JP2018094553A - Sulfur material for denitrification - Google Patents

Sulfur material for denitrification Download PDF

Info

Publication number
JP2018094553A
JP2018094553A JP2017237558A JP2017237558A JP2018094553A JP 2018094553 A JP2018094553 A JP 2018094553A JP 2017237558 A JP2017237558 A JP 2017237558A JP 2017237558 A JP2017237558 A JP 2017237558A JP 2018094553 A JP2018094553 A JP 2018094553A
Authority
JP
Japan
Prior art keywords
denitrification
sulfur material
sulfur
tank
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017237558A
Other languages
Japanese (ja)
Other versions
JP6935653B2 (en
Inventor
田中 康男
Yasuo Tanaka
康男 田中
輝明 長谷川
Teruaki Hasegawa
輝明 長谷川
和久 笠原
Kazuhisa Kasahara
和久 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kato Sansho Co Ltd
Livestock Ind Environmental Improvement Organization
LIVESTOCK INDUSTRY'S ENVIRONMENTAL IMPROVEMENT ORGANIZATION
Chiba Prefectural Government
Original Assignee
Kato Sansho Co Ltd
Livestock Ind Environmental Improvement Organization
LIVESTOCK INDUSTRY'S ENVIRONMENTAL IMPROVEMENT ORGANIZATION
Chiba Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kato Sansho Co Ltd, Livestock Ind Environmental Improvement Organization, LIVESTOCK INDUSTRY'S ENVIRONMENTAL IMPROVEMENT ORGANIZATION, Chiba Prefectural Government filed Critical Kato Sansho Co Ltd
Publication of JP2018094553A publication Critical patent/JP2018094553A/en
Application granted granted Critical
Publication of JP6935653B2 publication Critical patent/JP6935653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sulfur material for denitrification which has both hydrophilic property and alkalinity supply function, simple to be used, having high denitrification performance.SOLUTION: The present invention relates to a sulfur material for denitrification and a denitrifying treatment device that includes powdery sulfur, an alkali agent and a surface-active agent.SELECTED DRAWING: None

Description

本発明は、養豚排水等に含まれる硝酸性窒素および亜硝酸性窒素を除去するための脱窒用硫黄資材、ならびにこれを用いた脱窒処理装置および脱窒処理方法等に関する。   The present invention relates to a denitrification sulfur material for removing nitrate nitrogen and nitrite nitrogen contained in swine drainage and the like, a denitrification treatment apparatus and a denitrification treatment method using the same.

排水中に含まれる硝酸性窒素(NO −N)は、人の健康および環境汚染(主に地下水汚染)に影響をもたらすことが知られている。硝酸性窒素による健康被害として、メトヘモグロビン血症等が知られている。 It is known that nitrate nitrogen (NO 3 —N) contained in wastewater has an effect on human health and environmental pollution (mainly groundwater pollution). As a health hazard due to nitrate nitrogen, methemoglobinemia and the like are known.

1999年に地下水および公共用水域の水質汚濁に係る人の健康保護に関する環境基準項目として、NO −Nおよび亜硝酸性窒素(NO −N)の合計の基準値が10mg/Lに設定された。しかし、この地下水における環境基準の超過率は依然として高い状況にある。地下水汚染の原因には、過剰施肥や家畜排せつ物の不適正処理、未処理生活排水の地下浸透などが挙げられており、家畜排せつ物由来による汚染は、過剰施肥に次いで高い結果となっている。 Environmental criteria item health protection of persons according to the water pollution of ground water and water bodies in 1999, NO 3 - -N and nitrite nitrogen - reference value of the sum of (NO 2 -N) within 10 mg / L Was set. However, the excess rate of environmental standards in groundwater is still high. Causes of groundwater contamination include excessive fertilization, improper treatment of livestock excrement, underground penetration of untreated domestic wastewater, etc. Contamination from livestock excrement is the second highest after overfertilization.

このような背景をふまえ、畜産において排水中に含まれる「アンモニア、アンモニウム化合物、亜硝酸化合物および硝酸化合物」の排水基準が水質汚濁防止法で定められた。この項目の一般基準値は100mg/Lであるが、畜産の場合これまでの処理技術では達成が困難なことから、2001年に1500mg/Lの暫定基準値が設けられた。その後、2004年に900mg/L、2013年に700mg/L、2016年に600mg/Lまで引き下げられており、今後は畜産でも一般基準値を目標とした汚水処理に取り組むことが求められている。なお、本明細書においては、「アンモニア、アンモニウム化合物、亜硝酸化合物および硝酸化合物」のことを「硝酸性窒素等」と記載し、またNO −NとNO −Nを総称して「NOx−N」と記載する。 Based on this background, wastewater standards for “ammonia, ammonium compounds, nitrite compounds and nitrate compounds” contained in wastewater in livestock have been established by the Water Pollution Control Law. The general reference value for this item is 100 mg / L, but in the case of livestock production, a provisional reference value of 1500 mg / L was established in 2001 because it is difficult to achieve with conventional processing techniques. Since then, it has been reduced to 900 mg / L in 2004, 700 mg / L in 2013, and 600 mg / L in 2016, and in the future, it is required to tackle sewage treatment aiming at general standard values in livestock. In this specification, to a "ammonia, ammonium compounds, nitrites and nitric acid compounds" described as "nitrate nitrogen, etc.", also NO 3 - -N and NO 2 - are collectively -N It is described as “NOx-N”.

畜産のうち、特に養豚排水については、これまで硫黄脱窒法を活用した窒素低減技術が開発されてきた。硫黄脱窒法とは、Thiobacillus denitrificansなどの独立栄養細菌の一種である硫黄酸化脱窒細菌が、無酸素条件下で硫黄を酸化しながらNO −NおよびNO −Nを窒素ガスに還元する働きを利用した方法であり、この方法においては硫黄資材が用いられる。 Among livestock, especially for swine drainage, nitrogen reduction technology utilizing sulfur denitrification has been developed. The sulfur denitrification, sulfur oxides denitrifying bacteria which is a type of autotrophic bacteria such as Thiobacillus denitrificans is, NO 3 while oxidizing the sulfur with an oxygen-free conditions - reducing -N nitrogen gas - -N and NO 2 In this method, sulfur material is used.

しかしながら、硫黄脱窒法において、硫黄資材として粉末硫黄を利用する場合は、そのままでは撥水性を有するため排水処理に利用できず、水中に粉末硫黄を投入した後に家庭用中性洗剤等の界面活性剤を添加し、撹拌することで親水化させる必要があり、この作業が多大な労力を有するという問題があった。一方、粉末硫黄の代わりに工業用原料として流通している粗砕硫黄(粒径40mm程度の粗粒を含む)を用いるとそのまま水中に沈降するため親水化処理は不要であるが、単位重量あたりの接触面積が小さいため粉末硫黄に比べて脱窒活性が低いという問題があった。   However, in the case of using powdered sulfur as a sulfur material in the sulfur denitrification method, it cannot be used for wastewater treatment because it has water repellency as it is, and a surfactant such as a neutral detergent for household use after pouring powdered sulfur into water. There is a problem that this work has a great amount of labor. On the other hand, if crude sulfur (including coarse particles with a particle size of about 40 mm) that is distributed as an industrial raw material is used instead of powdered sulfur, it will settle in water as it is and no hydrophilization treatment is required. There is a problem that the denitrification activity is lower than that of powdered sulfur because of the small contact area.

また、硫黄脱窒法においては、脱窒活性の進行に伴い増加する硫酸イオン(SO 2−)による処理水のpH低下の防止対策と脱窒活性とに必要なアルカリ度の補給が求められるが、アルカリ度の補給のために添加装置を設けるとシステムが複雑になるおそれがあった。 In addition, in the sulfur denitrification method, it is required to prevent the pH of treated water from decreasing due to sulfate ions (SO 4 2− ) that increase with the progress of denitrification activity, and to supply alkalinity necessary for denitrification activity. If an addition device is provided to replenish the alkalinity, the system may be complicated.

特許文献1には、別途のアルカリ度の補給を必要としない硫黄資材として、加熱溶融した硫黄に、炭酸カルシウムを均一に攪拌混合させて冷却固化し、この冷却で得られる固化物を破砕し、炭酸カルシウムと硫黄とを単一の粒子内に共存させた粒状または塊状の固形物とした組成物が記載されている。しかしながら、特許文献1に記載の組成物は、特殊な成型加工にコストを要し、また、粉末硫黄に比較して単位重量あたりの接触面積が小さいという問題があり、さらなる改善が求められていた。   In Patent Document 1, as a sulfur material that does not require additional alkalinity supplementation, heat-melted sulfur is uniformly stirred and mixed with calcium carbonate to cool and solidify, and the solidified product obtained by this cooling is crushed. A composition is described which is in the form of a granular or massive solid in which calcium carbonate and sulfur coexist in a single particle. However, the composition described in Patent Document 1 requires a special molding process, and has a problem that the contact area per unit weight is small as compared with powdered sulfur, and further improvement has been demanded. .

特許3430364号公報Japanese Patent No. 3430364

本発明は、上記実情に鑑み、親水性とアルカリ度補給機能を兼ね備え、簡便に使用でき、脱窒性能が高く、かつ製造方法が容易である脱窒用硫黄資材を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a sulfur material for denitrification that has both hydrophilicity and alkalinity replenishment function, can be used easily, has high denitrification performance, and is easy to manufacture. .

本発明の一態様は下記の事項に関する。   One embodiment of the present invention relates to the following items.

1. 粉末硫黄、アルカリ剤、および界面活性剤を含む、脱窒用硫黄資材。 1. Sulfur materials for denitrification, including powdered sulfur, alkaline agent, and surfactant.

2. 前記アルカリ剤が炭酸カルシウムおよび/または炭酸マグネシウムを含む、上記1に記載の脱窒用硫黄資材。 2. The sulfur material for denitrification according to 1 above, wherein the alkaline agent contains calcium carbonate and / or magnesium carbonate.

3. 前記アルカリ剤が、天然マグネサイトおよび/または合成マグネサイトを含む、上記1または2に記載の脱窒用硫黄資材。 3. The sulfur material for denitrification according to 1 or 2 above, wherein the alkaline agent comprises natural magnesite and / or synthetic magnesite.

4. 前記界面活性剤がノニオン系界面活性剤を含む、上記1〜3のいずれかに記載の脱窒用硫黄資材。 4). The sulfur material for denitrification according to any one of the above 1 to 3, wherein the surfactant includes a nonionic surfactant.

5. 脱窒用硫黄資材の総重量に対して、前記粉末硫黄の含有量が30〜69.5重量%であり、前記アルカリ剤の含有量が30〜69.5重量%であり、かつ前記界面活性剤の含有量が0.5〜5重量%である、上記1〜4のいずれかに記載の脱窒用硫黄資材。 5. The content of the powdered sulfur is 30 to 69.5% by weight, the content of the alkaline agent is 30 to 69.5% by weight, and the surface activity is based on the total weight of the sulfur material for denitrification. The sulfur material for denitrification according to any one of the above 1 to 4, wherein the content of the agent is 0.5 to 5% by weight.

6. 前記アルカリ剤が炭酸カルシウムを含み、炭酸カルシウムの総重量に対する60メッシュパスの炭酸カルシウムの粒子の含有量が10重量%以下である、上記1〜5のいずれかに記載の脱窒用硫黄資材。 6). The sulfur material for denitrification according to any one of 1 to 5 above, wherein the alkaline agent contains calcium carbonate, and the content of calcium mesh particles of 60 mesh pass with respect to the total weight of calcium carbonate is 10% by weight or less.

7. 粉末硫黄、アルカリ剤、および界面活性剤を、混練する工程を含む、脱窒用硫黄資材の製造方法。 7). A method for producing a sulfur material for denitrification, comprising a step of kneading powdered sulfur, an alkali agent, and a surfactant.

8. 上記1〜6のいずれかに記載の脱窒用硫黄資材と、排水とを接触させる工程を含む、排水の脱窒処理方法。 8). A denitrification method for waste water, comprising a step of bringing the denitrification sulfur material according to any one of 1 to 6 above into contact with waste water.

9. 上記1〜6のいずれかに記載の脱窒用硫黄資材を含む脱窒処理装置。 9. The denitrification processing apparatus containing the sulfur material for denitrification in any one of said 1-6.

10. 液体を収容可能な槽と、
前記槽内で、鉛直方向の隔壁により区画され、前記隔壁の直下の通液空間により連通された第1区画および第2区画と、
第1区画内の下部、第2区画内の下部および前記通液空間に、上記1〜6のいずれかに記載の脱窒用硫黄資材が通液空間より上方の高さまで堆積された硫黄資材層と、
前記通液空間近傍に連通し、第1区画の硫黄資材層および第2区画の硫黄資材層に加圧空気を供給する加圧空気供給管と、
を有する、上記8に記載の脱窒処理装置。
10. A tank capable of containing liquid;
In the tank, a first compartment and a second compartment that are partitioned by a partition in the vertical direction and communicated by a liquid passing space immediately below the partition,
The sulfur material layer in which the denitrification sulfur material according to any one of the above 1 to 6 is deposited to a height above the liquid passing space in the lower part in the first compartment, the lower part in the second compartment, and the liquid passing space. When,
A pressurized air supply pipe which communicates with the vicinity of the liquid passing space and supplies pressurized air to the sulfur material layer of the first section and the sulfur material layer of the second section;
9. The denitrification apparatus according to 8 above, comprising:

11. 液体を収容可能な槽と、
前記槽内で、鉛直方向の隔壁により区画され、前記隔壁の直下の通液空間により連通された第1区画および第2区画と、
第1区画内の下部、第2区画内の下部および前記通液空間に、上記1〜6のいずれか一項に記載の脱窒用硫黄資材が通液空間より上方の高さまで堆積された硫黄資材層と、
前記槽の外面および/または硫黄資材層内に設置された振動子と、
を有する、上記9に記載の脱窒処理装置。
11. A tank capable of containing liquid;
In the tank, a first compartment and a second compartment that are partitioned by a partition in the vertical direction and communicated by a liquid passing space immediately below the partition,
Sulfur in which the sulfur material for denitrification according to any one of the above 1 to 6 is deposited to a height above the liquid passing space in the lower part in the first compartment, the lower part in the second compartment, and the liquid passing space. The material layer,
A vibrator installed on the outer surface of the tank and / or in the sulfur material layer;
10. The denitrification apparatus as described in 9 above.

12. 液体を収容可能な槽と、
前記槽内の下部に上記1〜6のいずれかに記載の脱窒用硫黄資材が堆積された硫黄資材層と、
前記槽外から硫黄資材層内に液体を供給する手段と、
を有し、
供給された液体は、層内底部で反転して上向流となる、上記9に記載の脱窒処理装置。
12 A tank capable of containing liquid;
A sulfur material layer in which the denitrification sulfur material according to any one of 1 to 6 is deposited in a lower part of the tank;
Means for supplying liquid into the sulfur material layer from outside the tank;
Have
10. The denitrification apparatus according to 9 above, wherein the supplied liquid is reversed at the bottom in the bed and becomes an upward flow.

本発明の一態様によると、養豚排水処理施設等における硫黄脱窒法において、簡便に使用でき、脱窒性能が高く、かつ製造方法が容易である脱窒用硫黄資材を提供することができる。   According to one embodiment of the present invention, it is possible to provide a sulfur material for denitrification that can be easily used in a sulfur denitrification method in a swine wastewater treatment facility or the like, has high denitrification performance, and is easy to manufacture.

脱窒処理装置の一態様を示す模式図である。It is a schematic diagram which shows the one aspect | mode of a denitrification processing apparatus. 脱窒処理装置の別の一態様を示す模式図である。It is a schematic diagram which shows another one aspect | mode of a denitrification processing apparatus. 脱窒処理装置の別の一態様を示す模式図である。It is a schematic diagram which shows another one aspect | mode of a denitrification processing apparatus. T字部材の模式図である。It is a schematic diagram of a T-shaped member. 実施例で用いた脱窒処理装置の模式図である。It is a schematic diagram of the denitrification processing apparatus used in the Example. 実施例における、試験期間中の原水流入量と水理学的滞留時間(HRT)の推移を示すグラフである。It is a graph which shows transition of the raw | natural water inflow amount and hydraulic residence time (HRT) in a test period in an Example. 実施例における、試験期間中の原水および処理水のNO −N、NO −Nの濃度の推移を示すグラフである。In Example, NO 3 of the raw water and the treated water during the study - -N, NO 2 - is a graph showing a change in the concentration of -N. 実施例における、試験期間中のリアクター内水温とNOx−N負荷量の推移を示すグラフである。It is a graph which shows transition of the reactor water temperature and NOx-N load amount during a test period in an Example. 実施例における、試験開始21日目以降のNOx−N負荷量とNOx−N除去率の関係を示すグラフである。It is a graph which shows the relationship between the NOx-N load amount after the test start 21st day and a NOx-N removal rate in an Example. 実施例における、試験開始21日目以降のリアクター内水温とNOx−N除去率の関係を示すグラフである。It is a graph which shows the relationship between the water temperature in a reactor after the test start 21st day, and a NOx-N removal rate in an Example. 実施例における、ΔSO 2−とΔNOx−Nの関係を示すグラフである。In the embodiment, it is a graph showing the relationship between ΔSO 4 2- and ΔNOx-N. 実施例における、試験期間中の原水および処理水のpHの推移を示すグラフである。It is a graph which shows transition of the pH of the raw | natural water and treated water during a test period in an Example. 実施例(例B)における、アルカリ剤の種類を変更した場合の、脱窒処理日数に対するNO −Nの濃度の推移を示すグラフである。In the embodiment (Example B), in the case of changing the type of alkaline agents, NO 3 for denitrification days - is a graph showing a change in the concentration of -N.

<脱窒用硫黄資材>
本実施形態の脱窒用硫黄資材(単に「硫黄資材」とも記載する。)は、粉末硫黄と、アルカリ剤と、界面活性剤と、を含む。本実施形態の脱窒用硫黄資材は、粉末状であるため単位重量あたりの接触面積が大きく、高い脱窒効果を得られる。また、本実施形態の脱窒用硫黄資材は、粉末硫黄が界面活性剤で被覆されていて親水性が高いため排水になじみやすく、排水に投入するだけで脱窒処理に使用できる。さらに、本実施形態の脱窒用硫黄資材は、あらかじめアルカリ剤を含むため、アルカリ度の補給を別途行う必要がない。よって本実施形態の脱窒用硫黄資材は、非常に簡便に排水の脱窒処理に使用できる。加えて、本実施形態の脱窒用硫黄資材は、製造方法が非常に簡便である。
<Sulfur materials for denitrification>
The denitrification sulfur material (also simply referred to as “sulfur material”) of the present embodiment includes powdered sulfur, an alkali agent, and a surfactant. Since the denitrification sulfur material of this embodiment is in a powder form, the contact area per unit weight is large, and a high denitrification effect can be obtained. Moreover, the sulfur material for denitrification of this embodiment is easy to adapt to waste water because powder sulfur is coated with a surfactant and has high hydrophilicity, and can be used for denitrification treatment by simply throwing it into the waste water. Furthermore, since the denitrification sulfur material of the present embodiment contains an alkali agent in advance, it is not necessary to supplement the alkalinity separately. Therefore, the denitrification sulfur material of the present embodiment can be used for drainage denitrification treatment very easily. In addition, the denitrification sulfur material of this embodiment has a very simple manufacturing method.

また、通常、純粋硫黄は消防法における危険物(可燃物)に該当し、運搬、保管などは法的に定められた条件を遵守する必要が生ずるが、本実施形態の脱窒用硫黄資材は、界面活性剤およびアルカリ剤が共存することにより、不燃性となり(すなわち消防法に於ける非危険物扱いとなる)、取り扱いが純粋硫黄に比べて容易である。   In addition, pure sulfur usually falls under the category of dangerous materials (combustible materials) under the Fire Service Law, and transportation and storage must comply with legally stipulated conditions, but the sulfur material for denitrification of this embodiment is The coexistence of the surfactant and the alkali agent makes it nonflammable (that is, it is treated as a non-hazardous material in the Fire Service Law) and is easier to handle than pure sulfur.

以下、本実施形態の脱窒用硫黄資材に含まれる原料等について詳細に説明する。なお、本明細書においては、NOx−Nを除去する脱窒処理を行う前の排水を「原水」と記載し、脱窒処理後の排水を「処理水」と記載する。   Hereinafter, the raw material etc. which are contained in the sulfur material for denitrification of this embodiment are demonstrated in detail. In the present specification, waste water before performing denitrification to remove NOx-N is referred to as “raw water”, and waste water after denitrification is referred to as “treated water”.

(粉末硫黄)
本実施形態の脱窒用硫黄資材に含まれる粉末硫黄の粒径は、粉末硫黄の少なくとも90重量%以上、好ましくは100重量%が150メッシュパスであることが好ましく、下限は特に限定されないが、例えば50重量%以上が500メッシュオンであるのが好ましい。粉末硫黄の粒径が150メッシュパスであることにより、硫黄資材の単位重量あたりの接触面積が大きくなり、高い脱窒効果を得ることができる。なお、本明細書における「粒径」は、JIS K6222−1に準拠した測定結果である。
(Powder sulfur)
The particle size of the powdered sulfur contained in the denitrification sulfur material of the present embodiment is preferably at least 90% by weight or more preferably 100% by weight of the powdered sulfur, and the lower limit is not particularly limited. For example, 50% by weight or more is preferably 500 mesh on. When the particle size of the powdered sulfur is 150 mesh pass, the contact area per unit weight of the sulfur material is increased, and a high denitrification effect can be obtained. The “particle size” in the present specification is a measurement result based on JIS K6222-1.

脱窒用硫黄資材の総重量に対する粉末硫黄の含有量は、30重量%以上が好ましく、40重量%以上がより好ましく、また、70重量%以下が好ましく、69.5重量%以下がより好ましく、60重量%以下がさらに好ましい。粉末硫黄の含有量が該範囲内にあることにより、十分な脱窒効果が得られ、かつ、アルカリ剤による効果とのバランスに優れた脱窒用硫黄資材を得ることができる。   The content of powdered sulfur with respect to the total weight of the denitrification sulfur material is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 70% by weight or less, more preferably 69.5% by weight or less, 60% by weight or less is more preferable. When the content of powder sulfur is within this range, a sufficient denitrification effect can be obtained, and a denitrification sulfur material excellent in balance with the effect of the alkaline agent can be obtained.

(アルカリ剤)
本実施形態の脱窒用硫黄資材はアルカリ剤を含む。アルカリ剤は、脱窒活性の進行により増加する硫酸イオン(SO 2−)と反応して、処理水のpHの低下を防止し、脱窒活性の低下を抑制する。アルカリ剤としては、弱アルカリ粉末が好ましい。アルカリ剤としては、処理水のpHを、好ましくは6.5〜8.5、より好ましくは7.0〜8.5、さらに好ましくは7.2〜8.5に保持できるものが好ましい。
(Alkaline agent)
The denitrification sulfur material of this embodiment includes an alkaline agent. The alkaline agent reacts with sulfate ions (SO 4 2− ) that increase as the denitrification activity progresses, thereby preventing a decrease in the pH of the treated water and suppressing a decrease in the denitrification activity. As the alkali agent, weak alkali powder is preferable. As an alkaline agent, what can hold | maintain pH of treated water becomes like this. Preferably it is 6.5-8.5, More preferably, it is 7.0-8.5, More preferably, it is 7.2-8.5.

アルカリ剤としては、特に限定されないが、例えば、炭酸水素ナトリウム(NaHCO)、炭酸ナトリウム(NaCO)、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))、炭酸カルシウム(CaCO)、および炭酸マグネシウム(MgCO)が挙げられる。これらのうち、pH低下の防止に加え、硫黄酸化脱窒細菌の増殖及び脱窒反応に必要な炭酸イオンの供給ができるという観点から、炭酸水素ナトリウム、炭酸カルシウムおよび炭酸マグネシウムが好ましく、一態様として低コストであるという観点から炭酸カルシウムがより好ましい。 The alkali agent is not particularly limited, for example, sodium hydrogen carbonate (NaHCO 3), sodium carbonate (Na 2 CO 3), calcium oxide (CaO), calcium hydroxide (Ca (OH) 2), calcium carbonate (CaCO 3 ), and magnesium carbonate (MgCO 3 ). Of these, sodium hydrogen carbonate, calcium carbonate, and magnesium carbonate are preferred from the viewpoint that, in addition to preventing pH reduction, the carbonate ions necessary for the growth and denitrification of sulfur-oxidizing denitrifying bacteria can be supplied. From the viewpoint of low cost, calcium carbonate is more preferable.

本発明の一態様として、アルカリ剤として、炭酸マグネシウムを用いるのが好ましい。炭酸カルシウム等のカルシウムを含むアルカリ剤を用いると、脱窒反応において、不溶性の硫酸カルシウム(石膏)が形成され脱窒処理装置(脱窒リアクター)内に不溶性成分が沈積し、硫黄資材の長期使用により、資材層が固化し、脱窒能力が低下する等の問題が生じる場合がある。一方、炭酸マグネシウムは、脱窒反応前は水に不溶であるため排水処理上好ましく、さらに脱窒反応により形成される硫酸マグネシウムは水にとけやすくて不溶性成分が生じにくい。よって、炭酸マグネシウムを用いると、炭酸カルシウムを用いる場合に比べて、資材層が固化する問題が生じにくく、好適な場合がある。   As one embodiment of the present invention, it is preferable to use magnesium carbonate as the alkaline agent. When an alkaline agent containing calcium such as calcium carbonate is used, insoluble calcium sulfate (gypsum) is formed in the denitrification reaction, and insoluble components are deposited in the denitrification treatment device (denitrification reactor). This may cause problems such as solidification of the material layer and reduced denitrification ability. On the other hand, magnesium carbonate is preferable for wastewater treatment because it is insoluble in water before the denitrification reaction. Further, magnesium sulfate formed by the denitrification reaction is easily dissolved in water and hardly causes insoluble components. Therefore, when magnesium carbonate is used, the problem that the material layer solidifies is less likely to occur than when calcium carbonate is used, which may be preferable.

炭酸マグネシウムとしては、高純度の炭酸マグネシウム、または、炭酸マグネシウムを主成分として含むマグネサイトが好ましい。例えば、マグネサイト中のMgCOの含有量は、50重量%以上であるのが好ましく、70重量%以上であるのがより好ましく、90重量%以上であるのがさらに好ましい。マグネサイトは、天然マグネサイト(鉱物)であっても合成マグネサイトであってもよい。アルカリ剤としてマグネサイトを含む硫黄資材を用いると、脱窒反応が進みやすいpHに保持できる。 As the magnesium carbonate, high-purity magnesium carbonate or magnesite containing magnesium carbonate as a main component is preferable. For example, the content of MgCO 3 in magnesite is preferably 50% by weight or more, more preferably 70% by weight or more, and further preferably 90% by weight or more. The magnesite may be natural magnesite (mineral) or synthetic magnesite. When a sulfur material containing magnesite is used as the alkaline agent, it can be maintained at a pH that facilitates the denitrification reaction.

ただし、後述の実施例で示すように、炭酸マグネシウムとして塩基性炭酸マグネシウム(一般的に、mMgCO・Mg(OH)・nHO(式中、m=3〜5、n=3〜8)で表される)のように、ヒドロキシ基を有する炭酸マグネシウム化合物を用いると、脱窒反応が進みにくくなり好ましくない場合がある。アルカリ剤中、ヒドロキシ基を有する炭酸マグネシウム化合物の含有量は5重量%以下が好ましく、0重量%であってもよい。 However, as shown in Examples described later, basic magnesium carbonate (generally, mMgCO 3 .Mg (OH) 2 .nH 2 O (where m = 3 to 5, n = 3 to 8) as magnesium carbonate. When a magnesium carbonate compound having a hydroxy group is used as in ()), the denitrification reaction is difficult to proceed, which may be undesirable. The content of the magnesium carbonate compound having a hydroxy group in the alkaline agent is preferably 5% by weight or less, and may be 0% by weight.

これらアルカリ剤は一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。   These alkaline agents may be used alone or in combination of two or more.

アルカリ剤の形状は粉末状または粒状であることが好ましい。アルカリ剤(特に炭酸カルシウム)の平均粒径は特に限定されないが、60メッシュオンかつ5メッシュパスが好ましく、50メッシュオンかつ5メッシュパスがより好ましい。   The shape of the alkali agent is preferably powdery or granular. The average particle diameter of the alkali agent (particularly calcium carbonate) is not particularly limited, but is preferably 60 mesh on and 5 mesh pass, more preferably 50 mesh on and 5 mesh pass.

また、アルカリ剤として粒径が小さい微細粒子の含有量が多すぎると処理水に於いて白濁が生じ排水に問題を生じる場合があり、処理水を排出する前に沈殿させる工程が別途必要になる場合がある。アルカリ剤の好ましい粒径は、アルカリ剤の種類によって決めることができる。例えば、アルカリ剤(特に炭酸カルシウム)中、粒径60メッシュパスの微細粒子の含有量が多すぎると処理水に於いて白濁が生じ排水に問題を生じる場合があるため、処理水を排出する前に沈殿させる工程が別途必要になる場合がある。よってアルカリ剤(特に炭酸カルシウム)全重量のうち、60メッシュパスの粒子の重量割合は10重量%以下であることが好ましく、5重量%未満であることがより好ましく、0重量%であってもよい。   In addition, if the content of fine particles having a small particle size as an alkaline agent is too large, white turbidity may occur in the treated water, which may cause problems with drainage, and a separate step is required before draining the treated water. There is a case. The preferable particle diameter of the alkali agent can be determined depending on the type of the alkali agent. For example, if the content of fine particles with a particle size of 60 mesh pass is too large in an alkali agent (especially calcium carbonate), white turbidity may occur in the treated water, resulting in problems with drainage. In some cases, a separate step of precipitation is required. Therefore, in the total weight of the alkali agent (especially calcium carbonate), the weight ratio of the 60 mesh pass particles is preferably 10% by weight or less, more preferably less than 5% by weight, and even 0% by weight. Good.

アルカリ剤の配合量は、特に限定されないが、脱窒用硫黄資材の総重量に対して、30重量%以上が好ましく、40重量%以上がより好ましく、また、70重量%以下が好ましく、69.5重量%以下がより好ましく、60重量%以下がさらに好ましい。   The blending amount of the alkaline agent is not particularly limited, but is preferably 30% by weight or more, more preferably 40% by weight or more, and preferably 70% by weight or less based on the total weight of the denitrification sulfur material. 5 wt% or less is more preferable, and 60 wt% or less is more preferable.

また、脱窒用硫黄資材中の粉末硫黄とアルカリ剤の配合比(重量比)は、特に限定されないが、比率(粉末硫黄:アルカリ剤)は、好ましくは3:7〜7:3であり、より好ましくは4:6〜6:4であり、さらに好ましくは5:5である。配合比が該範囲内にあることにより、脱窒活性と、pH低下の抑制とのバランスに優れる。   Further, the mixing ratio (weight ratio) of the powdered sulfur and the alkali agent in the denitrification sulfur material is not particularly limited, but the ratio (powder sulfur: alkali agent) is preferably 3: 7 to 7: 3, More preferably, it is 4: 6-6: 4, More preferably, it is 5: 5. When the blending ratio is within this range, the balance between denitrification activity and suppression of pH reduction is excellent.

(界面活性剤)
本実施形態の脱窒用硫黄資材は界面活性剤を含む。界面活性剤を含むことにより粉末硫黄に親水性が付与され、硫黄資材が粉末状であっても養豚排水等の排水に硫黄資材がなじみやすくなるため、この硫黄資材を排水中に投入するのみで簡便に使用できる。
(Surfactant)
The denitrification sulfur material of this embodiment includes a surfactant. By including a surfactant, hydrophilicity is imparted to the powdered sulfur, and even if the sulfur material is in powder form, the sulfur material can be easily adapted to wastewater such as swine drainage, so it is only necessary to put this sulfur material into the wastewater. Easy to use.

界面活性剤は特に限定されず、ノニオン系、アニオン系、カチオン系および両性のうちいずれであってもよいが、主成分(界面活性剤の総重量に対して好ましくは50重量%以上であり、100重量%であってもよい)がノニオン系界面活性剤であるのが好ましい。ノニオン系であると泡立ちが少なく処理水中のpHや温度変化の影響を受けにくく、硫黄資材が扱いやすくなる。界面活性剤のHLB値は、特に限定されないが、10〜13程度が好ましい。   The surfactant is not particularly limited and may be any of nonionic, anionic, cationic and amphoteric, but the main component (preferably 50% by weight or more based on the total weight of the surfactant, (It may be 100% by weight) is preferably a nonionic surfactant. If it is nonionic, there is little foaming and it is hard to be influenced by pH and temperature change in treated water, and it becomes easy to handle sulfur materials. The HLB value of the surfactant is not particularly limited, but is preferably about 10 to 13.

ノニオン系界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレンカルボン酸エステル、ソルビタンエステル、ポリオキシエチレンソルビタンエステル、アセチレングリコールが挙げられる。   Nonionic surfactants include, for example, polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene carboxylic acid ester, sorbitan ester, polyoxyethylene Examples thereof include ethylene sorbitan ester and acetylene glycol.

アニオン系界面活性剤としては、例えば、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、{(モノ、ジ、トリ)アルキル}ナフタレンスルホン酸塩などが挙げられる。   Examples of anionic surfactants include alkyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, alkyl benzene sulfonates, {(mono, di, tri) alkyl} naphthalene sulfonates. Etc.

カチオン系界面活性剤としては、例えば、第4級アンモニウム塩、或いはピリジニウム塩などが挙げられ、具体的には、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、ラウリルジメチルエチルアンモニウム塩、オクタデシルジメチルエチルアンモニウム塩、ジメチルベンジルラウリルアンモニウム塩、セチルジメチルベンジルアンモニウム塩、オクタデシルジメチルベンジルアンモニウム塩、トリメチルベンジルアンモニウム塩、トリエチルベンジルアンモニウム塩、ジメチルジフェニルアンモニウム塩、ベンジルジメチルフェニルアンモニウム塩、ヘキサデシルピリジニウム塩、ラウリルピリジニウム塩、ドデシルピリジニウム塩、ステアリルアミンアセテート、ラウリルアミンアセテート、オクタデシルアミンアセテートなどが挙げられる。   Examples of the cationic surfactant include quaternary ammonium salts or pyridinium salts. Specifically, lauryl trimethyl ammonium salt, stearyl trimethyl ammonium salt, lauryl dimethyl ethyl ammonium salt, octadecyl dimethyl ethyl ammonium salt Dimethylbenzyl lauryl ammonium salt, cetyl dimethyl benzyl ammonium salt, octadecyl dimethyl benzyl ammonium salt, trimethyl benzyl ammonium salt, triethyl benzyl ammonium salt, dimethyl diphenyl ammonium salt, benzyl dimethyl phenyl ammonium salt, hexadecyl pyridinium salt, lauryl pyridinium salt, dodecyl Pyridinium salt, stearylamine acetate, laurylamine acetate, octadecyla Such as emissions acetate, and the like.

両性界面活性剤としては、例えば、カルボキシベタイン、イミダゾリンベタイン、スルホベタイン、アミノカルボン酸などが挙げられる。   Examples of amphoteric surfactants include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid.

これら界面活性剤は、一種を単独で使用しても二種以上を組み合わせて使用してもよい。   These surfactants may be used alone or in combination of two or more.

界面活性剤と他の原料を混合するときは、界面活性剤を水等の溶媒で希釈して用いてもよいし、溶媒等で希釈せずにそのまま用いてもよい。   When mixing the surfactant and other raw materials, the surfactant may be diluted with a solvent such as water or may be used as it is without being diluted with a solvent or the like.

界面活性剤の含有量は、脱窒用硫黄資材の総重量に対して、0.5〜5重量%が好ましく、1〜3重量%がより好ましい。   The content of the surfactant is preferably 0.5 to 5% by weight and more preferably 1 to 3% by weight with respect to the total weight of the denitrification sulfur material.

本実施形態の脱窒用硫黄資材は、粉末状、又は粉末状と粒状との混合形態であるのが好ましく、一態様として、150メッシュパスの粉末状硫黄と、60メッシュオンかつ5メッシュパスの粉末状および/または粒状のアルカリ剤(特に炭酸カルシウム)との混合物であるのがより好ましい。本実施形態の脱窒用硫黄資材は、粗砕状またはペレット状の従来の硫黄資材に比べて、単位重量あたりの接触面積が大きく、高い脱窒効果を達成できる。   The sulfur material for denitrification of the present embodiment is preferably in a powder form or a mixed form of a powder form and a granular form, and as one aspect, a powder form sulfur of 150 mesh pass, 60 mesh on and 5 mesh pass. A mixture with a powdery and / or granular alkaline agent (especially calcium carbonate) is more preferred. The sulfur material for denitrification of this embodiment has a large contact area per unit weight and can achieve a high denitrification effect as compared to a conventional sulfur material in the form of coarsely crushed or pellets.

<脱窒用硫黄資材の製造方法>
本実施形態の脱窒用硫黄資材の製造方法は、粉末硫黄と、界面活性剤と、アルカリ剤とを混練する工程(以下、単に「混練工程」ともいう)を含む。混練工程は、公知のリボンブレンダー、ヘンシェルミキサー、タンブラーブレンダー、2軸撹拌機等を用いて行うことができる。混練工程において、原料の混合順序は限定されず、すべての原料を同時に混合してもよいし、段階的に混合しながら混練してもよい。混練工程は、特に限定はされないが、好ましくは、常温・常圧条件下で行う。なお、本明細書において、常温とは20℃±20℃(0℃〜40℃)のことをいい、常圧とは特に加圧も減圧も行っていない圧力のことをいい、通常大気圧に等しい圧力(約1atm)のことをいう。また、混練工程は、水等の溶媒を用いて行ってもよい。本実施形態の脱窒用硫黄資材の製造方法は、特許文献1に記載されているような特殊な成型工程を含まず、簡便な方法である。
<Method for producing sulfur material for denitrification>
The method for producing a denitrification sulfur material of the present embodiment includes a step of kneading powdered sulfur, a surfactant, and an alkali agent (hereinafter also simply referred to as “kneading step”). The kneading step can be performed using a known ribbon blender, Henschel mixer, tumbler blender, biaxial stirrer, or the like. In the kneading step, the mixing order of the raw materials is not limited, and all the raw materials may be mixed at the same time or may be kneaded while mixing stepwise. The kneading step is not particularly limited, but is preferably performed under normal temperature and normal pressure conditions. In this specification, normal temperature refers to 20 ° C. ± 20 ° C. (0 ° C. to 40 ° C.), and normal pressure refers to pressure that is neither particularly pressurized nor depressurized, and is usually at atmospheric pressure. Equivalent pressure (about 1 atm). In addition, the kneading step may be performed using a solvent such as water. The manufacturing method of the denitrification sulfur material of this embodiment does not include a special molding process as described in Patent Document 1, and is a simple method.

<脱窒処理方法>
本実施形態の脱窒用硫黄資材は、例えば、畜産業、農業、水産業(養殖業、魚の飼育業等を含む)等の排水から硝酸性窒素等を除去するのに用いることができ、特に、養豚排水等の畜産業の分野の排水からの硝酸性窒素等の除去に好適に用いられる。ここで養豚排水とは、豚舎の糞尿や洗浄水を含む排水を意味する。養豚排水には、硫黄脱窒反応(硫黄を利用して硝酸性窒素等を窒素ガスに還元すると同時に硫酸イオンを生成する反応)を行う硫黄酸化脱窒細菌が存在する。本実施形態の脱窒用硫黄資材を用いると、養豚排水中の硫黄酸化細菌が資材表面で増殖し、その代謝反応により硝酸性窒素等が窒素ガスへと変換され、窒素を系外へ放出することができる。また、本実施形態の脱窒用硫黄資材は、水族館等の魚飼育水等の排水処理において硝酸性窒素等を除去する際にも用いることができる。
<Denitrification treatment method>
The sulfur material for denitrification of the present embodiment can be used for removing nitrate nitrogen and the like from wastewater from the livestock industry, agriculture, fishery industry (including aquaculture industry, fish breeding industry, etc.). It is suitably used for removing nitrate nitrogen from wastewater in the field of animal husbandry such as swine drainage. Here, hog raising drainage means drainage containing pig manure and washing water. In swine sewage wastewater, there is a sulfur oxidative denitrifying bacterium that performs a sulfur denitrification reaction (a reaction that uses sulfate to reduce nitrate nitrogen to nitrogen gas and at the same time generates sulfate ions). When the sulfur material for denitrification of this embodiment is used, sulfur-oxidizing bacteria in the swine wastewater grow on the surface of the material, nitrate nitrogen is converted into nitrogen gas by the metabolic reaction, and nitrogen is released out of the system. be able to. The sulfur material for denitrification of this embodiment can also be used when removing nitrate nitrogen or the like in wastewater treatment of fish breeding water such as an aquarium.

本実施形態の脱窒処理方法においては、脱窒用硫黄資材と、養豚排水等の硝酸性窒素等を含む排水とを接触させる工程を含む。液体を収容可能な槽内で、脱窒用硫黄資材と、硝酸性窒素等を含む排水とを接触させ、脱窒反応させるのが好ましい。   The denitrification method of the present embodiment includes a step of bringing the denitrification sulfur material into contact with wastewater containing nitrate nitrogen such as swine wastewater. It is preferable to cause a denitrification reaction by bringing a sulfur material for denitrification and waste water containing nitrate nitrogen into contact with each other in a tank capable of accommodating a liquid.

本発明の一態様として、脱窒用硫黄資材を使用して排水等の脱窒処理を行う際には、脱窒処理装置(「脱窒リアクター」とも記載する)を用いるのが好ましい。脱窒処理装置は、例えば、養豚排水処理施設の後段に設置され、当該施設の放流水(養豚排水)を対象として脱窒処理を行う。   As one embodiment of the present invention, it is preferable to use a denitrification treatment apparatus (also referred to as “denitrification reactor”) when performing denitrification treatment of waste water or the like using a denitrification sulfur material. A denitrification processing apparatus is installed in the back | latter stage of a pig raising wastewater treatment facility, for example, and performs a denitrification process for the discharge water (hog raising wastewater) of the said facility.

脱窒処理装置の一態様は、液体を収容可能な槽と;槽内で、鉛直方向の隔壁により区画され、隔壁の直下の通液空間により連通された第1区画および第2区画と;第1区画内の下部、第2区画内の下部および通液空間に、脱窒用硫黄資材が通液空間より上方の高さまで堆積された硫黄資材層とを有するのが好ましい。脱窒処理装置として、好ましくは、土木工事用土砂沈殿分離タンク(ノッチタンク)を用いることができる。   An embodiment of the denitrification apparatus includes: a tank capable of storing a liquid; a first section and a second section defined in the tank by a partition wall in a vertical direction and communicated by a liquid passing space immediately below the partition wall; It is preferable to have a sulfur material layer in which the sulfur material for denitrification is deposited to a height above the liquid passing space in the lower part in the first compartment, the lower part in the second compartment, and the liquid passing space. As the denitrification treatment apparatus, preferably, a sediment precipitation tank (notch tank) for civil engineering can be used.

図1に、脱窒処理装置の一例の模式図を示す。脱窒処理装置10は、鉛直方向の隔壁12aおよび12bにより3つの区画(第1区画10a、第2区画10b、第3区画10c)に区画されており、隔壁12aの直下の通液空間により第1区画10aおよび第2区画10bが連通している。第1区画10a内の下部、第2区画10b内の下部および通液空間には、本実施形態の脱窒用硫黄資材が、通液空間より上方の高さまで堆積された硫黄資材層11が存在する。なお、本実施形態の脱窒用硫黄資材は粉末状であるが、あらかじめ界面活性剤を含み親水性であるので、別途親水化処理を行うことなく直接脱窒処理装置10の中に投入することができる。脱窒用硫黄資材11は、特に限定されないが、例えば、有効容積500Lのノッチタンク当たり100〜250kgが投入される。   In FIG. 1, the schematic diagram of an example of a denitrification processing apparatus is shown. The denitrification processing apparatus 10 is divided into three sections (first section 10a, second section 10b, and third section 10c) by vertical partition walls 12a and 12b, and is separated by a liquid passing space immediately below the partition wall 12a. The first section 10a and the second section 10b communicate with each other. In the lower part in the first compartment 10a, the lower part in the second compartment 10b, and the liquid passing space, the sulfur material layer 11 in which the sulfur material for denitrification of the present embodiment is deposited to a height above the liquid passing space exists. To do. In addition, although the sulfur material for denitrification of this embodiment is a powder form, since it contains a surfactant in advance and is hydrophilic, it should be directly put into the denitrification apparatus 10 without performing a hydrophilic treatment. Can do. Although the denitrification sulfur material 11 is not particularly limited, for example, 100 to 250 kg is charged per notch tank having an effective volume of 500 L.

脱窒処理においては、第1区画10aに養豚排水等の原水1を流入し、第3区画10cまで自然流下させる。液は、流下中に、硫黄資材層11中を通過し、この際硫黄脱窒反応により硝酸性窒素等が窒素ガスに変化し、系外へ排出される。   In the denitrification process, the raw water 1 such as swine sewage drainage flows into the first section 10a and is allowed to flow down naturally to the third section 10c. During the flow, the liquid passes through the sulfur material layer 11, and at this time, nitrate nitrogen or the like is changed to nitrogen gas by the sulfur denitrification reaction, and is discharged out of the system.

原水は、例えば流入量100〜1500mL/分、水有効容積当たりの水理学的滞留時間(HRT)0.2〜3.5日で連続投入される。槽内の硫黄資材層11中の脱窒用硫黄資材の表面には、硫黄酸化脱窒細菌が増殖し、硫黄を利用した脱窒が進行する。硫黄酸化脱窒細菌は、硫黄を利用して硝酸性窒素等を窒素ガスに還元すると同時に硫酸イオンを生成する。ここで、本実施形態の脱窒用硫黄資材はアルカリ剤を含むため、別途炭酸カルシウム等のアルカリ剤を投入しなくても処理水のpHが低下するのを防止することができる。必要に応じて、さらに炭酸カルシウム等のアルカリ剤が、脱窒リアクター内の第1区画10a、第2区画10b及び第3区画10cから選ばれる少なくとも1区画に投入されてもよく、複数区画に投入されてもよい。   The raw water is continuously fed, for example, with an inflow rate of 100 to 1500 mL / min and a hydraulic residence time (HRT) per effective water volume of 0.2 to 3.5 days. Sulfur oxidation and denitrification bacteria grow on the surface of the denitrification sulfur material in the sulfur material layer 11 in the tank, and denitrification using sulfur proceeds. Sulfur oxidizing denitrifying bacteria use sulfur to reduce nitrate nitrogen and the like to nitrogen gas and at the same time generate sulfate ions. Here, since the sulfur material for denitrification of this embodiment contains an alkali agent, it is possible to prevent the pH of the treated water from being lowered even if an alkali agent such as calcium carbonate is not added separately. If necessary, an alkaline agent such as calcium carbonate may be added to at least one section selected from the first section 10a, the second section 10b, and the third section 10c in the denitrification reactor, and may be input to a plurality of sections. May be.

なお、隔壁で仕切られた硫黄資材投入区画の数は、図1では第1区画10aと第2区画10bの2区画である態様を示しているが、さらに区画数を増やして、好ましくは3区画、より好ましくは4区画以上に多段化すると処理性能を向上させることができる。   In addition, although the number of the sulfur material injection | throwing division divided by the partition shows the aspect which is 2 divisions of the 1st division 10a and the 2nd division 10b in FIG. 1, the number of divisions is increased further, Preferably it is 3 divisions More preferably, if the number of stages is increased to 4 or more, the processing performance can be improved.

脱窒処理装置(例えば底部に排水流下用間隙を有する隔壁(バッフル)によって複数区画に仕切られた上部開放型水槽)の下部の脱窒用硫黄資材層は、圧密によって徐々に通液抵抗が増大し、上流区画(第1区画10a)の水位が上昇し、ついには隔壁12aの上部を越流するようになる場合がある。越流が生じると原水は硫黄資材層11を通過せずに脱窒処理装置の槽から流出するようになり、脱窒効果は大幅に低下してしまう。この問題を解決するための一態様として、上流区画10aと下流区画の水位差を大きくする(好ましくは25cm、より好ましくは50cm、さらに好ましくは75cm)ことで、通水抵抗の高まった資材層を液が浸透・通過できるようにするのが好ましい。また、脱窒処理装置への硫黄資材の投入量を調整して、設定水位差以上に水位が上昇して処理対象液が隔壁12aを越流してしまうことのないように硫黄資材層11の層厚を調整するのも好ましい。   The denitrification treatment equipment (for example, the upper open-type water tank partitioned into multiple compartments by a partition wall (baffle) having a drainage flow gap at the bottom) gradually increases the flow resistance due to consolidation. However, the water level in the upstream section (first section 10a) rises and may eventually overflow the upper part of the partition wall 12a. If overflow occurs, the raw water will flow out of the tank of the denitrification apparatus without passing through the sulfur material layer 11, and the denitrification effect will be greatly reduced. As one mode for solving this problem, by increasing the difference in water level between the upstream section 10a and the downstream section (preferably 25 cm, more preferably 50 cm, and even more preferably 75 cm), a material layer with increased water resistance can be formed. It is preferable to allow the liquid to penetrate and pass. Moreover, the amount of the sulfur material layer 11 is adjusted so that the amount of the sulfur material input to the denitrification apparatus is adjusted so that the water level does not rise above the set water level difference and the treatment target liquid overflows the partition wall 12a. It is also preferable to adjust the thickness.

脱窒処理装置内で原水が隔壁12aの上部を越流してしまうのを防ぐための別の一態様として、硫黄資材層の圧密を定期的に解除することが好ましく、例えば、有孔管(例えば有孔塩ビ管)を底面全体に配置しブロアーで送気する方法が挙げられるが、隔壁12aの直下は硫黄資材の圧密が強く進行する傾向があり、このブロアーで送気する方法のみでは圧密の解除および越流の防止には不十分であった。そこで、本発明者らは、この問題を解決すべく鋭意検討を行い、脱窒処理装置が、液体を収容可能な槽と;槽内で、鉛直方向の隔壁により区画され、隔壁の直下の通液空間により連通された第1区画および第2区画と;第1区画内の下部、第2区画内の下部および通液空間に、脱窒用硫黄資材が通液空間より上方の高さまで堆積された硫黄資材層と;通液空間近傍に連通し、第1区画の硫黄資材層および第2区画の硫黄資材層に加圧空気を供給する加圧空気供給管とを有することにより、硫黄資材層11の圧密を解除できることを見出した。   As another mode for preventing raw water from overflowing the upper part of the partition wall 12a in the denitrification treatment apparatus, it is preferable to periodically release the consolidation of the sulfur material layer. There is a method of arranging a perforated PVC pipe) on the entire bottom surface and supplying air with a blower. However, there is a tendency that the consolidation of the sulfur material strongly proceeds immediately below the partition wall 12a. It was not enough for release and prevention of overflow. Therefore, the present inventors have conducted intensive studies to solve this problem, and that the denitrification apparatus is divided into a tank capable of storing a liquid; a vertical partition wall in the tank, and a passage directly under the partition wall. The first and second compartments communicated by the liquid space; and the denitrification sulfur material is deposited to a height above the fluid passage space in the lower portion in the first compartment, the lower portion in the second compartment, and the liquid passage space. A sulfur material layer comprising: a sulfur material layer; and a pressurized air supply pipe that communicates with the vicinity of the liquid passing space and supplies pressurized air to the sulfur material layer of the first section and the sulfur material layer of the second section. It was found that 11 consolidation could be released.

硫黄資材層の圧密の解除に優れた脱窒処理装置の一例の模式図を図2Aに示す。   FIG. 2A shows a schematic diagram of an example of a denitrification apparatus excellent in releasing the consolidation of the sulfur material layer.

脱窒処理装置20は上述の図1の脱窒処理装置10の構成に、さらに、コンプレッサー21と加圧空気導入管23を備える。加圧空気導入管23は、隔壁12aの直下の通液空間近傍に連通しており、その末端が通液空間近傍で空気吹き出し部材であるT字部材24と結合している。脱窒処理装置20は、さらに加圧空気導入管23上に電磁弁22を備え、コンプレッサー21からの加圧空気の流入を調整してもよい。   The denitrification processing apparatus 20 is further provided with a compressor 21 and a pressurized air introduction pipe 23 in addition to the configuration of the above-described denitrification processing apparatus 10 of FIG. The pressurized air introduction pipe 23 communicates with the vicinity of the liquid passing space immediately below the partition wall 12a, and the end thereof is coupled to the T-shaped member 24 that is an air blowing member near the liquid passing space. The denitrification apparatus 20 may further include an electromagnetic valve 22 on the pressurized air introduction pipe 23 to adjust the inflow of pressurized air from the compressor 21.

T字部材24は、図3に示すように、横棒部24aとその中央部に垂直に連結した縦棒部24bを有し、3末端は開放されていて内部は連続した空間となっている。T字部材24の縦棒部24bは加圧空気導入管23と連結され、T字部材24の横棒部24aはその両末端のうち、一方の末端が第1区画10a内、他方の末端が第2区画10b内に位置し、横棒部24aの長さ方向が隔壁12aの壁面とほぼ垂直になるように脱窒リアクター20の底部近くに固定されるのが好ましい。T字部材24の大きさは、特に限定されないが、例えば、脱窒処理装置の総容量が2m程度の場合、横棒部および縦棒部の長さが、それぞれ3〜10cmで、内部の穴の直径は3〜10mm程度であるのが好ましい。 As shown in FIG. 3, the T-shaped member 24 has a horizontal bar portion 24a and a vertical bar portion 24b that is vertically connected to the central portion thereof, and the three ends are open and the inside is a continuous space. . The vertical bar portion 24b of the T-shaped member 24 is connected to the pressurized air introducing tube 23, and the horizontal bar portion 24a of the T-shaped member 24 has one end within the first compartment 10a and the other end of the both ends. It is preferably fixed in the vicinity of the bottom of the denitrification reactor 20 so that it is located in the second section 10b and the length direction of the horizontal bar portion 24a is substantially perpendicular to the wall surface of the partition wall 12a. The size of the T-shaped member 24 is not particularly limited. For example, when the total capacity of the denitrification apparatus is about 2 m 3 , the length of the horizontal bar portion and the vertical bar portion is 3 to 10 cm, respectively. The diameter of the hole is preferably about 3 to 10 mm.

脱窒処理装置20においては、コンプレッサー21で加圧された空気が、加圧空気導入管23を通ってT字部材24の横棒部24aの両末端から、第1区画内と第2区画内の硫黄資材層中に噴射され(噴出空気4)、硫黄資材層の圧密が解除される。この加圧空気の噴射の噴射時間および頻度は、特に限定されないが、例えば1回あたり3〜6秒で、回数は1日1〜4回に設定してもよく、加圧空気導入管23中に設置された電磁弁22をタイマーで制御してもよい。   In the denitrification treatment apparatus 20, the air pressurized by the compressor 21 passes through the pressurized air introduction pipe 23 from both ends of the horizontal bar portion 24 a of the T-shaped member 24 and enters the first compartment and the second compartment. Is injected into the sulfur material layer (jet air 4), and the consolidation of the sulfur material layer is released. The injection time and frequency of this pressurized air injection are not particularly limited. For example, it may be set to 3 to 6 seconds per time, and the number of times may be set to 1 to 4 times a day. You may control the solenoid valve 22 installed in by a timer.

脱窒処理装置20は、コンプレッサー21、電磁弁22、加圧空気導入管23およびT字部材24のいずれかを、必要に応じて2個以上備えてもよく、少なくともT字部材24を2個以上備えるのが好ましい。T字部材24を2つ設置する場合、例えば、T字状に分岐した加圧空気導入管の2末端にそれぞれT字部材24を接続し、2つのT字部材24をそれぞれ脱窒リアクター20の底部近くに固定してもよい。   The denitrification apparatus 20 may include two or more of the compressor 21, the electromagnetic valve 22, the pressurized air introduction pipe 23, and the T-shaped member 24 as necessary, and includes at least two T-shaped members 24. It is preferable to provide the above. When two T-shaped members 24 are installed, for example, the T-shaped members 24 are connected to the two ends of the pressurized air introduction pipe branched in a T-shape, and the two T-shaped members 24 are respectively connected to the denitrification reactor 20. It may be fixed near the bottom.

さらに、脱窒処理装置は、上記の圧力空気による圧密解除に代わるかまたは併用する解除法の別の態様として、硫黄資材層底部高さに撹拌翼を位置させた攪拌機を設置し、定期的にまたは連続的に緩速撹拌してもよい。   Furthermore, the denitrification treatment apparatus is provided with a stirrer in which a stirring blade is positioned at the bottom height of the sulfur material layer as another aspect of the release method that is used in place of or in combination with the release of consolidation by the above-described pressurized air. Or you may continuously stir slowly.

さらに別の態様として、脱窒処理装置は、最終区画(第3区画10c)の水面下に水中ポンプを設置し、吸揚した液を導入管で隔壁下部の資材層付近に吐出することでも資材層の圧密を軽減できる。この際、硫黄資材層に短絡流の流路が形成されてしまうと原水の脱窒処理が不十分となってしまうため、液の吐出位置、吐出方向および吐出流量が適正となるように調整するのが好ましい。   As yet another aspect, the denitrification apparatus can be configured by installing a submersible pump below the surface of the final section (third section 10c) and discharging the sucked liquid to the vicinity of the material layer below the partition wall using the introduction pipe. Reduces layer consolidation. At this time, if a flow path of a short circuit flow is formed in the sulfur material layer, the denitrification treatment of the raw water becomes insufficient, so the liquid discharge position, the discharge direction, and the discharge flow rate are adjusted to be appropriate. Is preferred.

脱窒処理装置20は、さらに、有孔管(例えば有孔塩ビ管)を底面全体に配置しブロアーで送気する手段を備えて硫黄資材層の圧密を解除してもよい。   The denitrification processing apparatus 20 may further include a means for disposing a perforated pipe (for example, a perforated PVC pipe) over the entire bottom surface and supplying air with a blower to release the consolidation of the sulfur material layer.

本実施形態においては、脱窒処理装置中の圧密を解除するために上述の方法のうち複数の方法を併用してもよい。   In the present embodiment, a plurality of methods may be used in combination in order to release the consolidation in the denitrification apparatus.

一方、上記のように硫黄資材層の圧密解除を実施した際に、空気流量が高すぎると隔壁12a下部の通液空間の資材層にトンネル状の空隙が生じ、液が資材層を浸透することなく流下するようになり脱窒性能が低下してしまう場合がある。これを防ぐための一態様として、該隔壁12a下部の通液空間から離れた位置の底部にも空気吹き出し部材を設置し、定期的に硫黄資材を該隔壁下部に吹き戻してもよい。   On the other hand, when releasing the consolidation of the sulfur material layer as described above, if the air flow rate is too high, a tunnel-shaped void is formed in the material layer in the liquid passage space below the partition wall 12a, and the liquid penetrates the material layer. The denitrification performance may be reduced due to the flow down. As one mode for preventing this, an air blowing member may be installed at the bottom of the partition 12a at a position away from the liquid passing space, and the sulfur material may be periodically blown back to the bottom of the partition.

図2Bに、硫黄資材層の圧密解除を行う際、通液空間の資材層にトンネル状の空隙が形成されるのを防ぐことができる脱窒処理装置の一態様を示す。図2Bの脱窒処理装置30は、図2Aの脱窒処理装置の底面に2つの勾配31を設けたものである。脱窒処理処置30中の隔壁12a下部の左右(第1区画10aおよび第2区画10b)の槽底面を隔壁12aの直下が凹部の最深部になるように勾配31を設けることにより、T字部材24からの通気で舞い上がった硫黄資材が勾配31によって誘導されながら沈降し隔壁下部への堆積状態に自然に戻ることができる。   FIG. 2B shows an embodiment of a denitrification apparatus that can prevent the formation of tunnel-like voids in the material layer in the liquid passing space when releasing the consolidation of the sulfur material layer. The denitrification processing apparatus 30 of FIG. 2B is provided with two gradients 31 on the bottom surface of the denitrification processing apparatus of FIG. 2A. A T-shaped member is provided by providing a gradient 31 on the left and right (first compartment 10a and second compartment 10b) bottom surfaces of the partition 12a in the denitrification treatment 30 so that the bottom of the partition 12a is the deepest portion of the recess. The sulfur material that has been soared by the ventilation from 24 sinks while being guided by the gradient 31 and can naturally return to the deposited state in the lower part of the partition wall.

脱窒処理装置は、振動子(不図示)を備えてもよい。振動子は、脱窒用硫黄資材の表面から発生した窒素気泡が硫黄資材層中に埋封され硫黄資材と原水との接触を阻害するのを防ぐため常時又は定期的に硫黄資材層を振動させ脱泡することができると共に硫黄資材層の圧密の解除や短絡流の流路形成防止にもなる。振動子は、例えば空気圧式もしくは電動式等の、バイブレーター又はノッカー等でノッチタンク等の脱窒処理装置の外面および/又は硫黄資材層内に配置される。   The denitrification processing apparatus may include a vibrator (not shown). The vibrator vibrates the sulfur material layer constantly or periodically to prevent nitrogen bubbles generated from the surface of the denitrification sulfur material from being buried in the sulfur material layer and hindering contact between the sulfur material and raw water. It is possible to defoam and release the consolidation of the sulfur material layer and prevent the formation of a short-circuit flow path. The vibrator is disposed on the outer surface of the denitrification apparatus such as a notch tank and / or in the sulfur material layer with a vibrator or a knocker, for example, pneumatic or electric.

脱窒処理装置は、さらに硫黄資材含有槽内(第1区画10aおよび第2区画10b)の液温を加温する手段(加温手段)を備えてもよく、これにより低温期の硫黄酸化脱窒細菌による脱窒活性の低下を抑制して通年にわたり養豚排水から脱窒を行うことができる。脱窒リアクターの槽内の液温は硫黄酸化脱窒細菌の活動できる10〜40℃であるのが好ましく、30〜40℃であるのがより好ましい。   The denitrification apparatus may further include means (heating means) for heating the liquid temperature in the sulfur material-containing tank (the first section 10a and the second section 10b). Denitrification can be carried out from swine sewage wastewater throughout the year while suppressing the decrease in denitrification activity caused by nitrifying bacteria. The liquid temperature in the tank of the denitrification reactor is preferably 10 to 40 ° C., more preferably 30 to 40 ° C. at which sulfur-oxidizing denitrifying bacteria can act.

上記加温手段を備える脱窒処理装置の一態様を以下説明する。脱窒処理装置の最終区画(最下流区画)内に循環ポンプとして水中ポンプを設置し、最終区画内の液の一部(循環液)を最初の区画(最上流区画)内に返送する循環ラインを設け、この循環ライン上に加温手段を設ける。例えば、図1の脱窒処理装置において、第3区画10c内に水中ポンプを設置し、この水中ポンプに接続された循環ラインが、加温手段を経て末端の液排出口から第1区画10a内に循環液を排出できるように設置される。これにより、第3区画10c内の液の一部が加温された状態で第1区画内10a内に供給され、脱窒活性の低下を抑制することができる。   One aspect of the denitrification apparatus provided with the heating means will be described below. A circulation line in which a submersible pump is installed as a circulation pump in the final section (the most downstream section) of the denitrification treatment device, and a part of the liquid (circulated liquid) in the final section is returned to the first section (the most upstream section). And a heating means is provided on the circulation line. For example, in the denitrification apparatus of FIG. 1, a submersible pump is installed in the third section 10c, and a circulation line connected to the submersible pump passes through the heating means and enters the first section 10a from the terminal liquid discharge port. It is installed so that the circulating fluid can be discharged. As a result, a part of the liquid in the third compartment 10c is supplied into the first compartment 10a in a heated state, and a decrease in denitrification activity can be suppressed.

加温手段としては、例えば、既存の養豚排水処理施設は、養豚排水を活性汚泥法に供するための曝気槽を備えているが、この曝気槽内の液の熱を利用する方法が好ましい。曝気槽内では、ブロアーの熱及び地中温によって通年で高い水温(例えば、冬期でも15℃以上)が維持されている場合が多い。一態様として、循環ラインの一部を、例えば、長さ5〜10m(好ましくは10m)程度の水道用ステンレス製フレキシブル管とし、曝気槽内の液中にコイル状に巻いて浸漬させて循環液を加温するのが好ましい。これにより、曝気槽内の液温を脱窒装置に移行させることができ、冬期でも一定の水温維持が可能となる。また、この循環ラインの液排出口を、脱窒処理装置の最初の区画内(図1の装置の場合は第1区画10a内)における通液空間近傍に設置すると、加温と同時に、硫黄資材層の圧密の解除も行うことができ好ましい。   As a heating means, for example, an existing pig farm wastewater treatment facility includes an aeration tank for supplying the pig farm wastewater to the activated sludge method, and a method of using the heat of the liquid in the aeration tank is preferable. In the aeration tank, a high water temperature (for example, 15 ° C. or higher in winter) is often maintained throughout the year due to the heat of the blower and the ground temperature. As one aspect, for example, a part of the circulation line is made into a stainless steel flexible pipe having a length of about 5 to 10 m (preferably 10 m), wound in a coil shape in the liquid in the aeration tank, and immersed in the circulation liquid. Is preferably heated. Thereby, the liquid temperature in the aeration tank can be transferred to the denitrification apparatus, and a constant water temperature can be maintained even in winter. Further, when the liquid discharge port of this circulation line is installed in the vicinity of the liquid passing space in the first section of the denitrification processing apparatus (in the first section 10a in the case of the apparatus of FIG. 1), the sulfur material is simultaneously heated. The consolidation of the layer can also be released, which is preferable.

本実施形態の一態様として、図1、図2A、または図2Bに示すような脱窒リアクターを2個以上直列または並列に配置してもよい。   As one aspect of this embodiment, two or more denitrification reactors as shown in FIG. 1, FIG. 2A, or FIG. 2B may be arranged in series or in parallel.

脱窒処理装置の別の一態様として、液体を収容可能な槽と;該槽内の下部に脱窒用硫黄資材が堆積された硫黄資材層と;該槽外から硫黄資材層内に液体を供給する手段とを有する、上向流方式の脱窒処理装置(脱窒リアクター)が好ましい。上向流方式の脱窒処理装置の一例の模式図を図4に示す。   As another aspect of the denitrification apparatus, a tank capable of storing liquid; a sulfur material layer in which sulfur material for denitrification is deposited in the lower part of the tank; and a liquid from outside the tank into the sulfur material layer An upward flow type denitrification treatment apparatus (denitrification reactor) having a supply means is preferable. FIG. 4 shows a schematic diagram of an example of an upflow type denitrification apparatus.

図4の脱窒処理装置は、液体を収容可能な円塔型の槽41と、槽41中の下部に硫黄資材が堆積された硫黄資材層42と、硫黄資材層42中に槽外から原水を供給する原水供給管43とを備える。原水供給管43の一末端が硫黄資材層42中に配置されるのが好ましく、硫黄資材層中の原水供給管43の末端が、底部近く、例えば、槽41の底面から硫黄資材層42の高さの好ましくは1/2以下、より好ましくは1/4以下までの位置に配置される。脱窒処理装置の槽41の形状は円筒型に限らず、例えば底面が矩形の角型であってもよい。また、槽41のサイズは図4に記載の数字に限らず、例えば、円筒型である場合、実際の排水処理施設等では、底面の直径が50cm〜4m程度であってもよく、高さは、150cm〜3m程度であってもよい。硫黄資材の量は、特に限定されないが、例えば槽41の容積1Lあたり200g〜600g投入される。   The denitrification apparatus of FIG. 4 includes a tower-shaped tank 41 that can contain a liquid, a sulfur material layer 42 in which sulfur material is deposited in the lower part of the tank 41, and raw water from outside the tank in the sulfur material layer 42. The raw water supply pipe 43 is provided. One end of the raw water supply pipe 43 is preferably disposed in the sulfur material layer 42, and the end of the raw water supply pipe 43 in the sulfur material layer is close to the bottom, for example, from the bottom of the tank 41 to the height of the sulfur material layer 42. It is preferably arranged at a position of 1/2 or less, more preferably 1/4 or less. The shape of the tank 41 of the denitrification apparatus is not limited to a cylindrical shape, and may be, for example, a rectangular shape with a rectangular bottom surface. In addition, the size of the tank 41 is not limited to the numbers shown in FIG. 4. For example, in the case of a cylindrical shape, in an actual wastewater treatment facility or the like, the diameter of the bottom surface may be about 50 cm to 4 m, and the height is About 150 cm to 3 m. Although the amount of the sulfur material is not particularly limited, for example, 200 g to 600 g is introduced per 1 L of the volume of the tank 41.

原水供給管43は、複数本備えられてもよい。また、原水供給管43の原水が流入する側の末端および/または原水が放出される側の末端が分岐していてもよい。   A plurality of raw water supply pipes 43 may be provided. Further, the end of the raw water supply pipe 43 on the side where the raw water flows and / or the end on the side where the raw water is discharged may be branched.

図4の脱窒処理装置においては、原水が原水供給管43により連続的に下向流で供給される。原水の供給方法は、特に限定されないが、ポンプで供給してもよいし、水頭差を利用してもよい。硫黄資材層42中に放出された原水は、槽41の底部で反転して上向流となり、原水が硫黄資材層42中を通過する間に硫黄脱窒反応により原水中の硝酸性窒素等が窒素ガスに変化し、処理水として系外へ排出される。ここで、この脱窒処理装置において、短絡流の流路が形成されてしまうと原水の脱窒処理が不十分となってしまうため、必要に応じて、例えば、原水供給管43から加圧空気を硫黄資材層42中に挿入し、硫黄資材層を均一化させるのも好ましい。   In the denitrification apparatus of FIG. 4, raw water is continuously supplied in a downward flow through the raw water supply pipe 43. Although the supply method of raw | natural water is not specifically limited, You may supply with a pump and you may utilize a water head difference. The raw water released into the sulfur material layer 42 is reversed at the bottom of the tank 41 and becomes an upward flow. While the raw water passes through the sulfur material layer 42, nitrate nitrogen or the like in the raw water is caused by a sulfur denitrification reaction. It changes to nitrogen gas and is discharged out of the system as treated water. Here, in this denitrification treatment apparatus, if a short-circuit flow path is formed, the denitrification treatment of the raw water becomes insufficient. Therefore, for example, the pressurized water is supplied from the raw water supply pipe 43 as necessary. Is preferably inserted into the sulfur material layer 42 to make the sulfur material layer uniform.

本実施形態の一態様として、図4に示すような上向流方式の脱窒処理装置を2個以上直列または並列に配置してもよい。   As one aspect of this embodiment, two or more upward flow denitrification treatment apparatuses as shown in FIG. 4 may be arranged in series or in parallel.

以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples The present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

<例A>
(1)脱窒用硫黄資材
硫黄粉末(硫黄99.5%、150メッシュパス)をベースに、炭酸カルシウム(30メッシュパスかつ50メッシュオン)、および粘度調整をしたノニオン系界面活性剤(親油基の炭素数22でHLB値12.8)を、リボンブレンダーや2軸攪拌機を使用して混練し、脱窒用硫黄資材1(以下、単に「硫黄資材1」とも記載する)を製造した。各原料の配合割合は、粉末硫黄48.5重量%、炭酸カルシウム48.5重量%、ノニオン系界面活性剤3重量%であり、硫黄資材1は150メッシュパスの硫黄と30メッシュパスかつ50メッシュオンの炭酸カルシウムを含む粉末状であった。
<Example A>
(1) Sulfur material for denitrification Based on sulfur powder (99.5% sulfur, 150 mesh pass), calcium carbonate (30 mesh pass and 50 mesh on), and nonionic surfactant (lipophilic) with viscosity adjustment A base material having 22 carbon atoms and an HLB value of 12.8) were kneaded using a ribbon blender or a biaxial stirrer to produce a denitrification sulfur material 1 (hereinafter also simply referred to as “sulfur material 1”). The blending ratio of each raw material is 48.5% by weight of powdered sulfur, 48.5% by weight of calcium carbonate, and 3% by weight of nonionic surfactant. Sulfur material 1 is sulfur of 150 mesh pass and 30 mesh pass and 50 mesh. It was in the form of powder containing calcium carbonate on.

(2)実験装置
脱窒リアクターとして、図4に示す液部有効容積2.23Lの円筒型プラスチックカラム(約8cmφ×約48cm H)を用いた。この脱窒リアクターに、開発した硫黄資材1を1kg(見かけ容積1.12L、層厚22.7cm)投入した。試験の原水には、養豚農家の汚水処理施設から排出される活性汚泥処理水を用いた。ただし、試験開始23日目以降は、防疫面の問題が生じ農場に立ち入ることができなくなったため、千葉県畜産総合研究センターの活性汚泥処理水に硝酸ナトリウムを2.0g/L添加して試験の原水とした。原水は原水貯留槽に移し、そこからダイアフラム定量ポンプにより流入量1.0〜6.5mL/分、液部有効容積あたりの水理学的滞留時間(HRT)0.2〜1.5日でリアクターの下部から連続注入した(図5)。原水流入量の調整により、NO−N負荷量を変動させることで脱窒活性への影響を検討した。注入した原水はリアクター底面に沈積した硫黄資材層を通過後、リアクター上部から処理水として排出した。なお、原水の水温を一定に維持するため、試験開始7日目以降は原水貯留槽に水中ヒーターを投入して水温を20℃程度に調整した。硫黄酸化脱窒細菌の植種は行わなかった。リアクターの運転は、2015年11月18日から2016年1月19日までの62日間行った。
(2) Experimental apparatus As the denitrification reactor, a cylindrical plastic column (about 8 cmφ × about 48 cm H) having an effective volume of the liquid part of 2.23 L shown in FIG. 4 was used. 1 kg of the developed sulfur material 1 (apparent volume: 1.12 L, layer thickness: 22.7 cm) was charged into this denitrification reactor. The activated sludge treated water discharged from the sewage treatment facility of the pig farmer was used as the raw water for the test. However, from the 23rd day after the start of the test, it became impossible to enter the farm due to the problem of prevention of epidemics, so 2.0 g / L of sodium nitrate was added to the activated sludge treated water of the Chiba Prefectural Livestock Research Center. Raw water was used. The raw water is transferred to the raw water storage tank, and from there, the reactor is fed by a diaphragm metering pump with an inflow of 1.0 to 6.5 mL / min and a hydraulic residence time (HRT) per effective liquid volume of 0.2 to 1.5 days. Was continuously injected from the lower part of (Fig. 5). The influence on denitrification activity was examined by changing the NO x -N load by adjusting the raw water inflow. The injected raw water passed through the sulfur material layer deposited on the bottom of the reactor and was discharged as treated water from the top of the reactor. In addition, in order to maintain the water temperature of raw | natural water constant, the water temperature was adjusted to about 20 degreeC by throwing the underwater heater into the raw | natural water storage tank from the 7th day after the test start. Sulfur oxidizing denitrifying bacteria were not planted. The reactor was operated for 62 days from November 18, 2015 to January 19, 2016.

(3)分析方法
pHはガラス電極法によって測定した。NO −N、NO −N、アンモニウム性窒素(NH −N)、SO 2−は、それぞれクロモトロープ酸法、ジアゾ化法、サリチル酸法、硫酸バリウム/比濁法により、吸光度式多項目水質測定器(PhotoFlex STD;セントラル科学、東京)により測定した。M−アルカリ度はドロップテストM−アルカリ度(WAD−AL−M;共立理化学研究所、東京)により測定した。
(3) Analysis method The pH was measured by the glass electrode method. NO 3 —N, NO 2 —N, ammonium nitrogen (NH 4 + —N), SO 4 2− are obtained by chromotropic acid method, diazotization method, salicylic acid method, barium sulfate / turbidimetric method, respectively. It was measured with an absorbance type multi-item water quality meter (PhotoFlex STD; Central Science, Tokyo). The M-alkalinity was measured by a drop test M-alkalinity (WAD-AL-M; Kyoritsu Riken, Tokyo).

表1に原水と処理水の水質の性状を示す。なお、表1の水質は、脱窒リアクターで処理した期間中の平均値を表す。   Table 1 shows the quality of raw water and treated water. In addition, the water quality of Table 1 represents the average value during the period processed by the denitrification reactor.

硫黄資材1を液で満たした脱窒リアクター内に投入したところ、全量が速やかに沈降することを確認した。沈降直後はリアクター内の液中に白濁が見られたものの、時間経過と
ともに徐々に薄れていった。試験期間中の原水のNO −Nは207.7±53.1mg/L(平均±標準偏差)であり、NO −NおよびNH −Nはほとんど検出されなかった(表1)。
When the sulfur material 1 was put into a denitrification reactor filled with a liquid, it was confirmed that the entire amount settled quickly. Immediately after settling, the liquid in the reactor was clouded but gradually faded over time. The raw water NO 3 −N during the test period was 207.7 ± 53.1 mg / L (mean ± standard deviation), and NO 2 −N and NH 4 + −N were hardly detected (Table 1). ).

処理水のNO −Nは試験開始16日目以降に低減し始め、19日目に水質汚濁防止法の硝酸性窒素等の一般基準値である100mg/L以下まで低減した(図6)。23日目以降は処理水にNO −Nは検出限界以下であった。その後、試験終了となる62日目まで100mg/L以下を維持することができた。試験期間中の水温は12.6〜22.7℃の範囲で推移し、その平均は18.6℃だった(図7)。また、NOx−N負荷量は0.28〜1.95kg−N/ton−資材・日の範囲で変動した(図7)。特に、脱窒活性発現後の21日目以降はNOx−N負荷量を0.28〜0.91kg−N/ton−資材・日の範囲で、経過日数に伴い徐々に上昇させた。その結果、62日目のNOx−N負荷量0.91kg−N/ton−資材・日では、処理水のNO −Nは44.4mg/Lまで上昇したが、NOx−N除去率は83.1%と負荷量が上昇しても高い脱窒効果が維持された。また、21日目以降のNOx−N負荷量とNOx−N除去率の関係では、負荷量が低いほど除去率は高まる傾向が示された(図8)。純粋粉末硫黄を利用してNOx−N負荷量0.55kg−N/ton−資材・日の条件で80%程度の除去率が得られたことが報告されているが(長谷川輝明、田中康男(2015)簡易加温システムを備えた土砂沈殿分離タンク転用リアクターによる養豚排水用硫黄脱窒処理技術の開発:日本畜産環境学会会誌:14(1):47−55.)、本試験においては0.57kg−N/ton−資材・日以下でも100%近い除去率が得られた。21日目以降の水温とNOx−N除去率の関係では、水温が高いほど除去率も高くなる傾向が示された(図9)。よって、水温が高くなるにつれて脱窒活性が高まるものと推察される。 Treated water NO 3 −N began to decrease after the 16th day from the start of the test, and on the 19th day it was reduced to 100 mg / L or less, which is a general reference value such as nitrate nitrogen in the water pollution control method (FIG. 6). . NO 3 The treated water 23 after day - -N was below the detection limit. Thereafter, 100 mg / L or less could be maintained until the 62nd day when the test was completed. The water temperature during the test period changed in the range of 12.6 to 22.7 ° C., and the average was 18.6 ° C. (FIG. 7). Moreover, the NOx-N load amount fluctuated in the range of 0.28 to 1.95 kg-N / ton-material / day (FIG. 7). In particular, from the 21st day after the denitrification activity was expressed, the NOx-N load was gradually increased with the elapsed days in the range of 0.28 to 0.91 kg-N / ton-material / day. As a result, in the 62 days NOx-N load 0.91 kg-N / ton-material-date, the treated water NO 3 - -N is increased to 44.4mg / L, NOx-N removal rate Even if the load increased to 83.1%, a high denitrification effect was maintained. Moreover, in the relationship between the NOx-N load amount and the NOx-N removal rate after the 21st day, the removal rate tended to increase as the load amount decreased (FIG. 8). It has been reported that the removal rate of about 80% was obtained using pure powder sulfur under the condition of NOx-N load 0.55kg-N / ton-material / day (Heragawa Teruaki, Tanaka Yasuo) 2015) Development of sulfur denitrification technology for swine sewage wastewater using a sedimentation tank diversion reactor equipped with a simple heating system: Journal of the Japanese Society of Animal Husbandry Environment: 14 (1): 47-55.). A removal rate of nearly 100% was obtained even at 57 kg-N / ton-material / day or less. The relationship between the water temperature after the 21st day and the NOx-N removal rate showed a tendency that the higher the water temperature, the higher the removal rate (FIG. 9). Therefore, it is speculated that the denitrification activity increases as the water temperature increases.

硫黄脱窒処理では、脱窒に伴い硫黄酸化脱窒細菌により硫黄が酸化されSO 2−が生成される。SO 2−生成量(△SO 2−)と窒素除去量(△NOx−N)との関係では、除去量が多くなるにつれて△SO 2−も増加する傾向がみられ、高い相関が示された(R=0.9825、P<0.01)(図10)。 In the sulfur denitrification treatment, sulfur is oxidized by sulfur oxidative denitrification bacteria along with denitrification to generate SO 4 2− . In the relationship between the amount of SO 4 2− generated (ΔSO 4 2− ) and the amount of nitrogen removed (ΔNOx−N), ΔSO 4 2− tends to increase as the amount of removal increases, and there is a high correlation. (R 2 = 0.9825, P <0.01) (FIG. 10).

通常、△SO 2−が増加すると処理水のpHは酸性に偏る。SO 2−−Sが1000mg/L程度に達すると処理水のpHは5.8付近まで低下することが知られている。今回の試験では、原水のpHが7.5〜8.3であったのに対して、処理水のpHは6.8〜7.9の範囲で推移した(表1、図11)。△SO 2−が大幅に増加したにも関わらず、処理水のpHはほぼ中性に維持されることが示された。この中和効果は脱窒用硫黄資材に配合した炭酸カルシウムが硫酸イオンと結合して硫酸カルシウムを形成することも寄与したと推察される。 Usually, when ΔSO 4 2− increases, the pH of the treated water tends to be acidic. It is known that when SO 4 2 —S reaches about 1000 mg / L, the pH of the treated water decreases to around 5.8. In this test, the pH of the raw water was 7.5 to 8.3, whereas the pH of the treated water was changed in the range of 6.8 to 7.9 (Table 1, FIG. 11). Although ΔSO 4 2− increased significantly, it was shown that the pH of the treated water was maintained almost neutral. This neutralization effect is presumed to have contributed to the formation of calcium sulfate by combining calcium carbonate blended with the denitrification sulfur material with sulfate ions.

また、硫黄脱窒処理で脱窒活性を維持するのにアルカリ度は重要な要素である。試験期間中の処理水のM−アルカリ度は160±38.4mg/Lであったが(表1)、十分な脱窒活性が発現したことから炭酸カルシウムの配合量は十分であったといえる。   In addition, alkalinity is an important factor for maintaining the denitrification activity in the sulfur denitrification treatment. The M-alkalinity of the treated water during the test period was 160 ± 38.4 mg / L (Table 1), but since sufficient denitrification activity was expressed, it can be said that the blending amount of calcium carbonate was sufficient.

上記結果から、本実施形態の脱窒用硫黄資材は、資材の取り扱いが容易で、かつ硫黄脱窒に必要なアルカリ度の供給と中和機能に有効であることが示された。   From the above results, it was shown that the denitrification sulfur material of the present embodiment is easy to handle and is effective for supplying the alkalinity necessary for sulfur denitrification and for the neutralization function.

なお、千葉県内養豚汚水処理施設の硝酸性窒素等の実態調査では、活性汚泥処理水のNO −Nは平均184mg/Lであったことが報告されている。一方、今回の試験では試験開始後21日目以降にはNOx−Nがおよそ200mg/L低減した。このことから、現場の硝酸性窒素等低減対策に期待できると考えられる。 In the survey of nitrate nitrogen and the like in Chiba Prefecture pig sewage treatment facilities, NO 3 of activated sludge treated water - -N it has been reported that an average 184 mg / L. On the other hand, in this test, NOx-N was reduced by approximately 200 mg / L after 21 days from the start of the test. From this, it is thought that it can be expected to reduce nitrate nitrogen in the field.

<例B>
次に、硫黄資材に用いるアルカリ剤について検討した。
<Example B>
Next, the alkali agent used for sulfur materials was examined.

(実施例B1)
養豚農家の活性汚泥処理水を試験の原水として、1L容量のビーカー内に900mL投入し、それに対して上記硫黄資材1(アルカリ剤として炭酸カルシウムを使用)を450g充填した。ガラス撹拌棒で原水と硫黄資材1とを撹拌混合した後、静置させた。以降、経過日数に伴うpHおよびNO −N濃度について、上記例Aの分析方法により測定した。試験期間は2017年9月1日から10月25日までの54日間実施した。経過日数に伴う処理水のpHを表2に示し、NO −N濃度を図12に示す。
(Example B1)
The activated sludge treated water of a pig farmer was used as test raw water, and 900 mL was charged into a 1 L beaker, and 450 g of the sulfur material 1 (using calcium carbonate as an alkaline agent) was filled therein. The raw water and the sulfur material 1 were stirred and mixed with a glass stirring bar and then allowed to stand. Later, pH, and NO 3 with the passage of days - the -N concentrations were determined by analysis method of the above Example A. The test period was 54 days from September 1, 2017 to October 25, 2017. The pH of the treated water according to the elapsed days is shown in Table 2, and the NO 3 —N concentration is shown in FIG.

(実施例B2)
アルカリ剤として炭酸カルシウムに代えて、天然マグネサイト(粒径:60メッシュパス、200メッシュオン)を用いた以外は、硫黄資材1の製造方法と同様にして硫黄資材2を調製した。硫黄資材1に代えて硫黄資材2を用いた以外は実施例B1と同様にして原水を処理し、pHおよびNO −N濃度を測定した。結果を表2および図12に示す。
(Example B2)
A sulfur material 2 was prepared in the same manner as the method for producing the sulfur material 1 except that natural magnesite (particle size: 60 mesh pass, 200 mesh on) was used instead of calcium carbonate as the alkaline agent. Raw water was treated in the same manner as in Example B1 except that the sulfur material 2 was used in place of the sulfur material 1, and the pH and NO 3 —N concentration were measured. The results are shown in Table 2 and FIG.

(実施例B3)
アルカリ剤として炭酸カルシウムに代えて、合成マグネサイト(粒径:150メッシュパス)を用いた以外は、硫黄資材1の製造方法と同様にして硫黄資材3を調製した。硫黄資材1に代えて硫黄資材3を用いた以外は実施例B1と同様にして原水を処理し、pHおよびNO −N濃度を測定した。結果を表2および図12に示す。
(Example B3)
A sulfur material 3 was prepared in the same manner as the method for producing the sulfur material 1 except that synthetic magnesite (particle size: 150 mesh pass) was used instead of calcium carbonate as the alkaline agent. Raw water was treated in the same manner as in Example B1 except that the sulfur material 3 was used in place of the sulfur material 1, and the pH and NO 3 —N concentration were measured. The results are shown in Table 2 and FIG.

(参考例B4)
アルカリ剤として炭酸カルシウムに代えて、塩基性炭酸マグネシウム(粒径:200メッシュパス)を用いた以外は、硫黄資材1の製造方法と同様にして硫黄資材4を調製した。硫黄資材1に代えて硫黄資材4を用いた以外は実施例B1と同様にして原水を処理し、pHおよびNO −N濃度を測定した。結果を表2および図12に示す。
(Reference Example B4)
A sulfur material 4 was prepared in the same manner as the method for producing the sulfur material 1 except that basic magnesium carbonate (particle size: 200 mesh pass) was used instead of calcium carbonate as the alkaline agent. Raw water was treated in the same manner as in Example B1 except that the sulfur material 4 was used in place of the sulfur material 1, and the pH and NO 3 —N concentration were measured. The results are shown in Table 2 and FIG.

(参考例B5)
アルカリ剤として炭酸カルシウムに代えて、顆粒状の塩基性炭酸マグネシウムを用いた以外は、硫黄資材1の製造方法と同様にして硫黄資材5を調製した。硫黄資材1に代えて硫黄資材5を用いた以外は実施例B1と同様にして原水を処理し、pHおよびNO −N濃度を測定した。結果を表2および図12に示す。
(Reference Example B5)
A sulfur material 5 was prepared in the same manner as the method for producing the sulfur material 1 except that granular basic magnesium carbonate was used instead of calcium carbonate as the alkaline agent. Raw water was treated in the same manner as in Example B1 except that the sulfur material 5 was used in place of the sulfur material 1, and the pH and NO 3 —N concentration were measured. The results are shown in Table 2 and FIG.

上記実施例B1〜B3および参考例B4,B5において、各脱窒処理日数における、pHを表2に示す。   Table 2 shows the pH in each denitrification treatment day in Examples B1 to B3 and Reference Examples B4 and B5.

上記実施例B1〜B3および参考例B4,B5において、各脱窒処理日数における、NO −Nの濃度を図12に示す。 FIG. 12 shows the concentration of NO 3 —N in each of the denitrification treatment days in Examples B1 to B3 and Reference Examples B4 and B5.

図12に示したとおり、原水(脱窒処理前)のNO −Nの濃度は236.8mg/Lであった。試験開始以降、各実施例および参考例においてNO −Nの濃度は低減し、54日目におけるNO −Nの濃度および除去率は以下のとおりであった。
実施例B1:7.2mg/L(除去率97%)
実施例B2:5.4mg/L(除去率97.7%)
実施例B3:60.4mg/L(除去率74.5%)
参考例B4:145.6mg/L(除去率38.5%)
参考例B5:221.6mg/L(除去率6.4%)
As shown in FIG. 12, the concentration of NO 3 —N in the raw water (before denitrification treatment) was 236.8 mg / L. Since the start of the test, the concentration of NO 3 —N in each example and reference example was reduced, and the concentration and removal rate of NO 3 —N on day 54 were as follows.
Example B1: 7.2 mg / L (removal rate 97%)
Example B2: 5.4 mg / L (removal rate 97.7%)
Example B3: 60.4 mg / L (removal rate 74.5%)
Reference Example B4: 145.6 mg / L (removal rate 38.5%)
Reference Example B5: 221.6 mg / L (removal rate 6.4%)

実施例B1〜B3より、アルカリ剤として天然マグネサイトまたは合成マグネサイトを用いた硫黄資材も、炭酸カルシウムを用いた場合と同様、NO −Nの除去率が高いことが示された。一方、塩基性炭酸マグネシウムを用いた硫黄資材では、NO −Nの除去率が低かった。この理由は定かではないが、天然マグネサイトまたは合成マグネサイトを含む硫黄資材を用いると、脱窒反応が進みやすいpHを保持できたためと推察される。 From Examples B1 to B3, it was shown that the sulfur material using natural magnesite or synthetic magnesite as an alkaline agent has a high removal rate of NO 3 —N as in the case of using calcium carbonate. On the other hand, the sulfur material using basic magnesium carbonate had a low removal rate of NO 3 —N. The reason for this is not clear, but it is presumed that when a sulfur material containing natural magnesite or synthetic magnesite was used, the pH at which the denitrification reaction easily proceeded could be maintained.

炭酸カルシウムを含む硫黄資材を用いる場合は、脱窒反応により形成される不溶性成分(硫酸カルシウム)が沈積し、脱窒処理の妨げになる場合がある。一方、実施例B2およびB3のように、マグネサイトを含む硫黄資材を用いると、マグネサイトは主成分が炭酸マグネシウムであり、脱窒反応により形成される硫酸マグネシウムは水に溶けやすいため、炭酸カルシウムを用いる場合のような不溶性成分の沈積の問題が起こりにくい。   When a sulfur material containing calcium carbonate is used, an insoluble component (calcium sulfate) formed by the denitrification reaction may be deposited, which may hinder the denitrification treatment. On the other hand, when a sulfur material containing magnesite is used as in Examples B2 and B3, the main component of magnesite is magnesium carbonate, and magnesium sulfate formed by the denitrification reaction is easily soluble in water. The problem of sedimentation of insoluble components as in the case of using is difficult to occur.

よって、アルカリ剤として天然マグネサイトまたは合成マグネサイトを含む硫黄資材は、脱窒効果が高く、かつ、不溶性成分が生じにくいという観点で好ましいといえる。   Therefore, it can be said that a sulfur material containing natural magnesite or synthetic magnesite as an alkaline agent is preferable from the viewpoint of having a high denitrification effect and hardly generating insoluble components.

本発明は、養豚排水処理施設等における硝酸性窒素等の除去に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be used for removing nitrate nitrogen and the like in pig farm wastewater treatment facilities.

1:原水
2:処理水
3:加圧空気
4:噴出空気
10:脱窒処理装置
10a:第1区画
10b:第2区画
10c:第3区画
11:硫黄資材層
12a:隔壁
12b:隔壁
20:脱窒処理装置
21:コンプレッサー
22:電磁弁
23:加圧空気導入管
24:T字部材
24a:横棒部
24b:縦棒部
30:脱窒処理装置
31:勾配
41:槽
42:硫黄資材層
43:原水供給管
1: Raw water 2: Treated water 3: Pressurized air 4: Blowing air 10: Denitrification treatment apparatus 10a: First section 10b: Second section 10c: Third section 11: Sulfur material layer 12a: Partition wall 12b: Partition wall 20: Denitrification treatment device 21: Compressor 22: Solenoid valve 23: Pressurized air introduction tube 24: T-shaped member 24a: Horizontal bar portion 24b: Vertical bar portion 30: Denitrification treatment device 31: Gradient 41: Tank 42: Sulfur material layer 43: Raw water supply pipe

Claims (12)

粉末硫黄、アルカリ剤、および界面活性剤を含む、脱窒用硫黄資材。   Sulfur materials for denitrification, including powdered sulfur, alkaline agent, and surfactant. 前記アルカリ剤が炭酸カルシウムおよび/または炭酸マグネシウムを含む、請求項1に記載の脱窒用硫黄資材。   The sulfur material for denitrification according to claim 1, wherein the alkaline agent contains calcium carbonate and / or magnesium carbonate. 前記アルカリ剤が、天然マグネサイトおよび/または合成マグネサイトを含む、請求項1または2に記載の脱窒用硫黄資材。   The sulfur material for denitrification according to claim 1 or 2, wherein the alkaline agent includes natural magnesite and / or synthetic magnesite. 前記界面活性剤がノニオン系界面活性剤を含む、請求項1〜3のいずれか一項に記載の脱窒用硫黄資材。   The sulfur material for denitrification as described in any one of Claims 1-3 in which the said surfactant contains a nonionic surfactant. 脱窒用硫黄資材の総重量に対して、前記粉末硫黄の含有量が30〜69.5重量%であり、前記アルカリ剤の含有量が30〜69.5重量%であり、かつ前記界面活性剤の含有量が0.5〜5重量%である、請求項1〜4のいずれか一項に記載の脱窒用硫黄資材。   The content of the powdered sulfur is 30 to 69.5% by weight, the content of the alkaline agent is 30 to 69.5% by weight, and the surface activity is based on the total weight of the sulfur material for denitrification. The sulfur material for denitrification as described in any one of Claims 1-4 whose content of an agent is 0.5 to 5 weight%. 前記アルカリ剤が炭酸カルシウムを含み、炭酸カルシウムの総重量に対する、60メッシュパスの炭酸カルシウムの粒子の含有量が10重量%以下である、請求項1〜5のいずれか一項に記載の脱窒用硫黄資材。   The denitrification according to any one of claims 1 to 5, wherein the alkaline agent contains calcium carbonate, and a content of 60 mesh pass calcium carbonate particles is 10 wt% or less based on a total weight of calcium carbonate. Sulfur material. 粉末硫黄、アルカリ剤、および界面活性剤を、混練する工程を含む、脱窒用硫黄資材の製造方法。   A method for producing a sulfur material for denitrification, comprising a step of kneading powdered sulfur, an alkali agent, and a surfactant. 請求項1〜6のいずれか一項に記載の脱窒用硫黄資材と、排水とを接触させる工程を含む、排水の脱窒処理方法。   A method for denitrifying wastewater, comprising a step of bringing the sulfur material for denitrification according to any one of claims 1 to 6 into contact with wastewater. 請求項1〜6のいずれか一項に記載の脱窒用硫黄資材を含む脱窒処理装置。   The denitrification processing apparatus containing the sulfur material for denitrification as described in any one of Claims 1-6. 液体を収容可能な槽と、
前記槽内で、鉛直方向の隔壁により区画され、前記隔壁の直下の通液空間により連通された第1区画および第2区画と、
第1区画内の下部、第2区画内の下部および前記通液空間に、請求項1〜6のいずれか一項に記載の脱窒用硫黄資材が通液空間より上方の高さまで堆積された硫黄資材層と、
前記通液空間近傍に連通し、第1区画の硫黄資材層および第2区画の硫黄資材層に加圧空気を供給する加圧空気供給管と、
を有する、請求項9に記載の脱窒処理装置。
A tank capable of containing liquid;
In the tank, a first compartment and a second compartment that are partitioned by a partition in the vertical direction and communicated by a liquid passing space immediately below the partition,
The denitrification sulfur material according to any one of claims 1 to 6 is deposited to a height above the liquid passing space in the lower part in the first compartment, the lower part in the second compartment, and the liquid passing space. A sulfur material layer,
A pressurized air supply pipe which communicates with the vicinity of the liquid passing space and supplies pressurized air to the sulfur material layer of the first section and the sulfur material layer of the second section;
The denitrification processing apparatus according to claim 9, comprising:
液体を収容可能な槽と、
前記槽内で、鉛直方向の隔壁により区画され、前記隔壁の直下の通液空間により連通された第1区画および第2区画と、
第1区画内の下部、第2区画内の下部および前記通液空間に、請求項1〜6のいずれか一項に記載の脱窒用硫黄資材が通液空間より上方の高さまで堆積された硫黄資材層と、
前記槽の外面および/または硫黄資材層内に設置された振動子と、
を有する、請求項9に記載の脱窒処理装置。
A tank capable of containing liquid;
In the tank, a first compartment and a second compartment that are partitioned by a partition in the vertical direction and communicated by a liquid passing space immediately below the partition,
The denitrification sulfur material according to any one of claims 1 to 6 is deposited to a height above the liquid passing space in the lower part in the first compartment, the lower part in the second compartment, and the liquid passing space. A sulfur material layer,
A vibrator installed on the outer surface of the tank and / or in the sulfur material layer;
The denitrification processing apparatus according to claim 9, comprising:
液体を収容可能な槽と、
前記槽内の下部に請求項1〜6のいずれか一項に記載の脱窒用硫黄資材が堆積された硫黄資材層と、
前記槽外から硫黄資材層内に液体を供給する手段と、
を有し、
供給された液体は、層内底部で反転して上向流となる、請求項9に記載の脱窒処理装置。
A tank capable of containing liquid;
A sulfur material layer in which the sulfur material for denitrification according to any one of claims 1 to 6 is deposited at a lower portion in the tank,
Means for supplying liquid into the sulfur material layer from outside the tank;
Have
The denitrification processing apparatus according to claim 9, wherein the supplied liquid is reversed at the bottom in the layer and becomes an upward flow.
JP2017237558A 2016-12-14 2017-12-12 Sulfur material for denitrification Active JP6935653B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016241905 2016-12-14
JP2016241905 2016-12-14

Publications (2)

Publication Number Publication Date
JP2018094553A true JP2018094553A (en) 2018-06-21
JP6935653B2 JP6935653B2 (en) 2021-09-15

Family

ID=62634065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017237558A Active JP6935653B2 (en) 2016-12-14 2017-12-12 Sulfur material for denitrification

Country Status (1)

Country Link
JP (1) JP6935653B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044961A (en) * 2021-03-02 2021-06-29 无锡映川环境技术有限公司 Carrier with autotrophic denitrification function and preparation method thereof
CN113104976A (en) * 2021-05-08 2021-07-13 无锡映川环境技术有限公司 Flocculent autotrophic denitrification composite material and preparation method thereof
CN114620832A (en) * 2022-04-15 2022-06-14 合肥工业大学 Sulfur-based autotrophic microbial denitrification material and preparation and application methods thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155491A (en) * 1994-12-05 1996-06-18 Kurita Water Ind Ltd Biological denitrification apparatus
KR20030008416A (en) * 2001-07-18 2003-01-29 현대중공업 주식회사 Advanced wastewater treatment system with alkalinity-added sulfur media and submerged membrane module
JP2003033794A (en) * 2001-07-23 2003-02-04 Nippon Steel Chem Co Ltd Biochemical removing equipment of nitrite nitrogen
JP2003334590A (en) * 2002-05-17 2003-11-25 Nippon Steel Chem Co Ltd Method for removing nitrate nitrogen in wastewater
JP2003340488A (en) * 2002-05-29 2003-12-02 Matsushita Electric Ind Co Ltd Identification system and denitrification method
JP2005211832A (en) * 2004-01-30 2005-08-11 Nippon Steel Corp Method for removing ammonia nitrogen from waste water
JP2006015310A (en) * 2004-07-05 2006-01-19 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and production method therefor
JP2006015320A (en) * 2004-06-01 2006-01-19 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and wastewater treatment method
JP2006272161A (en) * 2005-03-29 2006-10-12 Nippon Steel Chem Co Ltd Method and apparatus for treating nitrate nitrogen-containing waste water
US20070262019A1 (en) * 2005-12-23 2007-11-15 Sukalyan Sengupta Process for autotrophic denitrification using elemental sulfur and mollusk shells
KR20080109985A (en) * 2007-06-14 2008-12-18 (주)일신종합환경 A porous sulfur-calcium carbonate foam including polymer and method for eliminating nitrate through sulfur-oxidation denitrification using the same
JP2013022494A (en) * 2011-07-19 2013-02-04 Kurita Water Ind Ltd Method of cleaning nitrate nitrogen-containing ground water
JP2017100088A (en) * 2015-12-02 2017-06-08 国立研究開発法人農業・食品産業技術総合研究機構 Sulfur denitrification technique for pig farming waste water by reactor provided with simple warming system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155491A (en) * 1994-12-05 1996-06-18 Kurita Water Ind Ltd Biological denitrification apparatus
KR20030008416A (en) * 2001-07-18 2003-01-29 현대중공업 주식회사 Advanced wastewater treatment system with alkalinity-added sulfur media and submerged membrane module
JP2003033794A (en) * 2001-07-23 2003-02-04 Nippon Steel Chem Co Ltd Biochemical removing equipment of nitrite nitrogen
JP2003334590A (en) * 2002-05-17 2003-11-25 Nippon Steel Chem Co Ltd Method for removing nitrate nitrogen in wastewater
JP2003340488A (en) * 2002-05-29 2003-12-02 Matsushita Electric Ind Co Ltd Identification system and denitrification method
JP2005211832A (en) * 2004-01-30 2005-08-11 Nippon Steel Corp Method for removing ammonia nitrogen from waste water
JP2006015320A (en) * 2004-06-01 2006-01-19 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and wastewater treatment method
JP2006015310A (en) * 2004-07-05 2006-01-19 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and production method therefor
JP2006272161A (en) * 2005-03-29 2006-10-12 Nippon Steel Chem Co Ltd Method and apparatus for treating nitrate nitrogen-containing waste water
US20070262019A1 (en) * 2005-12-23 2007-11-15 Sukalyan Sengupta Process for autotrophic denitrification using elemental sulfur and mollusk shells
KR20080109985A (en) * 2007-06-14 2008-12-18 (주)일신종합환경 A porous sulfur-calcium carbonate foam including polymer and method for eliminating nitrate through sulfur-oxidation denitrification using the same
JP2013022494A (en) * 2011-07-19 2013-02-04 Kurita Water Ind Ltd Method of cleaning nitrate nitrogen-containing ground water
JP2017100088A (en) * 2015-12-02 2017-06-08 国立研究開発法人農業・食品産業技術総合研究機構 Sulfur denitrification technique for pig farming waste water by reactor provided with simple warming system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044961A (en) * 2021-03-02 2021-06-29 无锡映川环境技术有限公司 Carrier with autotrophic denitrification function and preparation method thereof
CN113104976A (en) * 2021-05-08 2021-07-13 无锡映川环境技术有限公司 Flocculent autotrophic denitrification composite material and preparation method thereof
CN114620832A (en) * 2022-04-15 2022-06-14 合肥工业大学 Sulfur-based autotrophic microbial denitrification material and preparation and application methods thereof

Also Published As

Publication number Publication date
JP6935653B2 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
JP2018094553A (en) Sulfur material for denitrification
JPH0899092A (en) Waste water treatment apparatus and method
WO2016159091A1 (en) Method for forming aerobic granules, device for forming aerobic granules, method for treating wastewater, and device for treating wastewater
KR101671491B1 (en) Advanced water-treating apparatus and method for wastewater
US11713262B2 (en) Rare earth clarifying agent and method for use in primary treatment of wastewater
KR20130105716A (en) Liquid waste treatment device and liquid waste treatment method
KR20180098348A (en) Use of magnesium hydroxide in neutralization of PTA wastewater
JP4713201B2 (en) Phosphorus remover supply device and small-scale wastewater septic tank equipped with the same
JP5154671B2 (en) Solid phosphorus removing agent and waste water septic tank provided with the same
KR101237408B1 (en) Appartus for reducing nitrogen of sewage and wastewater having stayover device of active sludge and method for reducing nitrogen using it
JP2008068248A (en) Solid phosphorus removing agent, method for producing the same, method for dissolving the same in water, apparatus for dissolving the same and waste water cleaning tank equipped with the apparatus
JP4934896B2 (en) Multifunctional water treatment agent
JP2001269689A (en) Solid denitrification/dephosphorization accelerating agent
US20200361800A1 (en) Composition for water treatment and methods of manufacture
DE10120421B4 (en) Nitrate removal from aquarium water
JPH0376200B2 (en)
JP2014124581A (en) Carrier for water treatment, production method thereof, and wastewater treatment system
EP1256278A1 (en) Phytoplankton growth inhibitors and method of water purification with the use of the same
JP4757788B2 (en) Denitrification accelerator
JP2001190929A (en) Exhaust gas treatment method
JP4562935B2 (en) Apparatus and method for treating nitrate nitrogen in sea water
JP2022042384A (en) Method for treating organic wastewater and apparatus for treating organic wastewater
JP2005095758A (en) Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus
JP2009112992A (en) Method and apparatus for treating waste water containing organic matter
CN117003385B (en) Fluidized bed for sewage denitration and fluidization treatment method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210806

R150 Certificate of patent or registration of utility model

Ref document number: 6935653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150