JP2011092811A - Waste water treatment apparatus and waste water treatment method - Google Patents

Waste water treatment apparatus and waste water treatment method Download PDF

Info

Publication number
JP2011092811A
JP2011092811A JP2009246279A JP2009246279A JP2011092811A JP 2011092811 A JP2011092811 A JP 2011092811A JP 2009246279 A JP2009246279 A JP 2009246279A JP 2009246279 A JP2009246279 A JP 2009246279A JP 2011092811 A JP2011092811 A JP 2011092811A
Authority
JP
Japan
Prior art keywords
tank
solution
bacteria
fluidized bed
bed bioreactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246279A
Other languages
Japanese (ja)
Inventor
Toru Oyama
徹 大山
Yoshitake Furuta
喜丈 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Asahi Kasei Engineering Corp
Original Assignee
Asahi Kasei Chemicals Corp
Asahi Kasei Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp, Asahi Kasei Engineering Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2009246279A priority Critical patent/JP2011092811A/en
Publication of JP2011092811A publication Critical patent/JP2011092811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment apparatus which treats persistent chemical oxygen demand (COD) and biochemical oxygen demand (BOD) at a high load. <P>SOLUTION: The waste water treatment apparatus includes: a dispersed bacteria tank 1 to which a solution containing an organic matter is introduced and dispersed bacteria for decomposing the organic matter are charged; and a fluidized bed-type bioreactor tank 2 to which the solution treated in the dispersed bacteria tank 1 is introduced, a plurality of particulate carriers to which microorganisms for decomposing remaining organic matter is attached and a predatory organism of preying upon the dispersed bacteria are charged. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、環境技術に係り、排水処理装置及び排水処理方法に関する。   The present invention relates to environmental technology, and relates to a wastewater treatment apparatus and a wastewater treatment method.

従来、排水処理方法として活性汚泥法が広く用いられている(例えば、特許文献1、2参照。)。しかし、活性汚泥法単独では、難分解性で化学的酸素要求量(COD:Chemical Oxygen Demand)を高める要因となる成分(以下において「難分解性COD成分」という。)を含有する排水を処理できない。そのため 事前にオゾン酸化、過酸化水素添加、及び紫外線(UV)照射等で難分解性COD成分を分解した後、排水を活性汚泥法で処理する方法、あるいは排水を活性汚泥法で処理した後、活性炭吸着法により処理液から難分解性COD成分を除去する方法がとられている。しかし、これらの方法はいずれも初期コスト、及びランニングコストが増大する傾向にある。   Conventionally, the activated sludge method has been widely used as a wastewater treatment method (see, for example, Patent Documents 1 and 2). However, the activated sludge method alone cannot treat wastewater containing a component that is hardly decomposable and increases the chemical oxygen demand (COD: Chemical Oxygen Demand) (hereinafter referred to as “the hardly decomposable COD component”). . Therefore, after decomposing difficult-to-decompose COD components by ozone oxidation, hydrogen peroxide addition, and ultraviolet (UV) irradiation in advance, the method of treating the wastewater by the activated sludge method, or treating the wastewater by the activated sludge method, A method of removing a hardly decomposable COD component from a treatment liquid by an activated carbon adsorption method is employed. However, these methods tend to increase initial costs and running costs.

また、難分解性COD成分を除去する方法として、流動床式バイオリアクター法がある。流動床式バイオリアクター法では、微生物の担体としての活性炭が投入された流動床式バイオリアクター槽と、循環曝気槽と、が使用される。流動床式バイオリアクター槽は、導入された排水に上向流を発生させ、排水内に活性炭を浮遊させる。循環曝気槽は、溶存酸素が飽和濃度付近になるよう、循環水を曝気する。酸素を高濃度で含む循環水は、排水と混合され、流動床式バイオリアクター槽へ移送される。これにより、流動床式バイオリアクター槽内に酸素が供給される。   Moreover, there exists a fluidized bed bioreactor method as a method of removing a hardly decomposable COD component. In the fluidized bed bioreactor method, a fluidized bed bioreactor tank into which activated carbon as a microorganism carrier is charged and a circulating aeration tank are used. The fluidized bed bioreactor tank generates an upward flow in the introduced wastewater and floats activated carbon in the wastewater. The circulating aeration tank aerates the circulating water so that the dissolved oxygen is close to the saturated concentration. Circulating water containing oxygen at a high concentration is mixed with waste water and transferred to a fluidized bed bioreactor tank. Thereby, oxygen is supplied into the fluidized bed bioreactor tank.

循環水は、活性炭が流動床式バイオリアクター槽からリークしない程度の低流速で流動床式バイオリアクター槽に供給される。そのため、活性汚泥法と異なり、流動床式バイオリアクター槽内は層流状態の非常にマイルドな環境となっている。よって、活性炭表面に多種多様なバクテリアや原生動物が存在できるので、活性汚泥法で処理困難な難分解性COD成分も分解することが可能となる。   The circulating water is supplied to the fluidized bed bioreactor tank at a low flow rate such that the activated carbon does not leak from the fluidized bed bioreactor tank. Therefore, unlike the activated sludge method, the fluidized bed bioreactor tank has a very mild environment in a laminar flow state. Therefore, since a wide variety of bacteria and protozoa can be present on the activated carbon surface, it is possible to decompose the hardly decomposable COD component that is difficult to process by the activated sludge method.

特公昭56−48235号公報Japanese Patent Publication No. 56-48235 特許第3035569号公報Japanese Patent No. 3035569

しかし、流動床式バイオリアクター槽は難分解性COD成分を分解可能であっても、高負荷COD又は高負荷BOD(生物化学的酸素要求量:Biochemical Oxygen Demand)処理に問題があった。そこで、本発明は、化学的酸素要求量(COD)及び生物化学的酸素要求量(BOD)を高負荷で処理可能な排水処理装置及び排水処理方法を提供することを目的の一つとする。   However, even though the fluidized bed bioreactor tank can decompose the hardly-decomposable COD component, there is a problem with the high-load COD or high-load BOD (Biochemical Oxygen Demand) treatment. Therefore, an object of the present invention is to provide a wastewater treatment apparatus and a wastewater treatment method capable of treating chemical oxygen demand (COD) and biochemical oxygen demand (BOD) with high load.

本発明の態様は、有機物を含有する溶液が導入され、有機物を分解する分散菌が投入される分散菌槽と、分散菌槽で処理された溶液が導入され、残存する有機物を分解する微生物が付着している複数の粒子状の担体、及び分散菌を捕食する捕食生物が投入される、流動床式バイオリアクター槽と、を備える排水処理装置であることを要旨とする。   In the aspect of the present invention, a dispersion fungus tank into which a solution containing an organic substance is introduced and a dispersed bacterium that decomposes the organic substance is introduced, and a microorganism that decomposes the remaining organic substance into which the solution treated in the dispersion bacteria tank is introduced The gist of the present invention is a wastewater treatment apparatus comprising a plurality of adhering particulate carriers and a fluidized bed bioreactor tank into which predatory organisms that prey on dispersal bacteria are introduced.

本発明の他の態様は、有機物を含有する溶液を分散菌槽に導入するステップと、分散菌槽内の分散菌により、有機物を分解するステップと、分散菌槽で処理された溶液を流動床式バイオリアクター槽に導入するステップと、流動床式バイオリアクター槽内の複数の粒子状の担体に付着している微生物によって、溶液中に残存する有機物を分解するステップと、流動床式バイオリアクター槽内の捕食生物に溶液中の分散菌を捕食させるステップと、を含む、排水処理方法であることを要旨とする。   Another aspect of the present invention includes a step of introducing a solution containing an organic substance into a dispersion fungus tank, a step of decomposing the organic substance by the dispersal bacteria in the dispersion fungus tank, and a solution treated in the dispersion fungus tank in a fluidized bed. Introducing into the bioreactor tank, decomposing organic matter remaining in the solution with microorganisms adhering to a plurality of particulate carriers in the fluidized bed bioreactor tank, and fluidized bed bioreactor tank And a step of causing the predatory organisms to prey on the dispersal bacteria in the solution.

本発明によれば、難分解性化学的酸素要求量(COD)及び生物化学的酸素要求量(BOD)を高負荷で処理可能な排水処理装置及び排水処理方法を提供可能である。   According to the present invention, it is possible to provide a wastewater treatment apparatus and a wastewater treatment method capable of treating a hardly decomposable chemical oxygen demand (COD) and a biochemical oxygen demand (BOD) with a high load.

本発明の第1の実施の形態に係る排水処理装置の模式図である。It is a schematic diagram of the waste water treatment apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態の比較例に係る排水処理装置の模式図である。It is a schematic diagram of the waste water treatment apparatus which concerns on the comparative example of the 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例に係る排水処理装置の模式図である。It is a schematic diagram of the waste water treatment apparatus which concerns on the modification of the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る排水処理装置の模式図である。It is a schematic diagram of the waste water treatment apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る排水処理装置の模式図である。It is a schematic diagram of the waste water treatment apparatus which concerns on the 3rd Embodiment of this invention.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
第1の実施の形態に係る排水処理装置は、図1に示すように、有機物を含有する溶液が導入され、有機物を分解する分散菌(非凝集性細菌)が投入される分散菌槽1と、分散菌槽1で処理された溶液が導入され、残存する有機物を分解する微生物が付着している数の粒子状の担体、及び分散菌を捕食する捕食生物が投入される、流動床式バイオリアクター槽2と、を備える。
(First embodiment)
As shown in FIG. 1, the waste water treatment apparatus according to the first embodiment includes a dispersion fungus tank 1 into which a solution containing organic matter is introduced and dispersed bacteria (non-aggregating bacteria) that decompose the organic matter are introduced. The fluidized bed biotechnology, in which the solution treated in the dispersal bacteria tank 1 is introduced, and the number of particulate carriers to which microorganisms that decompose the remaining organic matter are attached, and predatory organisms that prey on the dispersal bacteria are introduced. Reactor tank 2.

分散菌槽1には、パイプ11を介して、有機物を含有する溶液が供給される。有機物を含有する溶液としては、化学工場、電子機械部品工場、建材工場、及び塗料工場等から排出される、易分解性有機物と難分解性有機物とが混在する排水が挙げられる。ここで、易分解性有機物とは、分散菌で分解されやすく、溶液の生物化学的酸素要求量(BOD:Biochemical Oxygen Demand)を高める要因となりうる有機物をいう。易分解性有機物は、BOD成分ともいう。また、難分解性有機物とは、分散菌で分解されにくく、溶液の化学的酸素要求量(COD:Chemical Oxygen Demand)を高める要因となりうる有機物をいう。難分解性有機物は、難分解性COD成分ともいう。なお、排水は着色されていてもよい。   A solution containing an organic substance is supplied to the dispersal bacteria tank 1 through a pipe 11. Examples of the solution containing an organic substance include waste water containing a mixture of easily decomposable organic substances and hardly decomposable organic substances discharged from chemical factories, electronic machine component factories, building material factories, paint factories, and the like. Here, the easily degradable organic substance means an organic substance that can be easily decomposed by dispersal bacteria and can increase the biochemical oxygen demand (BOD) of the solution. The easily decomposable organic substance is also referred to as a BOD component. In addition, the hardly decomposable organic substance means an organic substance that is difficult to be decomposed by the dispersal bacteria and can increase the chemical oxygen demand (COD) of the solution. The hardly decomposable organic substance is also referred to as a hardly decomposable COD component. The drainage may be colored.

分散菌槽1内に投入される分散菌としては、アルカリゲネス(Alcaligenes)属、及びアシネトバクター(Acinetobactor)属等が使用可能である。なお、分散菌槽1に、単離した分散菌を投入する必要はなく、活性汚泥等を投入することにより、分散菌を投入してもよい。分散菌槽1は、有機物を含有する溶液を2乃至5時間滞留させる。有機物を含有する溶液が分散菌槽1に2乃至5時間滞留されている間、分散菌が、例えば溶液中の易分解性有機物の70%程度を分解する。そのため、分散菌槽1において、溶液のBODが低下する。なお、分散菌槽1内に有機物を含有する溶液を滞留させる時間を2乃至5時間とすることにより、分散菌を捕食する原生動物が分散菌槽1内で成長することを抑制することが可能となる。   As the dispersal bacteria introduced into the dispersal bacteria tank 1, the genus Alcaligenes, the genus Acinetobacter, and the like can be used. In addition, it is not necessary to introduce | transduce the isolated dispersal bacteria into the dispersal bacteria tank 1, You may throw in disperse bacteria by throwing in activated sludge etc. The dispersal bacteria tank 1 retains a solution containing an organic substance for 2 to 5 hours. While the solution containing the organic matter is retained in the dispersion bacteria tank 1 for 2 to 5 hours, the dispersion bacteria degrade, for example, about 70% of the readily degradable organic matter in the solution. Therefore, the BOD of the solution is lowered in the dispersion bacterium tank 1. In addition, it is possible to suppress the growth of the protozoa that prey on the dispersal bacteria in the disperse bacteria tank 1 by setting the time for the solution containing the organic matter in the disperse bacteria tank 1 to be 2 to 5 hours. It becomes.

分散菌槽1には、分散菌槽1に滞留する溶液に酸素を供給する酸素供給ブロワ21が接続されている。好ましくは、分散菌槽1にゴム製メンブレン散気管やOHR式散気管等を介して酸素供給ブロワ21を接続することにより、分散菌槽1に滞留する溶液に微細気泡の酸素を供給することが可能となり、分散菌による溶存酸素の消費効率を上昇させることが可能となる。   An oxygen supply blower 21 that supplies oxygen to the solution staying in the dispersed bacteria tank 1 is connected to the dispersed bacteria tank 1. Preferably, by supplying an oxygen supply blower 21 to the dispersed bacteria tank 1 through a rubber membrane diffuser tube, an OHR diffuser tube, or the like, fine bubble oxygen can be supplied to the solution staying in the dispersed bacteria tank 1. It becomes possible, and it becomes possible to raise the consumption efficiency of the dissolved oxygen by a dispersal microbe.

分散菌槽1で処理された溶液は、分散菌槽1に接続されたパイプ12、パイプ12に接続されたパイプ13、パイプ13に接続された吸引ポンプ22、及び吸引ポンプ22に接続されたパイプ14を介して、流動床式バイオリアクター槽2の底部から、流動床式バイオリアクター槽2の内部に注入される。流動床式バイオリアクター槽2の底部から溶液を注入することによって、流動床式バイオリアクター槽2の内部に溶液が貯蔵される。さらに、流動床式バイオリアクター槽2の底部から上方に重力方向とは反対に向かう流れが、流動床式バイオリアクター槽2の内部に貯蔵された溶液中に形成される。形成された流れによって、複数の粒子状の担体が溶液中に分散し、粒子分散層30を形成する。   The solution treated in the dispersed bacteria tank 1 includes a pipe 12 connected to the dispersed bacteria tank 1, a pipe 13 connected to the pipe 12, a suction pump 22 connected to the pipe 13, and a pipe connected to the suction pump 22. 14 is injected into the fluidized bed bioreactor tank 2 from the bottom of the fluidized bed bioreactor tank 2. The solution is stored in the fluidized bed bioreactor tank 2 by injecting the solution from the bottom of the fluidized bed bioreactor tank 2. Furthermore, a flow directed upward from the bottom of the fluidized bed bioreactor tank 2 in the direction opposite to the direction of gravity is formed in the solution stored in the fluidized bed bioreactor tank 2. A plurality of particulate carriers are dispersed in the solution by the formed flow, and the particle dispersion layer 30 is formed.

分散菌槽1で処理され流動床式バイオリアクター槽2に注入された溶液は、分散菌と、分散菌で分解されなかった難分解性COD成分と、を含む。分散菌は、流動床式バイオリアクター槽2内に投入された原生動物(フィロディナ、ボルティセラ、及びアスピディスカ等)や後生動物(ネマトーダ、Aeolosoma等のミミズ)等の捕食生物によって捕食される。捕食生物による食物連鎖等により、余剰汚泥の発生量が減少するため、流動床式バイオリアクター槽において清澄な処理水が得られる。また、難分解性COD成分は、流動床式バイオリアクター槽2内の溶液中に分散された複数の粒子状の担体に付着する。複数の粒子状の担体のそれぞれには、活性炭が使用可能である。複数の粒子状の活性炭に付着した難分解性COD成分は、複数の粒子状の活性炭に付着しているヒュードモナス属(Pseudomonas)、バチルス属(Bacillus)、及びズーグレア属(Zoogloea)等のバクテリア、並びに原生動物等の微生物によって徐々に生分解される。そのため、流動床式バイオリアクター槽2において、溶液の化学的酸素要求量(COD:Chemical Oxygen Demand)が低下する。   The solution treated in the dispersed bacteria tank 1 and injected into the fluidized bed bioreactor tank 2 contains dispersed bacteria and a hardly degradable COD component that was not degraded by the dispersed bacteria. The dispersal bacteria are preyed on by predatory organisms such as protozoa (Firodina, Voltisella, Aspidisca, etc.) and metazoans (Nematoda, earthworms such as Aeolosoma), etc., which are put into the fluidized bed bioreactor tank 2. Since the amount of excess sludge generated is reduced due to food chains by predatory organisms, clear treated water is obtained in the fluidized bed bioreactor tank. Further, the hardly decomposable COD component adheres to a plurality of particulate carriers dispersed in the solution in the fluidized bed bioreactor tank 2. Activated carbon can be used for each of the plurality of particulate carriers. The persistent COD component attached to the plurality of particulate activated carbons includes bacteria such as Pseudomonas, Bacillus, and Zoogloea attached to the plurality of particulate activated carbons, and It is gradually biodegraded by microorganisms such as protozoa. Therefore, in the fluidized bed bioreactor tank 2, the chemical oxygen demand (COD: Chemical Oxygen Demand) of the solution decreases.

流動床式バイオリアクター槽2の内部の溶液に形成される流れの速さは、5乃至40m/時間である。流れの速さが5m/時間より遅いと、複数の粒子状の活性炭の分散が不充分となり、複数の粒子状の活性炭が凝集する場合がある。また、流れの速さが40m/時間より速いと、複数の粒子状の活性炭が流動床式バイオリアクター槽2から排出される場合がある。流れの速さを5乃至40m/時間とすることにより、流れがない場合と比較して、複数の粒子状の活性炭は、流動床式バイオリアクター槽2の底面から1.2乃至1.5倍程度の高さまで浮遊分散される。   The speed of the flow formed in the solution inside the fluidized bed bioreactor tank 2 is 5 to 40 m / hour. When the flow speed is slower than 5 m / hour, the dispersion of the plurality of particulate activated carbons becomes insufficient, and the plurality of particulate activated carbons may aggregate. In addition, when the flow speed is faster than 40 m / hour, a plurality of particulate activated carbons may be discharged from the fluidized bed bioreactor tank 2. By setting the flow speed to 5 to 40 m / hour, the plurality of particulate activated carbons are 1.2 to 1.5 times from the bottom of the fluidized bed bioreactor tank 2 compared to the case where there is no flow. It is suspended and dispersed to a certain height.

複数の粒子状の活性炭のそれぞれの粒径は、0.3乃至1.0mmが好ましい。活性炭の粒径が0.3mmより小さい場合、複数の粒子状の活性炭の総表面積が増えるため、多数の微生物を複数の粒子状の活性炭の表面に付着させることが可能となる。しかし、微生物の量が多くなると、微生物に消費される酸素の供給量を増やす必要も生じ得る。酸素の供給量を増やすために、流動床式バイオリアクター槽2の内部の溶液の流れの速さを速くすると、複数の粒子状の活性炭が流動床式バイオリアクター槽2から排出されるため好ましくない。   The particle size of each of the plurality of particulate activated carbons is preferably 0.3 to 1.0 mm. When the particle size of the activated carbon is smaller than 0.3 mm, the total surface area of the plurality of particulate activated carbons is increased, so that a large number of microorganisms can be attached to the surface of the plurality of particulate activated carbons. However, when the amount of microorganisms increases, it may be necessary to increase the supply amount of oxygen consumed by the microorganisms. If the flow rate of the solution in the fluidized bed bioreactor tank 2 is increased in order to increase the supply amount of oxygen, a plurality of particulate activated carbons are discharged from the fluidized bed bioreactor tank 2, which is not preferable. .

また、活性炭の粒径が1.0mmより大きい場合、複数の粒子状の活性炭の総表面積が減少するため、複数の粒子状の活性炭の表面に付着する微生物の数も減少する傾向にある。また、微生物の数が減少すると、微生物に消費される酸素の供給量も減少するが、活性炭の粒径が1.0mmより大きいと、それぞれの活性炭の質量が増すため、流動床式バイオリアクター槽2の内部の溶液の流れの速さを速くする必要が生じ得る。そのため、吸引ポンプ22の消費エネルギが不必要に上昇するので好ましくない。なお、粒子状の活性炭は、球状である必要はなく、変形していてもよい。   In addition, when the particle size of the activated carbon is larger than 1.0 mm, the total surface area of the plurality of particulate activated carbons decreases, so that the number of microorganisms attached to the surfaces of the plurality of particulate activated carbons also tends to decrease. Moreover, when the number of microorganisms decreases, the supply amount of oxygen consumed by the microorganisms also decreases. However, if the activated carbon particle size is larger than 1.0 mm, the mass of each activated carbon increases, so the fluidized bed bioreactor tank It may be necessary to increase the flow rate of the solution inside the two. Therefore, the energy consumption of the suction pump 22 is unnecessarily increased, which is not preferable. In addition, the particulate activated carbon does not need to be spherical and may be deformed.

流動床式バイオリアクター槽2に含まれる溶液のうち、複数の粒子状の活性炭が分散していない上澄み液は、パイプ15を介して、酸素供給装置としての曝気槽3に流される。曝気槽3において、酸素供給ブロワ23から空気が溶液中に吹き込まれ、溶液中に酸素が供給される。曝気槽3においてほぼ飽和酸素濃度状態となった溶液は、曝気槽3に接続されたパイプ13、吸引ポンプ22、及びパイプ14を介して、流動床式バイオリアクター槽2に再び注入される。したがって、酸素を供給された溶液が、流動床式バイオリアクター槽2と、曝気槽3と、を循環する。また、曝気槽3から、溶液の一部が、パイプ16を介して、処理済みの溶液として河川等に放流される。   Among the solutions contained in the fluidized bed bioreactor tank 2, the supernatant liquid in which the plurality of particulate activated carbons are not dispersed is passed through the pipe 15 to the aeration tank 3 as an oxygen supply device. In the aeration tank 3, air is blown into the solution from the oxygen supply blower 23, and oxygen is supplied into the solution. The solution that is in a substantially saturated oxygen concentration state in the aeration tank 3 is again injected into the fluidized bed bioreactor tank 2 through the pipe 13, the suction pump 22, and the pipe 14 connected to the aeration tank 3. Therefore, the solution supplied with oxygen circulates through the fluidized bed bioreactor tank 2 and the aeration tank 3. Further, a part of the solution is discharged from the aeration tank 3 to the river or the like as a processed solution through the pipe 16.

ここで、図2に示すように、流動床式バイオリアクター槽2の上流に分散菌槽が設置されなかった場合、CODのみならずBODも高い溶液が流動床式バイオリアクター槽2に直接注入される。この場合、分散菌槽を設置した場合と比較して、流動床式バイオリアクター槽2に導入される溶液の酸素要求量が極めて高くなる。そのため、流動床式バイオリアクター槽2の底部の活性炭に付着した微生物が急激に成長し、サッカーボール大の活性炭の凝集物が発生する場合がある。また、活性炭の凝集物が生じると、流動床式バイオリアクター槽2内に形成される溶液の上昇流の均一性が阻害されて偏流が生じ、活性炭の均一な分散が妨げられ得る。さらに、粒子分散層30と上澄みとの界面が上昇し、活性炭が流動床式バイオリアクター槽2から排出されるおそれもある。   Here, as shown in FIG. 2, when no dispersal bacteria tank is installed upstream of the fluidized bed bioreactor tank 2, a solution having a high BOD as well as COD is directly injected into the fluidized bed bioreactor tank 2. The In this case, the oxygen demand of the solution introduced into the fluidized bed bioreactor tank 2 becomes extremely high compared to the case where a dispersed bacteria tank is installed. For this reason, microorganisms attached to the activated carbon at the bottom of the fluidized bed bioreactor tank 2 may grow rapidly, and agglomerates of soccer ball-sized activated carbon may be generated. Further, when activated carbon aggregates are generated, the uniformity of the upward flow of the solution formed in the fluidized bed bioreactor tank 2 is hindered to cause a drift, and the uniform dispersion of the activated carbon can be prevented. Furthermore, the interface between the particle-dispersed layer 30 and the supernatant rises, and the activated carbon may be discharged from the fluidized bed bioreactor tank 2.

また、BODが高い溶液が注入されると、流動床式バイオリアクター槽2内の溶液の溶存酸素が不足するようになる。特に、流動床式バイオリアクター槽2の底部付近において、溶液の溶存酸素が著しく不足するようになる。そのため、吸引ポンプ22による曝気槽3からの溶液の供給速度をあげる必要が生じるため、吸引ポンプ22の消費電力等が増加する場合がある。   When a solution having a high BOD is injected, the dissolved oxygen in the solution in the fluidized bed bioreactor tank 2 becomes insufficient. In particular, in the vicinity of the bottom of the fluidized bed bioreactor tank 2, the dissolved oxygen in the solution becomes significantly insufficient. Therefore, it is necessary to increase the supply speed of the solution from the aeration tank 3 by the suction pump 22, and thus the power consumption of the suction pump 22 may increase.

これに対し、図1に示す第1の実施の形態に係る排水処理装置は、流動床式バイオリアクター槽2の上流に設置された分散菌槽1で易分解性有機物のほとんどが分解される。そのため、流動床式バイオリアクター槽2に導入される溶液のBODが低いため、流動床式バイオリアクター槽2内での酸素不足、糸状菌の発生、及び活性炭の凝集等の問題が生じにくくなる。そのため、分散菌槽1に導入される前の溶液のCOD及びBODが高い場合でも、長期にわたって安定な運転が可能となる。さらに、活性炭の凝集が生じない範囲で、流動床式バイオリアクター槽2内に形成される溶液の流れの速度を低下させることが可能となるため、吸引ポンプ22の消費電力を低減することも可能となる。   In contrast, in the wastewater treatment apparatus according to the first embodiment shown in FIG. 1, most of the readily decomposable organic matter is decomposed in the dispersed bacteria tank 1 installed upstream of the fluidized bed bioreactor tank 2. Therefore, since the BOD of the solution introduced into the fluidized bed bioreactor tank 2 is low, problems such as oxygen shortage, generation of filamentous fungi, and activated carbon aggregation in the fluidized bed bioreactor tank 2 are less likely to occur. Therefore, even when the COD and BOD of the solution before being introduced into the dispersal bacteria tank 1 are high, a stable operation can be performed over a long period. Further, since the flow rate of the solution formed in the fluidized bed bioreactor tank 2 can be reduced within a range where the activated carbon does not aggregate, the power consumption of the suction pump 22 can be reduced. It becomes.

(第1の実施の形態の変形例)
図1に示す第1の実施の形態に係る排水処理装置においては、分散菌槽1で処理された溶液は、流動床式バイオリアクター槽2に供給される。これに対し、図3に示すように、分散菌槽1で処理された溶液を、曝気槽3に供給してもよい。図3に示す排水処理装置によっても、図1に示す排水処理装置と同様の効果を得ることが可能となる。
(Modification of the first embodiment)
In the wastewater treatment apparatus according to the first embodiment shown in FIG. 1, the solution treated in the dispersed bacteria tank 1 is supplied to the fluidized bed bioreactor tank 2. On the other hand, as shown in FIG. 3, the solution treated in the dispersion bacterium tank 1 may be supplied to the aeration tank 3. The waste water treatment apparatus shown in FIG. 3 can also achieve the same effect as the waste water treatment apparatus shown in FIG.

(第2の実施の形態)
第2の実施の形態に係る排水処理装置は、図4に示すように、糸状菌の発生によるバルキングを防止するバルキング防止剤を分散菌槽1に供給するバルキング防止剤供給装置40をさらに備える。分散菌槽1内の溶液中のBOD成分、窒素成分、及びリン成分の比が100:5:1に保たれている場合、糸状菌は発生しにくい。しかし、工場等から分散菌槽1に導入される溶液のBOD成分の濃度は逐次変化するため、栄養塩バランス崩れ等により分散菌槽1に糸状菌が発生する場合がある。
(Second Embodiment)
As shown in FIG. 4, the wastewater treatment apparatus according to the second embodiment further includes a bulking inhibitor supply device 40 that supplies a bulking inhibitor that prevents bulking due to the generation of filamentous fungi to the dispersed bacteria tank 1. When the ratio of the BOD component, the nitrogen component, and the phosphorus component in the solution in the dispersion fungus tank 1 is maintained at 100: 5: 1, filamentous fungi are unlikely to be generated. However, since the concentration of the BOD component in the solution introduced from the factory or the like into the dispersal cell tank 1 changes sequentially, filamentous fungi may be generated in the disperse cell tank 1 due to loss of nutrient balance or the like.

これに対し、バルキング防止剤供給装置40から糸状菌溶菌作用のあるバルキング防止剤を分散菌槽1に供給することにより、分散菌槽1におけるバルキングの発生を抑制することが可能となる。市販のバルキング防止剤としては、日鉄環境エンジニアリング株式会社製「バルヒビター」KEL225及びKEX250シリーズ等が使用可能である。バルキング防止剤の分散菌槽1への投入量は、分散菌槽1内の溶液量に対して、例えば1乃至5ppm程度である。   On the other hand, it is possible to suppress the occurrence of bulking in the dispersed bacteria tank 1 by supplying the dispersed bacteria tank 1 with a bulking inhibitor having a filamentous fungus lysing action from the bulking inhibitor supply apparatus 40. As a commercially available bulking inhibitor, “Bulhibitor” KEL225 and KEX250 series manufactured by Nippon Steel Environmental Engineering Co., Ltd. can be used. The amount of the bulking inhibitor to be introduced into the dispersed bacteria tank 1 is, for example, about 1 to 5 ppm with respect to the amount of the solution in the dispersed bacteria tank 1.

(第3の実施の形態)
図4に示す流動床式バイオリアクター槽2において、溶液中のアンモニア態窒素は、ニトロソモナス属等のアンモニア酸化菌及びニトロバクター属等の亜硝酸酸化菌を含む好気バクテリアである硝化細菌によって硝化され、硝酸態窒素になる。さらに硝酸態窒素は、活性炭に付着している通性嫌気菌等の脱窒細菌によって形成された菌層の内部の無酸素領域で脱窒され、窒素ガス等になる。しかし、分散菌槽1に導入される溶液の窒素成分が多い場合、窒素成分が流動床式バイオリアクター槽2に残留し、全窒素(T−N)濃度が低下しない場合がある。
(Third embodiment)
In the fluidized bed bioreactor tank 2 shown in FIG. 4, ammonia nitrogen in the solution is nitrified by nitrifying bacteria which are aerobic bacteria including ammonia oxidizing bacteria such as nitrosomonas and nitrite oxidizing bacteria such as nitrobacter. And become nitrate nitrogen. Furthermore, nitrate nitrogen is denitrified in an anoxic region inside the fungus layer formed by denitrifying bacteria such as facultative anaerobes attached to the activated carbon, and becomes nitrogen gas or the like. However, when the nitrogen component of the solution introduced into the dispersed bacteria tank 1 is large, the nitrogen component may remain in the fluidized bed bioreactor tank 2 and the total nitrogen (TN) concentration may not decrease.

これに対し、第3の実施の形態に係る排水処理装置は、図5に示すように、流動床式バイオリアクター槽2に導入される溶液から窒素を除去する脱窒槽4をさらに備える。脱窒槽4には脱窒菌を保持する担体が投入される。脱窒菌としては、一般的に汚泥中に数多く存在する通性嫌気性菌が利用可能であり、例えばヒュードモナス属(Pseudomonas)等が挙げられる。脱窒菌は、NO2及びNO3の酸素成分を酸素呼吸源として利用し、N2ガス化させる。また、酸素は水素と結合され、H2Oとして放出される。脱窒菌を保持する担体としては、固定担体及び流動担体が使用可能である。例えば、脱窒槽4の容積に対して、40%程度の安価なスポンジ担体が投入される。スポンジ担体としては、例えば、アキレス株式会社のSQAやKI等が使用可能である。 On the other hand, the waste water treatment apparatus according to the third embodiment further includes a denitrification tank 4 for removing nitrogen from the solution introduced into the fluidized bed bioreactor tank 2 as shown in FIG. The denitrification tank 4 is loaded with a carrier that holds denitrifying bacteria. As a denitrifying bacterium, a facultative anaerobic bacterium generally present in a large amount in sludge can be used, and examples thereof include the genus Pseudomonas. Denitrifying bacteria use the oxygen component of NO 2 and NO 3 as an oxygen respiration source to gasify N 2 . Also, oxygen is combined with hydrogen and released as H 2 O. As the carrier for holding the denitrifying bacteria, a fixed carrier and a fluid carrier can be used. For example, an inexpensive sponge carrier of about 40% is charged with respect to the volume of the denitrification tank 4. For example, SQA or KI manufactured by Achilles Corporation can be used as the sponge carrier.

脱窒槽4内部に脱窒反応を抑制する酸素が導入されるのは好ましくない。また、酸化還元電位として−50mV以下が必要である。ここで、流動床式バイオリアクター槽2の内部において、溶液中の酸素は下方の粒子分散層30で主に消費される。そのため、溶液中の酸素濃度は、重力方向の反対方向に進むにつれて低下していく。そのため、脱窒槽4には、流動床式バイオリアクター槽2の上方の酸素濃度が低い溶液が、流動床式バイオリアクター槽2の上方に接続されたパイプ17、パイプ17に接続された吸引ポンプ24、及び吸引ポンプ24に接続されたパイプ18を介して導入される。なお、パイプ18は、脱窒槽4の底部に接続されている。   It is not preferable to introduce oxygen that suppresses the denitrification reaction into the denitrification tank 4. Further, an oxidation-reduction potential of −50 mV or less is necessary. Here, in the fluidized bed bioreactor tank 2, oxygen in the solution is mainly consumed in the lower particle dispersion layer 30. Therefore, the oxygen concentration in the solution decreases as it proceeds in the direction opposite to the direction of gravity. Therefore, in the denitrification tank 4, a solution having a low oxygen concentration above the fluidized bed bioreactor tank 2 is connected to a pipe 17 connected above the fluidized bed bioreactor tank 2 and a suction pump 24 connected to the pipe 17. , And the pipe 18 connected to the suction pump 24. The pipe 18 is connected to the bottom of the denitrification tank 4.

また、脱窒槽4には、分散菌槽1で処理される前の溶液の一部が、パイプ11と吸引ポンプ24とを接続するパイプ19を介して、導入される。分散菌槽1で処理される前の溶液は、BOD成分が分解されずに含まれている。分散菌槽1において、分散菌槽1で処理される前の溶液が、流動床式バイオリアクター槽2の上方から来た酸素濃度が低い溶液と混合される。分散菌槽1で処理される前の溶液に含まれていたBOD成分は、脱窒菌の水素供与体として利用される。なお、パイプ19から脱窒槽4に導入される溶液の量は、流動床式バイオリアクター槽2の上方から来た溶液の全窒素(T−N)に対してBOD成分の量が3倍となるよう、設定される。また、このBOD成分が不足する場合は メタノール等を脱窒菌の水素供与体として脱窒槽4にさらに注入してもよい。   In addition, a part of the solution before being treated in the dispersion bacteria tank 1 is introduced into the denitrification tank 4 through a pipe 19 that connects the pipe 11 and the suction pump 24. The solution before being processed in the dispersion bacterium 1 contains the BOD component without being decomposed. In the dispersed bacteria tank 1, the solution before being treated in the dispersed bacteria tank 1 is mixed with a solution having a low oxygen concentration coming from above the fluidized bed bioreactor tank 2. The BOD component contained in the solution before being treated in the dispersal bacteria tank 1 is used as a hydrogen donor for denitrifying bacteria. The amount of the solution introduced from the pipe 19 into the denitrification tank 4 is three times the amount of the BOD component with respect to the total nitrogen (TN) of the solution coming from above the fluidized bed bioreactor tank 2. It is set as follows. When this BOD component is insufficient, methanol or the like may be further injected into the denitrification tank 4 as a hydrogen donor for denitrifying bacteria.

パイプ18から脱窒槽4に注入された溶液は、脱窒槽4の底部から重力方向の反対方向に流れを形成する。脱窒槽4における溶液の滞留時間は4時間程度である。脱窒槽4には、攪拌用のモーターに接続された攪拌板等の攪拌手段61が設置されている。攪拌手段61は、脱窒槽4内部の溶液を穏やかに攪拌して、発生した窒素の気泡の脱泡を行うとともに担体の沈降を防止する。脱窒が終了した脱窒槽4の上部の溶液は、脱窒槽4と曝気槽3とを接続するパイプ51を介して、曝気槽3に流される。   The solution injected into the denitrification tank 4 from the pipe 18 forms a flow in the direction opposite to the gravity direction from the bottom of the denitrification tank 4. The residence time of the solution in the denitrification tank 4 is about 4 hours. The denitrification tank 4 is provided with stirring means 61 such as a stirring plate connected to a stirring motor. The stirring means 61 gently stirs the solution in the denitrification tank 4 to degas the generated nitrogen bubbles and prevent the carrier from settling. The solution in the upper part of the denitrification tank 4 after the denitrification is completed is caused to flow into the aeration tank 3 through a pipe 51 that connects the denitrification tank 4 and the aeration tank 3.

例えば分散菌槽1で処理される前の溶液の全窒素(T−N)濃度が30乃至40ppm程度であった場合、脱窒槽4を設けることにより、曝気槽3からパイプ16に排出される溶液の全窒素(T−N)濃度を7乃至10ppmに低減させることが可能となる。なお、脱窒が終了した脱窒槽4の上部の溶液を、流動床式バイオリアクター槽2に戻してもよい。   For example, when the total nitrogen (TN) concentration of the solution before being processed in the dispersion bacteria tank 1 is about 30 to 40 ppm, the solution discharged from the aeration tank 3 to the pipe 16 by providing the denitrification tank 4 It is possible to reduce the total nitrogen (TN) concentration to 7 to 10 ppm. The solution in the upper part of the denitrification tank 4 after the denitrification may be returned to the fluidized bed bioreactor tank 2.

次に、実施例及び比較例を挙げて実施の形態をより具体的に説明するが、実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。   Next, the embodiment will be described more specifically with reference to examples and comparative examples. However, the embodiment is not limited to the following examples unless it exceeds the gist.

(実施例1)
実施例1においては、図4に示す排水処理装置と同様の装置を用いた。分散菌槽1の容積は400mLであり、アルカリゲネス(Alcaligenes)属及びアシネトバクター(Acinetobactor)属を含む活性汚泥が投入された。また、分散菌槽1に導入される有機物含有溶液として、BODが800mg/Lであり、COD(cr)が1380mg/Lであり、全有機炭素(TOC:Total Organic Carbon)が300mg/Lである塗料排水を用いた。塗料排水は、分散菌槽1に2.5L/日で導入された。この場合、分散菌槽1のBOD容積負荷は、5kg−BOD/m3・日である。分散菌槽1内の溶液は、L字型の塩ビ製パイプにφ2mmの孔を開けた散気管を用いて、4L/分で曝気した。また、バルキング防止剤供給装置40から、分散菌槽1における濃度が1mg/Lになるよう、バルキング防止剤(日鉄環境エンジニアリング株式会社製 バルヒビター「KEL225」)を供給した。
Example 1
In Example 1, the same apparatus as the waste water treatment apparatus shown in FIG. 4 was used. The volume of the dispersal cell tank 1 was 400 mL, and activated sludge containing the genus Alcaligenes and the genus Acinetobacter was charged. Moreover, as an organic substance containing solution introduce | transduced into the dispersion | distribution bacteria tank 1, BOD is 800 mg / L, COD (cr) is 1380 mg / L, and total organic carbon (TOC: Total Organic Carbon) is 300 mg / L. Paint drainage was used. The paint wastewater was introduced into the dispersal bacteria tank 1 at 2.5 L / day. In this case, the BOD volume load of the dispersal bacteria tank 1 is 5 kg-BOD / m 3 · day. The solution in the dispersal cell tank 1 was aerated at 4 L / min using a diffuser tube having a 2 mm hole in an L-shaped PVC pipe. In addition, a bulking inhibitor (Balhibitor “KEL225” manufactured by Nippon Steel Environmental Engineering Co., Ltd.) was supplied from the bulking inhibitor supply apparatus 40 so that the concentration in the dispersed bacteria tank 1 was 1 mg / L.

流動床式バイオリアクター槽2の容積は2.7Lであり、内径が3cmであった。また、流動床式バイオリアクター槽2において、溶液の液面の高さは3.8mとなるよう設定した。さらに、流動床式バイオリアクター槽2には、平均粒径が0.5mmである活性炭を900mL投入した。活性炭には、ヒュードモナス属(Pseudomonas)、バチルス属(Bacillus)、及びズーグレア属(Zoogloea)等のバクテリア、並びに原生動物等の微生物が付着していた。曝気槽3の容積は1Lであった。曝気槽3で0.15L/分の速度で溶液を曝気し、曝気された溶液を吸引ポンプ22で流動床式バイオリアクター槽2の底部に供給し、流動床式バイオリアクター槽2の内部に上向きの溶液の流れを形成させた。流動床式バイオリアクター槽2の内部における溶液の流れの速さは16m/時であった。活性炭の初期展開高さは190cmであった。また、流動床式バイオリアクター槽2の底部における溶存酸素濃度は7ppmであり、流動床式バイオリアクター槽2の上部における溶存酸素濃度は4乃至5ppmであった。   The volume of the fluidized bed bioreactor tank 2 was 2.7 L, and the inner diameter was 3 cm. Further, in the fluidized bed bioreactor tank 2, the height of the liquid level of the solution was set to 3.8 m. Furthermore, 900 mL of activated carbon having an average particle diameter of 0.5 mm was charged into the fluidized bed bioreactor tank 2. Bacteria such as Pseudomonas, Bacillus, and Zoogloea, and microorganisms such as protozoa were attached to the activated carbon. The volume of the aeration tank 3 was 1 L. The solution is aerated in the aeration tank 3 at a rate of 0.15 L / min, the aerated solution is supplied to the bottom of the fluidized bed bioreactor tank 2 by the suction pump 22, and is directed upward into the fluidized bed bioreactor tank 2. A flow of solution was formed. The flow rate of the solution in the fluidized bed bioreactor tank 2 was 16 m / hour. The initial developed height of the activated carbon was 190 cm. The dissolved oxygen concentration at the bottom of the fluidized bed bioreactor tank 2 was 7 ppm, and the dissolved oxygen concentration at the top of the fluidized bed bioreactor tank 2 was 4 to 5 ppm.

上記条件で、4か月間、停止することなく連続して溶液を処理し続けた。その結果、パイプ16から放流された処理済み溶液の水質は、表1に示すように良好であった。また、4か月後の活性炭の展開高さは210cmであり、4か月前と比較して20cm程度の上昇にとどまった。なお、全有機炭素(TOC)及び全窒素(T−N)は、溶液を遠心分離(1500rpm*15分間)し、菌体が除去された上澄み液をTOC計(島津製作所製)にかけて測定した。全有機炭素(TOC)及び全窒素(T−N)の測定方法は、以下の実施例においても同様である。   Under the above conditions, the solution was continuously processed for 4 months without stopping. As a result, the water quality of the treated solution discharged from the pipe 16 was good as shown in Table 1. Moreover, the deployment height of activated carbon after 4 months was 210 cm, which was only about 20 cm higher than 4 months ago. The total organic carbon (TOC) and total nitrogen (TN) were measured by centrifuging the solution (1500 rpm * 15 minutes) and applying the supernatant from which the cells had been removed to a TOC meter (manufactured by Shimadzu Corporation). The measuring method of total organic carbon (TOC) and total nitrogen (TN) is the same in the following examples.

(比較例1)
比較例1においては、図2に示すように、分散菌槽を有さない排水処理装置を用いた。分散菌槽を有さない点以外は、実施例1と同様の条件で溶液を処理した。なお、流動床式バイオリアクター槽2の底部における溶存酸素濃度は、実施例1と同様に7ppmとしたが、流動床式バイオリアクター槽2の上部における溶存酸素濃度は1乃至2ppmとなった。溶液を処理した結果、活性炭に付着した菌体の量の増加が著しく、活性炭の展開高さが約3ケ月で3.8mまで上昇し、流動床式バイオリアクター槽2から活性炭が溢流してしまった。

Figure 2011092811
(Comparative Example 1)
In Comparative Example 1, as shown in FIG. 2, a waste water treatment apparatus that does not have a dispersion fungus tank was used. The solution was treated under the same conditions as in Example 1 except that it did not have a dispersion fungus tank. The dissolved oxygen concentration at the bottom of the fluidized bed bioreactor tank 2 was 7 ppm as in Example 1, but the dissolved oxygen concentration at the top of the fluidized bed bioreactor tank 2 was 1 to 2 ppm. As a result of processing the solution, the amount of bacterial cells adhering to the activated carbon increased remarkably, the height of activated carbon increased to 3.8 m in about 3 months, and the activated carbon overflowed from the fluidized bed bioreactor tank 2. It was.
Figure 2011092811

(実施例2)
実施例1において、図4に示す分散菌槽1にバルキング防止剤を投入しなかった場合、運転を開始して約50乃至60日を経過した頃に、分散菌槽1に糸状菌が多量に発生するとともに、流動床式バイオリアクター槽2にも糸状菌が成長し、活性炭の展開高さが3mまで急上昇した。そこで、バルヒビター「KEX250」を20ppm程度、分散菌槽1へ投入すると糸状菌は消失し、その後、流動床式バイオリアクター槽2における活性炭の展開高さも2.1mと糸状菌が発生する前の展開高さに戻った。なお、バルキング防止剤を添加せずに運転しても、約50日の間は、糸状菌の発生による展開高さの上昇はなかった。したがって、運転期間によっては、バルキング防止剤は必須ではない。

Figure 2011092811
(Example 2)
In Example 1, when no bulking inhibitor was added to the dispersion fungus tank 1 shown in FIG. 4, a large amount of filamentous fungi was present in the dispersion funnel tank 1 after about 50 to 60 days had passed since the start of operation. At the same time, filamentous fungus grew in the fluidized bed bioreactor tank 2 and the developed height of activated carbon rapidly increased to 3 m. Therefore, when about 20 ppm of Balhibitor “KEX250” is added to the dispersal cell tank 1, the filamentous fungus disappears, and then the activated carbon deployment height in the fluidized bed bioreactor tank 2 is 2.1 m before the filamentous fungus is generated. Returned to height. Even when the operation was carried out without adding the bulking inhibitor, the development height did not increase due to the occurrence of filamentous fungi for about 50 days. Therefore, an anti-bulking agent is not essential depending on the operation period.
Figure 2011092811

(実施例3)
実施例3においては、図5に示す排水処理装置と同様の装置を用いた。分散菌槽1には、実施例1と同じ溶液を2.5L/日導入した。また、分散菌槽1、流動床式バイオリアクター槽2、及び曝気槽3は、実施例1と同じ装置を同じ条件で用いた。容積が1Lであり、内径6.7cmである塩ビ製円筒からなる脱窒槽4において、溶液の液面高さは28cmとなるよう設定した。また、脱窒槽4には、10mm角のウレタンスポンジ(アキレス株式会社SQA)を、ヒュードモナス属(Pseudomonas)等の脱窒菌の担体として500mL投入した。
(Example 3)
In Example 3, the same apparatus as the waste water treatment apparatus shown in FIG. 5 was used. The same solution as in Example 1 was introduced into the dispersion bacteria tank 1 at 2.5 L / day. Moreover, the same apparatus as Example 1 was used on the same conditions for the dispersion | distribution bacteria tank 1, the fluidized bed bioreactor tank 2, and the aeration tank 3. FIG. In the denitrification tank 4 made of a vinyl chloride cylinder having a volume of 1 L and an inner diameter of 6.7 cm, the liquid level of the solution was set to 28 cm. In addition, 500 mL of 10 mm square urethane sponge (Achilles SQA) was added to the denitrification tank 4 as a carrier for denitrifying bacteria such as Pseudomonas.

脱窒槽4には、流動床式バイオリアクター槽2の上方から酸素濃度の低い溶液を5.5L/日導入した。また、分散菌槽1で処理される前の溶液の一部を、脱窒槽4に0.4L/日導入した。さらに、脱窒槽4における溶液の滞留時間は4時間となるよう設定した。 酸化還元電位は−200mVであった。脱窒槽4の上方には、オリエンタルモーターに接続された回転板を備える攪拌手段61を設置し、1回転/10秒で脱窒槽4内の溶液を撹拌した。脱窒された溶液は、曝気槽3に戻した。   The denitrification tank 4 was introduced with 5.5 L / day of a solution having a low oxygen concentration from above the fluidized bed bioreactor tank 2. In addition, a part of the solution before being treated in the dispersion bacteria tank 1 was introduced into the denitrification tank 4 at 0.4 L / day. Furthermore, the residence time of the solution in the denitrification tank 4 was set to be 4 hours. The oxidation-reduction potential was −200 mV. Above the denitrification tank 4, a stirring means 61 provided with a rotating plate connected to an oriental motor was installed, and the solution in the denitrification tank 4 was stirred at 1 rotation / 10 seconds. The denitrified solution was returned to the aeration tank 3.

上記条件で約4ケ月間、停止することなく連続して溶液を処理し続けた。その結果、パイプ16から放流された処理済み溶液の水質は、表3に示すように良好であった。また、4か月後の活性炭の展開高さは200cmであり、4か月前と比較して10cm程度の上昇にとどまった。   The solution was continuously processed without stopping for about 4 months under the above conditions. As a result, the water quality of the treated solution discharged from the pipe 16 was good as shown in Table 3. Moreover, the deployment height of activated carbon after 4 months was 200 cm, which was only about 10 cm higher than 4 months ago.

(実施例4)
図5に示す排水処理装置の分散菌槽1に、実施例1と同じ溶液を3.8L/日導入した。この場合、分散菌槽1のBOD容積負荷は7.5kg−BOD/m3・日であった。これ以外は、実施例3と同様の条件で、約3ケ月間、停止することなく連続して溶液を処理し続けた。その結果、パイプ16から放流された処理済み溶液の水質は、表3に示すように、実施例3と同様に良好であった。また、約3か月後の活性炭の展開高さは220cmであり、3か月前と比較して30cm程度の上昇にとどまった。

Figure 2011092811
Example 4
The same solution as in Example 1 was introduced into the dispersed bacteria tank 1 of the wastewater treatment apparatus shown in FIG. 5 at 3.8 L / day. In this case, the BOD volume load of the dispersal bacteria tank 1 was 7.5 kg-BOD / m 3 · day. Other than this, the solution was continuously processed without stopping for about 3 months under the same conditions as in Example 3. As a result, the water quality of the treated solution discharged from the pipe 16 was good as in Example 3 as shown in Table 3. Moreover, the deployment height of activated carbon after about 3 months was 220 cm, which was only about 30 cm higher than 3 months ago.
Figure 2011092811

1 分散菌槽
2 流動床式バイオリアクター槽
3 曝気槽
4 脱窒槽
11,12,13,14,15,16,17,18,19,51 パイプ
21,23 酸素供給ブロワ
22,24 吸引ポンプ
30 粒子分散層
40 バルキング防止剤供給装置
61 攪拌手段
DESCRIPTION OF SYMBOLS 1 Dispersed bacteria tank 2 Fluidized bed type bioreactor tank 3 Aeration tank 4 Denitrification tank 11, 12, 13, 14, 15, 16, 17, 18, 19, 51 Pipe 21, 23 Oxygen supply blower 22, 24 Suction pump 30 Particles Dispersion layer 40 Bulking inhibitor supply device 61 Stirring means

Claims (13)

有機物を含有する溶液が導入され、前記有機物を分解する分散菌が投入される分散菌槽と、
前記分散菌槽で処理された溶液が導入され、残存する前記有機物を分解する微生物が付着している複数の粒子状の担体、及び前記分散菌を捕食する捕食生物が投入される、流動床式バイオリアクター槽と、
を備える排水処理装置。
A dispersion fungus tank into which a solution containing an organic matter is introduced and into which the dispersal bacteria that decompose the organic matter are introduced;
A fluidized bed type in which a solution treated in the dispersal bacteria tank is introduced, and a plurality of particulate carriers to which microorganisms that decompose the remaining organic matter are attached, and predatory organisms that prey on the dispersal bacteria are input. A bioreactor tank;
A wastewater treatment device comprising:
バルキング防止剤を前記分散菌槽に供給するバルキング防止剤供給装置を更に備える、請求項1に記載の排水処理装置。   The wastewater treatment apparatus according to claim 1, further comprising a bulking inhibitor supply device that supplies a bulking inhibitor to the dispersed bacteria tank. 前記流動床式バイオリアクター槽に導入される溶液から窒素を除去する脱窒槽を更に備える、請求項1乃至3のいずれか1項に記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 3, further comprising a denitrification tank that removes nitrogen from the solution introduced into the fluidized bed bioreactor tank. 前記流動床式バイオリアクター槽において、重力方向の反対方向に前記溶液中の酸素濃度が低下し、
前記流動床式バイオリアクター槽の上方から前記酸素濃度が低い溶液が前記脱窒槽に導入される、請求項4に記載の排水処理装置。
In the fluidized bed bioreactor tank, the oxygen concentration in the solution decreases in the direction opposite to the direction of gravity,
The wastewater treatment apparatus according to claim 4, wherein the solution having a low oxygen concentration is introduced into the denitrification tank from above the fluidized bed bioreactor tank.
前記脱窒槽に脱窒菌が投入され、
前記分散菌槽で処理される前の溶液の一部が、前記脱窒菌の炭素源として、前記脱窒槽に導入される、請求項4又は5に記載の排水処理装置。
Denitrifying bacteria are introduced into the denitrification tank,
The wastewater treatment apparatus according to claim 4 or 5, wherein a part of the solution before being treated in the dispersion bacteria tank is introduced into the denitrification tank as a carbon source of the denitrification bacteria.
前記脱窒槽に設けられた、前記溶液を攪拌する攪拌手段を更に備える、請求項4乃至6のいずれか1項に記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 4 to 6, further comprising a stirring unit that is provided in the denitrification tank and stirs the solution. 前記流動床式バイオリアクター槽に導入される溶液に酸素を供給する酸素供給装置を更に備える、請求項1乃至7のいずれか1項に記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 7, further comprising an oxygen supply apparatus that supplies oxygen to the solution introduced into the fluidized bed bioreactor tank. 前記酸素供給装置で酸素を供給された溶液が、前記流動床式バイオリアクター槽の底部から前記流動床式バイオリアクター槽の内部に注入され、前記流動床式バイオリアクター槽の内部に貯蔵された溶液に、重力方向とは反対方向の流れが形成される、請求項8に記載の排水処理装置。   The solution supplied with oxygen by the oxygen supply device is injected into the fluidized bed bioreactor tank from the bottom of the fluidized bed bioreactor tank and stored in the fluidized bed bioreactor tank. The waste water treatment apparatus according to claim 8, wherein a flow in a direction opposite to the direction of gravity is formed. 前記分散菌槽に滞留する前記溶液に酸素を供給する酸素供給ブロワを更に備える、請求項1乃至9のいずれか1項に記載の排水処理装置。   The waste water treatment apparatus of any one of Claims 1 thru | or 9 further equipped with the oxygen supply blower which supplies oxygen to the said solution stagnating in the said dispersion | distribution bacteria tank. 前記複数の担体のそれぞれが活性炭である、請求項1乃至10のいずれか1項に記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 10, wherein each of the plurality of carriers is activated carbon. 前記活性炭の平均粒径が0.3乃至1mmである、請求項11に記載の排水処理装置。   The waste water treatment apparatus according to claim 11, wherein the activated carbon has an average particle size of 0.3 to 1 mm. 有機物を含有する溶液を分散菌槽に導入するステップと、
前記分散菌槽内の分散菌により、前記有機物を分解するステップと、
前記分散菌槽で処理された溶液を流動床式バイオリアクター槽に導入するステップと、
前記流動床式バイオリアクター槽内の複数の粒子状の担体に付着している微生物によって、前記溶液中に残存する前記有機物を分解するステップと、
前記流動床式バイオリアクター槽内の捕食生物に前記溶液中の前記分散菌を捕食させるステップと、
を含む、排水処理方法。
Introducing a solution containing organic matter into the dispersal cell;
Decomposing the organic matter by the dispersal bacteria in the dispersal bacteria tank;
Introducing the solution treated in the dispersal bacteria tank into a fluidized bed bioreactor tank;
Decomposing the organic matter remaining in the solution with microorganisms attached to a plurality of particulate carriers in the fluidized bed bioreactor tank;
Feeding predatory organisms in the fluidized bed bioreactor tank with the dispersal bacteria in the solution;
Including wastewater treatment methods.
前記分散菌槽内の分散菌により、前記有機物を分解するステップにおいて、前記分散菌槽における前記溶液の滞留時間が、2乃至5時間である、請求項13に記載の排水処理方法。   The wastewater treatment method according to claim 13, wherein in the step of decomposing the organic matter by the dispersed bacteria in the dispersed bacteria tank, the residence time of the solution in the dispersed bacteria tank is 2 to 5 hours.
JP2009246279A 2009-10-27 2009-10-27 Waste water treatment apparatus and waste water treatment method Pending JP2011092811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246279A JP2011092811A (en) 2009-10-27 2009-10-27 Waste water treatment apparatus and waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246279A JP2011092811A (en) 2009-10-27 2009-10-27 Waste water treatment apparatus and waste water treatment method

Publications (1)

Publication Number Publication Date
JP2011092811A true JP2011092811A (en) 2011-05-12

Family

ID=44110343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246279A Pending JP2011092811A (en) 2009-10-27 2009-10-27 Waste water treatment apparatus and waste water treatment method

Country Status (1)

Country Link
JP (1) JP2011092811A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202423A (en) * 2012-03-27 2013-10-07 National Agriculture & Food Research Organization Waste water treatment system by amorphous calcium silicate hydrate, and method for utilizing the recovered substance
JPWO2013103124A1 (en) * 2012-01-06 2015-05-11 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
JP2015147513A (en) * 2014-02-06 2015-08-20 株式会社デンソー hybrid vehicle
WO2016017613A1 (en) * 2014-07-29 2016-02-04 日之出産業株式会社 Biological treatment method and biological treatment device
JP6999096B1 (en) 2020-10-06 2022-01-18 株式会社ウイルステージ Biological reaction equipment used for water treatment, water bottom purification equipment using it, and aquaponics equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335698A (en) * 1993-05-28 1994-12-06 Kurita Water Ind Ltd Nitrification method
JP2006043586A (en) * 2004-08-04 2006-02-16 Kurita Water Ind Ltd Biological treatment accelerator for wastewater and biological treatment method of wastewater using it
WO2006109715A1 (en) * 2005-04-12 2006-10-19 Kurita Water Industries Ltd. Method for biological disposal of organic wastewaer and biological disposal apparatus
JP2007105580A (en) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd Method and apparatus for biologically treating organic drainage
JP2009202115A (en) * 2008-02-28 2009-09-10 Kurita Water Ind Ltd Method and apparatus for biologically treating organic wastewater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335698A (en) * 1993-05-28 1994-12-06 Kurita Water Ind Ltd Nitrification method
JP2006043586A (en) * 2004-08-04 2006-02-16 Kurita Water Ind Ltd Biological treatment accelerator for wastewater and biological treatment method of wastewater using it
WO2006109715A1 (en) * 2005-04-12 2006-10-19 Kurita Water Industries Ltd. Method for biological disposal of organic wastewaer and biological disposal apparatus
JP2007105580A (en) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd Method and apparatus for biologically treating organic drainage
JP2009202115A (en) * 2008-02-28 2009-09-10 Kurita Water Ind Ltd Method and apparatus for biologically treating organic wastewater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013103124A1 (en) * 2012-01-06 2015-05-11 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
JP2013202423A (en) * 2012-03-27 2013-10-07 National Agriculture & Food Research Organization Waste water treatment system by amorphous calcium silicate hydrate, and method for utilizing the recovered substance
JP2015147513A (en) * 2014-02-06 2015-08-20 株式会社デンソー hybrid vehicle
WO2016017613A1 (en) * 2014-07-29 2016-02-04 日之出産業株式会社 Biological treatment method and biological treatment device
JPWO2016017613A1 (en) * 2014-07-29 2017-04-27 日之出産業株式会社 Biological treatment method and biological treatment apparatus
JP6999096B1 (en) 2020-10-06 2022-01-18 株式会社ウイルステージ Biological reaction equipment used for water treatment, water bottom purification equipment using it, and aquaponics equipment
JP2022061133A (en) * 2020-10-06 2022-04-18 株式会社ウイルステージ Biological reaction device used for water treatment, water bottom purifying device using the same, and aquaponics apparatus

Similar Documents

Publication Publication Date Title
KR101875024B1 (en) Apparatus and Method for Parial Nitrification of Ammonia from Ammonia Containing Sewage and Wastewater
CN103508559B (en) Aerobic treatment method applied in antibiotic wastewater treatment
JP2564080B2 (en) Wastewater treatment method and wastewater treatment equipment
JP5126690B2 (en) Wastewater treatment method
JP5629448B2 (en) Wastewater treatment method
Chen et al. Nitrogen removal performance and microbial community of an enhanced multistage A/O biofilm reactor treating low-strength domestic wastewater
JP5098183B2 (en) Waste water treatment method and apparatus
JP2010214244A (en) Wastewater treatment method and wastewater treatment apparatus
JP2011092811A (en) Waste water treatment apparatus and waste water treatment method
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP3732025B2 (en) Waste water treatment method and waste water treatment equipment
Hosseini et al. Continuous nitrifying granular sludge bioreactor: influence of aeration and ammonium loading rate
KR101537755B1 (en) Apparatus for treating landfill leachate using aerobic granular sludge and treatment method using thereof
JP4915036B2 (en) Denitrification method and denitrification apparatus
JPH0751686A (en) Treatment of sewage
JP7133339B2 (en) Nitrogen treatment method
US6159372A (en) Method for treating waste water with a high concentration of organic matter by using ball shaped circulating and elongated stationary ciliary filter cakes
JP2007326075A (en) Waste water treatment method and waste water treatment equipment
US20130098815A1 (en) Sewage treatment apparatus
KR101258045B1 (en) Method and apparatus for treatment of wastewater
JP3477161B2 (en) Wastewater treatment method and apparatus
JP5095882B2 (en) Waste nitric acid treatment method
KR101615981B1 (en) Apparatus for Wastewater treatment Having Returning Device of Fluidized Carrier
JP2006061879A (en) Waste water treatment method and device
JP2004041981A (en) Organic waste water treatment method and its system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140417