JP4562935B2 - Apparatus and method for treating nitrate nitrogen in sea water - Google Patents

Apparatus and method for treating nitrate nitrogen in sea water Download PDF

Info

Publication number
JP4562935B2
JP4562935B2 JP2001083434A JP2001083434A JP4562935B2 JP 4562935 B2 JP4562935 B2 JP 4562935B2 JP 2001083434 A JP2001083434 A JP 2001083434A JP 2001083434 A JP2001083434 A JP 2001083434A JP 4562935 B2 JP4562935 B2 JP 4562935B2
Authority
JP
Japan
Prior art keywords
seawater
denitrification
nitrate nitrogen
sulfur
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001083434A
Other languages
Japanese (ja)
Other versions
JP2002273475A (en
Inventor
俊明 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2001083434A priority Critical patent/JP4562935B2/en
Publication of JP2002273475A publication Critical patent/JP2002273475A/en
Application granted granted Critical
Publication of JP4562935B2 publication Critical patent/JP4562935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水槽中の海水に含まれる硝酸性窒素の除去方法及び装置に関するものである。更には、海水魚の閉鎖系循環飼育における硝酸性窒素処理方法に関するものである。
【0002】
【従来の技術】
近年、陸上養殖が注目されており、閉鎖循環系における硝酸性窒素処理が問題になっている。特に、海水系の場合、淡水系に比較して非常に硝酸性窒素処理が難しいために、従来の嫌気槽中で硝酸性窒素含有排水に直接水素供与体を投入して脱窒を行わせるものを用いると、低効率ゆえの大規模装置且つ多大な費用がかかるために、結果的に海水の閉鎖循環系条件での硝酸性窒素処理対策が不充分な状況であった。
【0003】
WO00/18694号公報には、硫黄とカルシウム系成分からなる脱窒無機材料を使用した硫黄酸化細菌による安価、且つ効率的な硝酸性窒素処理が提案されている。この方法は、微生物の働きにより脱窒を行うものであるため、環境の異なる海水中における硝酸性窒素処理への適用可能性は疑問があるものであった。
【0004】
【発明が解決しようとする課題】
本発明は、海水槽に対してコンパクトな容積を有する浄化処理装置にて閉鎖循環系を維持しながら海水中に含まれる硝酸性窒素を効果的に除去することを可能とする安価で実用的な海水中硝酸性窒素の処理方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、海洋生物を陸上で養殖するための水槽中の海水を閉鎖循環系で浄化するに当たり、水槽から連続的に海水の一部を抜き出し、その少なくとも一部を硫黄とカルシウム系成分からなり、硫黄と炭酸カルシウムの重量比率が、2:1〜3:2の範囲である脱窒無機材料が充填された脱窒装置を通過させて硫黄酸化脱窒細菌の働きにより硝酸性窒素を除去し、再び水槽に戻すこと、脱窒装置に充填された脱窒無機材料量m(kg)と、処理槽に流し込む海水量Q(L/day)との関係をm=aQで表したとき、aが0.05以上であることを特徴とする海水中の硝酸性窒素の処理方法である。また、本発明は、(A)海水を貯槽する水槽、(B)脱窒微生物が生育している硫黄とカルシウム系成分からなる脱窒無機材料が充填された脱窒装置及び(C)水槽の海水の一部を抜き出し、抜き出された海水の少なくとも一部を前記充填槽を通過させ、水槽に戻す手段を有してなることを特徴とする上記海水中の硝酸性窒素の処理方法に使用する海水中の硝酸性窒素の処理装置である。
【0006】
本発明は、海水の取入れの困難な陸地等に設けられた海水魚等の海洋生物を生育するための水槽の海水を浄化するものである。水槽の海水の浄化ための方法としては、ろ過、活性炭処理、空気暴気等が一般的であるが、硝酸性窒素の除去は一般的に困難であり、海水の入れ替え等が頻繁に必要となる。通常、海洋生物を入れる水槽は、浄化するための手段を備えた補助水槽や装置と接続して、連続的に海水を循環しており、閉鎖循環系を構成している。本発明の装置は、上記のような閉鎖循環系の一部に特定の脱窒無機材料が充填された脱窒装置を設置するものであり、脱窒装置には循環系の全部の海水が通過してもよく、バイパス路を設け一部のみを通過させてもよい。
【0007】
海水中における硝酸性窒素処理では、淡水中の場合と異なり、生物処理方式の脱窒処理環境が大きく変わるためため、処理する海水の流入量や温度の管理が重要となる。本発明の硫黄とカルシウム系成分からなる脱窒無機材料を使用する場合においても、この脱窒無機材料が充填された充填槽に流入される海水量を適量にコントロールすることが最良の結果を与えるため望ましい。
【0008】
すなわち、脱窒無機材料m(kg)と、処理装置に流し込む海水量Q(L/day)との関係をm=aQで表すとき、aは0.05以上、好ましくは0.1以上、より好ましくは0.2以上であることがよい。aの上限値については、技術上は特に制限を設けるものではない。aの値が大きければ大きいほど、脱窒無機材料と海水の接触時間が長くとれるので、硝酸性窒素の脱窒率は向上するが、aの値が大きくなると使用する脱窒無機材料量が増えるために、コストアップにつながったり、また装置の肥大化にもつながり、条件次第では過大設備になる恐れもあるため、先に述べた海水槽水槽に対する硝酸性窒素処理槽の大きさを出来るだけコンパクトにするという目的を考えればaの値は2以下が好ましい。なお、aの値は海水量Qを小さくすることによっても大きな値とすることができるが、処理海水量が減少し、全体としての硝酸性窒素の脱窒率は向上しない。
【0009】
そこで、水槽及び循環系の予備水槽、配管等で使用されている海水量M(L)と処理装置に流し込む海水量Q(L/day)の関係については、技術上は特に制限を設けるものではない。しかしながら前述のa値同様、Qのが大きくなるすぎると、使用する硫黄とカルシウム系成分からなる無機材料量が増えるために、コストアップつながったり、また装置の肥大化にもつながり、条件次第では過剰設備になる恐れもあるため、先に述べた海水槽水槽に対する硝酸性窒素処理槽の大きさを出来るだけコンパクトにするという目的を考えれば、ひとつの目安としてQ≦0.3Mが好ましい。また下限値についても同様で、特に制限を設けるものではないが、海水貯槽中の海水の硝酸性窒素濃度が極端に高い場合は、Q値が低すぎると、処理時間が長くなるなどの恐れも生ずるため、望ましくは0.01M≦Qであることがよい。これを、Q/Mで表せば、一日当たりの海水の回転率となり、海水の1%以上、30%以下を1日に処理装置に流し込むことになる。好ましくは0.05〜0.2/dayの範囲とすることが有利である。
そして、m=aQに、例えば前記のQ/M≧0.05/dayという式を組み込めば、m≧0.05aMとなり、更に、例えば前記のa≧0.05という式を組み込めば、m≧0.0025Mとなるから、処理装置に充填する脱窒無機材料量m(kg)は、海水量M(L)の1/400以上が必要と計算され、またm=aQに前記のQ/M≦0.2/dayという式を組み込めば、m≦0.2aMとなり、更に、例えば前記のa≦2という式を組み込めば、m≦0.4Mとなるから、処理装置に充填する脱窒無機材料量m(kg)は、海水量をM(L)の2/5以下が必要と計算されるが、好ましくは0.01〜0.3の範囲である。
【0010】
本発明において、処理装置に充填される硫黄とカルシウム系成分からなる脱窒無機材料は、前記WO00/18694号公報に記載されたような硫黄とカルシウム系成分とからなる無機材料を使用することが好ましい。例えば、溶融した硫黄に炭酸カルシウム又は炭酸カルシウムを含む粉末を分散させ、それを急冷して得られるものが挙げられる。硫黄と炭酸カルシウムの比率は広範囲に変えることができるが、2:1〜3:2の範囲程度が好ましい。その他、前記WO00/18694号公報に記載されたような多孔質物質、鉱物繊維等を配合することも有利である。かかる脱窒無機材料の原料、製造方法、使用条件等は、前記WO00/18694号公報等(例えば、特願平10−271920号、特願平11−159158号、特願平11−226206号、特願平11−2820077号等)の記載が参照できる。
【0011】
本発明における硝酸性窒素処理の原理は、脱窒無機材料と硫黄酸化脱窒細菌等の微生物によるものであるため、処理装置の温度は10〜50℃であることは好ましく、より望ましくは20〜40℃であることがよい。処理装置の温度が10℃よりも低くなったり、逆に50℃よりも高くなると、硫黄酸化脱窒細菌等の微生物の活性が低下するために好ましくない。硫黄酸化脱窒細菌等の微生物は硫黄を酸化して硫酸イオンとすると共に硝酸イオンや亜硝酸イオンのような硝酸性窒素を還元して窒素ガスとして放出する。この際、炭酸イオンも消費されるが水中の炭酸イオンの他、炭酸カルシウムの有する炭酸イオンも一部利用され、生成する硫酸イオンは炭酸カルシウムが中和する。
【0012】
本発明で使用する脱窒無機材料を充填する処理装置の形状は、槽状であっても、円筒状であっても差し支えないが、通常は実使用上利便性のよい円筒形状のものや直方体形状のものが好ましい。これらの処理装置は1つである必要は無く、目的に応じて複数使用してもよい。また、複数使用する場合、円筒形と直方体形状を併用してもよいし、並べ方も並列でもよいし直列でもよい。例えば、円筒形処理槽を2つ使用してU字管のようにして使用するやり方なども本発明の効果を発揮しやすい形状である。
【0013】
また、本発明においては、上記処理装置の他に、他の目的で使用される浄化装置、例えばろ過装置や活性炭吸着装置の他、塩分補給装置、温度調整装置、溶存酸素調整装置などを併設してもよい。例えば、当該処理装置の前に硝化槽や脱溶存酸素装置を付設したり、あるいは処理装置の後に消毒槽を付設することも好ましい態様である。更に、上記処理装置に行く海水と、他の処理装置に行く海水とに分岐させることも好ましい態様である。
【0014】
【発明の実施の形態】
図面を参照して以下に説明する。図1は本発明の海水槽と処理装置槽の関係を模式的に示す説明図である。海水槽1からポンプ5によりくみ上げられた海水2は、硫黄とカルシウム系成分からなる脱窒無機材料4を充填した処理装置3を所定の速度で通過し、硝酸性窒素が除去され。その後、海水槽1に循環される。なお、処理装置3はバンドヒーター等の温度制御装置により、所定温度に設定されている。また、下記の比較例及び実施例においては、木更津海岸にて採取した海水を使用した。
【0015】
【実施例】
実施例1〜3及び参考例1
長さ600mm×幅300mm×高さ450mmの海水槽に50Lの海水を入れて、ンプにて海水槽より1日あたり10Lの海水をくみ出して、粒形状5mm〜20mm範囲の不定形状の硫黄50重量部と炭酸カルシウム50重量部を溶融混合して得られた脱窒無機材料粒子を充填した処理装置に通水した。処理装置は直径160mm×高さ450mmの円筒形状とし、脱窒無機材料粒子の充填量を種々変化させた。処理装置の容積は海水槽の容積の1/8以下である。なお、海水はすべて閉鎖系で循環している。処理装置の温度は30℃に設定とした。この海水槽に大塚化学製のOK−F−2を硝酸性窒素濃度100mg/Lとなるように投入して、海水貯槽から処理槽へ通過する排水量を各種変化させて(すなわち、前記式Q=amにおけるa値を種々変化させて)、循環開始後の硝酸性窒素濃度の経時変化を調べた。結果を表1に示す。
【0016】
【表1】

Figure 0004562935
【0017】
実施例4〜6及び参考例2
実施例1〜3の装置に準ずる装置を使用して、長さ1500mm×幅600mm×高さ600mmの海水貯槽水槽に300Lの海水を入れて、ポンプにて海水貯槽より1日あたり50Lの海水をくみ出して、粒形状5mm〜20mm範囲の不定形状の硫黄50重量部と炭酸カルシウム50重量部からなる溶融混合無機材料粒充填槽に通水した。処理槽は高さ600mm×幅350mm×長さ400mmの直方体形状とし、無機物充填量を種々変化させた。処理槽の容積は海水槽水槽の容積の1/6以下である。その他の条件は実施例1〜3の条件と同じである。この海水貯槽に大塚化学製のOK−F−2を硝酸性窒素濃度200mg/Lとなるように投入して、海水貯槽から処理槽に通過する排水量を各種変化させて、循環開始後の硝酸性窒素濃度の経時変化を調べた。結果を表2に示す。
【0018】
【表2】
Figure 0004562935
【0019】
【発明の効果】
本発明によれば、通常、大規模且つ多大な費用を必要とする海水中の硝酸性窒素処理問題に対して、簡便且つ低コスト、効率的な硝酸性窒素処理を実現できる。従って、当該技術は従来困難とされてきた海水魚の閉鎖系循環飼育における硝酸性窒素処理方法を容易且つ効率的に解決できる手法として画期的である。発明の効果は顕著である。
【図面の簡単な説明】
【図1】 海水槽と処理装置槽の関係を示す説明図
【符号の説明】
1:海水槽
2:海水
3:処理装置
4:脱窒無機材料
5:ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for removing nitrate nitrogen contained in seawater in a water tank. Furthermore, it is related with the nitrate nitrogen processing method in the closed system circulation breeding of saltwater fish.
[0002]
[Prior art]
In recent years, land farming has attracted attention, and nitrate nitrogen treatment in a closed circulation system has become a problem. In particular, in the case of seawater systems, it is very difficult to treat nitrate nitrogen as compared to freshwater systems. Therefore, denitrification is performed by directly feeding a hydrogen donor into nitrate nitrogen-containing wastewater in a conventional anaerobic tank. As a result, a large-scale apparatus due to low efficiency and a large cost are required, and as a result, measures for treating nitrate nitrogen under seawater closed circulation conditions are insufficient.
[0003]
WO00 / 18694 proposes an inexpensive and efficient nitrate nitrogen treatment with sulfur-oxidizing bacteria using a denitrifying inorganic material composed of sulfur and calcium-based components. Since this method performs denitrification by the action of microorganisms, its applicability to nitrate nitrogen treatment in seawater in different environments has been questionable.
[0004]
[Problems to be solved by the invention]
The present invention is inexpensive and practical that enables effective removal of nitrate nitrogen contained in seawater while maintaining a closed circulation system in a purification apparatus having a compact volume with respect to the seawater tank. A method for treating nitrate nitrogen in seawater is provided.
[0005]
[Means for Solving the Problems]
In purifying seawater in an aquarium for aquaculture of marine organisms in a closed circulation system, the present invention continuously extracts a part of seawater from the aquarium, and at least a part thereof is composed of sulfur and calcium-based components . The nitrate-nitrogen is removed by the action of sulfur-oxidizing and denitrifying bacteria by passing through a denitrifying device filled with denitrifying inorganic material whose weight ratio of sulfur and calcium carbonate is in the range of 2: 1 to 3: 2. When the relationship between the amount of denitrification inorganic material m (kg) filled in the denitrification device and the amount of seawater Q (L / day) poured into the treatment tank is expressed as m = aQ, Is a treatment method of nitrate nitrogen in seawater, characterized by being 0.05 or more . The present invention also includes (A) a water tank for storing seawater, (B) a denitrification apparatus filled with a denitrification inorganic material comprising sulfur and calcium-based components on which denitrification microorganisms are grown, and (C) a water tank. extracting a portion of the seawater, at least a portion of the withdrawn seawater passed through the filling chamber, the processing method of nitrate nitrogen above Symbol seawater characterized by comprising a means for returning to the water tank It is a processing device for nitrate nitrogen in seawater to be used .
[0006]
The present invention purifies seawater in an aquarium for growing marine organisms such as marine fish provided on land where it is difficult to take in seawater. Filtration, activated carbon treatment, air storm, etc. are common methods for purifying seawater in aquariums, but removal of nitrate nitrogen is generally difficult and frequent replacement of seawater is required. . Usually, a water tank containing marine organisms is connected to an auxiliary water tank or device equipped with a means for purifying and continuously circulates seawater, thereby forming a closed circulation system. The apparatus of the present invention is to install a denitrification device filled with a specific denitrification inorganic material in a part of the closed circulation system as described above, and all the seawater in the circulation system passes through the denitrification device. Alternatively, a bypass path may be provided and only a part may be passed.
[0007]
In nitrate nitrogen treatment in seawater, the denitrification treatment environment of the biological treatment system is greatly changed, unlike in fresh water, so it is important to manage the inflow amount and temperature of the seawater to be treated. Even when the denitrified inorganic material comprising sulfur and calcium components of the present invention is used, the best result is obtained by controlling the amount of seawater flowing into the filling tank filled with the denitrified inorganic material to an appropriate amount. This is desirable.
[0008]
That is, when the relationship between the denitrifying inorganic material m (kg) and the amount of seawater Q (L / day) flowing into the treatment apparatus is expressed by m = aQ, a is 0.05 or more, preferably 0.1 or more. Preferably it is 0.2 or more. The upper limit value of a is not particularly limited in terms of technology. The larger the value of a, the longer the contact time between the denitrified inorganic material and seawater, so that the denitrification rate of nitrate nitrogen is improved, but the amount of denitrified inorganic material used increases as the value of a increases. Therefore, it leads to cost increase and equipment enlargement, and depending on the conditions, there is a possibility of over-equipment, so the size of the nitrate nitrogen treatment tank as compared to the seawater tank water tank mentioned above is as compact as possible In view of the purpose of making it, the value of a is preferably 2 or less. In addition, although the value of a can be made into a big value also by making the seawater quantity Q small, the amount of processed seawater reduces and the denitrification rate of nitrate nitrogen as a whole does not improve.
[0009]
Therefore, regarding the relationship between the amount of seawater M (L) used in water tanks and circulation reserve water tanks, piping, etc., and the amount of seawater Q (L / day) flowing into the treatment equipment, there is no particular restriction on the technology. Absent. However, as with the a value described above, if Q is too large, the amount of inorganic material composed of sulfur and calcium components to be used increases, leading to increased costs and increased equipment enlargement, depending on the conditions. In view of the purpose of making the size of the nitrate nitrogen treatment tank as small as possible relative to the seawater tank water tank as described above, Q ≦ 0.3M is preferable as one standard. The same applies to the lower limit value, and there is no particular restriction. However, if the nitrate nitrogen concentration of the seawater in the seawater storage tank is extremely high, if the Q value is too low, the processing time may increase. Therefore, it is desirable that 0.01M ≦ Q. If this is expressed in terms of Q / M, it will be the turnover rate of seawater per day, and 1% or more and 30% or less of seawater will be poured into the treatment device in one day. The range of 0.05 to 0.2 / day is advantageous.
Then, if m = aQ, for example, the above formula Q / M ≧ 0.05 / day is incorporated, then m ≧ 0.05 aM, and further, for example, if the above formula a ≧ 0.05 is incorporated, m ≧ Therefore, it is calculated that the denitrification inorganic material amount m (kg) to be charged in the processing apparatus needs to be 1/400 or more of the seawater amount M (L), and the above Q / M is calculated as m = aQ. If a formula of ≦ 0.2 / day is incorporated, m ≦ 0.2 aM, and further, for example, if a formula of a ≦ 2 is incorporated, m ≦ 0.4 M. The amount of material m (kg) is calculated to require the amount of seawater to be 2/5 or less of M (L), but is preferably in the range of 0.01 to 0.3.
[0010]
In the present invention, the denitrification inorganic material composed of sulfur and calcium-based components filled in the processing apparatus may be an inorganic material composed of sulfur and calcium-based components as described in WO00 / 18694. preferable. For example, what is obtained by dispersing calcium carbonate or a powder containing calcium carbonate in molten sulfur and rapidly cooling it. The ratio of sulfur and calcium carbonate can be varied over a wide range, but is preferably in the range of 2: 1 to 3: 2. In addition, it is advantageous to blend a porous material, mineral fiber, etc. as described in the above-mentioned WO00 / 18694. The raw material, production method, use conditions and the like of such denitrification inorganic materials are disclosed in the above-mentioned WO00 / 18694 (for example, Japanese Patent Application Nos. 10-271920, 11-159158, 11-226206, Reference can be made to the description of Japanese Patent Application No. 11-2820077.
[0011]
Since the principle of nitrate nitrogen treatment in the present invention is based on a denitrifying inorganic material and a microorganism such as sulfur-oxidizing denitrifying bacteria, the temperature of the treatment apparatus is preferably 10 to 50 ° C., more desirably 20 to It is good that it is 40 degreeC. If the temperature of the treatment apparatus is lower than 10 ° C., or conversely higher than 50 ° C., the activity of microorganisms such as sulfur oxidative denitrifying bacteria is lowered, which is not preferable. Microorganisms such as sulfur oxidizing denitrifying bacteria oxidize sulfur to sulfate ions and reduce nitrate nitrogen such as nitrate ions and nitrite ions to release them as nitrogen gas. At this time, carbonate ions are also consumed, but in addition to carbonate ions in water, some carbonate ions possessed by calcium carbonate are also utilized, and the generated sulfate ions are neutralized by calcium carbonate.
[0012]
The shape of the treatment apparatus filled with the denitrifying inorganic material used in the present invention may be a tank shape or a cylindrical shape, but is usually a cylindrical shape or a rectangular parallelepiped that is convenient for practical use. A shape is preferred. These processing apparatuses do not need to be one, and a plurality of processing apparatuses may be used according to the purpose. Moreover, when using two or more, a cylindrical shape and a rectangular parallelepiped shape may be used together, and the way of arrangement may be parallel or serial. For example, a method of using two cylindrical treatment tanks like a U-shaped tube is also a shape that can easily exert the effect of the present invention.
[0013]
In the present invention, in addition to the above-described treatment apparatus, a purification apparatus used for other purposes, for example, a filtration apparatus and an activated carbon adsorption apparatus, a salt replenishment apparatus, a temperature adjustment apparatus, a dissolved oxygen adjustment apparatus, and the like are also provided. May be. For example, it is also a preferable aspect that a nitrification tank or a desolved oxygen device is attached before the treatment apparatus, or a disinfection tank is attached after the treatment apparatus. Furthermore, it is also a preferable aspect to branch into seawater going to the processing apparatus and seawater going to another processing apparatus.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
This will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing the relationship between the seawater tank and the processing apparatus tank of the present invention. Seawater 2 pumped from seawater tank 1 by pump 5 passes through treatment device 3 filled with denitrified inorganic material 4 composed of sulfur and calcium-based components at a predetermined speed, and nitrate nitrogen is removed. Thereafter, it is circulated to the seawater tank 1. The processing device 3 is set to a predetermined temperature by a temperature control device such as a band heater. In the following comparative examples and examples, seawater collected at Kisarazu Beach was used.
[0015]
【Example】
Examples 1 to 3 and Reference Example 1
Put 50L of seawater in a seawater tank of length 600mm × width 300mm × height 450mm, pump 10L of seawater per day from the tank at the pump, 50 weights of irregular shaped sulfur in the particle shape range 5mm to 20mm And 50 parts by weight of calcium carbonate were passed through a treatment apparatus filled with denitrified inorganic material particles obtained by melt mixing. The treatment apparatus was a cylindrical shape having a diameter of 160 mm and a height of 450 mm, and the filling amount of the denitrified inorganic material particles was variously changed. The volume of the processing apparatus is 1/8 or less of the volume of the seawater tank. All seawater circulates in a closed system. The temperature of the processing apparatus was set to 30 ° C. In this seawater tank, OK-F-2 manufactured by Otsuka Chemical Co., Ltd. was introduced so as to have a nitrate nitrogen concentration of 100 mg / L, and various amounts of wastewater passed from the seawater storage tank to the treatment tank were changed (that is, the above-mentioned formula Q = Various changes were made to the value a in am), and the time course of nitrate nitrogen concentration after the start of circulation was examined. The results are shown in Table 1.
[0016]
[Table 1]
Figure 0004562935
[0017]
Examples 4 to 6 and Reference Example 2
Using a device similar to the devices of Examples 1 to 3, 300 L of seawater is put into a seawater storage tank with a length of 1500 mm × width of 600 mm × height of 600 mm, and 50 L of seawater is supplied from the seawater storage tank by a pump per day. The mixture was poured and passed through a molten mixed inorganic material grain filling tank composed of 50 parts by weight of sulfur having an irregular shape with a grain shape ranging from 5 mm to 20 mm and 50 parts by weight of calcium carbonate. The treatment tank had a rectangular parallelepiped shape with a height of 600 mm, a width of 350 mm, and a length of 400 mm, and various inorganic substance filling amounts were changed. The volume of the treatment tank is 1/6 or less of the volume of the seawater tank water tank. Other conditions are the same as the conditions of Examples 1-3. OK-F-2 manufactured by Otsuka Chemical is introduced into this seawater storage tank so that the concentration of nitrate nitrogen is 200 mg / L, and the amount of drainage passing from the seawater storage tank to the treatment tank is changed in various ways. The time course of nitrogen concentration was examined. The results are shown in Table 2.
[0018]
[Table 2]
Figure 0004562935
[0019]
【The invention's effect】
According to the present invention, a simple, low-cost and efficient nitrate nitrogen treatment can be realized for the problem of nitrate nitrogen treatment in seawater, which usually requires a large scale and a large cost. Therefore, this technique is epoch-making as a technique that can easily and efficiently solve the nitrate nitrogen treatment method in closed circulation circulation of seawater fish, which has been considered difficult in the past. The effect of the invention is remarkable.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the relationship between a seawater tank and a processing apparatus tank.
1: Sea tank
2: Seawater
3: Processing equipment
4: Denitrification inorganic material
5: Pump

Claims (3)

海洋生物を陸上で養殖するための水槽中の海水を閉鎖循環系で浄化するに当たり、水槽から連続的に海水の一部を抜き出し、その少なくとも一部を硫黄とカルシウム系成分からなり、硫黄と炭酸カルシウムの重量比率が、2:1〜3:2の範囲である脱窒無機材料が充填された脱窒装置を通過させて硫黄酸化脱窒細菌の働きにより硝酸性窒素を除去し、再び水槽に戻すこと、脱窒装置に充填された脱窒無機材料量m(kg)と、処理槽に流し込む海水量Q(L/day)との関係をm=aQで表したとき、aが0.05以上であることを特徴とする海水中の硝酸性窒素の処理方法。Upon purifying sea water in the water tank for farming marine organisms on land in a closed circulation system, continuously from the water tank extracting a portion of the seawater becomes the least part of the sulfur and calcium-based component, sulfur and carbonate Pass through a denitrification device filled with denitrification inorganic material whose weight ratio of calcium is in the range of 2: 1 to 3: 2 to remove nitrate nitrogen by the action of sulfur oxidative denitrification bacteria , and return to the water tank again When a relationship between the amount of denitrification inorganic material m (kg) filled in the denitrification apparatus and the amount of seawater Q (L / day) poured into the treatment tank is expressed as m = aQ, a is 0.05. A method for treating nitrate nitrogen in seawater, which is as described above. 脱窒装置に充填された脱窒無機材料量m(kg)と、処理槽に流し込む海水量Q(L/day)との関係をm=aQで表したとき、aが0.1以上、2以下であり、水槽及び循環系で使用されている海水量M(L)と処理装置に流し込む海水量Q(L/day)の関係が0.01M≦Q≦0.3Mである請求項1記載の海水中の硝酸性窒素の処理方法。When the relationship between the amount of denitrification inorganic material m (kg) filled in the denitrification device and the amount of seawater Q (L / day) poured into the treatment tank is expressed by m = aQ, a is 0.1 or more, 2 2. The seawater according to claim 1 , wherein the relationship between the amount of seawater M (L) used in the water tank and the circulation system and the amount of seawater Q (L / day) poured into the treatment apparatus is 0.01M ≦ Q ≦ 0.3M. Treatment method for nitrate nitrogen. (A)海洋生物を陸上で養殖するための海水を貯槽する水槽、(B)脱窒微生物が生育している硫黄とカルシウム系成分からなり、硫黄と炭酸カルシウムの重量比率が、2:1〜3:2の範囲である脱窒無機材料が充填された脱窒装置及び(C)水槽の海水の一部を抜き出し、抜き出された海水の少なくとも一部を前記脱窒装置を通過させ、水槽に戻す手段を有してなることを特徴とする請求項1又は2に記載の海水中の硝酸性窒素の処理方法に使用する海水中の硝酸性窒素の処理装置。(A) a water tank to reservoir seawater for farming marine organisms on land, (B) Ri Do from sulfur and calcium-based component denitrifying organisms are growing, the weight ratio of sulfur and calcium carbonate, 2: 1 A denitrification apparatus filled with a denitrification inorganic material in a range of ˜3: 2 and (C) a part of the seawater in the water tank is extracted, and at least a part of the extracted seawater is passed through the denitrification apparatus, The apparatus for treating nitrate nitrogen in seawater used in the method for treating nitrate nitrogen in seawater according to claim 1 or 2, further comprising means for returning to the water tank.
JP2001083434A 2001-03-22 2001-03-22 Apparatus and method for treating nitrate nitrogen in sea water Expired - Fee Related JP4562935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001083434A JP4562935B2 (en) 2001-03-22 2001-03-22 Apparatus and method for treating nitrate nitrogen in sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001083434A JP4562935B2 (en) 2001-03-22 2001-03-22 Apparatus and method for treating nitrate nitrogen in sea water

Publications (2)

Publication Number Publication Date
JP2002273475A JP2002273475A (en) 2002-09-24
JP4562935B2 true JP4562935B2 (en) 2010-10-13

Family

ID=18939243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001083434A Expired - Fee Related JP4562935B2 (en) 2001-03-22 2001-03-22 Apparatus and method for treating nitrate nitrogen in sea water

Country Status (1)

Country Link
JP (1) JP4562935B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031084A1 (en) * 2002-09-30 2004-04-15 Nippon Steel Chemical Co., Ltd. Method of removing nitrate nitrogen and device used for the method
JP4493927B2 (en) * 2003-04-28 2010-06-30 新日鐵化学株式会社 Nitrate nitrogen treatment material and nitrate nitrogen treatment method
JP2013063036A (en) * 2011-09-16 2013-04-11 Clion Co Ltd Method for raising aquatic animals, and method for removing nitrate-nitrogen
KR101342052B1 (en) 2012-07-10 2013-12-18 윤효석 Method for removing nitrates from a solution comprising salt ingredient
US9994466B2 (en) 2016-10-04 2018-06-12 Georgia Aquarium Inc. Removing nitrate from water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07255321A (en) * 1994-03-18 1995-10-09 Chowa Kensui Kyodo Kumiai Suspension removing device and water cleaning device and pisciculture device with no water exchange using these devices
JP2000093997A (en) * 1998-09-25 2000-04-04 Nitchitsu Co Ltd Nitrate nitrogen denitrifying substrate
JP2000279991A (en) * 1999-01-27 2000-10-10 Masao Yano Denitrification/reduction type water cleaning treatment system using facultative anaerobic bacteria
JP2000308900A (en) * 1999-04-26 2000-11-07 Nippon Steel Corp Treatment of ammonia-containing waste water
JP2000343097A (en) * 1999-06-07 2000-12-12 Nitchitsu Co Ltd Nitrate nitrogen denitrification substrate and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07255321A (en) * 1994-03-18 1995-10-09 Chowa Kensui Kyodo Kumiai Suspension removing device and water cleaning device and pisciculture device with no water exchange using these devices
JP2000093997A (en) * 1998-09-25 2000-04-04 Nitchitsu Co Ltd Nitrate nitrogen denitrifying substrate
JP2000279991A (en) * 1999-01-27 2000-10-10 Masao Yano Denitrification/reduction type water cleaning treatment system using facultative anaerobic bacteria
JP2000308900A (en) * 1999-04-26 2000-11-07 Nippon Steel Corp Treatment of ammonia-containing waste water
JP2000343097A (en) * 1999-06-07 2000-12-12 Nitchitsu Co Ltd Nitrate nitrogen denitrification substrate and its production

Also Published As

Publication number Publication date
JP2002273475A (en) 2002-09-24

Similar Documents

Publication Publication Date Title
JP2665789B2 (en) Biological purification method of water containing organic substances and derivatives thereof using action and diffusion of aerobic and anaerobic microorganisms, and apparatus for using the same
Otte et al. Management of a closed brackish water system for high-density fish culture by biological and chemical water treatment
KR102051259B1 (en) An eco-friendly denitration device based on salinity tolerant aerobic granular sludge
JPH08502897A (en) Water quality management of fish culture ponds
JPWO2017110296A1 (en) Denitrification device and aquatic animal breeding system
WO2007138604A2 (en) Denitrification treatment system and method
JP4578278B2 (en) Sewage treatment apparatus and treatment method
JP4092454B2 (en) Water treatment method
JP4562935B2 (en) Apparatus and method for treating nitrate nitrogen in sea water
NL2002938C2 (en) SYSTEM AND METHOD FOR TREATING AN AQUEOUS WASTE STREAM.
JP2019181378A (en) Nitrogen treatment method
JPH05169090A (en) Device for supplying nitrification bacteria in biological activated carbon treatment tower
JP4143748B2 (en) Integrated biological nitrification / denitrification system
JP2013063036A (en) Method for raising aquatic animals, and method for removing nitrate-nitrogen
JP2022125959A (en) Water bottom purifier
EP3024319B1 (en) New hybrid biodegradable polymer for efficient nitrogen and phosphate reduction
JPH10263594A (en) Removing method and device of nitrate ion in waste water
JP2021079321A (en) Denitriding material, denitridation treatment device, manufacturing method thereof and breeding method
JP4756260B2 (en) Method for treating inorganic nitrogen / phosphorus water with suspension
JP2004033874A (en) Culture tank for marine nitrifying sludge and culture system
KR100403288B1 (en) A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification
JP2000157100A (en) Device for treating water for producing and breeding fry of fishes or the like and method for treating water
JPH07116683A (en) Silicate adding activated sludge method
JP2004000861A (en) Method and apparatus for removing nitrate nitrogen in water
JP2021079323A (en) Denitriding material, manufacturing method of nitriding material, nitrification method and denitrification treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160806

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees