JP2022125959A - Water bottom purifier - Google Patents

Water bottom purifier Download PDF

Info

Publication number
JP2022125959A
JP2022125959A JP2021198272A JP2021198272A JP2022125959A JP 2022125959 A JP2022125959 A JP 2022125959A JP 2021198272 A JP2021198272 A JP 2021198272A JP 2021198272 A JP2021198272 A JP 2021198272A JP 2022125959 A JP2022125959 A JP 2022125959A
Authority
JP
Japan
Prior art keywords
water
filter medium
treated
bacteria
bioreactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021198272A
Other languages
Japanese (ja)
Inventor
洋 大谷
Hiroshi Otani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WILLSTAGE CO Ltd
Original Assignee
WILLSTAGE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=80469025&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2022125959(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by WILLSTAGE CO Ltd filed Critical WILLSTAGE CO Ltd
Priority to JP2021198272A priority Critical patent/JP2022125959A/en
Publication of JP2022125959A publication Critical patent/JP2022125959A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a water bottom purifier for efficiently reducing a thickness of an organic matter sedimented in a water bottom.
SOLUTION: A water bottom purifier includes a biological reaction apparatus 100 to be used in water treatment and upward flow generation means 600 to send water to be treated to the biological reaction apparatus. The biological reaction apparatus is assembled with a filter medium 200, a purification microorganism growing in the filter medium, a lead passage to lead water to be treated to the filter medium, a drainage water passage to drain water to be treated having been contacted with the filter medium, and aeration means 500 to supply oxygen to water to be treated to be lead to the filter medium. The purification microorganism comprises a hay bacillus which is an aerobic microorganism decomposing a dissolved organic matter, a nitrifying bacteria which is an aerobic microorganism conducting nitrification reaction, and a denitrification bacteria which is an anaerobic microorganism conducting denitrification reaction. The hay bacillus, the nitrifying bacteria, and the denitrification bacteria growth in the same filter medium, and nitrification and denitrification of a nitrogen compound involved in the water to be treated are performed simultaneously.
SELECTED DRAWING: Figure 9
COPYRIGHT: (C)2022,JPO&INPIT

Description

この発明は下水や上水の処理、あるいはその他の様々な水処理に用いることができる生物反応装置に関する発明である。また、有機物が堆積した水底を浄化するための、上記生物反応装置を用いた水底浄化装置に関する発明である。 The present invention relates to a bioreactor that can be used for treating sewage, tap water, or various other water treatments. The invention also relates to a water bottom cleaning apparatus using the bioreactor for cleaning a water bottom on which organic matter is deposited.

高度な水の浄化は、物理的な浄化と、バクテリア等の微生物による生物反応装置を用いた浄化を組み合わせて行われる。生物反応装置を用いた浄化においては、有機物の除去とアンモニアや硝酸等の窒素化合物の除去が主に行われる。 Advanced water purification combines physical purification with bioreactor purification by microorganisms such as bacteria. In purification using a biological reactor, removal of organic substances and removal of nitrogen compounds such as ammonia and nitric acid are mainly performed.

下水処理においては、特にアンモニア態窒素の除去が重要である。最も一般的な下水処理においては、生物反応装置は、溶存酸素濃度が高い好気槽と低溶存酸素濃度の嫌気槽のふたつの濾過槽で構成される。
例えば、嫌気性細菌により有機物を分解する嫌気濾床槽1(嫌気槽)と、好気性菌により有機物を分解する接触曝気槽2(好気槽)から構成される排水処理装置が提案されている(例えば、特許文献1)。
Removal of ammonium nitrogen is particularly important in sewage treatment. In most common sewage treatment, the bioreactor consists of two filtration tanks, an aerobic tank with high dissolved oxygen concentration and an anaerobic tank with low dissolved oxygen concentration.
For example, there has been proposed a wastewater treatment apparatus composed of an anaerobic filter bed tank 1 (anaerobic tank) that decomposes organic matter with anaerobic bacteria and a contact aeration tank 2 (aerobic tank) that decomposes organic matter with aerobic bacteria. (For example, Patent Document 1).

また、装置の小型化、処理の簡素化を目的として、ひとつの槽で好気槽と嫌気槽を兼ねる単層式の浄化槽も開発されている。
例えば、ブロア7の運転を制御し、溶存酸素濃度を時間的に変化させることで、好気状態と嫌気状態を交互に作り出すことで、ひとつの槽で好気性菌と嫌気性菌による処理を実現している(例えば、特許文献2および特許文献3)。
In addition, for the purpose of downsizing the equipment and simplifying the treatment, a single-layer septic tank has been developed that serves both as an aerobic tank and an anaerobic tank.
For example, by controlling the operation of the blower 7 and changing the concentration of dissolved oxygen over time to alternately create aerobic and anaerobic conditions, aerobic and anaerobic bacteria can be treated in a single tank. (for example, Patent Document 2 and Patent Document 3).

異なる浮上濾材に好気性菌と嫌気性菌を繁殖させ、槽内の下部に比重が重い嫌気性菌用濾材を、上部に比重が重い好気性菌用濾材を浮遊させ、その中間に散気手段(曝気手段)を設け、被処理水を上昇流とすることで、ひとつの槽内で好気状態と嫌気状態を作り出し、好気性菌と嫌気性菌による処理を実現した例もある(例えば、特許文献4)。 Aerobic bacteria and anaerobic bacteria are propagated on different floating filter media, the filter media for anaerobic bacteria with heavy specific gravity are suspended in the lower part of the tank, the filter media for aerobic bacteria with heavy specific gravity are suspended in the upper part, and the aeration means is in the middle. (Aeration means) is provided to make the water to be treated rise, creating an aerobic state and an anaerobic state in one tank, realizing treatment with aerobic and anaerobic bacteria (for example, Patent Document 4).

特開平4-298290Japanese Patent Laid-Open No. 4-298290 特開平11-165190Japanese Patent Laid-Open No. 11-165190 特開平6-328099Japanese Patent Laid-Open No. 6-328099 特開2001-269688JP 2001-269688

特許文献1に記載された生物反応装置は、好気槽と無酸素槽のふたつのろ過槽が必要であり、また、複雑な活性汚泥量の返送制御や汚泥処理が必要であった。したがって、装置構成が複雑になり、また、装置が大型化し、さらには、処理時間が長くなるといった種々の問題があった。 The bioreactor described in Patent Document 1 requires two filtration tanks, an aerobic tank and an anoxic tank, and also requires complicated return control of activated sludge amount and sludge treatment. Therefore, there are various problems such as a complicated device configuration, an increased size of the device, and a longer processing time.

特許文献2や特許文献3に記載された、いわゆる間欠曝気により溶存酸素濃度を時間的に変化させる方法では、好気性菌と嫌気性菌とが十分に活性化するように曝気量を高精度に調整する必要がある。最適な曝気量は被処理水の汚れ具合や水温等によっても変化するため、高度な制御システムが必要となる。また、好気性菌による処理と嫌気性菌による処理が交互になされるので、浄化効率は高くない。 In the method of changing the dissolved oxygen concentration with time by so-called intermittent aeration described in Patent Document 2 and Patent Document 3, the aeration amount is adjusted with high accuracy so that aerobic bacteria and anaerobic bacteria are sufficiently activated. need to adjust. An advanced control system is required because the optimal amount of aeration varies depending on the degree of contamination of the water to be treated, the temperature of the water, and other factors. In addition, the treatment with aerobic bacteria and the treatment with anaerobic bacteria are alternately performed, so the purification efficiency is not high.

特許文献4に記載された場所によって溶存酸素濃度を変える方式も同様であり、曝気量の高度な管理が必要になる。また、被処理水の流れの上流側で嫌気性菌による処理が、下流側で好気性菌による処理が行われる。嫌気性菌による処理は、好気性菌による処理によって生じた亜硝酸や硝酸を還元し脱窒する処理である。したがって、処理の方向が反応の進行と逆であるため、全体としての処理効率が低下する。 The same applies to the method of changing the dissolved oxygen concentration depending on the location described in Patent Document 4, which requires advanced management of the amount of aeration. In addition, treatment with anaerobic bacteria is performed on the upstream side of the flow of the water to be treated, and treatment with aerobic bacteria is performed on the downstream side. The treatment with anaerobic bacteria is a treatment that reduces and denitrifies the nitrous acid and nitric acid produced by the treatment with aerobic bacteria. Therefore, since the direction of treatment is opposite to the progress of the reaction, the treatment efficiency as a whole is lowered.

したがって、特許文献2から4に記載された方式においては、いずれも好気性菌による処理と嫌気性菌による処理が別々に行われる。
本発明は上記の課題を解決するためになされたものであり、従来は実現できなかった好気性菌による処理と嫌気性菌による処理を同時に行う。これにより、これまでとは比較にならない高速の水の浄化を可能とするものである。
Therefore, in each of the methods described in Patent Documents 2 to 4, treatment with aerobic bacteria and treatment with anaerobic bacteria are performed separately.
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and simultaneously performs treatment with aerobic bacteria and treatment with anaerobic bacteria, which has not been possible in the past. This makes it possible to purify water at an incomparably high speed.

本発明に係る水底浄化装置は、
水処理に用いる生物反応装置と、
当該生物反応装置に被処理水を送る上昇流発生手段と
を有するものであって、
上記生物反応装置は、
濾材と、
当該濾材に生育する浄化微生物と、
上記濾材に被処理水を導く導入経路と、
上記濾材に接触した被処理水を排水する排水経路と、
上記濾材に導かれる被処理水に酸素を供給するための曝気手段と
を備え、
上記浄化微生物は、溶存有機物を分解する好気性微生物である枯草菌、硝化反応を行う好気性微生物である硝化菌、および、脱窒反応を行う嫌気性微生物である脱窒菌であり、
上記枯草菌、硝化菌、および脱窒菌は同一濾材内に生育し、
上記被処理水に含まれる窒素化合物の硝化と脱窒を同時に行う
ことを特徴とする。
The bottom water purification device according to the present invention is
a bioreactor for water treatment;
and an upward flow generating means for sending the water to be treated to the biological reactor,
The bioreactor is
a filter medium;
purifying microorganisms growing on the filter medium;
an introduction path for guiding the water to be treated to the filter medium;
a drainage path for draining the water to be treated that has come into contact with the filter medium;
and an aeration means for supplying oxygen to the water to be treated that is led to the filter medium,
The purifying microorganisms are Bacillus subtilis, which is an aerobic microorganism that decomposes dissolved organic matter, Nitrifying bacteria, which is an aerobic microorganism that performs nitrification, and Denitrifying bacteria, which is an anaerobic microorganism that performs denitrification,
The Bacillus subtilis, the nitrifying bacteria, and the denitrifying bacteria grow in the same filter medium,
Nitrification and denitrification of the nitrogen compounds contained in the water to be treated are performed simultaneously.

本発明の水処理に用いる生物反応装置は上記のように構成されているため、窒素化合物の硝化および脱窒を同時に行うことができる。これにより、従来の生物反応装置と比較して、極めて高速に硝化および脱窒を行うことができる。
したがって、水処理速度の高速化、高効率化が可能である。
さらに、装置構成が簡素であるため、装置の小型化も実現できる。
また、余剰の活性汚泥の発生が少なく、余剰汚泥処理コストを低減できる。さらに、硝化と脱窒が同時に進行するため、被処理水が酸性側に偏ることがない。したがって、中和のためのアルカリ添加が不要であり、pH調整のコストや手間も不要である。
Since the bioreactor used for water treatment of the present invention is configured as described above, nitrification and denitrification of nitrogen compounds can be performed simultaneously. This makes it possible to perform nitrification and denitrification at extremely high speeds compared to conventional bioreactors.
Therefore, it is possible to increase the speed and efficiency of water treatment.
Furthermore, since the device configuration is simple, the size of the device can be reduced.
In addition, little excess activated sludge is generated, and excess sludge treatment costs can be reduced. Furthermore, since nitrification and denitrification progress at the same time, the water to be treated is not biased toward the acidic side. Therefore, the addition of alkali for neutralization is unnecessary, and the cost and trouble of pH adjustment are unnecessary.

この生物反応装置に被処理水を送る上昇流発生手段をさらに設けることで、効率的に水底部の浄化を行う水底浄化装置を得ることができる。
河口部や沿岸部、湾、あるいは湖や池等においては、水底に厚く有機物が堆積し、水質悪化の大きな要因となっている。
浚渫によって堆積有機物を除去することも行われているが、莫大な除去費用が掛かるにもかかわらず、浚渫後には有機物が再び堆積するため、根本的な対策にはならない。
By further providing an upward flow generating means for sending the water to be treated to the biological reaction device, it is possible to obtain a water bottom purification device that efficiently purifies the water bottom.
In estuaries, coastal areas, bays, lakes, ponds, etc., organic matter accumulates thickly on the bottom of water, which is a major factor in deteriorating water quality.
Dredging is also used to remove deposited organic matter, but it is not a fundamental countermeasure because the organic matter accumulates again after dredging, despite the enormous cost of removal.

一方、ポンプやスクリュー等で堆積有機物を巻き上げる方法は、比較的低コストで行うことができるものの、巻き上げた有機物が周囲に拡散するため、汚染領域を拡大する恐れがある。
しかし、本発明においては、上述の水処理に用いる生物反応装置に、巻き上げた有機物を含む被処理水を導くことで、有機物が周囲に拡散する前に生物浄化を行うことができる。本発明の水処理に用いる生物反応装置が高い浄化効率を持つため、高濃度の有機物や無機窒素を含んだ被処理水であっても、良好な水質にまで処理できる。
On the other hand, the method of lifting up the deposited organic matter using a pump, screw, or the like can be performed at a relatively low cost, but there is a risk that the contaminated area will expand because the organic matter that has been lifted up diffuses into the surroundings.
However, in the present invention, by introducing the water to be treated containing the organic matter that has been swirled up into the bioreactor used for water treatment, biological purification can be performed before the organic matter diffuses into the surroundings. Since the bioreactor used for water treatment of the present invention has a high purification efficiency, even water to be treated containing high concentrations of organic substances and inorganic nitrogen can be treated to a good quality.

本発明の水処理に用いる生物反応装置の内部透過的側面図である。1 is an internal transparent side view of a bioreactor used for water treatment of the present invention; FIG. 本発明の水処理に用いる生物反応装置の内部透過的側面図であり、曝気手段を下流側に配置した場合を示している。FIG. 2 is a see-through side view of the bioreactor used for water treatment of the present invention, showing the case where the aeration means is arranged on the downstream side. 本発明の水処理に用いる生物反応装置で処理した水質の溶存酸素依存性を示す実験結果であり、曝気手段を上流側に配置した場合である。It is an experimental result showing the dissolved oxygen dependence of the quality of water treated with the bioreactor used for water treatment of the present invention, and is the case where the aeration means is arranged on the upstream side. 本発明の水処理に用いる生物反応装置で処理した水質の溶存酸素依存性を示す実験結果であり、曝気手段を下流側に配置した場合である。It is an experimental result showing the dissolved oxygen dependence of the quality of water treated with the bioreactor used for water treatment of the present invention, and is the case where the aeration means is arranged downstream. 本発明の水処理に用いる生物反応装置で処理した水質の濾材の粒径依存性を示す実験結果である。It is an experimental result which shows the particle size dependence of the filter medium of the water quality processed with the bioreactor used for the water treatment of this invention. 本発明の水処理に用いる生物反応装置で処理した水質の馴養期間依存性である。Fig. 2 shows the acclimation period dependence of water quality treated with the bioreactor used for water treatment of the present invention. 参考図であり、枯草菌を繁殖させない場合の水質の馴養期間依存性である。It is a reference diagram showing the acclimation period dependence of water quality when Bacillus subtilis is not propagated. 本発明の実施の形態2の水処理に用いる生物反応装置の内部透過的側面図である。FIG. 2 is an internal transparent side view of a bioreactor used for water treatment according to Embodiment 2 of the present invention. 本発明の実施の形態3の水底浄化装置の側面図である。It is a side view of the water bottom purification apparatus of Embodiment 3 of this invention. 本発明の実施の形態4のアクアポニックス装置の側面図である。It is a side view of an aquaponics device according to Embodiment 4 of the present invention.

本発明の水処理に用いる生物反応装置は、下水処理や上水処理、農業排水や畜産排水処理等の様々な水処理、すなわち水の浄化に用いることができる。
なお、従来の生物反応装置と同様に、物理的ろ過や化学的処理等と併せて用いることを想定したものである。もちろん、用途次第で、単独でも水の浄化を行うことができる。
The bioreactor used for water treatment of the present invention can be used for various water treatments such as sewage treatment, clean water treatment, agricultural wastewater treatment and livestock wastewater treatment, that is, water purification.
It should be noted that, like the conventional bioreactor, it is assumed to be used together with physical filtration, chemical treatment, and the like. Of course, depending on the application, it can also purify water alone.

以下において、いくつかの良好な実施の形態を説明するが、本発明はこれらの実施の形態に限定されるものではなく、同様の発明概念を広範に含むものである。
まず、実施の形態1において、本発明の水処理に用いる生物反応装置の基本的な要件を固定の濾材構成を中心にして説明する。次に、実施の形態2においては、流動濾材構成を中心に説明する。そして、実施の形態3においては、本発明の水処理に用いる生物反応装置の応用として、水底に堆積した有機物除去の方法について説明する。
Several preferred embodiments are described below, but the present invention is not limited to these embodiments, but broadly includes similar inventive concepts.
First, in Embodiment 1, the basic requirements of the bioreactor used for water treatment of the present invention will be described, centering on the configuration of a fixed filter medium. Next, in Embodiment 2, the configuration of the fluid filter medium will be mainly described. In Embodiment 3, as an application of the bioreactor used for water treatment of the present invention, a method for removing organic matter deposited on the bottom of water will be described.

実施の形態1.
<構成>
図1は、本発明の水処理に用いる生物反応装置の内部透過的側面図である。
図1に示すように、本発明に係る水処理に用いる生物反応装置1は、濾材2と、この濾材2に生育する浄化微生物と、濾材2に被処理水を導く導入経路3と、濾材2に接触した被処理水を排水する排水経路4と、濾材2に導かれる被処理水に酸素を供給するための曝気手段5を備えている。被処理水は、導入経路3から生物反応装置1に導入され、上記濾材2内を流れ、そして排水経路4から排水される。
Embodiment 1.
<Configuration>
FIG. 1 is an internal transparent side view of a bioreactor used for water treatment of the present invention.
As shown in FIG. 1, a bioreactor 1 used for water treatment according to the present invention includes a filter medium 2, purifying microorganisms growing on the filter medium 2, an introduction path 3 for guiding water to be treated to the filter medium 2, and the filter medium 2. and an aeration means 5 for supplying oxygen to the water to be treated led to the filter medium 2 . The water to be treated is introduced into the bioreactor 1 through the introduction path 3 , flows through the filtering medium 2 , and is discharged through the drainage path 4 .

濾材2は、微生物が繁殖できるものであれば、どのようなものであっても良い。例えば、砂利、礫、樹脂、セラミック等が適している。濾材2は、被処理水に浸漬している。あるいは、濾材2が被処理水に完全に浸漬していなくとも、濾材2に被処理水がシャワーのように滴下していても良い。 The filter medium 2 may be of any type as long as it allows microorganisms to propagate. For example, gravel, gravel, resin, ceramic, etc. are suitable. The filter medium 2 is immersed in the water to be treated. Alternatively, even if the filter medium 2 is not completely immersed in the water to be treated, the water to be treated may drip onto the filter medium 2 like a shower.

浄化微生物は、枯草菌、硝化菌、および脱窒菌であり、同一の濾材2内に生育する。
ここで、枯草菌とは、好気性のバクテリアであり、枯草菌(Bacillus subtilis)あるいは納豆菌(Bacillus subtilis var. natto)である。
硝化菌は、好気性のバクテリアであり、亜硝酸菌(アンモニア酸化細菌)および硝酸菌(亜硝酸酸化細菌)である。亜硝酸菌は土壌中のアンモニアを亜硝酸に酸化する細菌(ammonia oxidizing bacteria)あるいは、古細菌(ammonia oxidizing archaea)である。硝酸菌(nitrate bacteria)は、亜硝酸を硝酸に酸化する細菌である。
The purifying microorganisms are Bacillus subtilis, nitrifying bacteria, and denitrifying bacteria, and grow within the same filter medium 2 .
Here, Bacillus subtilis is an aerobic bacterium and is Bacillus subtilis or Bacillus subtilis var. natto.
Nitrifiers are aerobic bacteria, nitrites (ammonia-oxidizing bacteria) and nitrites (nitrite-oxidizing bacteria). Nitrite bacteria are bacteria that oxidize ammonia in soil to nitrite (ammonia oxidizing bacteria) or archaea (ammonia oxidizing archaea). Nitrate bacteria are bacteria that oxidize nitrite to nitrate.

また、脱窒菌は通性嫌気性細菌であり、硝酸HNO3または亜硝酸HNO2を還元し、窒素ガスに変えて空中に放出する作用をもつ菌で、脱窒素細菌とも呼ばれる。 In addition, denitrifying bacteria are facultative anaerobic bacteria that reduce nitrate HNO3 or nitrite HNO2, convert it to nitrogen gas, and release it into the air, and are also called denitrifying bacteria.

枯草菌、硝化菌、および脱窒菌を同一の濾材2内に生育(繁殖)することで、それらの協調的な関係が生まれることが本発明の大きなポイントである。同一の濾材2内に生育すると、これらの浄化微生物は、それぞれが最も効率的に働くことができるように、濾材2内の最適な場所で繁殖すると考えられる。そのため、それぞれが互いに協調的な働きができる。すなわち、相乗的な高効率の浄化反応が起きる可能性がある。特に、硝化反応と脱窒反応が同時に起こることで、窒素化合物を非常に高効率で窒素ガスに変換できる可能性がある。さらに、この際に枯草菌による有機物酸化反応が硝化および脱窒反応を加速化する可能性もある。 A major point of the present invention is that the growth (propagation) of Bacillus subtilis, nitrifying bacteria, and denitrifying bacteria in the same filter medium 2 creates a cooperative relationship among them. Grown within the same filter medium 2, these purifying microorganisms are believed to thrive in optimal locations within the filter medium 2 so that each can work most efficiently. Therefore, each can work cooperatively with each other. That is, synergistic highly efficient purification reactions may occur. In particular, the simultaneous occurrence of nitrification and denitrification may enable conversion of nitrogen compounds to nitrogen gas with very high efficiency. Furthermore, at this time, the oxidation reaction of organic substances by Bacillus subtilis may accelerate the nitrification and denitrification reactions.

曝気手段5は、ポンプや散気管等を用いて、酸素を被処理水中に導入するものである。純酸素を導入しても良いし、空気を導入しても良い。あるいは、空気や酸素のファインバブルであっても良い。図1においては、曝気手段5を生物反応装置1内に記載しているが、生物反応装置1内に被処理水を導入する前に、例えば、他の水槽を設けて、そこで被処理水に酸素を溶解しても良い。したがって、曝気手段5は必ずしも生物反応装置1内になくても良い。 The aeration means 5 introduces oxygen into the water to be treated using a pump, an air diffuser, or the like. Pure oxygen may be introduced, or air may be introduced. Alternatively, fine bubbles of air or oxygen may be used. In FIG. 1, the aeration means 5 is shown in the bioreactor 1, but before introducing the water to be treated into the bioreactor 1, for example, another water tank is provided, and the water to be treated is Oxygen may be dissolved. Therefore, the aeration means 5 does not necessarily have to be inside the bioreactor 1 .

<検証実験>
本発明の水処理に用いる生物反応装置の性能を検証するためのいくつかの実験を行った。以下において、これらの実験条件および実験結果について詳述する。
<Verification experiment>
Several experiments were conducted to verify the performance of the bioreactor used for water treatment of the present invention. These experimental conditions and experimental results are detailed below.

(検証実験1)
生物反応装置1の貯水槽は、縦横が1m、高さが1m20cmの水槽であり、その中に約1トンの被処理水を入れた。そして、毎分150Lの流量で被処理水を導入し、排水した。
生物反応装置1に導入する被処理水は、比較的汚れた河川の水を用い、それに硫酸アンモニウムを混ぜて、アンモニア態窒素濃度が10mg/Lとなるようにした。
(Verification experiment 1)
The water tank of the bioreactor 1 was 1 m long and 1 m20 cm high, and about 1 ton of water to be treated was placed therein. Then, the water to be treated was introduced and discharged at a flow rate of 150 L/min.
Relatively dirty river water was used as the water to be treated introduced into the bioreactor 1 and mixed with ammonium sulfate so that the ammonia nitrogen concentration was 10 mg/L.

濾材2としては、平均粒径が3mmの砂を用いた。砂の全容積は300Lである。被処理水を1か月流し続けることで、この濾材2に枯草菌、硝化菌、および脱窒菌を繁殖し、馴養させた。 Sand having an average particle size of 3 mm was used as the filter medium 2 . The total volume of sand is 300L. Bacillus subtilis, nitrifying bacteria, and denitrifying bacteria were propagated and acclimatized in the filter medium 2 by continuously flowing the water to be treated for one month.

導入する被処理水に予め窒素ガスを導入して溶存酸素濃度(DO)をほぼゼロにし、そして、曝気手段5の曝気量を変えることで、生物反応装置1内の被処理水の溶存酸素濃度を変化させた。溶存酸素濃度は、曝気手段5の近傍で測定した。すなわち、浄化微生物によって酸素が消費される前の水の溶存酸素濃度を測定した。
曝気手段5は、図1に示すように、濾材2に対して被処理水の流れの上流側(導入経路3側)に配置し、溶存酸素濃度はAで示す箇所で測定を行った。
比較のため、曝気手段の位置を変えて同様の実験も行った。図2に示すように、曝気手段5aを濾材2に対して被処理水の流れの下流側(排水経路4側)に配置し、溶存酸素濃度はBで示す箇所で測定を行った。
Nitrogen gas is introduced in advance into the water to be treated to make the dissolved oxygen concentration (DO) almost zero, and by changing the aeration amount of the aeration means 5, the dissolved oxygen concentration of the water to be treated in the bioreactor 1 changed. The dissolved oxygen concentration was measured in the vicinity of the aeration means 5. That is, the dissolved oxygen concentration of the water was measured before the oxygen was consumed by the purifying microorganisms.
As shown in FIG. 1, the aeration means 5 was arranged on the upstream side of the flow of the water to be treated (introduction path 3 side) with respect to the filter medium 2, and the dissolved oxygen concentration was measured at the point indicated by A.
For comparison, a similar experiment was also conducted by changing the position of the aeration means. As shown in FIG. 2, the aeration means 5a was arranged downstream of the flow of the water to be treated (on the side of the drainage path 4) with respect to the filter medium 2, and the dissolved oxygen concentration was measured at the point indicated by B.

水質は、被処理水排水手段4から排水される水の窒素化合物の除去の割合で判断した。すなわち、アンモニア態窒素、亜硝酸態窒素、硝酸態窒素の濃度を測定することで評価した。
なお、被処理水の水温は25℃である。
The water quality was judged by the rate of removal of nitrogen compounds from the water discharged from the water discharge means 4 to be treated. That is, evaluation was made by measuring the concentrations of ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen.
The water temperature of the water to be treated is 25°C.

図3は、曝気手段を濾材2に対して被処理水の流れの上流側に配置した場合(図1の場合)の水質評価結果、図4は曝気手段を濾材2に対して被処理水の流れの下流側に配置した場合(図2の場合)の水質評価結果である。横軸は溶存酸素濃度、縦軸は排水(浄化後の水)のアンモニア態窒素、亜硝酸態窒素、硝酸態窒素の各濃度である。 3 shows the water quality evaluation results when the aeration means is arranged upstream of the flow of the water to be treated with respect to the filter medium 2 (in the case of FIG. 1), and FIG. It is a water quality evaluation result when it arrange|positions at the downstream of a flow (in the case of FIG. 2). The horizontal axis is the concentration of dissolved oxygen, and the vertical axis is the concentrations of ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen in waste water (water after purification).

曝気手段を上流側に配置した場合も下流側に配置した場合も、アンモニア態窒素、亜硝酸態窒素、硝酸態窒素の各濃度は、溶存酸素濃度に対して同様の傾向を示し、5mg/Lから飽和溶存酸素濃度の間で低い濃度を示した。すなわち、高い溶存酸素濃度において、良好な水質改善が達成された。 Whether the aeration means is arranged upstream or downstream, the concentrations of ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen show similar trends with respect to the dissolved oxygen concentration, and are 5 mg/L. to the saturated dissolved oxygen concentration. That is, good water quality improvement was achieved at high dissolved oxygen concentrations.

ただし、曝気手段を上流側に配置した場合の方が、アンモニア態窒素、亜硝酸態窒素、硝酸態窒素の各濃度は低濃度になり、水質の改善効果が大きいことが分かった。曝気手段を上流側に配置し、溶存酸素濃度を5mg/Lから飽和溶存酸素濃度とした場合には、アンモニア態窒素と亜硝酸態窒素はほぼ検出されず、硝酸態窒素も極めて低濃度であった。 However, it was found that the concentrations of ammonium nitrogen, nitrite nitrogen, and nitrate nitrogen became lower when the aeration means was arranged upstream, and the effect of improving water quality was greater. When the aeration means is arranged upstream and the dissolved oxygen concentration is increased from 5 mg/L to the saturated dissolved oxygen concentration, almost no ammonium nitrogen and nitrite nitrogen are detected, and the concentration of nitrate nitrogen is also extremely low. rice field.

また、この結果は窒素化合物の硝化と脱窒が同時に行われていることを示している。もし、硝化だけ行われているのであれば、亜硝酸や硝酸が高濃度に残留するはずである。しかし、被処理水を循環することなく、ワンパスの処理で亜硝酸や硝酸が低濃度になっていることは、硝化と脱窒が同時に進行していることを示している。そして、硝化と脱窒が同時に進行する際には、溶存酸素濃度が高濃度なほど、硝化と脱窒の効率が向上するという重要な結果が得られた。 This result also indicates that nitrification and denitrification of nitrogen compounds occur simultaneously. If only nitrification was carried out, nitrous acid and nitric acid would remain in high concentrations. However, the low concentration of nitrous acid and nitric acid in one-pass treatment without circulating the water to be treated indicates that nitrification and denitrification are progressing simultaneously. An important result was obtained that when nitrification and denitrification proceeded simultaneously, the higher the dissolved oxygen concentration, the more efficient the nitrification and denitrification.

(検証実験2)
次に、溶存酸素濃度を7mg/Lに固定し、濾材2の平均粒径を0.2mmから18mmまで変えて、濾材2の平均粒径が水質改善にどのように影響しているかを調べた。曝気手段5の配置は上流側である。
その他の条件は検証実験1と同様である。
(Verification experiment 2)
Next, the dissolved oxygen concentration was fixed at 7 mg/L, and the average particle size of the filter medium 2 was varied from 0.2 mm to 18 mm to investigate how the average particle size of the filter medium 2 affects water quality improvement. . The arrangement of the aeration means 5 is on the upstream side.
Other conditions are the same as in Verification Experiment 1.

図5に実験結果を示す。
平均粒径が1mmから10mmで良好な結果が得られた。濾材2の平均粒径に関しては、このようにかなり広い範囲で良好な水質改善効果が得られることを確認できた。
FIG. 5 shows the experimental results.
Good results were obtained with an average particle size of 1 mm to 10 mm. Regarding the average particle size of the filter medium 2, it was confirmed that a good water quality improvement effect was obtained in such a wide range.

(検証実験3) (同一濾材に枯草菌も共生させた効果を示すための実験)
窒素化合物の除去は、一般的には硝化菌と脱窒菌によって行われるが、枯草菌が補助的な役割を果たしているかを確認するため、枯草菌の繁殖の有無により水質に違いが生じるか否かについても検証実験を行った。
(Verification experiment 3) (Experiment to show the effect of coexisting Bacillus subtilis in the same filter medium)
Nitrogen compounds are generally removed by nitrifying bacteria and denitrifying bacteria, but in order to confirm whether Bacillus subtilis plays a supplementary role, whether or not the presence or absence of Bacillus subtilis breeding causes a difference in water quality. Verification experiments were also conducted for

上流側で曝気を行い、溶存酸素濃度は7mg/Lとした。また、濾材の平均粒径は3mmとした。濾材2に枯草菌を繁殖させた場合、および枯草菌を入れないで硝化菌と脱窒菌だけを繁殖させた場合の水質について、浄化微生物の繁殖開始からの変化を調べた。すなわち、水質が浄化微生物の馴養期間内および馴養期間後でどのように変化するかについて調べた。 Aeration was performed on the upstream side, and the dissolved oxygen concentration was adjusted to 7 mg/L. Moreover, the average particle size of the filter medium was set to 3 mm. Changes in water quality from the start of propagation of purifying microorganisms were examined when Bacillus subtilis was propagated on the filter medium 2 and when only nitrifying bacteria and denitrifying bacteria were propagated without Bacillus subtilis. That is, we investigated how the water quality changed during and after the acclimatization period of the purifying microorganisms.

図6は、濾材2に枯草菌、硝化菌、および脱窒菌を繁殖させた場合の水質データであり、横軸は繁殖開始からの期間を示している。繁殖開始から4週間目には、アンモニア態窒素と亜硝酸態窒素はほぼ消失し、硝酸態窒素も低濃度になった。繁殖開始から4週間目以降も水質は良好であった。 FIG. 6 shows water quality data when Bacillus subtilis, nitrifying bacteria, and denitrifying bacteria are propagated on the filter medium 2, and the horizontal axis indicates the period from the start of propagation. Four weeks after the start of breeding, ammonium nitrogen and nitrite nitrogen almost disappeared, and nitrate nitrogen also became low. The water quality was good even after 4 weeks from the start of breeding.

図7は、濾材2に硝化菌、および脱窒菌だけを繁殖させた場合の水質データである。アンモニア態窒素は8週目までは検出され、10週目以降になって低濃度になった。また、亜硝酸は10週目になって低濃度になったが、完全には消失せず、0.2mg/L程度は10週目以降も検出された。 FIG. 7 shows water quality data when only nitrifying bacteria and denitrifying bacteria are propagated in the filter medium 2 . Ammonia nitrogen was detected until the 8th week, and became low after the 10th week. In addition, although the concentration of nitrous acid became low at the 10th week, it did not disappear completely, and about 0.2 mg/L was still detected after the 10th week.

以上のように、枯草菌の有無により、馴養期間と水質の両方に明確な差異が現れることが分かった
すなわち、硝化菌や脱窒菌が生育する濾材に枯草菌も生育させることで、3者の協調関係が得られ、馴養期間を短縮でき、且つ水質が向上することを確認できた。
As described above, it was found that the presence or absence of Bacillus subtilis caused a clear difference in both the acclimation period and water quality. It was confirmed that a cooperative relationship was obtained, the acclimatization period could be shortened, and the water quality was improved.

<本実施の形態のまとめ>
上述したように、本発明の水処理に用いる生物反応装置により、水の浄化、特に窒素化合物の除去が極めて高速に行えることを確認できた。
<Summary of this embodiment>
As described above, it was confirmed that the bioreactor used for water treatment of the present invention can purify water, particularly remove nitrogen compounds, at an extremely high speed.

本発明における特徴的な構成は、ひとつの濾材内に3種の浄化微生物を生育させることである。これにより、それぞれの微生物が最も効率的に働くことができる場所および状況で繁殖し、それによって3種の浄化微生物が互いに協調し、水処理を行うためと考えられる。 A characteristic configuration of the present invention is to grow three kinds of purifying microorganisms in one filter medium. This is thought to be due to the fact that each microorganism breeds in a place and under conditions where it can work most efficiently, so that the three types of purifying microorganisms cooperate with each other to perform water treatment.

協調関係の詳細は不明であるが、例えば、枯草菌と硝化菌の関係について述べれば、枯草菌が溶存有機物を分解することで、硝化菌が行う硝化反応の阻害物質である溶存有機物が低濃度化し、それによって硝化が高い効率で起こると考えられる。また、枯草菌が溶存有機物を分解する際に二酸化炭素を発生するが、硝化菌はこの二酸化炭素を利用してタンパク質を合成し、繁殖を促進することができる。
また、枯草菌と脱窒菌の関係について述べれば、枯草菌が懸濁有機物を溶解することで、脱窒菌が脱窒反応を行う際に必要な水素供与体が十分に提供される。
Although the details of the cooperative relationship are unknown, for example, regarding the relationship between Bacillus subtilis and nitrifying bacteria, as Bacillus subtilis decomposes dissolved organic matter, the concentration of dissolved organic matter, which is an inhibitor of the nitrification reaction performed by nitrifying bacteria, becomes low. It is thought that nitrification occurs with high efficiency. In addition, when Bacillus subtilis decomposes dissolved organic matter, carbon dioxide is generated. Nitrifying bacteria can utilize this carbon dioxide to synthesize proteins and promote their propagation.
As for the relationship between Bacillus subtilis and denitrifying bacteria, the dissolution of suspended organic matter by Bacillus subtilis provides sufficient hydrogen donors necessary for the denitrifying reaction of the denitrifying bacteria.

上述したような協調関係が、実際には3種の浄化微生物間でさらに複雑に進行し、極めて高速の水処理が行われていることが想像できる。このような協調関係は、ひとつの濾材内に3種の浄化微生物が共生しているためになされることである。 It can be imagined that the cooperative relationship as described above actually progresses more complicatedly among the three kinds of purifying microorganisms, and extremely high-speed water treatment is performed. Such a cooperative relationship is made possible because three kinds of purifying microorganisms coexist in one filter medium.

本発明において、もうひとつ特徴的なことは、5mg/L以上という高い溶存酸素濃度において、硝化だけではなく、脱窒も高速で行われることである。従来の水処理システムにおいては、硝化は高酸素濃度下で、脱窒は無酸素あるいは極めて低い酸素濃度下で行う必要があったが、その常識を覆すものである。これは、硝化と脱窒が別々に起こるのではなく、同時に、すなわち連続的な反応として進行しているためと考えられる。 Another characteristic of the present invention is that not only nitrification but also denitrification is carried out at high speed at a high dissolved oxygen concentration of 5 mg/L or more. In conventional water treatment systems, nitrification must be performed under high oxygen concentration and denitrification must be performed under oxygen-free or extremely low oxygen concentration. It is considered that this is because nitrification and denitrification do not occur separately, but proceed simultaneously, that is, as a continuous reaction.

このような本発明の特徴的な構成等により、以下に述べる数多くの特長を有する水処理装置が具現化できた。
まず、第一に、従来では考えられなかった高速の硝化および脱窒が同時進行で実現できたことである。これにより、装置の小型が可能となり、水処理施設の大幅なコストダウンが可能になる。また、家庭用や小集団用の浄水システムとしても利用することができる。
さらに、硝化と脱窒が同時に進行するため、被処理水が酸性側に偏ることがない。したがって、中和のためのアルカリが不要である。
Due to such a characteristic configuration of the present invention, a water treatment apparatus having many features described below has been embodied.
First of all, high-speed nitrification and denitrification, which had been unthinkable in the past, could be realized simultaneously. As a result, the device can be made smaller, and the cost of the water treatment facility can be greatly reduced. It can also be used as a water purification system for households and small groups.
Furthermore, since nitrification and denitrification progress at the same time, the water to be treated is not biased toward the acidic side. Therefore, no alkali is required for neutralization.

第二に、曝気量の高度な制御が不要である。脱窒を硝化と同様の高溶存酸素濃度下で行えるため、細かな制御は不要である。被処理水に十分な酸素を供給できれば、硝化も脱窒も高速で進行させることができる。 Second, no sophisticated control of the amount of aeration is required. Since denitrification can be performed under the same high dissolved oxygen concentration as nitrification, detailed control is not required. If sufficient oxygen can be supplied to the water to be treated, both nitrification and denitrification can proceed at high speed.

第三に、浄化微生物は濾材固定式であり、浮遊式の活性汚泥法と比べると、余剰汚泥はほとんど発生しない。そのため、従来の水処理で大きなコストを占める余剰汚泥の処理コストが大幅に低減する。また、返送汚泥等の構成も不要になるため、装置の低コスト化、管理の簡素化も実現できる。 Thirdly, purification microorganisms are of the fixed filter medium type, and surplus sludge is hardly generated compared to the floating type activated sludge method. Therefore, the cost of treating excess sludge, which occupies a large cost in conventional water treatment, is greatly reduced. In addition, since the configuration of returned sludge and the like becomes unnecessary, it is possible to reduce the cost of the apparatus and simplify the management.

以上のように、本発明は水処理の高速化、それに伴う装置の小型化、装置コストやランニングコストの低減、管理の簡素化といった水処理装置に必要な様々な長所を併せ持つものである。 As described above, the present invention has various advantages necessary for a water treatment apparatus, such as speeding up of water treatment, downsizing of the apparatus, reduction of apparatus cost and running cost, and simplification of management.

実施の形態2.
図8を用いて、実施の形態2の水処理に用いる生物反応装置について説明する。図8は生物反応装置10の内部透過的側面図である。
実施の形態1においては、固定した濾材に浄化微生物を繁殖させたが、本実施の形態においては、被処理水中を流動する濾材20に浄化微生物を繁殖させた。
Embodiment 2.
A bioreactor used for water treatment according to Embodiment 2 will be described with reference to FIG. FIG. 8 is an internal see-through side view of bioreactor 10 .
In the first embodiment, purifying microorganisms are propagated on the fixed filter medium, but in this embodiment, purifying microorganisms are propagated on the filter medium 20 flowing in the water to be treated.

濾材は、ポリエチレングリコール、ポリビニルフォルマール、発砲エチレン、ウレタン、軽石等の火山砕屑物といった微細孔を有し、水の比重と同等、あるいは、水よりもやや大きい比重を持つ材質であれば、どんな材質でも良い。
濾材の大きさは数mm径から数cm径程度である。
微細孔は0.5mm径から2mm径程度が望ましい。枯草菌、硝化菌、および脱窒菌を繁殖させるためには、この程度の大きさの微細孔が良い。
The filter medium has micropores such as polyethylene glycol, polyvinyl formal, ethylene foam, urethane, and volcanic debris such as pumice, and any material with a specific gravity equal to or slightly higher than that of water can be used. Good material.
The size of the filter medium ranges from several millimeters to several centimeters.
It is desirable that the fine holes have a diameter of about 0.5 mm to 2 mm. In order to propagate Bacillus subtilis, nitrifying bacteria, and denitrifying bacteria, micropores of this size are suitable.

枯草菌、硝化菌、および脱窒菌を繁殖させた濾材20を被処理水中で流動させる。被処理水は導入経路30から生物反応装置10に導入され、排出経路40から排出される。生物反応装置10の下部には曝気手段50が設けられている。曝気手段50は例えば散気管であり、空気や酸素が泡状になって放出される。この泡の浮力により、濾材20が流動する。すなわち、濾材20を流動させる手段は、曝気手段を用いたエアーリフトである。 A filter medium 20 propagated with Bacillus subtilis, nitrifying bacteria, and denitrifying bacteria is allowed to flow in the water to be treated. The water to be treated is introduced into the bioreactor 10 through the introduction route 30 and discharged through the discharge route 40 . An aeration means 50 is provided at the bottom of the bioreactor 10 . The aeration means 50 is, for example, an air diffuser, and air and oxygen are released in the form of bubbles. The buoyancy of the bubbles causes the filter medium 20 to flow. That is, the means for fluidizing the filter medium 20 is an air lift using an aeration means.

被処理水中を濾材20が流動することで、被処理水と濾材20に繁殖する浄化微生物との接触機会が増加し、被処理水の浄化が効率良く行われる。 The flow of the filter medium 20 in the water to be treated increases the chances of contact between the water to be treated and the purifying microorganisms that propagate in the filter medium 20, and purification of the water to be treated is efficiently performed.

また、被処理水が海水である場合には、生物反応装置10の上部に設けた泡沫分離手段80より、有機物が表面に付着した泡を除去することで、懸濁有機物を効率的に除去することも可能である。 Further, when the water to be treated is seawater, the foam separating means 80 provided on the upper part of the bioreactor 10 removes the foam attached to the surface of the organic matter, thereby efficiently removing the suspended organic matter. is also possible.

さらに、納豆菌(Bacillus subtilis var. natto)を生物反応装置10に投入することで、有機物の除去が促進する。納豆菌はγ-ポリグルタミン酸を放出し、それが繊維状の構造をとることで懸濁有機物を凝集するためである。曝気手段50を停止すれば、凝集した納豆菌は、生物反応装置10の最下部に設けられた沈殿物蓄積部70に沈殿し、バルブV3を開けて排出することもできる。 Furthermore, the addition of Bacillus subtilis var. natto to the bioreactor 10 accelerates the removal of organic matter. This is because Bacillus subtilis natto releases γ-polyglutamic acid, which aggregates suspended organic matter by taking a fibrous structure. If the aeration means 50 is stopped, the flocculated Bacillus subtilis natto settles in the sediment accumulation part 70 provided at the bottom of the bioreactor 10, and can be discharged by opening the valve V3.

(検証実験4)
生活排水が蓄積した池から採取した水4m3を槽内に貯め、浄化を行った。浄化前の水の主な水質は以下の通りであった。

COD(化学的酸素要求量):50mg/L
SS(懸濁有機物):55mg/L
アンモニア態窒素:20mg/L
亜硝酸態窒素:0.5mg/L
硝酸態窒素:2mg/L
(Verification experiment 4)
4m3 of water collected from a pond where domestic wastewater accumulated was stored in a tank and purified. The main water qualities before purification were as follows.

COD (Chemical Oxygen Demand): 50mg/L
SS (suspended organic matter): 55mg/L
Ammonia nitrogen: 20mg/L
Nitrite nitrogen: 0.5mg/L
Nitrate nitrogen: 2mg/L

平均1cm径の日向石を濾材として用い、硝化菌、脱窒菌および枯草菌を予め繁殖させた。そして、約1.5m3の濾材を槽内に入れて、浄化を行った。曝気量は50L/分、被処理水の流量は50L/分である。 Hyugaite with an average diameter of 1 cm was used as a filter medium, and nitrifying bacteria, denitrifying bacteria and Bacillus subtilis were propagated in advance. Then, about 1.5 m3 of filtering material was placed in the tank for purification. The amount of aeration is 50 L/min, and the flow rate of treated water is 50 L/min.

浄化後の水質は以下のようになった。

COD(化学的酸素要求量):20mg/L
SS(懸濁有機物):26mg/L
アンモニア態窒素:1mg/L
亜硝酸態窒素:2.8mg/L
硝酸態窒素:4mg/L
The water quality after purification is as follows.

COD (Chemical Oxygen Demand): 20mg/L
SS (suspended organic matter): 26mg/L
Ammonia nitrogen: 1mg/L
Nitrite nitrogen: 2.8mg/L
Nitrate nitrogen: 4mg/L

以上のように、水質は改善し、濾材を流動させた場合も、固定濾材と同様に水質改善効果があることが分かった。 As described above, the water quality was improved, and it was found that even when the filter medium was made to flow, there was an effect of improving water quality in the same way as with the fixed filter medium.

(検証実験5)
検証実験4と同様に濾材を流動させて浄化実験を行った。検証事件4と異なる点は、10cc/分の納豆菌を槽内上部80より投入したことである。
(Verification experiment 5)
A purification experiment was conducted by flowing the filter medium in the same manner as in Verification Experiment 4. The difference from Verification Case 4 is that 10 cc/min of Bacillus subtilis natto was introduced from the upper part 80 of the tank.

浄化後の水質は以下のようになった。

COD(化学的酸素要求量):3mg/L
SS(懸濁有機物):2mg/L
アンモニア態窒素:検出限界以下
亜硝酸態窒素: 0.3mg/L
硝酸態窒素: 4mg/L
The water quality after purification is as follows.

COD (Chemical Oxygen Demand): 3mg/L
SS (suspended organic matter): 2mg/L
Ammonia nitrogen: Below detection limit Nitrite nitrogen: 0.3mg/L
Nitrate nitrogen: 4mg/L

このように、納豆菌を投入することで、水質はさらに大幅に改善し、有機物、無機窒素ともに大幅な減少を確認できた。 Thus, by adding Bacillus subtilis natto, the water quality was significantly improved, and both organic matter and inorganic nitrogen were significantly reduced.

<本実施の形態のまとめ>
以上の結果から分かるように、流動濾床(流動担体)を用いても、実施の形態1で示した固定濾床と同様に、高効率の浄化が可能である。特に、納豆菌を加えることによって、有機物の除去だけではなく、硝化や脱窒の効率も向上できることを確認できた。
<Summary of this embodiment>
As can be seen from the above results, the use of the fluidized filter bed (fluidized carrier) also enables highly efficient purification as with the fixed filter bed shown in the first embodiment. In particular, it was confirmed that adding Bacillus natto not only removed organic matter but also improved the efficiency of nitrification and denitrification.

実施の形態3.
図9を用いて、実施の形態3の水底浄化装置について説明する。有機物が水底に堆積した水域において、特に効果的な浄化を行う装置であり、堆積有機物を減厚し、水底の浄化環境を改善することを目的とした装置である。
Embodiment 3.
A water bottom cleaning apparatus according to Embodiment 3 will be described with reference to FIG. It is a device that performs particularly effective purification in a water area where organic matter has accumulated on the bottom of the water, and is intended to reduce the thickness of the deposited organic matter and improve the purification environment of the water bottom.

上昇流発生手段600を用いて、堆積有機物700を巻き上げ、水処理に用いる生物反応装置100に被処理水を導く。曝気手段500は水底付近に設けることが望ましいが、水面からの下降流によって、水面付近の溶存酸素を水底付近まで供給しても良い。 The upward flow generating means 600 is used to lift up the sedimentary organic matter 700 and lead the water to be treated to the bioreactor 100 used for water treatment. The aeration means 500 is desirably provided near the bottom of the water, but the dissolved oxygen near the surface of the water may be supplied to the vicinity of the bottom of the water by downward flow from the water surface.

上昇流発生手段600は、例えばポンプやスクリューであり、堆積有機物の表面近傍を負圧にすることで、堆積有機物を少しずつ巻き上げることが可能なものであれば、どのような機構であっても良い。 The upward flow generation means 600 is, for example, a pump or a screw, and any mechanism can be used as long as it can gradually lift up the deposited organic matter by creating a negative pressure in the vicinity of the surface of the deposited organic matter. good.

水処理に用いる生物反応装置100は、図9に示すように、濾材200を固定あるいは内部で流動できるものである。濾材200には、硝化菌、脱窒菌および枯草菌が繁殖している。 As shown in FIG. 9, the bioreactor 100 used for water treatment has a filter medium 200 that can be fixed or can flow inside. Nitrifying bacteria, denitrifying bacteria and Bacillus subtilis are propagated in the filter medium 200 .

このような構成の装置を用いることで、水底の堆積有機物を徐々に減厚できる。さらに巻き上げた有機物を水処理に用いる生物反応装置100に導入することで、懸濁有機物、溶存有機物、および無機窒素を大幅に低減できる。 By using the apparatus having such a configuration, the deposited organic matter on the bottom of the water can be gradually reduced in thickness. Furthermore, by introducing the wound up organic matter into the bioreactor 100 used for water treatment, suspended organic matter, dissolved organic matter, and inorganic nitrogen can be greatly reduced.

<本実施の形態のまとめ>
河口部や沿岸部、湾、あるいは湖や池等においては、水底に厚く有機物が堆積し、水質悪化の大きな要因となっている。
浚渫によって堆積有機物を除去することも行われているが、莫大な除去費用が掛かるにもかかわらず、浚渫後には有機物が再び堆積するため、根本的な対策にはならない。
<Summary of this embodiment>
In estuaries, coastal areas, bays, lakes, ponds, etc., organic matter accumulates thickly on the bottom of water, which is a major factor in deteriorating water quality.
Dredging is also used to remove deposited organic matter, but it is not a fundamental countermeasure because the organic matter accumulates again after dredging, despite the enormous cost of removal.

一方、ポンプやスクリュー等で堆積有機物を巻き上げる方法は、比較的低コストで行うことができるものの、巻き上げた有機物が周囲に拡散するため、汚染領域を拡大する恐れがある。 On the other hand, the method of lifting up the deposited organic matter using a pump, screw, or the like can be performed at a relatively low cost, but there is a risk that the contaminated area will expand because the organic matter that has been lifted up diffuses into the surroundings.

本実施の形態においては、実施の形態1や2において示した水処理に用いる生物反応装置に、巻き上げた有機物を含む被処理水を導くことで、有機物が周囲に拡散する前に生物浄化を行うことができる。本発明の水処理に用いる生物反応装置が高い浄化効率を持つため、高濃度の有機物や無機窒素を含んだ被処理水であっても、良好な水質にまで処理できる。 In the present embodiment, by guiding the water to be treated containing the organic matter that has been swirled up to the bioreactor used for water treatment shown in the first and second embodiments, biological purification is performed before the organic matter diffuses to the surroundings. be able to. Since the bioreactor used for water treatment of the present invention has a high purification efficiency, even water to be treated containing high concentrations of organic substances and inorganic nitrogen can be treated to a good quality.

実施の形態4.
昨今、養殖と水耕栽培を組み合わせたアクアポニックスに関して研究が進んでいる。アクアポニックスにおいては、水棲生物の飼育水が植物の養液として利用され、植物に利用された養液が再び飼育水として循環利用される。
水棲生物の排泄物に含まれる猛毒であるアンモニアは硝化菌によって酸化され、弱毒性の亜硝酸や硝酸になる。亜硝酸や硝酸は弱毒性ではあるが、飼育水に蓄積して高濃度になると、水棲生物の健康に悪影響をもたらす。しかし、亜硝酸や硝酸を含む飼育水は植物の養液になり、亜硝酸や硝酸は植物の根から吸収され光合成に利用される。これにより、亜硝酸や硝酸の蓄積を避けることができる。このように、水棲生物にとって毒性のある亜硝酸や硝酸が、植物の光合成により消費されることで水の良好な循環が行われる、というのがアクアポニックスの基本的な考え方である。
Embodiment 4.
Recently, research on aquaponics, which combines aquaculture and hydroponics, is progressing. In aquaponics, the breeding water for aquatic organisms is used as the nutrient solution for the plants, and the nutrient solution used for the plants is recycled as the breeding water again.
Ammonia, which is a deadly poison contained in the excreta of aquatic organisms, is oxidized by nitrifying bacteria to become weakly toxic nitrous acid and nitric acid. Although nitrites and nitrates are weakly toxic, they can adversely affect the health of aquatic organisms when accumulated in breeding waters to high concentrations. However, breeding water containing nitrous acid and nitric acid becomes a nutrient solution for plants, and the nitrous acid and nitric acid are absorbed by the roots of the plants and used for photosynthesis. This avoids accumulation of nitrous and nitric acids. In this way, the basic concept of aquaponics is that nitrous and nitric acids, which are toxic to aquatic organisms, are consumed by photosynthesis in plants, thereby facilitating good circulation of water.

しかし、実際にはこのような理想的な水の循環は難しく、商業ベースでアクアポニックスを実現した例はほとんどない。
大きな課題の一つが、飼育槽で発生する亜硝酸、硝酸が、植物によって十分に吸収されないため、長期的には亜硝酸、硝酸が蓄積し、水棲生物の健康に害を及ぼすことである。商業ベースで養殖を行う場合、水棲生物はかなり高密度で飼育される。したがって、水棲生物の排泄量も多量になり、発生する亜硝酸や硝酸量も相当な量になる。この多量の亜硝酸や硝酸を植物に吸収させるためには、水棲生物の飼育槽に比べて遥かに大面積の植物の栽培面積が必要になるので、スペース効率の観点から商業ベースでの実現が困難になる。
また、商業的に付加価値が高い水棲生物の多くは海洋魚である。したがって、飼育水は塩水になり、植物の養液としては適さない。
以上のような2つの課題が、商業ベースでアクアポニックスを実現する上での大きな障害になっている。
However, in reality, such ideal water circulation is difficult, and there are almost no examples of aquaponics being realized on a commercial basis.
One of the major problems is that the nitrous acid and nitric acid generated in breeding tanks are not sufficiently absorbed by the plants, and thus accumulate in the long term and harm the health of aquatic organisms. In commercial aquaculture, aquatic organisms are kept at fairly high densities. Therefore, the amount of excretion by aquatic organisms is also large, and the amount of nitrous acid and nitric acid generated is also considerable. In order for the plants to absorb this large amount of nitrous acid and nitric acid, a much larger plant cultivation area is required compared to the breeding tanks for aquatic organisms. become difficult.
In addition, many of the aquatic organisms with high commercial added value are marine fish. Therefore, breeding water becomes salt water, which is not suitable as a nutrient solution for plants.
The above two problems are major obstacles in realizing aquaponics on a commercial basis.

図10は、実施の形態1あるいは2で示した生物反応装置を用いたアクアポニックスの一例である。魚が生育する飼育槽3000の水を生物反応装置1000までポンプPで汲み上げる。汲み上げられた水は、濾材2000に生育する浄化微生物により浄化され、植物が生育するプランター4000に流される。そして、プランター4000で植物の養液として利用された水は、飼育槽3000に戻る。
本実施の形態におけるポイントは、魚の排泄物を多量に含んだ水が、生物反応装置1000において、高効率の浄化が行われる点である。実施の形態1や2で示したように、硝化と脱窒が高い効率で起きるため、亜硝酸や硝酸は低濃度になる。したがって、飼育槽と同様の面積のプランターでも十分に植物によって、残った亜硝酸や硝酸が消費される。
また、循環水の亜硝酸濃度が非常に低濃度に維持されるため、水の塩分濃度を汽水レベルの低濃度にすることが可能になる。海洋魚は、汽水レベルの方が浸透圧調整の負荷が小さくなり、生育が早くなる。ただし、亜硝酸と塩素イオンはエラから吸収される際に競合物質となるため、塩分濃度が低いと、亜硝酸の吸収量が多くなり、呼吸障害等が起こりやすい。しかし、生物反応装置1000において、高効率の浄化が行われ、亜硝酸濃度は常に低く保たれるため、汽水レベルの塩水であっても、このような障害は起こらない。
FIG. 10 shows an example of aquaponics using the bioreactor shown in the first or second embodiment. Water in a breeding tank 3000 in which fish grow is pumped up to a bioreactor 1000 by a pump P. The pumped water is purified by purification microorganisms growing on the filter medium 2000 and flowed to the planter 4000 where plants grow. The water used as a nutrient solution for plants in the planter 4000 returns to the breeding tank 3000 .
The point of the present embodiment is that water containing a large amount of fish excrement is highly efficiently purified in the bioreactor 1000 . As shown in Embodiments 1 and 2, since nitrification and denitrification occur with high efficiency, the concentrations of nitrous acid and nitric acid are low. Therefore, even in a planter having an area similar to that of the breeding tank, the remaining nitrous acid and nitric acid are sufficiently consumed by the plants.
In addition, since the nitrite concentration of the circulating water is maintained at a very low concentration, it becomes possible to reduce the salinity of the water to a low concentration of brackish water. For marine fish, the brackish water level reduces the load of osmotic pressure regulation and grows faster. However, since nitrous acid and chloride ions are competing substances when absorbed from the gills, if the salinity is low, the amount of nitrous acid absorbed increases, and respiratory disorders are likely to occur. However, in the bioreactor 1000, since highly efficient purification is performed and the nitrite concentration is always kept low, even brackish salt water does not cause such a problem.

上記に述べたように、実施の形態1や2で示した生物反応装置を用いれば、従来のアクアポニックスの2つの課題を解決、あるいは緩和できるため、商業ベースでのアクアポニックスの実現が容易になる。 As described above, by using the bioreactor shown in Embodiments 1 and 2, the two problems of conventional aquaponics can be solved or mitigated, so commercial aquaponics can be realized. become easier.

1 生物反応装置
2 濾材
3 被処理水導入手段
4 被処理水排水手段
5 曝気手段

10 生物反応装置
20 濾材(流動濾材)
30 被処理水導入手段
40 被処理水排水手段
50 曝気手段

100 生物反応装置
200 濾材
500 曝気手段
600 上昇流発生手段

Reference Signs List 1 biological reaction device 2 filter medium 3 to-be-treated water introduction means 4 to-be-treated water drainage means 5 aeration means

10 bioreactor 20 filter medium (fluidized filter medium)
30 to-be-treated water introduction means 40 to-be-treated water drainage means 50 aeration means

100 biological reaction device 200 filter medium 500 aeration means 600 upward flow generating means

Claims (5)

水処理に用いる生物反応装置と、
当該生物反応装置に被処理水を送る上昇流発生手段と
を有する水底浄化装置であって、
上記生物反応装置は、
濾材と、
当該濾材に生育する浄化微生物と、
上記濾材に被処理水を導く導入経路と、
上記濾材に接触した被処理水を排水する排水経路と、
上記濾材に導かれる被処理水に酸素を供給するための曝気手段と
を備え、
上記浄化微生物は、溶存有機物を分解する好気性微生物である枯草菌、硝化反応を行う好気性微生物である硝化菌、および、脱窒反応を行う嫌気性微生物である脱窒菌であり、
上記枯草菌、硝化菌、および脱窒菌は同一濾材内に生育し、
上記被処理水に含まれる窒素化合物の硝化と脱窒を同時に行う
ことを特徴とする水底浄化装置。
a bioreactor for water treatment;
and an upward flow generating means for sending the water to be treated to the biological reaction device,
The bioreactor is
a filter medium;
purifying microorganisms growing on the filter medium;
an introduction path for guiding the water to be treated to the filter medium;
a drainage path for draining the water to be treated that has come into contact with the filter medium;
and an aeration means for supplying oxygen to the water to be treated that is led to the filter medium,
The purifying microorganisms are Bacillus subtilis, which is an aerobic microorganism that decomposes dissolved organic matter, Nitrifying bacteria, which is an aerobic microorganism that performs nitrification, and Denitrifying bacteria, which is an anaerobic microorganism that performs denitrification,
The Bacillus subtilis, the nitrifying bacteria, and the denitrifying bacteria grow in the same filter medium,
A water bottom cleaning apparatus characterized by simultaneously performing nitrification and denitrification of nitrogen compounds contained in the water to be treated.
上記濾材は固定床であり、
上記濾材の導入経路側における被処理水の溶存酸素濃度は5ppm以上、且つ飽和溶存酸素濃度以下である
ことを特徴とする請求項1に記載の水底浄化装置。
The filter medium is a fixed bed,
The water bottom cleaning apparatus according to claim 1, wherein the dissolved oxygen concentration of the water to be treated on the introduction path side of the filter medium is 5 ppm or more and the saturated dissolved oxygen concentration or less.
上記濾材は上記被処理水中で流動し、
上記被処理水の溶存酸素濃度は5ppm以上、且つ飽和溶存酸素濃度以下である
ことを特徴とする請求項1に記載の水底浄化装置。
The filter medium flows in the water to be treated,
The water bottom cleaning apparatus according to claim 1, wherein the dissolved oxygen concentration of the water to be treated is 5 ppm or more and the saturated dissolved oxygen concentration or less.
納豆菌を投入する納豆菌投入手段を有する
ことを特徴とする請求項3に記載の水底浄化装置。
The bottom water purification apparatus according to claim 3, further comprising a natto bacteria introduction means for introducing natto bacteria.
移動手段をさらに備えた
ことを特徴とする請求項1から4のいずれかに記載の水底浄化装置。

5. The water bottom cleaning apparatus according to any one of claims 1 to 4, further comprising a moving means.

JP2021198272A 2020-10-06 2021-12-07 Water bottom purifier Pending JP2022125959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021198272A JP2022125959A (en) 2020-10-06 2021-12-07 Water bottom purifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020168926A JP6999096B1 (en) 2020-10-06 2020-10-06 Biological reaction equipment used for water treatment, water bottom purification equipment using it, and aquaponics equipment
JP2021198272A JP2022125959A (en) 2020-10-06 2021-12-07 Water bottom purifier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020168926A Division JP6999096B1 (en) 2020-10-06 2020-10-06 Biological reaction equipment used for water treatment, water bottom purification equipment using it, and aquaponics equipment

Publications (1)

Publication Number Publication Date
JP2022125959A true JP2022125959A (en) 2022-08-29

Family

ID=80469025

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020168926A Active JP6999096B1 (en) 2020-10-06 2020-10-06 Biological reaction equipment used for water treatment, water bottom purification equipment using it, and aquaponics equipment
JP2021198272A Pending JP2022125959A (en) 2020-10-06 2021-12-07 Water bottom purifier

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020168926A Active JP6999096B1 (en) 2020-10-06 2020-10-06 Biological reaction equipment used for water treatment, water bottom purification equipment using it, and aquaponics equipment

Country Status (1)

Country Link
JP (2) JP6999096B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7369412B1 (en) * 2023-04-25 2023-10-26 オリエンタル白石株式会社 aquaponics system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251190A (en) * 1994-03-16 1995-10-03 Kuraray Co Ltd Removing material for solid suspension
JPH09253687A (en) * 1996-03-26 1997-09-30 Nippon Steel Corp Anaerobic and aerobic treatment apparatus for waste water
JP3477161B2 (en) 2000-10-13 2003-12-10 独立行政法人農業・生物系特定産業技術研究機構 Wastewater treatment method and apparatus
JP2004209362A (en) 2002-12-27 2004-07-29 Moji Zoen:Kk Sewage treatment apparatus
CN100378272C (en) 2007-02-15 2008-04-02 陈建庭 Stereo in-situ ecological urban water system repairing process
CN101104177B (en) 2007-08-01 2010-12-15 中国石油化工股份有限公司 In-situ biological repairing method for biomass intensified petroleum contaminative soil
JP2011092811A (en) 2009-10-27 2011-05-12 Asahi Kasei Engineering Kk Waste water treatment apparatus and waste water treatment method
JP2018042466A (en) 2016-09-12 2018-03-22 東洋ゴム工業株式会社 Microorganism culture carrier, sewage treatment method, soil evaluation method, microorganism multiplication performance improving method, and soil improving method
JP6750930B6 (en) * 2016-10-03 2020-09-30 誠一 金 Sewage purification system
CN108841392A (en) 2018-05-17 2018-11-20 华东理工大学 Utilize the conditioner of microorganism remediation organic polluted soil
JP2020074761A (en) 2018-11-06 2020-05-21 ダイセン・メンブレン・システムズ株式会社 Breeding water quality management system for circulation type on-land culture and operation method
CN210237395U (en) 2019-06-12 2020-04-03 湖南筱豪新能源有限公司 Urban black and odorous water body treatment device

Also Published As

Publication number Publication date
JP2022061133A (en) 2022-04-18
JP6999096B1 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
TW311130B (en)
US7445715B2 (en) System for treating wastewater and a controlled reaction-volume module usable therein
KR101371220B1 (en) Method for simultaneous removal of nitrogend and organic in the waste water using membrane bioreactor
KR20110002832A (en) Method and device for the treatment of waste water
KR100784933B1 (en) Apparatus for treating organic matter and nitrogen of high density organic wastewater
CN112209573B (en) Breeding tail water treatment system
KR20170022051A (en) Recirculating aquaculture system
KR20080101035A (en) High effective treatment apparatus and method of sewage and wastewater
Esfahani et al. The modified Bardenpho process
US20070102354A1 (en) System for treating wastewater and a media usable therein
WO2019198388A1 (en) Nitrogen treatment method
JP2022125959A (en) Water bottom purifier
KR101489134B1 (en) Advanced treatment method for purifying wastewater
JP2006314991A (en) Apparatus and method for treating high-concentration nitrogen-containing dirty waste water such as waste water from livestock farmer and excreta
CN209890451U (en) Nitrification and denitrification circulating water treatment system
CN104176893A (en) Canned fungus processing wastewater treatment system
KR101448892B1 (en) Process and mothod of aquaculture Nitrogen and organic loadingwastewater Removal
KR100424060B1 (en) A single body wastewater disposal plant and wastewater treatment process using the same
KR100458764B1 (en) Method and apparatus for the treatment of contaminated water by submersible biological aerated filter
KR100869304B1 (en) High effective treatment apparatus of sewage and wastewater
JP2008000745A (en) Method for purifying water
JP2002191257A (en) Apparatus for cleaning apparatus for cultivating fish and shellfish
JPH10263594A (en) Removing method and device of nitrate ion in waste water
JP3858271B2 (en) Wastewater treatment method and apparatus
JP2004097926A (en) Water treatment method and water treatment equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220818