JP2006272161A - Method and apparatus for treating nitrate nitrogen-containing waste water - Google Patents

Method and apparatus for treating nitrate nitrogen-containing waste water Download PDF

Info

Publication number
JP2006272161A
JP2006272161A JP2005094983A JP2005094983A JP2006272161A JP 2006272161 A JP2006272161 A JP 2006272161A JP 2005094983 A JP2005094983 A JP 2005094983A JP 2005094983 A JP2005094983 A JP 2005094983A JP 2006272161 A JP2006272161 A JP 2006272161A
Authority
JP
Japan
Prior art keywords
denitrification
gas
nitrate nitrogen
waste water
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005094983A
Other languages
Japanese (ja)
Other versions
JP4772353B2 (en
Inventor
Yasuhiro Hirato
靖浩 平戸
Katsuhiro Yamada
勝弘 山田
Yoshinari Fujisawa
良成 藤澤
Hidesato Okano
英里 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kankyo Engineering Ltd
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Tsukishima Kankyo Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd, Tsukishima Kankyo Engineering Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2005094983A priority Critical patent/JP4772353B2/en
Publication of JP2006272161A publication Critical patent/JP2006272161A/en
Application granted granted Critical
Publication of JP4772353B2 publication Critical patent/JP4772353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Abstract

<P>PROBLEM TO BE SOLVED: To secure denitrification performance for a long time by preventing fixing of a material by fluidizing a denitrification material by an economic method of reutilizing to circulate nitrogen gas generated by a denitrification reaction. <P>SOLUTION: In a method for treating nitrate nitrogen in waste water by bringing the denitrification material containing sulfur and a carbonate of an alkaline earth metal into contact with the waste water containing the nitrate nitrogen, gas comprising nitrogen generated by the denitrification reaction as a main component is circulated by a compressor 10 to make a gas-liquid mixed fluid to distribute and circulate continuously or intermittently at one to twice the rate of a fluidizing start rate of a packed bed through a bed packed with the denitrification material 7 by a pump 2 for circulating the waste water. It is preferable that a volume ratio (gas/waste water) of the gas of a mixed fluid to the waste water is in the range of 0.05 to 0.8. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は硝酸性窒素を含有する排水から脱窒材を用いて生物化学的に硝酸性窒素を除去するに際し、脱窒活性を維持することができる脱窒装置及び処理方法に関するものである。   The present invention relates to a denitrification apparatus and a treatment method capable of maintaining denitrification activity when biochemically removing nitrate nitrogen from wastewater containing nitrate nitrogen using a denitrification material.

硫黄とアルカリ土類金属の炭酸塩とを含む脱窒材を用いた排水処理は、脱窒材を充填した槽に希薄硝酸イオン液を含む処理対象排水を投入することにより行われていた。投入方法としては、かけ流し式、バッチ式があった。かけ流し方式とは、容器の中に脱窒材を充填し、連続的に処理対象排水を容器内に流し込み、オーバーフローさせながら処理する方式である。この方式では、液量、硝酸イオン濃度も少ない場合は、反応で生成する窒素の量も少なく、連続運転が可能であった。バッチ式とは、容器内に間欠的に一定量の液を貯め、処理が終わると処理済液を排出する方式である。どちらの方式も、脱窒材と処理対象排水が接触することで、脱窒材の中や表面に存在する菌が脱窒反応を起こし、処理を行なうものである。このシステムを高濃度、大容量の排水処理に適用しようとすると、生成する窒素を効果的に抜くことが必要になる。   Wastewater treatment using a denitrification material containing sulfur and an alkaline earth metal carbonate has been performed by introducing a wastewater to be treated containing a dilute nitrate ion solution into a tank filled with the denitrification material. As a charging method, there were a pouring method and a batch method. The pouring method is a method in which a denitrification material is filled in a container, and the waste water to be treated is continuously poured into the container and treated while overflowing. In this system, when the liquid volume and nitrate ion concentration were low, the amount of nitrogen produced by the reaction was small and continuous operation was possible. The batch system is a system in which a fixed amount of liquid is intermittently stored in a container and the processed liquid is discharged when the processing is completed. In both methods, the denitrification material and the wastewater to be treated come into contact with each other, so that bacteria present in the denitrification material or on the surface cause a denitrification reaction to perform the treatment. When this system is applied to wastewater treatment with high concentration and large capacity, it is necessary to effectively remove the generated nitrogen.

また、排水の中和や重金属処理を目的として消石灰などを添加させた排水のように、カルシウムイオンを多く含んでいる排水では石膏が析出しやすい状況にある。生成する石膏や脱窒材への生物被膜の影響によって局部的に脱窒材が固着し、脱窒材と排水との効果的な接触が妨げられ、窒素ガスが局部的に滞留するほか、脱窒材の性能を著しく低下させる問題があった。窒素ガスを抜く方法としては、脱窒材に機械的な振動を与える方法、超音波振動を与える方法、水循環する方法、装置を減圧にしてガスを抜く方法等、様々な方法が試みられている(特許文献1参照)。   Moreover, gypsum is likely to precipitate in wastewater containing a large amount of calcium ions, such as wastewater to which slaked lime is added for the purpose of neutralizing wastewater or treating heavy metals. The effect of the bio-coating on the gypsum and denitrification material that is generated causes the denitrification material to stick locally, preventing effective contact between the denitrification material and the drainage, and the nitrogen gas stays locally, There was a problem of significantly reducing the performance of the nitrogen material. Various methods such as a method of applying mechanical vibration to the denitrification material, a method of applying ultrasonic vibration, a method of circulating water, and a method of extracting gas by reducing the pressure of the apparatus have been tried as methods for extracting nitrogen gas. (See Patent Document 1).

脱窒材に機械的な振動を与える方法とは、例えば、装置を外部からハンマーで叩き、装置に振動を与えることにより装置内の脱窒材に衝撃を与えてガスを抜く方法である。超音波振動を与える方法とは、超音波によって装置外部から衝撃を与えガスを抜く方法である。水循環する方法とは、装置内部に水を流しその水流によってガスを抜く方法である。装置を減圧にしてガスを抜く方法とは装置内を負圧にし、その圧力差によってガスを抜く方法である。いずれの方法も、効果的にガスが抜けず、コスト的にも高価になること、特に大型装置では非常に高価になるなどの問題があった。   The method of applying mechanical vibration to the denitrification material is, for example, a method in which the device is struck with a hammer from the outside, and the device is vibrated to give an impact to the denitrification material in the device to extract gas. The method of applying ultrasonic vibration is a method of removing a gas by applying an impact from the outside of the apparatus using ultrasonic waves. The water circulation method is a method in which water is allowed to flow inside the apparatus and gas is extracted by the water flow. The method of extracting the gas by reducing the pressure of the device is a method of reducing the pressure in the device and extracting the gas by the pressure difference. Each method has a problem that gas cannot escape effectively and is expensive in cost, especially in a large apparatus.

また、装置内の脱窒材が固着する問題に関しては、効果的な方法がなかった。その結果、脱窒材の自身の荷重を減らし、少しでも脱窒材同士を密着させないために、脱窒材の充填高さを高くすることができず、1,000mm程度とされていた。従って、充填量が多い場合には装置面積が大きくなり、装置費、所要面積が多く必要となる難点があった。   Moreover, there was no effective method regarding the problem that the denitrification material in the apparatus sticks. As a result, the load of the denitrification material is reduced and the denitrification materials are not brought into close contact with each other. Therefore, the filling height of the denitrification material cannot be increased, and is about 1,000 mm. Therefore, when the filling amount is large, the apparatus area becomes large, and there is a problem that a large apparatus cost and required area are required.

また、脱窒反応が進行するに従って、脱窒材が消耗する結果、微細な粒子になるが、この粒子が脱窒材の間に存在し、脱窒材の固着を助長し、ガスが抜けるのを妨げるという問題が生じていた。   In addition, as the denitrification reaction proceeds, the denitrification material is consumed, resulting in fine particles, but these particles are present between the denitrification material, helping to fix the denitrification material, and releasing the gas. There has been a problem of obstructing.

特開2003-334590号公報JP 2003-334590 A 特開2004-174328号公報JP 2004-174328 A

これらの問題を解決する方法として、特許文献2では、脱窒材のかさ密度を0.2〜0.7と軽くし、水流や気流により材料を流動又は浮遊させる方法で、生成した窒素ガスを効果的に抜きとる方法が提案されている。しかしながら、流動する方法として水流と気流を開示しているものの、長期間安定的に活性を維持しつつ運転できる流速条件を教えるものではなく、気流に使用するガスも脱窒槽で発生する窒素ガスを再利用することは教えていない。   As a method for solving these problems, in Patent Document 2, the bulk density of the denitrification material is reduced to 0.2 to 0.7, and the generated nitrogen gas is effectively extracted by a method of flowing or floating the material by a water flow or air flow. The method of taking is proposed. However, although a water flow and an air flow are disclosed as a flowing method, it does not teach flow rate conditions that can be operated while stably maintaining the activity for a long period of time, and the gas used for the air flow is also the nitrogen gas generated in the denitrification tank. I don't tell you to reuse it.

したがって、本発明はこれらの問題を解消しようとするもので、反応で生成した窒素ガスを再利用して循環する経済的な方法で脱窒材を流動化させることで、材料の固着を防ぎ、反応で生成したガスを効果的に抜き、反応後の微細粒子を脱窒材から分離できるようにするものである。更に、本発明に基づけば脱窒材の充填高さも高くすることが可能である。   Therefore, the present invention is intended to solve these problems, by preventing the material from sticking by fluidizing the denitrification material by an economical method of reusing and circulating the nitrogen gas generated by the reaction, The gas generated by the reaction is effectively removed so that the fine particles after the reaction can be separated from the denitrification material. Furthermore, the filling height of the denitrification material can be increased based on the present invention.

本発明は、硫黄とアルカリ土類金属の炭酸塩とを含む脱窒材と、硝酸性窒素を含有する排水とを接触させて排水中の硝酸性窒素を処理するための処理装置であって、脱窒材を充填した層に、充填層の流動化開始速度の1.0〜2.0倍の速度で、排水と脱窒反応によって生成する窒素を主成分とするガスからなる混合流体を流通循環させる手段を備えたことを特徴とする硝酸性窒素の処理装置である。   The present invention is a treatment apparatus for treating nitrate nitrogen in wastewater by contacting a denitrification material containing sulfur and an alkaline earth metal carbonate with wastewater containing nitrate nitrogen, Means to circulate and circulate a mixed fluid composed of wastewater and a gas mainly composed of nitrogen generated by the denitrification reaction at a rate of 1.0 to 2.0 times the fluidization start speed of the packed bed in the bed filled with the denitrifying material. It is the processing apparatus of nitrate nitrogen characterized by having.

また、本発明は、硫黄とアルカリ土類金属の炭酸塩とを含む脱窒材と、硝酸性窒素を含有する排水とを接触させて排水中の硝酸性窒素を処理する方法において、脱窒材を充填した層に、充填層の流動化開始速度の1.0〜2.0倍の速度で排水と脱窒反応によって生成する窒素を主成分とするガスからなる混合流体を、連続的又は間欠的に流通循環することを特徴とする硝酸性窒素の処理方法である。   The present invention also relates to a method for treating nitrate nitrogen in waste water by contacting a denitrification material containing sulfur and an alkaline earth metal carbonate with waste water containing nitrate nitrogen. The mixed fluid consisting of waste gas and nitrogen-based gas produced by the denitrification reaction at a rate 1.0 to 2.0 times the fluidization start rate of the packed bed is circulated continuously or intermittently in the packed bed. This is a method for treating nitrate nitrogen.

ここで、処理装置の形状としては、縦型の充填層を有する処理装置が好ましい例として挙げられる。また、処理方法において、1)反応の進行で微細になった脱窒材を浮遊させて充填層から排出すること、2)流動化開始速度の1.3〜1.7倍の速度で混合流体を流通循環させて脱窒材を浮遊させること、又は3)混合流体のガスと排水との体積比率(ガス/排水)が0.05〜0.8の範囲であることのいずれか1以上を満足させることは、より好ましい方法となる。   Here, a preferable example of the shape of the processing apparatus is a processing apparatus having a vertical packed bed. In addition, in the treatment method, 1) the denitrification material that has become fine as the reaction progresses is suspended and discharged from the packed bed, and 2) the mixed fluid is circulated and circulated at a rate 1.3 to 1.7 times the fluidization start rate. It is more preferable to suspend the denitrification material or to satisfy any one or more of 3) the volume ratio (gas / drainage) of the mixed fluid gas to the wastewater within the range of 0.05 to 0.8. It becomes.

ここで流動化開始速度とは、脱窒材が固着していない状態で動きだし浮遊し始める際の混合流体の速度を意味するものである。循環速度を、混合流体の充填層流通速度を流動化開始速度の1.0〜2.0倍に規定したのは、1.0倍未満では脱窒材が流動化ないため十分に脱窒材同士の固着を防止できず、2.0倍を超えると脱窒材の流動が激しすぎ、材料間の摩擦による材料の消耗が大きいことに加え、動力的にも大きくなり経済的ではないからである。更には、流動化開始速度の1.3倍から1.7倍が、設備的にも経済的にもより好ましい。   Here, the fluidization start speed means the speed of the mixed fluid when it starts to move and starts floating in a state where the denitrification material is not fixed. The circulation rate is defined as 1.0 to 2.0 times the fluidized bed flow rate of the mixed fluid. If the flow rate is less than 1.0 times, the denitrification material does not fluidize, so the denitrification materials can be sufficiently prevented from sticking to each other. If the ratio exceeds 2.0 times, the flow of the denitrification material is too intense, and the material wear due to friction between the materials is large, and the power is also large, which is not economical. Furthermore, 1.3 to 1.7 times the fluidization start speed is more preferable in terms of equipment and economy.

本発明で使用する硫黄と炭酸カルシウム、炭酸マグネシウム等のアルカリ土類金属の炭酸塩を含む脱窒材は、上記特許文献1〜2等で公知である。通常、硫黄と石灰石等アルカリ土類金属の炭酸塩の粉末を結合剤で結合させるか、硫黄を一旦溶融させ、それが固化するときの結合作用により結合させて、粒状や塊状の形状にしたものが使用される。その他、必要により繊維類や酸化鉄類や多孔質材を含むことができる。通常、硫黄20〜80wt%、アルカリ土類金属の炭酸塩を80〜20wt%含む。   A denitrification material containing sulfur and a carbonate of an alkaline earth metal such as calcium carbonate or magnesium carbonate used in the present invention is known from Patent Documents 1 and 2 above. Usually, a powder of alkaline earth metal carbonate such as sulfur and limestone is combined with a binder, or the sulfur is once melted and combined by a binding action when it solidifies into a granular or massive shape Is used. In addition, if necessary, fibers, iron oxides and porous materials can be included. Usually, it contains 20 to 80 wt% sulfur and 80 to 20 wt% alkaline earth metal carbonate.

好ましい脱窒材は、硫黄と炭酸カルシウム、炭酸マグネシウム等のアルカリ土類金属の炭酸塩からなる脱窒材(新日鐵化学株式会社製バチルエース:登録商標)であり、かさ密度0.9〜1.1、径は同じであるが長さの異なる円筒形のものである。初期段階ではさまざまな長さがあるが、脱窒反応が進行することによって脱窒材自身が消耗することにより、径も長さも小さくなっていく。よって、脱窒材の粒径や長さには特に制限はないが、好ましくは径5mm程度、長さ2〜9mm程度のものがよい。   A preferred denitrification material is a denitrification material (Bacilace: registered trademark) manufactured by Nippon Steel Chemical Co., Ltd., having a bulk density of 0.9 to 1.1 and a diameter of sulfur, calcium carbonate, magnesium carbonate and other alkaline earth metal carbonates. Are of the same cylindrical shape but different lengths. Although there are various lengths in the initial stage, the diameter and length become smaller as the denitrification material itself is consumed as the denitrification reaction proceeds. Accordingly, the particle size and length of the denitrification material are not particularly limited, but those having a diameter of about 5 mm and a length of about 2 to 9 mm are preferable.

脱窒材と排水が接触している部分では常時脱窒反応が行なわれており、反応によって生成する硫酸イオンと脱窒材中に存在するアルカリ土類金属イオン等によって石膏等の硫酸塩が生成する。通常の操作では、石膏等の濃度は溶解度以内を保つようになっているが、装置内は完全に均一濃度ではなく、局部的に濃度が高いところと低いところが出来るのを完全に防ぐことが出来ない。そのため、局部的に濃度が高いところでは石膏等の固体が析出し、脱窒材を固着させるようになる。これによって、脱窒材が有効に作用出来ない部分ができ、反応率が低下する。固着部分が出来ると、排水の流路が妨げられて偏流がおき、固着が起きていない部分でも充分な接触時間が得られずに反応率を低下させる。また、析出した石膏等が脱窒材の表面を覆い、脱窒材に生息している脱窒菌と排水との接触を妨げ、脱窒反応を阻害する。加えて、脱窒反応の結果窒素ガスが生成するが、脱窒材の固着部分が出来ると、ガスの排出が妨げられ、ガスが気泡となって脱窒材の隙間などに蓄積されていく。この気泡により排水と脱窒材との接触が妨げられ、硝酸性窒素処理能力が低下する。   Denitrification reaction is always performed in the part where the denitrification material and waste water are in contact, and sulfate such as gypsum is produced by sulfate ions generated by the reaction and alkaline earth metal ions present in the denitrification material. To do. In normal operation, the concentration of gypsum etc. is kept within the solubility, but the inside of the device is not completely uniform concentration, and it can completely prevent the local high concentration and low concentration. Absent. Therefore, a solid such as gypsum precipitates at a locally high concentration, and the denitrification material is fixed. As a result, a portion where the denitrification material cannot act effectively is formed, and the reaction rate is lowered. When the fixing portion is formed, the flow path of the drainage is obstructed and a drift occurs, and even in a portion where the fixing does not occur, a sufficient contact time cannot be obtained and the reaction rate is lowered. In addition, the deposited gypsum or the like covers the surface of the denitrification material, preventing contact between the denitrification bacteria that inhabit the denitrification material and the waste water, thereby inhibiting the denitrification reaction. In addition, nitrogen gas is generated as a result of the denitrification reaction. However, if the denitrification material is fixed, the gas is prevented from being discharged, and the gas becomes bubbles and accumulates in the gaps of the denitrification material. Due to the bubbles, contact between the waste water and the denitrification material is hindered, and the nitrate nitrogen treatment capacity is reduced.

排水中の硝酸性窒素(NO3、NO2)は、脱窒材に生息する硫黄酸化細菌により、窒素ガスに還元されると共に、脱窒材中の硫黄は硫酸イオンに酸化され、硫酸イオンは脱窒材中のアルカリ土類金属の炭酸塩と反応してアルカリ土類金属の硫酸塩となる。したがって、排水処理を続けることによって、脱窒材は消費され、粉化も次第に進行するようになる。 Nitrate nitrogen (NO 3 , NO 2 ) in the wastewater is reduced to nitrogen gas by sulfur-oxidizing bacteria that live in the denitrification material, and sulfur in the denitrification material is oxidized to sulfate ions. It reacts with the alkaline earth metal carbonate in the denitrification material to form an alkaline earth metal sulfate. Therefore, by continuing the waste water treatment, the denitrification material is consumed and pulverization gradually proceeds.

脱窒材は、充填塔等に充填し、その充填層へ排水を上向に流すことが連続的に排水処理するためには好ましい。この場合において、発生した窒素ガスが脱窒材の表面に付着すると脱窒材と排水の接触が妨げられて脱窒が十分に進行しない。また、粉化物や石膏等を含むスライム状の物質が脱窒材の表面に付着しても脱窒が十分に進行しない。   The denitrification material is preferably packed in a packed tower or the like, and the drainage is allowed to flow upward into the packed bed for continuous drainage treatment. In this case, if the generated nitrogen gas adheres to the surface of the denitrification material, the contact between the denitrification material and the drainage is hindered, and the denitrification does not proceed sufficiently. Further, denitrification does not proceed sufficiently even if a slime-like substance including powdered material or gypsum adheres to the surface of the denitrification material.

そこで、本発明では脱窒材を充填した層に、充填層の流動化開始速度の1.0〜2.0倍の速度で、排水と脱窒反応によって生成する窒素を主成分とするガスからなる混合流体を流通循環させる手段を備えた処理装置を使用する。そして、この流通循環を連続的又は間欠的に行うことにより、脱窒材の表面に付着したガス、粘着物質等の被覆物を効率的に除去する。   Therefore, in the present invention, a mixed fluid composed of a gas mainly composed of nitrogen generated by drainage and denitrification reaction at a rate of 1.0 to 2.0 times the fluidization start speed of the packed bed in the layer filled with the denitrification material. A processing device equipped with means for circulation is used. Then, by continuously or intermittently carrying out this circulation, the coating such as gas and adhesive substance adhering to the surface of the denitrification material is efficiently removed.

処理装置は、脱窒材を充填する充填層を設けた塔型形状等の適当な形状の槽と、排水と脱窒反応によって生成する窒素を主成分とするガスからなる混合流体を流通循環させる手段とを有する。   The treatment device circulates and circulates a mixed fluid comprising a tank having an appropriate shape such as a tower shape provided with a packed bed filled with a denitrification material, and a gas mainly composed of nitrogen generated by drainage and denitrification reaction. Means.

混合流体を充填層を流通させて脱窒材を流動化させるため、充填層の流動化開始速度の1.0〜2.0倍の速度で、混合流体を流通循環させる。ここで流動開始速度は、混合流体中の液とガスの混合割合によって異なり、液単独流体より液とガスを含む混合流体の方が、速度的には小さくてよい。したがって、混合流体を使用することにより、これを循環させるためのポンプ動力等を小さくすることができる。適当な混合割合は、体積比率(ガス/液)で0.05〜0.8の範囲である。体積比率が0.05未満では、窒素ガスがほとんど循環されず、ガスを循環させる効果がほとんどなくなる。また、体積比率が0.8を超えると、ガスの流速が大きくなりすぎるため、経済的ではない。なお、充填層の流動化開始速度は、前記のとおりの意味を有するが、これは混合流体のガス/液比、脱窒材の真比重や形状、充填層の高さや充填層を設けた槽の形状等によって変化する。したがって、使用する充填層を含む処理装置について、ガス/液比を変化させたいくつかの混合流体を流すことにより、予め流動化開始速度を求めておくことがよい。これは、充填層を透明な容器又は窓を有する容器内に設けておき、これに混合流体を流して、充填層が流動化を開始するときの速度を計測すること等により求めることができる。なお、流動化開始速度は流動させる材料の形状や比重によって異なるが、例えば、径5mm、長さ2mm〜9mm、かさ密度0.95の材を1m充填して流動させる場合は、流動化開始速度は3〜8cm/s程度であるが、一般的にも正常形状の脱窒材の破損や流出を防止するため1〜10cm/s程度の範囲とすることがよい。なお、ここでいう流動化開始速度の数値は、循環させる混合流体量(cm3/s)を充填層の断面積(cm2)で除することにより計算したものである。 In order to circulate the mixed fluid through the packed bed and fluidize the denitrification material, the mixed fluid is circulated and circulated at a speed of 1.0 to 2.0 times the fluidization start speed of the packed bed. Here, the flow start speed varies depending on the mixing ratio of the liquid and the gas in the mixed fluid, and the mixed fluid containing the liquid and the gas may be smaller in speed than the liquid alone fluid. Therefore, by using the mixed fluid, it is possible to reduce the pump power for circulating the fluid. A suitable mixing ratio is in the range of 0.05 to 0.8 in volume ratio (gas / liquid). When the volume ratio is less than 0.05, nitrogen gas is hardly circulated, and the effect of circulating the gas is almost lost. On the other hand, if the volume ratio exceeds 0.8, the gas flow rate becomes too high, which is not economical. The fluidization start speed of the packed bed has the same meaning as described above. This is the gas / liquid ratio of the mixed fluid, the true specific gravity and shape of the denitrification material, the height of the packed bed, and the tank provided with the packed bed. It depends on the shape of the. Therefore, it is preferable to obtain the fluidization start speed in advance for a processing apparatus including a packed bed to be used by flowing several mixed fluids having different gas / liquid ratios. This can be obtained by providing a packed bed in a transparent container or a container having a window, flowing a mixed fluid through the packed bed, and measuring the speed at which the packed bed starts to fluidize. The fluidization start speed varies depending on the shape and specific gravity of the material to be fluidized. For example, when a material having a diameter of 5 mm, a length of 2 mm to 9 mm, and a bulk density of 0.95 is filled and fluidized, the fluidization start speed is 3 Although it is about ˜8 cm / s, it is generally preferable to set the range of about 1 to 10 cm / s in order to prevent damage and outflow of the normal shape denitrification material. The numerical value of the fluidization start speed here is calculated by dividing the amount of mixed fluid to be circulated (cm 3 / s) by the cross-sectional area (cm 2 ) of the packed bed.

反応で生成した窒素ガスを再利用して循環する経済的な方法で脱窒材を流動化させることで、材料の固着を防ぎ、長期間の脱窒性能を確保することができる。更に、本発明によれば、硫黄と炭酸カルシウム、炭酸マグネシウム等のII族元素の炭酸塩からなる脱窒材と、硝酸性窒素を含有する排水とを接触させて排水中の硝酸性窒素を処理する方法において、脱窒材を充填した層に、充填層の流動化開始速度以上の速度で排水とガスを循環し、脱窒材を浮遊させ、反応の結果生成した石膏等による固着を防ぐとともに、反応の結果生成した窒素ガスを脱窒材から効果的に分離し、反応後の様々な大きさになった脱窒材は流動化により分級させ、微細な粒子を上方に集めることができる。これにより、脱窒材の充填高さを高くすることが可能になり、処理するための装置を大型化させず、設置スペースを小さくできる装置が提供できる。また、微細な粒子を分級することにより装置内を閉塞させず安定した処理を行なうことができる。本発明の用途は広く産業上益するところ大である。   By fluidizing the denitrification material by an economical method in which the nitrogen gas generated by the reaction is recycled and circulated, the material can be prevented from sticking and a long-term denitrification performance can be ensured. Furthermore, according to the present invention, the nitrate nitrogen in the waste water is treated by contacting a denitrification material comprising a carbonate of a group II element such as sulfur, calcium carbonate, magnesium carbonate and the waste water containing nitrate nitrogen. In this method, the drainage and gas are circulated in the bed filled with the denitrification material at a speed equal to or higher than the fluidization start speed of the packed bed, the denitrification material is floated, and sticking due to gypsum etc. generated as a result of the reaction is prevented. The nitrogen gas produced as a result of the reaction can be effectively separated from the denitrification material, and the denitrification material having various sizes after the reaction can be classified by fluidization to collect fine particles upward. This makes it possible to increase the filling height of the denitrification material, and to provide an apparatus that can reduce the installation space without increasing the size of the apparatus for processing. Further, by classifying fine particles, stable processing can be performed without blocking the inside of the apparatus. The application of the present invention is large in terms of wide industrial benefits.

以下、本発明の実施の形態を示すが、これらに限定されるものではない。
図1は、本発明の実施に好適な装置の1例を示す概念図である。処理槽1は下部に排水入口5と循環水入口3を、上部に循環水出口4、処理排水出口6を備え、槽内には脱窒材7が充填されている。処理排水出口6からの排水は系外に排出されるよう構成されている。循環ガス入口8は処理槽下部に、循環ガス出口9は処理排水出口6より上部に備える。この循環ガスには、脱窒反応によって生成する窒素が槽の上部空間にたまっているのでこれを利用する。この上部空間は、所望の循環速度で循環ガスを流すことができる容積を有し、外気とは連通していないか、循環時には弁等により外気が多量に流入しない構造されることがよい。そして、循環ガスと循環水は、処理槽1の下部で混合され、混合流体となって、充填層を流通し、脱窒材を流動化させる。
Hereinafter, although embodiment of this invention is shown, it is not limited to these.
FIG. 1 is a conceptual diagram showing an example of an apparatus suitable for carrying out the present invention. The treatment tank 1 has a drainage inlet 5 and a circulation water inlet 3 in the lower part, a circulation water outlet 4 and a treatment drainage outlet 6 in the upper part, and the tank is filled with a denitrification material 7. The waste water from the treatment waste water outlet 6 is configured to be discharged out of the system. The circulation gas inlet 8 is provided at the lower part of the treatment tank, and the circulation gas outlet 9 is provided above the treatment drainage outlet 6. This circulating gas is used because nitrogen produced by the denitrification reaction is accumulated in the upper space of the tank. The upper space has a volume that allows a circulating gas to flow at a desired circulation speed, and is preferably not in communication with the outside air, or structured so that a large amount of outside air does not flow in due to a valve or the like during circulation. Then, the circulating gas and the circulating water are mixed in the lower part of the treatment tank 1 to become a mixed fluid, circulate through the packed bed, and fluidize the denitrification material.

処理槽1に充填される脱窒材7は、排水の量や濃度によって充填量を変えることができる。この脱窒材は、脱窒反応が進行することによって脱窒材自身が消耗して粉化するので、脱窒材を流動化する際、微細化された脱窒材を浮遊させ、処理排水出口6からの排水と共に取り出すことが好ましい。なお、循環時には排水の流出入を停止する場合は、循環終了後に浮遊する脱窒材を排水と共に取り出す。また、脱窒材が消耗して行くので、適時脱窒材の補充又は入れ替えを行うことが好ましい。   The amount of denitrification material 7 filled in the treatment tank 1 can be changed depending on the amount and concentration of waste water. Since this denitrification material is consumed and pulverized by the progress of the denitrification reaction, when the denitrification material is fluidized, the refined denitrification material is floated, and the treatment drain outlet It is preferable to take out together with the waste water from 6. In addition, when stopping the inflow / outflow of drainage at the time of circulation, the denitrification material floating after the end of circulation is taken out together with the drainage. Moreover, since the denitrification material is consumed, it is preferable to replenish or replace the denitrification material in a timely manner.

脱窒材7を流動させるには、循環ポンプ2で作った水流と、圧縮機10で作った窒素ガスを主とするガス流を混合して、充填層に流せばよい。循環ポンプ2は液単独の流れで充填層の流動を開始できる速度(液単独流動化開始速度という)とする能力以上、好ましくはその2倍程度の速度で排水を循環させることができる能力を有するものであることがよい。圧縮機10は、排水を循環させる液速度の1/20以上程度、好ましくは1/10以上の速度でガスを供給できるものであることがよい。また、循環ポンプ2、圧縮機10を使用せず、代わりにエジェクターポンプを使用すれば、装置が簡単である。エジェクターポンプを使用する場合も、流動化に必要な液量とガス量は循環ポンプ2、圧縮機10を使う場合と同じであればよい。   In order to make the denitrification material 7 flow, the water flow made by the circulation pump 2 and the gas flow mainly made of nitrogen gas made by the compressor 10 are mixed and flowed through the packed bed. Circulation pump 2 has the ability to circulate the waste water at a speed more than the speed at which the flow of the packed bed can be started with the flow of the liquid alone (referred to as the liquid single fluidization start speed), preferably about twice that speed. It should be a thing. The compressor 10 should be capable of supplying gas at a rate of about 1/20 or more, preferably 1/10 or more of the liquid speed for circulating the waste water. Further, if the circulation pump 2 and the compressor 10 are not used and an ejector pump is used instead, the apparatus is simple. Even when an ejector pump is used, the amount of liquid and the amount of gas required for fluidization may be the same as when the circulation pump 2 and the compressor 10 are used.

ここで、充填層の流動化開始速度とは、気液混合の状態で充填層の脱窒材が流動化し始める際の、混合流体の速度を意味する。また、液単独流動化開始速度とは、液のみの状態で充填層の脱窒材流動化し始める際の、液の速度を意味する。なお、流動化し始めるとは、固着していない状態の脱窒材が動きだし、一部が浮遊し始める際の液の速度でもある。   Here, the fluidization start speed of the packed bed means the speed of the mixed fluid when the denitrification material of the packed bed starts to fluidize in a gas-liquid mixed state. Further, the liquid single fluidization start speed means the liquid speed at the start of fluidization of the denitrification material in the packed bed in the liquid only state. Note that “being fluidized” also means the speed of the liquid when the denitrification material in a non-adhered state starts to move and a part starts to float.

流動化によって、個々の脱窒材の間に空間ができ、固着化が防止できる。また、流動化させることにより脱窒材同士が擦れ、材料表面の石膏等の被覆を剥がすと共に、表面に付着しているガスが、効果的に分離され、脱窒材の活性を回復することができる。   By fluidization, a space is created between the individual denitrification materials, and sticking can be prevented. In addition, the denitrifying materials can be rubbed together by fluidization to remove the coating such as gypsum on the surface of the material, and the gas adhering to the surface can be effectively separated to restore the activity of the denitrifying material. it can.

装置内の脱窒材は前記のとおりさまざまな大きさで存在しているため、さまざまな大きさの脱窒材が密充填されてガスが抜けにくくなってくる。従って、流動化させることにより、さまざまな大きさになった脱窒材を分級させ、微細な粒子は充填層上方へ大きな粒子は充填層下方へ集めることができる。   Since the denitrification material in the apparatus exists in various sizes as described above, the denitrification material of various sizes is densely packed, making it difficult for gas to escape. Accordingly, the denitrification material having various sizes can be classified by fluidization, and fine particles can be collected above the packed bed and large particles can be collected below the packed bed.

水流に乗って充填層から排出されるような微細な粒子が流動化によって分級されると、微細な粒子は装置系外から取り出され、別途処理することができる。その際、微細な粒子を固液分離する装置を設けることにより、反応装置のスケーリング、閉塞を防ぐことができる。   When fine particles that are discharged from the packed bed on the water stream are classified by fluidization, the fine particles are taken out of the apparatus system and can be processed separately. At that time, by providing an apparatus for solid-liquid separation of fine particles, scaling and clogging of the reaction apparatus can be prevented.

図2は上記をふまえた変形例を示す概念図である。処理槽1aは下部に排水入口5aと循環水入口3aを、上部に処理排水出口6aを備え、槽内には脱窒材7aが各部屋ごとに充填されている。処理排水出口6aからの排水は固液分離器10aに連結されており、固液分離器10aによって分離された液体と固体はそれぞれ排水出口11と固体出口12から排出される。また、固液分離器10aの液の一部が循環水出口4aより循環ポンプ2aによって処理槽1aへ送られる。循環ガスは、処理槽1a上部空間に溜まった窒素ガスを循環ガス出口9aからエジェクター8aにより吸引する。処理槽1a内はいくつかの部屋に区切られており、切替えバルブ13によってそれぞれの部屋に液とガスが供給されるよう構成されている。図2のような装置では、脱窒材7aの流動化開始速度が大きい場合でも、処理槽1a内を区切ることにより循環ポンプ2aの容量は小さく抑えることができる。その際、循環ポンプ2aはそれぞれの部屋ごとに1台ずつ必要とするのではなく、それぞれの部屋に切替えバルブ13を備えることによりポンプの台数を大幅に削減することができる。切替えバルブ13はタイマー(図示せず)などによって順次切替えて開閉させるものであればよく、材質、口径などは処理する排水の量や種類によって自由に設計、選択できる。   FIG. 2 is a conceptual diagram showing a modification based on the above. The treatment tank 1a includes a drainage inlet 5a and a circulating water inlet 3a at the lower part and a treatment drainage outlet 6a at the upper part, and the tank is filled with a denitrification material 7a for each room. Waste water from the treated waste water outlet 6a is connected to the solid-liquid separator 10a, and the liquid and solid separated by the solid-liquid separator 10a are discharged from the waste water outlet 11 and the solid outlet 12, respectively. A part of the liquid in the solid-liquid separator 10a is sent to the treatment tank 1a from the circulating water outlet 4a by the circulation pump 2a. As the circulating gas, nitrogen gas accumulated in the upper space of the processing tank 1a is sucked from the circulating gas outlet 9a by the ejector 8a. The inside of the processing tank 1a is divided into several rooms, and the switching valve 13 is configured to supply liquid and gas to each room. In the apparatus as shown in FIG. 2, even when the fluidization start speed of the denitrification material 7a is high, the capacity of the circulation pump 2a can be kept small by dividing the inside of the treatment tank 1a. At that time, one circulation pump 2a is not required for each room, but the number of pumps can be greatly reduced by providing the switching valve 13 in each room. The switching valve 13 only needs to be sequentially switched by a timer (not shown) or the like, and can be freely designed and selected depending on the amount and type of waste water to be treated.

前記の循環ポンプ2a及びエジェクター8aに生じる混合流体の循環流れによりそれぞれの部屋にて順次流動化が行なわれ、反応によって生成する気泡が蓄積せず、硝酸性窒素処理能力の低下が防止できる。この循環の際に、脱窒材7aの微細粒子は、処理排水出口6aから続く固液分離器10aに送られる。固液分離器10aは特に制限はなく、一般に使用されているフィルター等を用いるとより効果的である。固液を分離する装置を設けるにより、微細粒子は、装置系内から取り出され、別途処理することができる。また、処理槽内でのスケーリング、閉塞を防ぐことができる。   Fluidization is sequentially performed in each chamber by the circulating flow of the mixed fluid generated in the circulation pump 2a and the ejector 8a, so that bubbles generated by the reaction do not accumulate, and a decrease in nitrate nitrogen treatment capacity can be prevented. During this circulation, the fine particles of the denitrification material 7a are sent to the solid-liquid separator 10a that continues from the treatment wastewater outlet 6a. The solid-liquid separator 10a is not particularly limited, and it is more effective to use a commonly used filter or the like. By providing an apparatus for separating the solid and liquid, the fine particles can be taken out from the apparatus system and processed separately. In addition, scaling and blockage in the treatment tank can be prevented.

混合流体を循環させて流動化させる操作は、連続的に行ってもよいが、反応初期及び流動化操作後からしばらくの間は、良好な脱窒反応が進行するので、半日〜数日おき毎に流動化させる操作を行うことがよい。そして、その操作時間は、1分間〜1時間程度、好ましくは2〜10分間程度である。   The operation of circulating and fluidizing the mixed fluid may be carried out continuously, but since a good denitrification reaction proceeds for a while after the initial stage of the reaction and the fluidization operation, every half day to every few days. It is better to perform the fluidizing operation. The operation time is about 1 minute to 1 hour, preferably about 2 to 10 minutes.

以下に実施例を示す。本発明はこれによってなんら制限を受けるものではない。
参考例1
図1に示すような装置を用い、液と脱窒反応によって生成する窒素ガスを入れて処理槽1内の脱窒材7を流動させた。すなわち、図1における透明プラスティック製の筒型の処理槽1(充填部塔径154mm、充填筒高さ4,600mm、容積154L)に脱窒材7(硫黄-炭酸カルシウム系、径5mm、長さ2mm〜9mm)20kg(充填高さにて1,000mm)をランダム(大きさの違う粒子が処理槽内に混在している状態)に充填した。この処理槽1に、人工摸擬排水A(硝酸カリウム水溶液を使用し、硝酸性窒素濃度で1000mg-N/Lに調整し、石膏の析出しやすい条件として消石灰を添加してカルシウム濃度を1100mg/Lに調整したもの)を144L投入し、循環ポンプ2とコンプレッサー10を用いて窒素ガスを各種の割合で配合した混合流体による充填層の流動化開始速度を計測した。液に対し0.3容積倍の窒素ガス量を供給した際の充填層の流動化開始速度は4.55cm/sであった。
Examples are shown below. The present invention is not limited thereby.
Reference example 1
Using a device as shown in FIG. 1, the liquid and nitrogen gas produced by the denitrification reaction were added to flow the denitrification material 7 in the treatment tank 1. That is, a denitrification material 7 (sulfur-calcium carbonate system, diameter 5 mm, length) is added to the transparent plastic cylindrical treatment tank 1 (filling tower diameter 154 mm, filling cylinder height 4,600 mm, volume 154 L) in FIG. 2 kg to 9 mm) and 20 kg (1,000 mm at the filling height) were randomly packed (in a state where particles having different sizes are mixed in the treatment tank). Artificial drought drainage A (potassium nitrate aqueous solution is used in this treatment tank 1 and the concentration of nitrate nitrogen is adjusted to 1000 mg-N / L, and slaked lime is added as a condition for easy precipitation of gypsum, and the calcium concentration is 1100 mg / L. 144 L) was added, and the fluidization start speed of the packed bed by the mixed fluid in which nitrogen gas was blended at various ratios was measured using the circulation pump 2 and the compressor 10. The fluidization start speed of the packed bed when supplying 0.3 volume times nitrogen gas amount to the liquid was 4.55 cm / s.

この処理槽1を用いて、循環ポンプ2とコンプレッサー10により、人工摸擬排水Aと窒素ガスの混合流体(窒素ガス/排水流速比=0.3)を、充填層の流動化開始速度の1.3倍の速度で循環させる操作を1日1回5分間行なった。   Using this treatment tank 1, a circulating fluid 2 and a compressor 10 are used to feed a mixed fluid of artificial dredged drainage A and nitrogen gas (nitrogen gas / drainage flow rate ratio = 0.3) 1.3 times the fluidization start speed of the packed bed. The operation of circulating at a speed was performed once a day for 5 minutes.

参考例2
参考例1の処理装置を使用し、同様に脱窒材を充填し、人工摸擬排水Aを投入し、排水と窒素ガスの混合流体(窒素ガス/排水流速比=0.3)を、充填層の流動化開始速度の0.6倍の速度で循環させる操作を1日1回5分間行なった。
Reference example 2
Using the treatment equipment of Reference Example 1, similarly, filling with denitrification material, charging artificial dredging pseudo drainage A, and using mixed fluid of drainage and nitrogen gas (nitrogen gas / drainage flow rate ratio = 0.3) in the packed bed The operation of circulating at a speed 0.6 times the fluidization start speed was performed once a day for 5 minutes.

参考例3
参考例1の処理装置を使用し、同様に脱窒材を充填し、人工摸擬排水Aを投入し、排水と窒素ガスの混合流体(窒素ガス/排水流速比=0.3)を、充填層の流動化開始速度の2.1倍の速度で循環させる操作を1日1回5分間行なった。
Reference example 3
Using the treatment equipment of Reference Example 1, similarly, filling with denitrification material, charging artificial dredging pseudo drainage A, and using mixed fluid of drainage and nitrogen gas (nitrogen gas / drainage flow rate ratio = 0.3) in the packed bed The operation of circulating at a speed 2.1 times the fluidization start speed was performed once a day for 5 minutes.

参考例4
参考例1の処理装置を使用し、同様に脱窒材を充填し、人工摸擬排水Aを投入し、排水を充填層の液単独流動化開始速度の1.0倍の速度で循環させ、窒素ガスは循環させず、充填層を流動化させる操作を1日1回5分間行なった。この場合の液単独流動化開始速度は7.3cm/sであった。
Reference example 4
Using the treatment apparatus of Reference Example 1, similarly, the denitrification material is filled, artificial artificial simulated waste water A is charged, the waste water is circulated at a rate 1.0 times the liquid single fluidization start speed of the packed bed, nitrogen gas Was not circulated, and the operation of fluidizing the packed bed was performed once a day for 5 minutes. In this case, the liquid single fluidization start speed was 7.3 cm / s.

結果を表1にまとめて示す。ここで、液空塔速度及び窒素ガス空塔速度は、処理層へ循環させる液又はガス量cm3/secを、処理層の断面積cm2で除することにより得られる数値である。気液循環速度は両者の速度の合計である。また、記号は次の意味を有する。◎:効果大、○:やや効果あり、×:ほとんど効果なし。 The results are summarized in Table 1. Here, the liquid superficial velocity and the nitrogen gas superficial velocity are numerical values obtained by dividing the liquid or gas amount cm 3 / sec circulated to the treatment layer by the cross-sectional area cm 2 of the treatment layer. The gas-liquid circulation speed is the sum of both speeds. The symbols have the following meanings. ◎: Large effect, ○: Slightly effective, ×: Little effect.

Figure 2006272161
Figure 2006272161

表1によれば、充填層の流動化開始速度以上で混合流体を循環させることにより、生成ガスの除去、材料の固着防止が良好に行なえることが確認できた。また、30日運転後の摩擦による材料の消耗率も少なく、所要電力も抑えられることが確認された。これに対し、充填層の流動化開始速度の0.60倍で混合流体を循環させた場合は、生成ガスの除去には効果があるものの、材料が固着することが確認された。更に充填層の流動化開始速度の2.10倍で混合流体を循環させた場合は、生成ガスの除去、材料の固着防止が良好に行なえるが、30日運転後の摩擦による材料の消耗率が大きく、所要電力も大きくなり経済的でないことが確認された。なお、参考例4の排水のみを循環させた場合は、生成ガスの除去状況、脱窒材の固着防止状況のいずれも○であった。   According to Table 1, it was confirmed that the product gas was removed and the material was prevented from sticking well by circulating the mixed fluid at a fluidization start speed or higher of the packed bed. In addition, it was confirmed that the consumption rate of the material due to friction after 30 days of operation is small and the required power can be reduced. On the other hand, when the mixed fluid was circulated at 0.60 times the fluidization start speed of the packed bed, it was confirmed that the material was fixed, although it was effective in removing the generated gas. Furthermore, when the mixed fluid is circulated at 2.10 times the fluidization start speed of the packed bed, it is possible to remove the generated gas and prevent material sticking well, but the material consumption rate due to friction after 30 days of operation is large. It was confirmed that the required power was large and it was not economical. In addition, when only the waste water of Reference Example 4 was circulated, both the removal state of the produced gas and the prevention of sticking of the denitrification material were good.

実施例1
図1に示すような装置を用い、人工摸擬排水B(硝酸カリウム水溶液を使用し、硝酸性窒素濃度で300mg-N/Lに調整したもの)を用いて脱窒処理実験を行った。すなわち、参考例1の処理装置において脱窒材7(硫黄-炭酸カルシウム系、径5mm、長さ2mm〜9mm)82kg(充填高さにて4,000mm)を充填し、人工摸擬排水Bを113L投入して、その後この人工摸擬排水Bを1時間当たり15Lを下部から連続的に定量ポンプで投入するかけ流し方式で供給して、脱窒処理を行った。
循環ポンプ2とコンプレッサー10により、人工摸擬排水Bと窒素ガスの混合流体(窒素ガス/排水流速比=0.3)を、充填層の流動化開始速度の1.3倍の速度で循環させる操作を1日1回5分間行なった。
Example 1
Using a device as shown in FIG. 1, a denitrification treatment experiment was conducted using artificial dredging drainage B (using a potassium nitrate aqueous solution and adjusted to a nitrate nitrogen concentration of 300 mg-N / L). That is, 82 kg (4,000 mm at the filling height) of the denitrification material 7 (sulfur-calcium carbonate system, diameter 5 mm, length 2 mm to 9 mm) is filled in the treatment apparatus of Reference Example 1, Then, 113 L was added, and then artificial dewatering waste water B was supplied by a pouring method in which 15 L per hour was continuously supplied from the lower portion with a metering pump to perform denitrification treatment.
An operation that circulates a mixed fluid of artificial dredged drainage B and nitrogen gas (nitrogen gas / drainage flow rate ratio = 0.3) at a rate 1.3 times the fluidization start speed of the packed bed with the circulation pump 2 and the compressor 10 for one day. Once for 5 minutes.

比較例1
実施例1と同様な実験において、1日に1回5分間の循環操作を行なわない条件である他は、実施例1と同様の条件で排水処理を実施した。
Comparative Example 1
In the same experiment as in Example 1, waste water treatment was performed under the same conditions as in Example 1 except that the circulation operation for 5 minutes was not performed once a day.

比較例2
実施例1と同様な実験において、人工摸擬排水Bと窒素ガスの混合流体(窒素ガス/排水流速比=0.3)を、充填層の流動化開始速度の0.6倍として循環させた他は、実施例1と同様の条件で排水処理を実施した。
Comparative Example 2
In the same experiment as in Example 1, except that the mixed fluid of artificial dredged drainage B and nitrogen gas (nitrogen gas / drainage flow rate ratio = 0.3) was circulated as 0.6 times the fluidization start speed of the packed bed, Waste water treatment was carried out under the same conditions as in Example 1.

人工摸擬排水Bについて、実施例1及び比較例1で処理した処理済排水の硝酸性窒素濃度と反応速度を随時測定した。硝酸性窒素濃度と反応速度の経時変化を表2に示す。また、この時の反応速度の経時変化を図3に示す。   For the artificial wastewater B, the nitrate nitrogen concentration and reaction rate of the treated wastewater treated in Example 1 and Comparative Example 1 were measured as needed. Table 2 shows changes with time in nitrate nitrogen concentration and reaction rate. Further, FIG. 3 shows the change over time in the reaction rate.

Figure 2006272161
Figure 2006272161

表2、図3の通り、実施例1は比較例1,2と比較して、長期安定して反応が行われることが確認された(反応速度は処理材1kg当り、1日当りの硝酸体窒素の処理量(mg)を示したものであり、mg-N/処理材kg・dayで表す)。また、比較例1、比較例2では、微細な粒子が脱窒材の間に存在し、脱窒材が密充填されており部分的な固着が確認されたが、実施例1では小さい粒子は充填層上方に集められ、微細粒子は水流に乗って充填層から排出されることが確認された。   As shown in Table 2 and FIG. 3, it was confirmed that the reaction in Example 1 was performed stably for a long time as compared with Comparative Examples 1 and 2 (reaction rate was 1 kg of nitrate nitrogen per 1 kg of the treated material per day). (Mg-N / treated material kg · day). Moreover, in Comparative Example 1 and Comparative Example 2, fine particles exist between the denitrifying materials, and the denitrifying materials are closely packed, and partial adhesion was confirmed. It was confirmed that the fine particles were collected above the packed bed and discharged from the packed bed in a water stream.

実施例2
実施例1の処理装置において、人工摸擬排水Bを人工摸擬排水Aに変え、人工模擬排水の供給量を1時間当たり5Lに変えたほかは、実施例1と同様の条件で脱窒処理及び循環操作を実施した。
Example 2
In the treatment apparatus of Example 1, the denitrification treatment was performed under the same conditions as in Example 1 except that artificial simulated drainage B was changed to artificial simulated drainage A and the supply amount of artificial simulated drainage was changed to 5 L per hour. And a circulation operation was carried out.

比較例3
実施例2と同様の実験において、1日に1回5分間の循環操作を行なわない条件である他は、実施例2と同様の条件で実施した。
Comparative Example 3
In the same experiment as in Example 2, the experiment was performed under the same conditions as in Example 2 except that the circulation operation was not performed once a day for 5 minutes.

比較例4
実施例2と同様な実験において、人工摸擬排水Aと窒素ガスの混合流体(窒素ガス/排水流速比=0.3)を、充填層の流動化開始速度の0.6倍として循環させた他は、実施例2と同様の条件で排水処理を実施した。
硝酸性窒素濃度と反応速度の経時変化表3に示す。またこの時の反応速度の経時変化を図4に示す。
Comparative Example 4
In the same experiment as Example 2, except that the mixed fluid of artificial simulated drainage A and nitrogen gas (nitrogen gas / drainage flow rate ratio = 0.3) was circulated as 0.6 times the fluidization start speed of the packed bed, Waste water treatment was carried out under the same conditions as in Example 2.
The time course of nitrate nitrogen concentration and reaction rate is shown in Table 3. Further, FIG. 4 shows the change over time in the reaction rate.

Figure 2006272161
Figure 2006272161

表3、図4から、実施例2は、比較例3、4と比較して、実施例1と同様に長期安定した脱窒反応効果が確認された。   From Table 3 and FIG. 4, as compared with Comparative Examples 3 and 4, Example 2 confirmed a long-term stable denitrification reaction effect as in Example 1.

本発明を実施するための装置の1例を示す概念図Schematic diagram showing an example of an apparatus for carrying out the present invention 本発明を実施するための装置の変形例を示す概念図The conceptual diagram which shows the modification of the apparatus for implementing this invention 処理時間と反応速度の関係を示すグラフGraph showing the relationship between processing time and reaction rate 処理時間と反応速度の関係を示すグラフGraph showing the relationship between processing time and reaction rate

符号の説明Explanation of symbols

1 、1a:処理槽
2 、2a:循環ポンプ
3 、3a:循環水入口
4 、4a:循環水出口
5 、5a:排水入口
6 、6a:処理排水出口
7 、7a:脱窒材
8 :循環ガス入口
8a :エジェクター
9 、9a:循環ガス出口
10 :圧縮機
10a :固液分離器
11 :排水出口
12 :固体出口
1, 1a: Processing tank
2, 2a: Circulation pump
3, 3a: Circulating water inlet
4, 4a: Circulating water outlet
5, 5a: Drainage inlet
6, 6a: Waste water outlet
7, 7a: Denitrification material
8: Circulating gas inlet
8a: Ejector
9, 9a: Circulating gas outlet
10: Compressor
10a: Solid-liquid separator
11: Drain outlet
12: Solid outlet

Claims (6)

硫黄とアルカリ土類金属の炭酸塩とを含む脱窒材と、硝酸性窒素を含有する排水とを接触させて排水中の硝酸性窒素を処理するための処理装置であって、脱窒材を充填した層に、充填層の流動化開始速度の1.0〜2.0倍の速度で、排水と脱窒反応によって生成する窒素を主成分とするガスからなる混合流体を流通循環させる手段を備えたことを特徴とする硝酸性窒素の処理装置。   A treatment device for treating nitrate nitrogen in waste water by contacting a denitrification material containing sulfur and an alkaline earth metal carbonate with waste water containing nitrate nitrogen, The packed bed is provided with means for circulating and circulating a mixed fluid composed of waste gas and a gas mainly composed of nitrogen generated by the denitrification reaction at a speed 1.0 to 2.0 times the fluidization start speed of the packed bed. Nitrate nitrogen treatment equipment. 縦型の充填層を有する処理装置であることを特徴とする請求項1記載の硝酸性窒素の処理装置。   The treatment apparatus for nitrate nitrogen according to claim 1, wherein the treatment apparatus has a vertical packed bed. 硫黄とアルカリ土類金属の炭酸塩とを含む脱窒材と、硝酸性窒素を含有する排水とを接触させて排水中の硝酸性窒素を処理する方法において、脱窒材を充填した層に、充填層の流動化開始速度の1.0〜2.0倍の速度で排水と脱窒反応によって生成する窒素を主成分とするガスからなる混合流体を、連続的又は間欠的に流通循環することを特徴とする硝酸性窒素の処理方法。   In a method of treating nitrate nitrogen in wastewater by contacting a denitrification material containing sulfur and an alkaline earth metal carbonate with wastewater containing nitrate nitrogen, a layer filled with the denitrification material is used. A mixed fluid composed of a gas mainly composed of nitrogen generated by drainage and denitrification at a rate 1.0 to 2.0 times the fluidization start rate of the packed bed is circulated continuously or intermittently. Treatment method for nitrate nitrogen. 請求項3記載の硝酸性窒素の処理方法であって、反応の進行で微細になった脱窒材を浮遊させて充填層から排出することを特徴とする硝酸性窒素の処理方法。   4. The method for treating nitrate nitrogen according to claim 3, wherein the denitrification material that has become fine as the reaction proceeds is suspended and discharged from the packed bed. 請求項3又は4に記載の硝酸性窒素の処理方法であって、流動化開始速度の1.3〜1.7倍の速度で混合流体を流通循環させて微細化された脱窒材を浮遊させることを特徴とする硝酸性窒素の処理方法。   The method for treating nitrate nitrogen according to claim 3 or 4, wherein the denitrified material is suspended by circulating the mixed fluid at a rate 1.3 to 1.7 times the fluidization start rate. A method for treating nitrate nitrogen. 請求項3〜5のいずれかに記載の硝酸性窒素の処理方法であって、混合流体のガスと排水との体積比率(ガス/排水)が0.05〜0.8の範囲であることを特徴とする硝酸性窒素の処理方法。   A method for treating nitrate nitrogen according to any one of claims 3 to 5, wherein the volume ratio (gas / drainage) between the gas and drainage of the mixed fluid is in the range of 0.05 to 0.8. Of treatment of reactive nitrogen.
JP2005094983A 2005-03-29 2005-03-29 Method and apparatus for treating nitrate nitrogen-containing wastewater Expired - Fee Related JP4772353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094983A JP4772353B2 (en) 2005-03-29 2005-03-29 Method and apparatus for treating nitrate nitrogen-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094983A JP4772353B2 (en) 2005-03-29 2005-03-29 Method and apparatus for treating nitrate nitrogen-containing wastewater

Publications (2)

Publication Number Publication Date
JP2006272161A true JP2006272161A (en) 2006-10-12
JP4772353B2 JP4772353B2 (en) 2011-09-14

Family

ID=37207417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094983A Expired - Fee Related JP4772353B2 (en) 2005-03-29 2005-03-29 Method and apparatus for treating nitrate nitrogen-containing wastewater

Country Status (1)

Country Link
JP (1) JP4772353B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101894A1 (en) * 2011-01-24 2012-08-02 株式会社明電舎 Liquid waste treatment device and liquid waste treatment method
JP2015000400A (en) * 2013-06-18 2015-01-05 水ing株式会社 Fixed bed type biological denitrification method and device
JP2018094553A (en) * 2016-12-14 2018-06-21 一般財団法人畜産環境整備機構 Sulfur material for denitrification
CN113480003A (en) * 2021-07-13 2021-10-08 西安建筑科技大学 Non-backwashing movable nitrogen-driving device for denitrification filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833129B (en) * 2014-03-04 2015-10-21 上海中冶技术工程有限公司 Denitrification filtering cloth filtering pool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143897A (en) * 1983-12-29 1985-07-30 Kurita Water Ind Ltd Apparatus for anaerobic treatment
JPS61222595A (en) * 1985-03-28 1986-10-03 Ataka Kogyo Kk Treatment of sewage containing nitrite and nitrate
JPH05169091A (en) * 1989-12-15 1993-07-09 Elf Atochem Sa Substrate of biomass for nitration, reactor for performing aerobic nitration of refuse by using said substrate and biological method for it, and method for removing nitrogen compound
JPH1015582A (en) * 1996-07-03 1998-01-20 Chiyoda Corp Fluidized bed type denitrification method of waste water
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003103294A (en) * 2001-09-28 2003-04-08 Aquas Corp Method and apparatus for removing nitrate nitrogen in water
JP2004000861A (en) * 2002-06-03 2004-01-08 Aquas Corp Method and apparatus for removing nitrate nitrogen in water
JP2004174328A (en) * 2002-11-25 2004-06-24 Nippon Steel Chem Co Ltd Method and apparatus for removing nitrate nitrogen in water and denitrification treatment material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143897A (en) * 1983-12-29 1985-07-30 Kurita Water Ind Ltd Apparatus for anaerobic treatment
JPS61222595A (en) * 1985-03-28 1986-10-03 Ataka Kogyo Kk Treatment of sewage containing nitrite and nitrate
JPH05169091A (en) * 1989-12-15 1993-07-09 Elf Atochem Sa Substrate of biomass for nitration, reactor for performing aerobic nitration of refuse by using said substrate and biological method for it, and method for removing nitrogen compound
JPH1015582A (en) * 1996-07-03 1998-01-20 Chiyoda Corp Fluidized bed type denitrification method of waste water
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003103294A (en) * 2001-09-28 2003-04-08 Aquas Corp Method and apparatus for removing nitrate nitrogen in water
JP2004000861A (en) * 2002-06-03 2004-01-08 Aquas Corp Method and apparatus for removing nitrate nitrogen in water
JP2004174328A (en) * 2002-11-25 2004-06-24 Nippon Steel Chem Co Ltd Method and apparatus for removing nitrate nitrogen in water and denitrification treatment material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101894A1 (en) * 2011-01-24 2012-08-02 株式会社明電舎 Liquid waste treatment device and liquid waste treatment method
JP2012152674A (en) * 2011-01-24 2012-08-16 Meidensha Corp Liquid waste treatment device and liquid waste treatment method
CN103328393A (en) * 2011-01-24 2013-09-25 株式会社明电舍 Liquid waste treatment device and liquid waste treatment method
JP2015000400A (en) * 2013-06-18 2015-01-05 水ing株式会社 Fixed bed type biological denitrification method and device
JP2018094553A (en) * 2016-12-14 2018-06-21 一般財団法人畜産環境整備機構 Sulfur material for denitrification
CN113480003A (en) * 2021-07-13 2021-10-08 西安建筑科技大学 Non-backwashing movable nitrogen-driving device for denitrification filter

Also Published As

Publication number Publication date
JP4772353B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4772353B2 (en) Method and apparatus for treating nitrate nitrogen-containing wastewater
DK2632859T3 (en) A process for the separation of liquid and suspended material in a slurry, and device for its use
CN109399770A (en) The method of the disposal of industrial wastes
JP6284156B2 (en) Pollutant separation and volume reduction system and method
JP5702567B2 (en) Method and apparatus for purifying contaminated soil
Chen et al. Lead removal from synthetic wastewater by crystallization in a fluidized‐bed reactor
KR20120125323A (en) Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
JP2008264741A (en) Paint waste liquid separation apparatus and paint waste liquid separation method
JP2013010061A (en) Water treatment system and water treatment method
CN103241858A (en) Reaction tank, processing device and processing method thereof
JP4180303B2 (en) Removal method of nitrate nitrogen in waste water
JP2020097020A (en) Soil remediation system
JP4001472B2 (en) Method and apparatus for treating metal-containing water
JPH09150180A (en) Activated sludge recovering device and method thereof
JP2015131294A (en) Water purification equipment
RU2328454C2 (en) Water purification station
JP6544607B1 (en) Soil purification system
JP6458975B1 (en) Soil purification system
JP5915231B2 (en) Processing method and processing equipment
JP4832946B2 (en) Method and apparatus for separating sand and silt
JP2007021304A (en) Waste water purifying system
JP3360608B2 (en) Cleaning method for water treatment equipment
JP2005239457A (en) Method and apparatus for preparation of slaked lime aqueous solution
US20030222028A1 (en) Process and system for treating iron contamintated liquids
RU2187463C1 (en) Method of treatment of underground waters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees