is preferable to use anaerobic treatment to decompose organic substances, decompose organic nitrogen into ammonia nitrogen, and further perform partial nitrite oxidation or partial nitrite oxidation as raw water.

【0048】原水のアンモニア性窒素と亜硝酸性窒素の
割合はモル比でアンモニア性窒素1に対して亜硝酸性窒
素0.5〜2、特に1〜1.5とするのが好ましい。原
水中のアンモニア性窒素及び亜硝酸性窒素の濃度はそれ
ぞれ5〜1000mg/L、5〜200mg/Lである
ことが好ましいが、処理水を循環して希釈すればこの限
りではない。
The ratio of the ammoniacal nitrogen to the nitrite nitrogen in the raw water is preferably 0.5 to 2 and more preferably 1 to 1.5 with respect to 1 mole of the ammoniacal nitrogen. The concentrations of ammoniacal nitrogen and nitrite nitrogen in the raw water are preferably 5 to 1000 mg / L and 5 to 200 mg / L, respectively, but not limited to this if the treated water is circulated and diluted.

【0049】原水の生物脱窒条件としては、例えば反応
槽内液の温度が10〜40℃、特に20〜35℃、溶存
酸素濃度が0〜2.5mg/L、特に0〜0.2mg/
L、BOD濃度が0〜50mg/L、特に0〜20mg
/L、窒素負荷が0.1〜10kg−N/m・da
y、特に1〜5kg−N/m・dayの範囲とするの
が好ましい。
The conditions for biological denitrification of the raw water include, for example, the temperature of the liquid in the reaction vessel of 10 to 40 ° C., particularly 20 to 35 ° C., and the dissolved oxygen concentration of 0 to 2.5 mg / L, especially 0 to 0.2 mg / L.
L, BOD concentration 0 to 50 mg / L, especially 0 to 20 mg
/ L, nitrogen load is 0.1-10kg-N / m 3 · da
It is preferable to set y, particularly 1 to 5 kg-N / m 3 · day.

【0050】グラニュール汚泥を形成する場合、微生物
だけではグラニュール形成に期間を要するので、核とな
る物質を添加し、その核の周りにANAMMOX微生物
の生物膜を形成させることが望ましい。この場合、核と
して、例えば微生物グラニュールや非生物的な担体を挙
げることができる。
In the case of forming granule sludge, since it takes a long time to form the granules only with the microorganisms, it is desirable to add a substance serving as a nucleus and form a biofilm of the ANAMMOX microorganism around the nucleus. In this case, examples of the core include microbial granules and abiotic carriers.

【0051】核として用いられる微生物グラニュールと
しては、メタン菌グラニュール等の嫌気性微生物や従属
栄養性脱窒菌グラニュール等を挙げることができる。メ
タン菌グラニュールは、UASB(Upflow Anaerobic S
ludge Blanket;上向流嫌気性汚泥床)法もしくはEG
SB(Expanded Granule Sludge Bed;展開粒状汚泥
床)法でメタン発酵が行われているメタン発酵槽で使用
されているものを適用できる。また、従属栄養性脱窒グ
ラニュールは、USB方式の通常の脱窒槽で利用される
ものを適用できる。これらのグラニュールはそのままの
状態で、又はその破砕物として用いることができる。独
立栄養性脱窒微生物はこのような微生物グラニュールに
付着しやすく、グラニュールの形成に要する時間が短縮
される。また、核として非生物的な材料を用いるよりも
経済的である。
Examples of microbial granules used as nuclei include anaerobic microbes such as methane bacterium granules and heterotrophic denitrifying bacterium granules. The methane granules are UASB (Upflow Anaerobic S
ludge Blanket; Upflow anaerobic sludge bed method or EG
What is used in the methane fermentation tank in which methane fermentation is performed by the SB (Expanded Granule Sludge Bed) method can be applied. Further, as the heterotrophic denitrification granule, one used in a normal USB type denitrification tank can be applied. These granules can be used as they are or as a crushed product. The autotrophic denitrifying microorganisms are likely to attach to such microbial granules, shortening the time required for granule formation. It is also more economical than using abiotic materials as the core.

【0052】核として用いられる非生物的な材料として
は、例えば、活性炭、ゼオライト、ケイ砂、ケイソウ
土、焼成セラミック、イオン交換樹脂等、好ましくは活
性炭、ゼオライト等よりなる、粒径50〜200μm、
好ましくは50〜100μmで、平均比重1.01〜
2.5、好ましくは1.1〜2.0の担体を挙げること
ができる。
As the abiotic material used as the core, for example, activated carbon, zeolite, silica sand, diatomaceous earth, calcined ceramics, ion exchange resin, etc., preferably activated carbon, zeolite, etc., having a particle size of 50 to 200 μm,
It is preferably 50 to 100 μm, and the average specific gravity is 1.01 to 1.01.
2.5, preferably 1.1 to 2.0 carriers can be mentioned.

【0053】このようにして形成されるANAMMOX
微生物のグラニュール汚泥は、平均粒径が0.25〜3
mm、好ましくは0.25〜2mm、より好ましくは
0.25〜1.5mm程度、平均比重が1.01〜2.
5、好ましくは1.1〜2.0であることが望ましい。
グラニュールの粒度が小さいほど比表面積が大きくなる
ので、高い汚泥濃度を維持し、脱窒処理を効率よく行う
点で好ましい。
ANAMMOX formed in this way
The microbial granule sludge has an average particle size of 0.25 to 3
mm, preferably 0.25 to 2 mm, more preferably about 0.25 to 1.5 mm and having an average specific gravity of 1.01 to 2.
It is desirable that it is 5, preferably 1.1 to 2.0.
Since the smaller the particle size of the granule, the larger the specific surface area, it is preferable from the viewpoint of maintaining a high sludge concentration and efficiently performing the denitrification treatment.

【0054】図1(a),(b)に示す脱窒装置は、本
発明の実施の形態の一例であって、本発明の要旨を超え
ない限り、何ら図示のものに限定されるものではない。
脱窒槽の型式についても図1(a)に示すUSB反応槽
や図1(b)に示すようなエアリフト型反応槽に何ら限
定ず、その他、流動床型、浮遊汚泥型、固定床型などの
各種の脱窒槽を用いることができる。浮遊汚泥型の脱窒
槽の場合には、脱窒槽流出液を固液分離する沈澱池等の
固液分離手段が設けられる。
The denitrification apparatus shown in FIGS. 1 (a) and 1 (b) is an example of the embodiment of the present invention, and is not limited to the illustrated one as long as it does not exceed the gist of the present invention. Absent.
The type of denitrification tank is not limited to the USB reaction tank shown in FIG. 1 (a) or the air lift type reaction tank shown in FIG. 1 (b), and other types such as fluidized bed type, floating sludge type, fixed bed type, etc. Various denitrification tanks can be used. In the case of a floating sludge type denitrification tank, a solid-liquid separation means such as a settling tank for solid-liquid separating the denitrification tank effluent is provided.

【0055】[0055]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0056】実施例1 4.3mmol(約62mg−N/L)のアンモニアと
5.7mmolの亜硝酸を含有する水を原水として図1
(a)に示す脱窒装置により脱窒処理を行った。
Example 1 Water containing 4.3 mmol (about 62 mg-N / L) of ammonia and 5.7 mmol of nitrous acid was used as raw water.
A denitrification treatment was performed by the denitrification device shown in (a).

【0057】反応槽は内径20cm、高さ400cm、
容量126Lであり、内部にはANAMMOX微生物の
グラニュール汚泥を1500g−VSS投入した。
The reaction tank has an inner diameter of 20 cm and a height of 400 cm.
The capacity was 126 L, and 1500 g-VSS of granule sludge of ANAMMOX microorganism was put therein.

【0058】原水は126L/hrの通水量でポンプに
より反応槽に通水し、処理水3000L/dayを得、
処理水の残部は原水供給側へ循環した。
Raw water was passed through the reaction tank by a pump at a flow rate of 126 L / hr to obtain 3000 L / day of treated water,
The rest of the treated water was circulated to the raw water supply side.

【0059】なお、未溶解の炭酸ガスを含む脱窒排ガス
の循環は行わず、全量を排出した。また、反応槽には、
槽内pHが6.8〜7.2になるような炭酸ガスを吹き
込んだ。この炭酸ガスの吹き込みで反応槽内にはLV
0.2m/分のガスの上昇流が形成された。
The denitrification exhaust gas containing undissolved carbon dioxide was not circulated, but the entire amount was discharged. Also, in the reaction tank,
Carbon dioxide gas was blown in such that the pH in the tank became 6.8 to 7.2. The carbon dioxide gas is blown into the reaction tank so that LV
An upflow of gas of 0.2 m / min was formed.

【0060】その結果、2ヶ月間の連続運転中、反応槽
内のpHは6.8〜7.2の範囲に制限され、アンモニ
ア濃度5mg−N/Lの良好な処理水を安定に得ること
ができた。
As a result, during continuous operation for 2 months, the pH in the reaction tank was limited to the range of 6.8 to 7.2, and good treated water with an ammonia concentration of 5 mg-N / L was stably obtained. I was able to.

【0061】比較例1 実施例1において、炭酸ガスの代りに希硫酸を用いたこ
と以外は同様にして連続運転を行ったところ、運転開始
から1ヶ月半は実施例1と同様な処理性能を得ることが
できたが、その直後に希硫酸が過剰投入される事故が発
生し、反応槽内pHは4まで低下した。その後、pHを
中和して原水の通水を再開したがアンモニアの除去は行
えなかった。
Comparative Example 1 When a continuous operation was carried out in the same manner as in Example 1 except that dilute sulfuric acid was used instead of carbon dioxide gas, the same treatment performance as in Example 1 was obtained for one and a half months from the start of the operation. Although it could be obtained, immediately after that, an accident occurred in which dilute sulfuric acid was excessively added, and the pH in the reaction tank dropped to 4. After that, the pH was neutralized and the passage of raw water was restarted, but ammonia could not be removed.

【0062】実施例2 図1(b)に示す脱窒装置から内筒(ドラフトチュー
ブ)を取り外し、4.3mmol(約60mg−N/
L)のアンモニアと5.7mmolの亜硝酸を含有する
水を原水として脱窒処理を行った。
Example 2 The inner cylinder (draft tube) was removed from the denitrification apparatus shown in FIG. 1 (b), and 4.3 mmol (about 60 mg-N /
The denitrification treatment was performed using water containing L) of ammonia and 5.7 mmol of nitrous acid as raw water.

【0063】反応槽は内径20cm、高さ400cm、
容量126Lであり、内部にはANAMMOX微生物の
グラニュール汚泥を1500g−VSS投入した。
The reaction tank has an inner diameter of 20 cm and a height of 400 cm.
The capacity was 126 L, and 1500 g-VSS of granule sludge of ANAMMOX microorganism was put therein.

【0064】原水は126L/hrの通水量でポンプに
より反応槽に通水し、処理水3000L/dayを得
た。
The raw water was passed through the reaction tank with a pump at a flow rate of 126 L / hr to obtain 3000 L / day of treated water.

【0065】炭酸ガス源としては、下水汚泥の嫌気性消
化装置から採取したバイオガス(60%メタンガス、3
9.8%炭酸ガス、0.2%硫化水素ガス)を供給し
た。バイオガスの曝気には、粒径4〜5mm程度の微細
気泡を発生する散気板を使用した。なお、脱窒排ガスの
循環は行わなかった。
As the carbon dioxide gas source, biogas (60% methane gas, 3% methane gas collected from an anaerobic digester of sewage sludge) was used.
(9.8% carbon dioxide gas, 0.2% hydrogen sulfide gas) was supplied. For aeration of biogas, a diffuser plate that generates fine bubbles having a particle size of 4 to 5 mm was used. The denitrification exhaust gas was not circulated.

【0066】反応槽内のpHを6.8〜7.2の間に制
御するためには、バイオガスを間欠的に注入する必要が
あった。しかし、その後pH計の出力とリンクさせてバ
イオガスの流量をニードルバルブで制御できるようにし
たところ、バイオガスの連続曝気(流量はpH計の出力
に従って連続的に変化する)が可能であった。そこで、
6〜8mm程度の粗大気泡を形成する多孔管に散気板を
交換したところ、炭酸ガスの溶解効率が低下した。この
ことで、バイオガスの流量は6〜10L/分程度と、そ
れ以前よりも多くなったものの、流量自体を大きく変化
させることなく連続曝気が可能であった。このとき、反
応槽内には0.2〜0.3m/分のガスの上昇流が形成
された。
In order to control the pH in the reaction tank between 6.8 and 7.2, it was necessary to inject biogas intermittently. However, when the flow rate of biogas was linked to the output of the pH meter so that the needle valve could control it, continuous aeration of biogas (flow rate continuously changes according to the output of the pH meter) was possible. . Therefore,
When the diffuser plate was replaced with a perforated tube forming coarse bubbles of about 6 to 8 mm, the dissolution efficiency of carbon dioxide gas decreased. As a result, although the flow rate of biogas was about 6 to 10 L / min, which was higher than before, continuous aeration was possible without significantly changing the flow rate itself. At this time, an upward flow of gas of 0.2 to 0.3 m / min was formed in the reaction tank.

【0067】約6ヶ月の運転後には、反応槽内に微細な
自己造粒汚泥の形成が認められ、粒径は次第に大きくな
った。約1年を経過すると粒径の成長は1〜2mmで停
止した。
After the operation for about 6 months, the formation of fine self-granulated sludge was observed in the reaction tank, and the particle size gradually increased. After about one year, the grain size growth stopped at 1-2 mm.

【0068】処理水のアンモニア濃度は5mg−N/L
で良好な処理水が得られた。また、排ガス中には硫化水
素は殆ど検出されなかった。
The ammonia concentration of the treated water is 5 mg-N / L
Thus, good treated water was obtained. In addition, hydrogen sulfide was hardly detected in the exhaust gas.

【0069】実施例3 反応槽内にドラフトチューブを配置した図1(b)の脱
窒装置により、4.3mmol(約60mg−N/L)
のアンモニアと5.7mmolの亜硝酸を含有する水を
原水として脱窒処理を行った。
Example 3 4.3 mmol (about 60 mg-N / L) was obtained by the denitrification apparatus of FIG. 1 (b) in which a draft tube was placed in the reaction tank.
The denitrification treatment was performed by using the water containing ammonia and 5.7 mmol of nitrous acid as raw water.

【0070】反応槽は内径20cm、高さ400cm、
容量126Lであり、内部には造粒していないANAM
MOX微生物のグラニュール汚泥を500g−VSS投
入した。
The reaction vessel has an inner diameter of 20 cm and a height of 400 cm.
ANAM with a capacity of 126 L and not granulated inside
Granule sludge of MOX microorganism was added at 500 g-VSS.

【0071】原水は126L/hrの通水量でポンプに
より反応槽に通水し、処理水3000L/dayを得
た。
The raw water was passed through the reaction tank by a pump at a flow rate of 126 L / hr to obtain 3000 L / day of treated water.

【0072】炭酸ガス源としては、下水汚泥の嫌気性消
化装置から採取したバイオガス(60%メタンガス、3
9.8%炭酸ガス、0.2%硫化水素ガス)を供給し
た。バイオガスの曝気には、4〜5mm程度の粗大気泡
を生成する多孔管を用いた。脱窒排ガスの循環を行っ
た。
As the carbon dioxide gas source, biogas (60% methane gas, 3%, sewage sludge anaerobic digester) was used.
(9.8% carbon dioxide gas, 0.2% hydrogen sulfide gas) was supplied. For aeration of biogas, a perforated tube that generates coarse bubbles of about 4 to 5 mm was used. The denitrification exhaust gas was circulated.

【0073】その結果、バイオガスの流量は6〜10L
/分程度となり、反応槽内には1〜10m/分のガス流
速が形成された。運転開始から2ヶ月後には粒径が0.
5〜1.5mmに造粒した良好な造粒汚泥が形成され、
アンモニア濃度10mg/L以下の良好な処理水が得ら
れた。排ガス中には硫化水素は殆ど検出されなかった。
As a result, the flow rate of biogas is 6 to 10 L.
Per minute, and a gas flow rate of 1 to 10 m / min was formed in the reaction tank. After 2 months from the start of operation, the particle size was 0.
Good granulated sludge granulated to 5 to 1.5 mm is formed,
Good treated water having an ammonia concentration of 10 mg / L or less was obtained. Almost no hydrogen sulfide was detected in the exhaust gas.

【0074】[0074]

【発明の効果】以上詳述した通り、本発明の脱窒方法及
び脱窒装置によれば、pH緩衝能を有する炭酸ガスを用
いて、pH調整を行うことにより、脱窒槽内を容易に好
適なpH範囲に調整することができる。また、この炭酸
ガスとして、有機性廃棄物の嫌気性生物処理で発生する
バイオガスを有効利用することにより、薬品としての酸
が不要となり、処理コストを低減することができる。
As described above in detail, according to the denitrification method and denitrification apparatus of the present invention, the inside of the denitrification tank can be easily adjusted by adjusting the pH using carbon dioxide gas having a pH buffering ability. The pH range can be adjusted. Further, by effectively utilizing the biogas generated in the anaerobic biological treatment of the organic waste as the carbon dioxide gas, the acid as a chemical is not required and the treatment cost can be reduced.

【0075】また、本発明によれば、この炭酸ガス又は
脱窒排ガスの循環ガスにより、脱窒槽内のグラニュール
を効果的に撹拌して流動、展開させることにより、グラ
ニュールの造粒を促進させて、効率的な脱窒処理を行え
る。
Further, according to the present invention, the circulating gas of the carbon dioxide gas or the denitrifying exhaust gas effectively stirs and causes the granules in the denitrifying tank to flow and develop, thereby promoting granulation of the granules. Therefore, efficient denitrification treatment can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱窒装置の実施の形態を示す模式的な
断面図である。
FIG. 1 is a schematic sectional view showing an embodiment of a denitrification device of the present invention.

【符号の説明】[Explanation of symbols]

1 USB反応槽 3 気液固分離装置 9 pH計 11 反応槽 12 内筒 13 散気部 20 嫌気性消化装置 1 USB reaction tank 3 Gas-liquid separation device 9 pH meter 11 Reaction tank 12 inner cylinder 13 Air diffuser 20 Anaerobic digester

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 3/10 C02F 3/10 A 3/28 3/28 Z (72)発明者 今城 麗 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D003 AA14 BA02 CA02 CA08 DA07 DA11 DA15 DA29 EA01 EA23 EA24 EA25 EA30 FA02 FA05 FA10 4D040 AA04 AA12 AA34 AA54 AA58 AA61 AA62 BB04 BB07 BB13 BB42 BB56 BB63 BB82 BB91Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 3/10 C02F 3/10 A 3/28 3/28 Z (72) Inventor Rei Imagi Nishi Nishishinjuku, Shinjuku-ku, Tokyo 3rd-4th Kurita Industry Co., Ltd. F-term (reference) 4D003 AA14 BA02 CA02 CA08 DA07 DA11 DA15 DA29 EA01 EA23 EA24 EA25 EA30 FA02 FA05 FA10 4D040 AA04 AA12 AA34 AA54 AA58 AA61 AA62 BB04 BB07BB56 BB13 BB07BB56 BB13 BB07BB56 BB13 BB07BB56 BB13 BB07BB56 BB13BB42

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア性窒素を含有する原水を脱窒
槽に導入し、該脱窒槽内の、アンモニア性窒素を電子供
与体とし、亜硝酸性窒素を電子受容体とする脱窒微生物
の作用により、亜硝酸性窒素の存在下に脱窒する方法に
おいて、 該脱窒槽に炭酸ガスを供給することにより、該脱窒槽内
のpHを制御して脱窒を行うことを特徴とする脱窒方
法。
1. Raw water containing ammoniacal nitrogen is introduced into a denitrification tank, and by the action of a denitrifying microorganism in the denitrification tank, the ammoniacal nitrogen serves as an electron donor and the nitrite nitrogen serves as an electron acceptor. A method for denitrifying in the presence of nitrite nitrogen, comprising supplying carbon dioxide gas to the denitrification tank to control the pH in the denitrification tank to perform denitrification.
【請求項2】 該脱窒槽に供給する炭酸ガスの少なくと
も一部は、有機性廃棄物の嫌気性生物処理で発生する炭
酸ガスを含むバイオガスであることを特徴とする請求項
1に記載の脱窒方法。
2. The carbon dioxide gas supplied to the denitrification tank is at least partly biogas containing carbon dioxide gas generated by anaerobic biological treatment of organic waste. Denitrification method.
【請求項3】 該脱窒槽内のpHを6〜9に制御するこ
とを特徴とする請求項1又は2に記載の脱窒方法。
3. The denitrification method according to claim 1, wherein the pH in the denitrification tank is controlled to 6 to 9.
【請求項4】 該脱窒槽は、その内部に前記脱窒微生物
が担体粒子表面に生物膜を形成したもの、又は前記脱窒
微生物が自己造粒によりグラニュールになったものを保
有し、 脱窒処理で生成する脱窒排ガスの一部を該脱窒槽の底部
へ循環供給することにより、前記脱窒微生物が表面に生
物膜を形成した担体粒子又は前記グラニュールを撹拌し
て流動させることを特徴とする請求項1ないし3のいず
れか1項に記載の脱窒方法。
4. The denitrification tank contains therein the denitrification microorganisms having a biofilm formed on the surface of carrier particles, or the denitrification microorganisms granulated by self-granulation. By circulating and supplying a part of the denitrification exhaust gas generated by the denitrification treatment to the bottom of the denitrification tank, the denitrification microorganisms can stir and flow the carrier particles having the biofilm formed on the surface or the granules. The denitrification method according to any one of claims 1 to 3, which is characterized.
【請求項5】 該脱窒槽は、その内部に前記脱窒微生物
が担体粒子表面に生物膜を形成したもの、又は前記脱窒
微生物が自己造粒によりグラニュールになったものを保
有し、 前記炭酸ガスをpH調整に必要な当量よりも過剰に該脱
窒槽の底部に供給することにより、前記脱窒微生物が表
面に生物膜を形成した担体粒子又は前記グラニュールを
撹拌して流動させることを特徴とする請求項1ないし3
のいずれか1項に記載の脱窒方法。
5. The denitrification tank contains therein the denitrification microorganisms having a biofilm formed on the surface of carrier particles, or the denitrification microorganisms granulated by self-granulation. By supplying carbon dioxide gas to the bottom of the denitrification tank in excess of the equivalent amount necessary for pH adjustment, the denitrification microorganisms can stir the carrier particles having the biofilm formed on the surface or the granules to flow. Claim 1 to 3 characterized by the above-mentioned.
The denitrification method according to any one of 1.
【請求項6】 前記脱窒槽に導入されたガスのLVが
0.1〜10m/分であることを特徴とする請求項4又
は5に記載の脱窒方法。
6. The denitrification method according to claim 4, wherein the LV of the gas introduced into the denitrification tank is 0.1 to 10 m / min.
【請求項7】 アンモニア性窒素を含有する原水を、ア
ンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子
受容体とする脱窒微生物の作用により、亜硝酸性窒素の
存在下に脱窒する脱窒装置であって、 前記脱窒微生物が担体粒子表面に生物膜を形成したも
の、又は前記脱窒微生物が自己造粒によりグラニュール
になったものを保有する脱窒槽と、 該脱窒槽内のpHを測定するpH測定手段と、 該脱窒槽に炭酸ガスを供給する炭酸ガス供給手段と、 前記pH測定手段の測定値に基づいて該炭酸ガス供給手
段の炭酸ガス供給量を制御する手段と、 該脱窒槽における脱窒処理で生成する脱窒ガスを脱窒槽
から排出する手段と、 排出された脱窒排ガスの一部を該脱窒槽の底部へ循環す
る手段とを備えてなることを特徴とする脱窒装置。
7. Denitrifying raw water containing ammoniacal nitrogen in the presence of nitrite nitrogen by the action of a denitrifying microorganism using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A denitrification tank for holding a denitrification microorganism in which a biofilm is formed on the surface of carrier particles or a denitrification microorganism granulated by self-granulation, PH measuring means for measuring the pH inside, carbon dioxide gas supplying means for supplying carbon dioxide gas to the denitrification tank, and means for controlling the carbon dioxide gas supply amount of the carbon dioxide gas supplying means based on the measured value of the pH measuring means And a means for discharging the denitrification gas generated by the denitrification treatment in the denitrification tank from the denitrification tank, and a means for circulating a part of the discharged denitrification exhaust gas to the bottom of the denitrification tank. Characteristic denitrification equipment.
JP2001226185A 2001-07-26 2001-07-26 Denitrification method and denitrification apparatus Expired - Fee Related JP4876343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001226185A JP4876343B2 (en) 2001-07-26 2001-07-26 Denitrification method and denitrification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001226185A JP4876343B2 (en) 2001-07-26 2001-07-26 Denitrification method and denitrification apparatus

Publications (2)

Publication Number Publication Date
JP2003033785A true JP2003033785A (en) 2003-02-04
JP4876343B2 JP4876343B2 (en) 2012-02-15

Family

ID=19059045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226185A Expired - Fee Related JP4876343B2 (en) 2001-07-26 2001-07-26 Denitrification method and denitrification apparatus

Country Status (1)

Country Link
JP (1) JP4876343B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238166A (en) * 2004-02-27 2005-09-08 Kurita Water Ind Ltd Anaerobic ammonoxidation treatment method
JP2005288371A (en) * 2004-04-01 2005-10-20 Sumitomo Heavy Ind Ltd Wastewater treatment method
JP2006055739A (en) * 2004-08-19 2006-03-02 Kurita Water Ind Ltd Treating method of organic matter- and nitrogen-containing wastewater
JP2006272161A (en) * 2005-03-29 2006-10-12 Nippon Steel Chem Co Ltd Method and apparatus for treating nitrate nitrogen-containing waste water
JP2006314903A (en) * 2005-05-11 2006-11-24 National Institute Of Advanced Industrial & Technology Method and apparatus for treating ammonia anaerobically
JP2007125490A (en) * 2005-11-02 2007-05-24 National Institute Of Advanced Industrial & Technology Anaerobic ammonia treatment method
JP2009039643A (en) * 2007-08-08 2009-02-26 Hitachi Plant Technologies Ltd Removing method of organic substance and nitrogen as liquid to be treated, granule, solution for acclimatization and apparatus
JP2009039700A (en) * 2007-08-13 2009-02-26 Kurita Water Ind Ltd Method for biological waste water treatment
JP2012066164A (en) * 2010-09-21 2012-04-05 Dowa Technology Kk Method and device for treating nitric acid containing water
CN102126789B (en) * 2010-01-18 2013-03-27 中国科学院沈阳应用生态研究所 Method and device for removing nitrates from drinking water
JP2013515605A (en) * 2010-03-08 2013-05-09 仁何大学 産学協力団 Fluidized bed separation membrane bioreactor
JP2015128747A (en) * 2014-01-07 2015-07-16 水ing株式会社 Water treatment apparatus and water treatment method
JP2016518976A (en) * 2013-04-16 2016-06-30 パクス アイ.ピー. ビー.ヴィ. Process for biological removal of nitrogen from wastewater
JP2017018876A (en) * 2015-07-09 2017-01-26 鹿島建設株式会社 Organic waste treatment system and organic waste treatment method
CN110510743A (en) * 2019-09-26 2019-11-29 西安建筑科技大学 A kind of step nitrogen rejection facility and method based on molysite circulation
JP7398601B1 (en) 2023-05-30 2023-12-14 三菱化工機株式会社 Organic wastewater treatment equipment and organic wastewater treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681196A (en) * 1979-12-07 1981-07-02 Hitachi Plant Eng & Constr Co Ltd Denitrification of waste water
JPH08192185A (en) * 1995-01-17 1996-07-30 Ebara Corp Biologically nitrifying and denitrifying method
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001170683A (en) * 1999-12-14 2001-06-26 Hitachi Plant Eng & Constr Co Ltd Biological denitrification method for water
JP2001170684A (en) * 1999-12-14 2001-06-26 Meidensha Corp Ammonia-containing waste water treatment method and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681196A (en) * 1979-12-07 1981-07-02 Hitachi Plant Eng & Constr Co Ltd Denitrification of waste water
JPH08192185A (en) * 1995-01-17 1996-07-30 Ebara Corp Biologically nitrifying and denitrifying method
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001170683A (en) * 1999-12-14 2001-06-26 Hitachi Plant Eng & Constr Co Ltd Biological denitrification method for water
JP2001170684A (en) * 1999-12-14 2001-06-26 Meidensha Corp Ammonia-containing waste water treatment method and device therefor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238166A (en) * 2004-02-27 2005-09-08 Kurita Water Ind Ltd Anaerobic ammonoxidation treatment method
JP2005288371A (en) * 2004-04-01 2005-10-20 Sumitomo Heavy Ind Ltd Wastewater treatment method
JP2006055739A (en) * 2004-08-19 2006-03-02 Kurita Water Ind Ltd Treating method of organic matter- and nitrogen-containing wastewater
JP4649911B2 (en) * 2004-08-19 2011-03-16 栗田工業株式会社 Treatment of organic matter and nitrogen-containing wastewater
JP2006272161A (en) * 2005-03-29 2006-10-12 Nippon Steel Chem Co Ltd Method and apparatus for treating nitrate nitrogen-containing waste water
JP2006314903A (en) * 2005-05-11 2006-11-24 National Institute Of Advanced Industrial & Technology Method and apparatus for treating ammonia anaerobically
JP4517075B2 (en) * 2005-05-11 2010-08-04 独立行政法人産業技術総合研究所 Ammonia treatment method and apparatus by anaerobic treatment
JP2007125490A (en) * 2005-11-02 2007-05-24 National Institute Of Advanced Industrial & Technology Anaerobic ammonia treatment method
JP2009039643A (en) * 2007-08-08 2009-02-26 Hitachi Plant Technologies Ltd Removing method of organic substance and nitrogen as liquid to be treated, granule, solution for acclimatization and apparatus
JP2009039700A (en) * 2007-08-13 2009-02-26 Kurita Water Ind Ltd Method for biological waste water treatment
CN102126789B (en) * 2010-01-18 2013-03-27 中国科学院沈阳应用生态研究所 Method and device for removing nitrates from drinking water
JP2013515605A (en) * 2010-03-08 2013-05-09 仁何大学 産学協力団 Fluidized bed separation membrane bioreactor
JP2012066164A (en) * 2010-09-21 2012-04-05 Dowa Technology Kk Method and device for treating nitric acid containing water
JP2016518976A (en) * 2013-04-16 2016-06-30 パクス アイ.ピー. ビー.ヴィ. Process for biological removal of nitrogen from wastewater
US10160680B2 (en) 2013-04-16 2018-12-25 Paques I.P. B.V. Process for biological removal of nitrogen from wastewater
JP2015128747A (en) * 2014-01-07 2015-07-16 水ing株式会社 Water treatment apparatus and water treatment method
JP2017018876A (en) * 2015-07-09 2017-01-26 鹿島建設株式会社 Organic waste treatment system and organic waste treatment method
CN110510743A (en) * 2019-09-26 2019-11-29 西安建筑科技大学 A kind of step nitrogen rejection facility and method based on molysite circulation
CN110510743B (en) * 2019-09-26 2024-03-15 西安建筑科技大学 One-step denitrification device and method based on ferric salt circulation
JP7398601B1 (en) 2023-05-30 2023-12-14 三菱化工機株式会社 Organic wastewater treatment equipment and organic wastewater treatment method

Also Published As

Publication number Publication date
JP4876343B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
CN107108293B (en) Method and apparatus for removing nitrogen from nitrogen-containing wastewater
JP4691938B2 (en) Nitrogen-containing liquid processing method and apparatus
JP4224951B2 (en) Denitrification method
JP4876343B2 (en) Denitrification method and denitrification apparatus
CN1318324C (en) Sewage treatment appts. using self-granulating active sludge and sewage treatment process
US20020185437A1 (en) Method for purification of waste water and a "RFLR" device for performing the same
JP4872171B2 (en) Biological denitrification equipment
JPWO2004074191A1 (en) Ammonia nitrogen-containing water treatment method
JP4867098B2 (en) Biological denitrification method and apparatus
JP4923348B2 (en) Biological denitrification method
JP3732025B2 (en) Waste water treatment method and waste water treatment equipment
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP2006082053A (en) Method and apparatus for treating nitrogen-containing drainage
Garrido et al. Nitrous oxide production by nitrifying biofilms in a biofilm airlift suspension reactor
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP7133339B2 (en) Nitrogen treatment method
JP2006314991A (en) Apparatus and method for treating high-concentration nitrogen-containing dirty waste water such as waste water from livestock farmer and excreta
US6527948B2 (en) Apparatus for purification of waste water and a “RFLR” device for performing the same
JP4780553B2 (en) Water treatment method and apparatus for wastewater containing ammonia
JP2012024707A (en) Denitrification method and denitrification device for ammoniacal nitrogen waste liquid
JP2003024988A (en) Biological denitrification method
JP4329359B2 (en) Denitrification method
JP2003024987A (en) Nitrification method for ammonia nitrogen-containing water
JP4596533B2 (en) Wastewater treatment method
JP2000024687A (en) Treatment of waste nitric acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4876343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees