JP2013202423A - Waste water treatment system by amorphous calcium silicate hydrate, and method for utilizing the recovered substance - Google Patents

Waste water treatment system by amorphous calcium silicate hydrate, and method for utilizing the recovered substance Download PDF

Info

Publication number
JP2013202423A
JP2013202423A JP2012070682A JP2012070682A JP2013202423A JP 2013202423 A JP2013202423 A JP 2013202423A JP 2012070682 A JP2012070682 A JP 2012070682A JP 2012070682 A JP2012070682 A JP 2012070682A JP 2013202423 A JP2013202423 A JP 2013202423A
Authority
JP
Japan
Prior art keywords
tank
csh
solid
treatment system
neutralization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012070682A
Other languages
Japanese (ja)
Other versions
JP5931534B2 (en
Inventor
Yasuo Tanaka
康男 田中
Yasuhiro Yamashita
恭広 山下
Kiyomi Sugimoto
清美 杉本
Teruaki Hasegawa
輝明 長谷川
Takeshi Meido
剛 明戸
Nobutaka Minowa
信孝 美濃和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba Prefectural Government
Taiheiyo Cement Corp
Onoda Chemical Industry Co Ltd
National Agriculture and Food Research Organization
Original Assignee
Chiba Prefectural Government
Taiheiyo Cement Corp
Onoda Chemical Industry Co Ltd
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba Prefectural Government, Taiheiyo Cement Corp, Onoda Chemical Industry Co Ltd, National Agriculture and Food Research Organization filed Critical Chiba Prefectural Government
Priority to JP2012070682A priority Critical patent/JP5931534B2/en
Publication of JP2013202423A publication Critical patent/JP2013202423A/en
Application granted granted Critical
Publication of JP5931534B2 publication Critical patent/JP5931534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Fertilizers (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste water treatment system developing decoloration and disinfection effect and further denitrification effect along with an excellent dephosphorization effect with respect to waste water obtained by treating organic sewage such as barn sewage, and a method for utilizing a recovered substance.SOLUTION: A waste water treatment system includes a treatment tank into which a slurry of CSH and raw water are introduced, a neutralization and denitrification tank into which the liquid drawn out of the treatment tank is introduced, and a solid-liquid separation tank into which the slurry drawn out of the treatment tank is introduced. A precipitate taking in phosphorus or phosphorus and a coloring component is formed in the treatment tank and the slurry containing the precipitate is drawn out of the treatment tank to be guided to the solid-liquid separation tank while a precipitate-containing solid component (used CSH) is recovered in the solid-liquid separation tank and the nitrate nitrogen contained in the liquid is removed as nitrogen gas in the solid-liquid separation tank and the liquid is neutralized by carbon dioxide.

Description

本発明は、非晶質けい酸カルシウム水和物(CSHと云う)を利用した畜舎排水等の処理システムとその回収物の利用方法に関し、より詳しくは、CSHによる処理槽と中和脱窒槽とを組み合わせた排水処理システムとその回収物の利用方法に関する。
本発明の排水処理システムは、畜舎の排水処理において、りんの除去・回収、窒素の除去、脱色、および有害微生物の消毒に優れた効果を有する。
The present invention relates to a treatment system for livestock sewage and the like using amorphous calcium silicate hydrate (referred to as CSH) and a method of using the recovered material, and more specifically, a treatment tank using CSH and a neutralization denitrification tank. It is related with the wastewater treatment system which combined, and the utilization method of the collection thing.
The wastewater treatment system of the present invention has excellent effects in phosphorus removal / recovery, nitrogen removal, decolorization, and disinfection of harmful microorganisms in livestock wastewater treatment.

畜舎からは糞尿を含む有機汚水(畜舎汚水と云う)が排出される。この畜舎汚水には多量の有機物が含まれており、COD(化学的酸素要求量)やBOD(生物化学的酸素要求量)が高く、未処理のまま放流すると水質汚濁の原因になるので、活性汚泥法などを利用してCODやBODを低減する浄化方法が従来から知られている(特許文献1:特開平10−174991号公報)。 Organic sewage containing manure (referred to as sewage) is discharged from the barn. This livestock sewage contains a large amount of organic matter, has a high COD (chemical oxygen demand) and BOD (biochemical oxygen demand), and it can cause water pollution if discharged untreated. A purification method for reducing COD and BOD using a sludge method or the like has been known (Patent Document 1: Japanese Patent Laid-Open No. 10-174991).

しかし、活性汚泥法を利用した従来の処理方法は畜舎汚水に含まれるりんを十分に除去することができないと云う問題があった。このため、無機系凝集剤を使用する凝集沈殿法が利用されており、また畜舎汚水を曝気して汚水中の溶解性りんを不溶化して除去する処理方法も知られている(特許文献2:特開2001−179267号公報)。無機系凝集剤の一種としては消石灰も利用されている。なお、消石灰は消毒効果も有することは公知である。 However, the conventional treatment method using the activated sludge method has a problem that phosphorus contained in sewage can not be sufficiently removed. For this reason, the coagulation sedimentation method using an inorganic type coagulant is utilized, and the processing method of aeration of livestock sewage to insolubilize and remove soluble phosphorus in the sewage is also known (Patent Document 2: JP 2001-179267 A). Slaked lime is also used as a kind of inorganic flocculant. It is known that slaked lime also has a disinfecting effect.

さらに、排水の脱りん手段として、けい酸カルシウムを主成分とする脱りん剤が従来から知られている。例えば、特開昭61−263636号公報(特許文献3)にはCaO/SiO2モル比が1.5〜5のけい酸カルシウム水和物を主成分とする水処理剤が記載されている。また、特公平02−20315号公報(特許文献4)には空隙率50〜90%の独立気泡を有するけい酸カルシウム水和物からなる脱りん材が記載されている。さらに、特開平10−235344号公報(特許文献5)にはけい酸カルシウム水和物を主成分とした直径数ミリ程度の球状または中空状に成形した脱りん材が記載されている。特開2000−135493号公報(特許文献6)にはけい灰石を用いた脱りん方法が提案されている。 Furthermore, a dephosphorizing agent mainly composed of calcium silicate is conventionally known as a dephosphorizing means for drainage. For example, Japanese Patent Application Laid-Open No. 61-263636 (Patent Document 3) describes a water treatment agent mainly composed of calcium silicate hydrate having a CaO / SiO 2 molar ratio of 1.5 to 5. Japanese Patent Publication No. 02-20315 (Patent Document 4) describes a dephosphorization material made of calcium silicate hydrate having closed cells with a porosity of 50 to 90%. Furthermore, Japanese Patent Laid-Open No. 10-235344 (Patent Document 5) describes a dephosphorization material formed into a spherical or hollow shape having a diameter of about several millimeters and containing calcium silicate hydrate as a main component. JP-A-2000-135493 (Patent Document 6) proposes a dephosphorization method using wollastonite.

畜舎汚水の処理において、処理後の排水の色について規制はないが、色の濃い排水は未処理と誤解され、苦情の原因になるので、脱色は汚水処理の重要課題の一つである。ちなみに、一般的な排水の脱色方法として、活性炭吸着法、オゾン酸化法、およびALC粉末などの多孔体けい酸カルシウム水和物からなる粉粒体を脱色剤として利用する方法が知られている(特許文献7:特開平08−131822号公報参照)。 In the treatment of sewage sewage, there is no restriction on the color of the wastewater after treatment, but since the dark wastewater is misunderstood as untreated, it causes complaints, so decolorization is one of the important issues in sewage treatment. Incidentally, as a general method for decolorizing waste water, there are known methods of using activated carbon adsorption method, ozone oxidation method, and granular material composed of porous calcium silicate hydrate such as ALC powder as a decolorizing agent ( Patent Document 7: Japanese Patent Laid-Open No. 08-131822).

特開平10−174991号公報Japanese Patent Laid-Open No. 10-174991 特開2001−179267号公報JP 2001-179267 A 特開昭61−263636号公報JP-A 61-263636 特公平02−020315号公報Japanese Examined Patent Publication No. 02-020315 特開平10−235344号公報JP-A-10-235344 特開2000−135493号公報JP 2000-135493 A 特開平08−131822号公報Japanese Patent Laid-Open No. 08-131822

特許文献1の処理方法はりんを除去する効果が低く、特許文献2の処理方法は脱色については殆ど効果がない。さらに、特許文献3〜特許文献5の処理方法に用いるけい酸カルシウム水和物は、大部分がALCなどの結晶質であって多孔質の空隙にりんを吸着して除去するものであり、特許文献6の処理方法と同様に処理時間が長くかかる問題がある。また、脱色効果はない。また、特許文献7の処理方法は、ALCなどのけい酸カルシウム水和物を用いて着色液体を脱色することが記載されているが、ALCはトバモライトを主体とした結晶質であるため畜舎汚水由来の排水にALC粉末を投入しても十分な脱色効果を得ることができず、また脱りん効果も低い。 The processing method of Patent Document 1 has a low effect of removing phosphorus, and the processing method of Patent Document 2 has little effect on decolorization. Furthermore, the calcium silicate hydrate used in the treatment methods of Patent Documents 3 to 5 is mostly crystalline, such as ALC, and adsorbs and removes phosphorus in porous voids. Similar to the processing method of Document 6, there is a problem that it takes a long processing time. Moreover, there is no decoloring effect. Moreover, although the processing method of patent document 7 describes decoloring a coloring liquid using calcium silicate hydrates, such as ALC, since ALC is a crystalline substance mainly having tobermorite, it originates in sewage sewage Even if ALC powder is added to the waste water, sufficient decoloring effect cannot be obtained and the dephosphorization effect is low.

また、排水からのりんの除去・回収は水質汚濁を解消すると共に枯渇性資源であるりんの循環利用の一端を担う観点からも重要である。また、窒素については、現状では畜産農業排水の硝酸性窒素の排水基準は暫定で900mg/Lであるが、数年後には規制が強化される可能性もあり、今後一層低減が重要となる。色の排水規制はないが脱色の要望は強い。 In addition, removal and recovery of phosphorus from wastewater is important from the viewpoint of eliminating water pollution and playing a part in the recycling of phosphorus, a depleting resource. As for nitrogen, at present, the drainage standard for nitrate nitrogen in livestock agricultural wastewater is tentatively 900 mg / L, but regulations may be strengthened in a few years, and further reduction will become important in the future. There is no color drainage regulation, but there is a strong demand for decolorization.

排水の消毒は、現状では排水の大腸菌群3000個/mL以下という規制を順守すればよいことから塩素消毒が利用されている。また、通常の生物処理で排水の大腸菌が3000個/mL以下になっていれば塩素消毒は不要であるが、万が一、口蹄疫ウイルスなどの有害微生物が混入した場合にはこのような従来の対応だけでは不十分な可能性があり、今後は口蹄疫までも視野に入れた有効な消毒技術が求められる。 As for the disinfection of wastewater, chlorine disinfection is currently used because it is only necessary to comply with the regulation of 3,000 / ml or less coliform of wastewater. Chlorine disinfection is not necessary if the amount of Escherichia coli in the wastewater is 3000 / mL or less in normal biological treatment, but in the unlikely event that harmful microorganisms such as foot-and-mouth disease virus are mixed, only such conventional measures are taken. However, there is a possibility that it will be insufficient, and in the future, effective disinfection technology with a view to foot-and-mouth disease will be required.

本発明は、従来の処理方法における上記問題を解決したものであって、畜舎汚水などの有機性汚水を処理した排水について、優れた脱りん効果と共に脱色および消毒効果、さらには脱窒効果を発揮する排水の処理システムおよび回収物の利用方法を提供する。 The present invention solves the above-mentioned problems in the conventional treatment method, and exhibits excellent dephosphorization effect, decolorization and disinfection effect, and denitrification effect for wastewater treated with organic sewage such as livestock sewage. A wastewater treatment system and a method for using the collected material are provided.

本発明によれば、以下の構成からなる非晶質けい酸カルシウム水和物による排水処理システムおよびその回収物の利用方法が提供される。
〔1〕非晶質けい酸カルシウム水和物(CSHと云う)のスラリーと原水が導入される処理槽、該処理槽から抜き出した液が導入される中和脱窒槽、および該処理槽から抜き出したスラリーが導入される固液分離槽とを有し、
上記処理槽においてアルカリ性の液性下で原水に含まれるりんまたはりんと着色成分を取り込んだ沈澱を生成させ、該沈澱を含むスラリーを処理槽から抜き出して固液分離槽に導き、該固液分離槽において上記沈澱を含む使用済CSHを回収し、
一方、上記中和脱窒槽には脱窒細菌を担持した多孔質無機性粒状物が充填されており、上記処理槽から抜き出した液が該中和脱窒槽に導入されると共に、該中和脱窒槽にはチオ硫酸ナトリウムと炭酸ガスが導入され、該中和脱窒槽において液中に含まれる硝酸性窒素が窒素ガスに還元され除去されると共に炭酸ガスによって液が中和されることを特徴とする排水処理システム。
〔2〕原水が畜舎から放流される排水、または有機性産業廃水である上記[1]に記載する排水処理システム。
〔3〕処理槽内をpH8以上に調整してりんを取り込んだ沈澱を生成させ、あるいはpH11以上に調整してりんと共に着色成分を取り込んだ沈澱を生成させると共に消毒を行う上記[1]または上記[2]に記載する排水処理システム。
〔4〕CSHを処理槽に注入する管路にガス圧で作動するダイアフラム弁が介設されており、該ダイアフラム弁は中和脱窒槽に導入される炭酸ガスのボンベと管路で接続されており、該ボンベの圧力が低下するとバルブが開き、CSH注入用ポンプの吸込み側管路が大気開放となってCSHの処理槽への注入が停止される上記[1]〜上記[3]の何れかに記載する排水処理システム。
〔5〕固液分離して回収した使用済CSHを副産りん酸肥料として利用する上記[1]〜上記[4]の何れかに記載する排水処理システム。
〔6〕固液分離して回収した使用済CSHを遊離セシウムおよび遊離ストロンチウムの吸着材として用いる上記[1]〜上記[5]の何れかに記載する排水処理システム。
〔7〕上記[1]に記載する排水処理システムの固液分離槽から回収された固形分からなる副産りん酸肥料または遊離セシウムおよび遊離ストロンチウムの吸着材。
ADVANTAGE OF THE INVENTION According to this invention, the wastewater treatment system by the amorphous calcium silicate hydrate which consists of the following structures and the utilization method of the collection | recovery are provided.
[1] A treatment tank into which a slurry of amorphous calcium silicate hydrate (referred to as CSH) and raw water are introduced, a neutralization denitrification tank into which a liquid extracted from the treatment tank is introduced, and an extraction from the treatment tank A solid-liquid separation tank into which the slurry is introduced,
In the treatment tank, a precipitate containing phosphorus or phosphorus and coloring components contained in the raw water is produced under alkaline liquidity, and the slurry containing the precipitate is extracted from the treatment tank and led to a solid-liquid separation tank, and the solid-liquid separation tank And collecting used CSH containing the above precipitate,
On the other hand, the neutralization denitrification tank is filled with porous inorganic particulates carrying denitrification bacteria, and the liquid extracted from the treatment tank is introduced into the neutralization denitrification tank, and the neutralization denitrification tank is introduced. Sodium thiosulfate and carbon dioxide gas are introduced into the nitrogen tank, and nitrate nitrogen contained in the liquid is reduced to nitrogen gas in the neutralization denitrification tank, and the liquid is neutralized with carbon dioxide gas. Wastewater treatment system.
[2] The wastewater treatment system according to the above [1], wherein the raw water is discharged from a barn or organic industrial wastewater.
[3] The inside of the treatment tank is adjusted to pH 8 or more to produce a precipitate incorporating phosphorus, or the pH is adjusted to 11 or more to produce a precipitate incorporating a coloring component together with phosphorus and disinfecting. The wastewater treatment system according to [2].
[4] A diaphragm valve operated by gas pressure is provided in a pipe line for injecting CSH into the treatment tank, and the diaphragm valve is connected to a cylinder of carbon dioxide gas introduced into the neutralization denitrification tank by a pipe line. When the pressure of the cylinder is reduced, the valve opens, the suction side pipe line of the CSH injection pump is opened to the atmosphere, and the injection of the CSH into the treatment tank is stopped. Any of the above [1] to [3] The wastewater treatment system described in
[5] The wastewater treatment system according to any one of [1] to [4], wherein the used CSH recovered by solid-liquid separation is used as a by-product phosphate fertilizer.
[6] The wastewater treatment system according to any one of [1] to [5] above, wherein used CSH recovered by solid-liquid separation is used as an adsorbent for free cesium and free strontium.
[7] A by-product phosphate fertilizer or an adsorbent of free cesium and free strontium comprising a solid content recovered from the solid-liquid separation tank of the wastewater treatment system according to [1].

本発明の排水処理システムは、原水が畜舎から放流される排水、または有機性産業廃水などについて脱りん効果および脱窒効果に優れており、さらに処理槽内をpH11以上で処理することによって脱色効果および消毒効果を高めることができる。 The wastewater treatment system of the present invention is excellent in dephosphorization effect and denitrification effect for wastewater discharged from livestock barn or raw water of organic industry, and further, decolorization effect by treating the inside of the treatment tank at pH 11 or more. And can enhance the disinfection effect.

本発明の排水処理システムの処理槽において生成する沈澱は脱水性が良く、容易に固液分離することができ、嵩密度の高い固形物(使用済CSH)を回収することができる。また、く溶性りん酸を約20%程度含む固形分を回収することができるので、この固形分を副産りん酸肥料として利用することができる。副産りん酸肥料として利用することによって資源循環的な農業の構築に寄与することができる。
さらに上記使用済CSHは遊離セシウムおよび遊離ストロンチウムを吸着する性質を有しているので、遊離セシウムおよび遊離ストロンチウムの吸着材として利用することができる。
The precipitate produced in the treatment tank of the wastewater treatment system of the present invention has good dehydration properties, can be easily separated into solid and liquid, and solids with high bulk density (used CSH) can be recovered. Moreover, since the solid content containing about 20% of soluble phosphoric acid can be recovered, this solid content can be used as a by-product phosphate fertilizer. By using it as a by-product phosphate fertilizer, it can contribute to the construction of resource-recycling agriculture.
Furthermore, since the used CSH has a property of adsorbing free cesium and free strontium, it can be used as an adsorbent for free cesium and free strontium.

本発明の排水処理システムの概念図Conceptual diagram of the wastewater treatment system of the present invention CSH添加量とりん除去率を示すグラフGraph showing CSH addition and phosphorus removal rate CSH添加量とりん濃度を示すグラフGraph showing CSH addition and phosphorus concentration CSH添加量と色度除去率を示すグラフGraph showing CSH addition amount and chromaticity removal rate CSH添加量と大腸菌群の除去率を示すグラフGraph showing the amount of CSH added and the removal rate of coliforms CSH添加量と大腸菌の除去率を示すグラフGraph showing CSH addition amount and E. coli removal rate 中和脱窒槽のpH変化を示すグラフGraph showing pH change of neutralization denitrification tank 中和脱窒槽の脱窒効果を示すグラフGraph showing the denitrification effect of the neutralization denitrification tank 未使用CSHのセシウム、ストロンチウム吸着効果を示すグラフGraph showing cesium and strontium adsorption effect of unused CSH 使用済CSHのセシウム、ストロンチウム吸着効果を示すグラフGraph showing cesium and strontium adsorption effect of used CSH

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の排水処理システムは、非晶質けい酸カルシウム水和物(CSHと云う)のスラリーと原水が導入される処理槽、該処理槽から抜き出した液が導入される中和脱窒槽、および該処理槽から抜き出したスラリーが導入される固液分離槽とを有し、上記処理槽においてアルカリ性の液性下で原水に含まれるりんまたはりんと着色成分を取り込んだ沈澱を生成させ、該沈澱を含むスラリーを処理槽から抜き出して固液分離槽に導き、該固液分離槽において上記沈澱を含む使用済CSHを回収し、一方、上記中和脱窒槽には脱窒細菌を担持した多孔質無機粒状物が充填されており、上記処理槽から抜き出した液が該中和脱窒槽に導入されると共に、該中和脱窒槽にはチオ硫酸ナトリウムと炭酸ガスが導入され、該中和脱窒槽において液中に含まれる硝酸性窒素が還元されて窒素ガスとして除去されると共に炭酸ガスによって液が中和されることを特徴とする排水処理システムである。
Hereinafter, the present invention will be specifically described based on embodiments.
The wastewater treatment system of the present invention comprises a treatment tank into which a slurry of amorphous calcium silicate hydrate (referred to as CSH) and raw water are introduced, a neutralization denitrification tank into which a liquid extracted from the treatment tank is introduced, and A solid-liquid separation tank into which the slurry extracted from the treatment tank is introduced, and in the treatment tank, a precipitate containing phosphorus or phosphorus and coloring components contained in the raw water is generated under alkaline liquidity, and the precipitate is The contained slurry is extracted from the treatment tank and guided to a solid-liquid separation tank, and used CSH containing the precipitate is collected in the solid-liquid separation tank, while the neutralized denitrification tank is a porous inorganic supporting denitrifying bacteria. In the neutralization denitrification tank, sodium thiosulfate and carbon dioxide gas are introduced into the neutralization denitrification tank, and the liquid extracted from the treatment tank is introduced into the neutralization denitrification tank. Included in the liquid That liquid by carbon dioxide with nitrate nitrogen is removed as by reduction of nitrogen gas is waste water treatment system characterized in that it is neutralized.

本発明の排水処理システムの一例を図1に示す。
本発明の排水処理システムには、CSHスラリーと原水が導入される処理槽10、該処理槽10から抜き出した液が導入される中和脱窒素槽11、および該処理槽10から抜き出したスラリーが導入される固液分離槽12が設けられている。処理槽10は上下に長い筒型の槽である。中和脱窒槽11も上下に長い筒型の密閉槽であり、最上部に放流用の管路40が接続している。この中和脱窒槽11の槽内には脱窒細菌を担持した粒状活性炭41が充填されている。なお、脱窒細菌の担持には、活性炭の他にも各種の多孔質無機粒状物を利用することができる。
An example of the waste water treatment system of the present invention is shown in FIG.
The waste water treatment system of the present invention includes a treatment tank 10 into which CSH slurry and raw water are introduced, a neutralization / denitrification tank 11 into which a liquid extracted from the treatment tank 10 is introduced, and a slurry extracted from the treatment tank 10. A solid-liquid separation tank 12 to be introduced is provided. The processing tank 10 is a cylindrical tank that is long in the vertical direction. The neutralization denitrification tank 11 is also a cylindrical sealed tank that is long in the vertical direction, and a discharge pipe line 40 is connected to the top. The neutralized denitrification tank 11 is filled with granular activated carbon 41 carrying denitrifying bacteria. In addition to activated carbon, various porous inorganic particulates can be used for supporting denitrifying bacteria.

処理槽10にはCSHスラリーの貯留槽13および原水の貯留槽14が管路15によって接続している。管路15は処理槽10の内部に導入され、底部に向かって伸びている。CSHスラリーの貯留槽13は管路16によって管路15に接続しており、管路16にはCSHスラリーを送液するポンプ17が設けられている。ポンプ17の吸込側管路には管路42が分枝し、該管路42にはガス圧式のダイアフラム弁18が設けられている。このダイアフラム弁18は炭酸ガスボンベ19に接続している。 A CSH slurry storage tank 13 and raw water storage tank 14 are connected to the processing tank 10 by a pipe line 15. The pipe line 15 is introduced into the processing tank 10 and extends toward the bottom. The CSH slurry storage tank 13 is connected to a pipe line 15 by a pipe line 16, and a pump 17 for feeding the CSH slurry is provided in the pipe line 16. A pipe line 42 branches off on the suction side pipe line of the pump 17, and a gas pressure type diaphragm valve 18 is provided in the pipe line 42. The diaphragm valve 18 is connected to a carbon dioxide cylinder 19.

原水貯留槽14は管路20によって管路15に接続しており、管路20には原水を送液するポンプ21が設けられている。貯留槽14は既設の活性汚泥処理水槽などを用いることができる。 The raw water storage tank 14 is connected to a pipe line 15 by a pipe line 20, and a pump 21 for feeding the raw water is provided in the pipe line 20. The storage tank 14 can be an existing activated sludge treatment water tank or the like.

CSHスラリーは管路16を通じて管路15に導入され、原水は管路20を通じて管路15に導入される。管路中で混合されたCSHスラリーと原水は管路15を通じて処理槽10の底部から槽内に導入される。注入されたCSHは処理槽内で層25を形成し、原水はこの層25を上向流で通過し、処理槽10の最上部から流出し、一定レベル以上に蓄積したCSHは層25の最上部から引き抜いて固液分離槽12に送られる。CSH層25の水道形成を防ぐため、1日に1〜4回程度、CSH層25の底部より圧縮空気を0.1〜3分程度送気してCSH層25を攪乱した後、再度、層25を形成させる操作を行うことも効果がある。 The CSH slurry is introduced into the pipeline 15 through the pipeline 16, and the raw water is introduced into the pipeline 15 through the pipeline 20. The CSH slurry and raw water mixed in the pipe line are introduced into the tank through the pipe line 15 from the bottom of the treatment tank 10. The injected CSH forms a layer 25 in the treatment tank, and the raw water passes through this layer 25 in an upward flow, flows out from the top of the treatment tank 10, and the CSH accumulated above a certain level is the highest in the layer 25. It is pulled out from the upper part and sent to the solid-liquid separation tank 12. In order to prevent the formation of water supply in the CSH layer 25, the CSH layer 25 is disturbed by supplying compressed air from the bottom of the CSH layer 25 for about 0.1 to 3 minutes a day, and then again It is also effective to perform an operation for forming 25.

処理槽10は管路26を通じて中和脱窒槽11に接続している。処理槽10の最上部から流出した液は管路26を通じて中和脱窒槽11の底部から槽内に導かれる。管路26には脱窒用のチオ硫酸ナトリウムの貯留槽27が注入用ポンプ28を介して接続している。さらに、管路26には炭酸ガスのボンベ19が管路29によって接続しており、管路29には炭酸ガス流量を測定する流量計30が設けられている。中和脱窒槽11の底部近傍の管路26にはチオ硫酸ナトリウムと炭酸ガスを管路26から供給される液に混合するスタティックミキサー31が設けられており、炭酸ガスとチオ硫酸ナトリウムが槽内に流入する直前に混合される。さらに、炭酸ガスボンベ19は管路32を通じてCSHスラリーの貯留槽13の管路16に介設されたダイアフラム弁18に接続している。 The treatment tank 10 is connected to the neutralization denitrification tank 11 through a pipe line 26. The liquid that has flowed out from the top of the treatment tank 10 is introduced into the tank from the bottom of the neutralization denitrification tank 11 through the pipe 26. A storage tank 27 for denitrification sodium thiosulfate is connected to the pipe line 26 via an injection pump 28. Further, a carbon dioxide cylinder 19 is connected to the pipe line 26 by a pipe line 29, and a flow meter 30 for measuring the carbon dioxide gas flow rate is provided in the pipe line 29. A static mixer 31 that mixes sodium thiosulfate and carbon dioxide gas with a liquid supplied from the pipeline 26 is provided in the pipe line 26 near the bottom of the neutralization denitrification tank 11, and the carbon dioxide gas and sodium thiosulfate are contained in the tank. It is mixed immediately before it flows into. Further, the carbon dioxide gas cylinder 19 is connected through a pipe line 32 to a diaphragm valve 18 provided in the pipe line 16 of the CSH slurry storage tank 13.

固液分離槽12は管路33を通じて処理槽10に接続している。管路33にはCSHスラリーを含む汚泥を抜き出すポンプ34が設けられている。固液分離槽12は、例えば、下端部を結束バンドによって閉じた状態で垂直に懸架したポリエステル筒状織布によって形成し、その開放上端部から回収スラリーを投入し、重力により液分を分離し、残留した固形分は所要時間そのまま風乾した後に、下端部の結束バンドを切断して固形分を落下させて回収するなどの構造にすればよい。 The solid-liquid separation tank 12 is connected to the processing tank 10 through a pipe line 33. The pipe 33 is provided with a pump 34 for extracting sludge containing CSH slurry. The solid-liquid separation tank 12 is formed of, for example, a polyester cylindrical woven fabric suspended vertically with the lower end portion closed by a binding band, and the recovered slurry is introduced from the open upper end portion, and the liquid component is separated by gravity. The remaining solid content may be air-dried as it is for a required time, and then the structure is such that the binding band at the lower end is cut and the solid content is dropped and recovered.

本発明の排水処理システムにおいて用いるCSHは、非晶質けい酸と石灰を反応させて製造した非晶質けい酸カルシウム水和物と遊離石灰[Ca(OH)2]とからなる多孔質の凝集体である。CSH中の遊離石灰量は2.5〜90wt%が好ましい。このCSHは非晶質であるので、結晶質のけい酸カルシウム水和物よりも脱りん効果に優れる。また、遊離石灰を含有することによって脱色効果も良い。 The CSH used in the wastewater treatment system of the present invention is a porous coagulation composed of amorphous calcium silicate hydrate produced by reacting amorphous silicic acid with lime and free lime [Ca (OH) 2]. It is a collection. The amount of free lime in CSH is preferably 2.5 to 90 wt%. Since this CSH is amorphous, it has a better dephosphorization effect than crystalline calcium silicate hydrate. Moreover, the decoloring effect is also good by containing free lime.

混合されたCSHスラリーと原水は管路15を通じて処理槽10の底部から槽内に導入される。CSHによって槽内はアルカリ性になる。注入されたCSHは処理槽内で層25を形成し、原水はこの層25を上向流で通過し、処理槽10の最上部から流出される。pH8以上のアルカリ性の液性下で原水がCSH層25を通過する間に原水に含まれているりんはCSHに取り込まれ、沈澱化する。CSHの導入量を多くして槽内のpHを11以上にすることができ、この高pH化によってCSHによる着色成分の除去を促進することができ、また、大腸菌や口蹄疫ウイルスなどを消毒することができる。 The mixed CSH slurry and raw water are introduced into the tank from the bottom of the processing tank 10 through the pipe 15. The inside of the tank becomes alkaline by CSH. The injected CSH forms a layer 25 in the treatment tank, and the raw water passes through the layer 25 in an upward flow and flows out from the uppermost part of the treatment tank 10. While the raw water passes through the CSH layer 25 under an alkaline solution having a pH of 8 or higher, the phosphorus contained in the raw water is taken into the CSH and precipitates. The amount of CSH introduced can be increased to increase the pH in the tank to 11 or higher, and the removal of colored components by CSH can be promoted by this increase in pH, and disinfection of E. coli and foot-and-mouth disease viruses, etc. Can do.

処理槽10から抜き出した液は中和脱窒槽11に導入され、炭酸ガスを通気して中和される。炭酸ガスを通気することによって簡易かつ安定した中和処理を行うことができる。なお、炭酸ガスボンベが意図せずに空になった場合にアルカリ性の処理水が放流されることを防ぐため、CSH注入ポンプ17の吸込側管路には管路42が分枝し、該管路42にはガス圧式のダイアフラム弁18が設けられており、ボンベ19の圧力が低下したときには弁18が開いて管路42が大気開放となるので、処理槽10へのCSHスラリーの注入は停止され、中和脱窒槽11のアルカリ化が防止される。 The liquid extracted from the treatment tank 10 is introduced into the neutralization denitrification tank 11 and neutralized by aeration of carbon dioxide. A simple and stable neutralization treatment can be performed by aeration of carbon dioxide gas. In order to prevent the alkaline treated water from being discharged when the carbon dioxide cylinder is emptied unintentionally, a pipe 42 is branched into the suction side pipe of the CSH injection pump 17, and the pipe 42 is provided with a gas pressure type diaphragm valve 18. When the pressure of the cylinder 19 is lowered, the valve 18 is opened and the pipe line 42 is opened to the atmosphere. Therefore, the injection of the CSH slurry into the treatment tank 10 is stopped. The alkalinization of the neutralization denitrification tank 11 is prevented.

中和脱窒槽11の槽内には脱窒細菌を担持した粒状活性炭41が充填されているので、管路43を通じてチオ硫酸ナトリウムが適当量導入されると槽内に脱窒細菌が増殖して硝酸の脱窒が進行する。増殖した脱窒細菌は高アルカリ条件では死滅するが、意図せずに炭酸ガスの注入が停止して中和機能が消失したときには、処理槽10へのCSHの注入も停止するので、中和脱窒槽11がアルカリ化せず、脱窒細菌の死滅が防止される。 Since the neutralized denitrification tank 11 is filled with granular activated carbon 41 carrying denitrification bacteria, when an appropriate amount of sodium thiosulfate is introduced through the conduit 43, the denitrification bacteria grow in the tank. Denitrification of nitric acid proceeds. The grown denitrifying bacteria die under high alkaline conditions, but when the carbon dioxide gas injection stops unintentionally and the neutralization function is lost, the CSH injection to the treatment tank 10 is also stopped. The nitriding tank 11 is not alkalinized and the denitrifying bacteria are prevented from being killed.

使用したCSHは処理槽10から抜き出され、固液分離槽12に導入される。ここで、例えばポリエステル製筒状織布に流入し、重力による液分の分離が進み、筒内に残留した固形物(使用済CSH)はそのまま風乾して回収される。 The used CSH is extracted from the treatment tank 10 and introduced into the solid-liquid separation tank 12. Here, for example, it flows into a polyester woven fabric made of polyester, and the separation of the liquid by gravity proceeds, and the solid matter (used CSH) remaining in the cylinder is recovered by air drying as it is.

ポリエステル製筒状織布によるCSHスラリーの固液分離性能は、表1に示したように浮遊物質の回収率が99.5%であり、高い値を示しており、良好な固液分離が可能である。また、回収した使用済CSHには表2に示したように、く溶性りん酸が約20wt%含まれており、これは普通肥料の一種である副産りん酸肥料(く溶性りん酸濃度の規格は15wt%以上)として登録の可能性がある。また、この回収物は、石灰も含有するため酸性化土壌の中和肥料として適し、さらに可溶性けい酸も含まれるので、稲作に適用するとけい酸質肥料の施肥量を減ずることもできる。 As shown in Table 1, the solid-liquid separation performance of the CSH slurry by the polyester tubular woven fabric is 99.5% of the suspended solids recovery rate, indicating a high value, and good solid-liquid separation is possible. It is. In addition, as shown in Table 2, the collected used CSH contains about 20 wt% of soluble phosphoric acid, which is a by-product phosphate fertilizer (a type of ordinary fertilizer with a soluble phosphoric acid concentration). The standard may be registered as 15 wt% or more). Moreover, since this collection | recovery also contains lime, it is suitable as a neutralization fertilizer of acidified soil, Furthermore, since soluble silicic acid is also included, when it applies to rice cultivation, the fertilizer application amount of siliceous fertilizer can also be reduced.

さらに、回収した使用済CSHはセシウムイオンとストロンチウムイオンを吸着する性質を有しており、放射性セシウムおよび放射性ストロンチウムに汚染された農地に施用することによって、りん酸、石灰、けい酸の肥効に加えて、遊離セシウムと遊離ストロンチウムを吸着保持する効果がある。 Furthermore, the collected used CSH has the property of adsorbing cesium ions and strontium ions. By applying it to agricultural land contaminated with radioactive cesium and radioactive strontium, the fertilizer effect of phosphoric acid, lime and silicic acid can be improved. In addition, there is an effect of adsorbing and holding free cesium and free strontium.

〔実施例1〕
図1に示す排水処理システムにおいて、CSHを固形分5〜10乾重/液容積(DW/V)%のスラリー状態で畜舎汚水に添加し、処理槽内に2〜5時間滞留させた後に、液分を処理槽から抜き出して中和脱窒槽に導入し、この液量5.9〜6.3L/分に対して、チオ硫酸ナトリウム液(濃度0.6〜1.0%)を0.5〜1.1mL/分、および炭酸ガスを3.6〜8.9mL/分の割合で中和脱窒槽に導入し18〜20時間滞留させた後に、液を抜き出した。これらの条件で、処理によるりん、色度、大腸菌群、大腸菌の除去率を調べた、この結果を図2〜図5に示した。なお、添加量(DW/V%)は原水100容積部に対するCSHの添加質量部である。
[Example 1]
In the wastewater treatment system shown in FIG. 1, after CSH is added to livestock sewage in a slurry state with a solid content of 5 to 10 dry weight / liquid volume (DW / V)% and retained in the treatment tank for 2 to 5 hours, The liquid was extracted from the treatment tank and introduced into the neutralization denitrification tank, and sodium thiosulfate solution (concentration of 0.6 to 1.0%) was added to this liquid amount of 5.9 to 6.3 L / min. The solution was extracted after 5 to 1.1 mL / min and carbon dioxide gas were introduced into the neutralization denitrification tank at a rate of 3.6 to 8.9 mL / min and allowed to stay for 18 to 20 hours. Under these conditions, the removal rate of phosphorus, chromaticity, coliform group, and E. coli by treatment was examined. The results are shown in FIGS. The addition amount (DW / V%) is the added mass part of CSH with respect to 100 parts by volume of raw water.

原水りん酸態りん濃度約25mg/Lの畜舎汚水について、CSH添加量に対する原水のりんの除去率を図2に示す。消石灰を用いた場合を対比して示す。本発明のCSH処理ではCSH添加量約0.15DW/V%でりんは100%除去される。一方、消石灰は添加量約0.15DW/V%でりんの除去率は90%程度である。 FIG. 2 shows the removal rate of raw water phosphorus with respect to the amount of CSH added to livestock sewage with a raw water phosphate concentration of about 25 mg / L. The case where slaked lime is used is shown in comparison. In the CSH treatment of the present invention, phosphorus is removed 100% at a CSH addition amount of about 0.15 DW / V%. On the other hand, slaked lime has an addition amount of about 0.15 DW / V% and a phosphorus removal rate of about 90%.

りん酸態りん濃度約100〜120mg/Lの原水(畜舎汚水の浄化処理水にリン酸ナトリウムを添加した液)に対するCSH処理の効果を図3に示す。図示するように、CSH添加量0.055DW/V%ではりん除去率は約50%であるが、添加量0.07DW/V%以上ではりんはほぼ100%除去できた。 FIG. 3 shows the effect of the CSH treatment on the raw water having a phosphate phosphorus concentration of about 100 to 120 mg / L (a solution obtained by adding sodium phosphate to the purification treatment water of livestock sewage). As shown in the figure, the phosphorus removal rate is about 50% when the CSH addition amount is 0.055 DW / V%, but the phosphorus can be removed almost 100% when the addition amount is 0.07 DW / V% or more.

上記畜舎汚水の色度低減効果を図4に示す。色度はフィルターによって懸濁物を除去した後に、390nmの吸光度を測定し、色度標準液を使用して作成した検量線により色度を求めた。本発明のCSH処理ではCSH添加量0.3DW/V%で色度の除去率は約90%に近いが、消石灰を用いた場合には同様の添加量で色度の除去率は約70%程度である。 The chromaticity reduction effect of the barn sewage is shown in FIG. The chromaticity was determined by measuring the absorbance at 390 nm after removing the suspension with a filter, and obtaining the chromaticity from a calibration curve prepared using a chromaticity standard solution. In the CSH treatment of the present invention, the removal rate of chromaticity is close to about 90% at a CSH addition amount of 0.3 DW / V%, but when slaked lime is used, the removal rate of chromaticity is about 70% at the same addition amount. Degree.

上記畜舎汚水の大腸菌群の除去効果を図5に示す。さらに、大腸菌の除去効果を図6に示す。本発明のCSH処理ではCSH添加量0.15DW/V%で大腸菌群および大腸菌の除去率は何れも約100%であるが、消石灰を用いた場合には同様の添加量で大腸菌群の除去率は約90%程度であり、大腸菌の除去率は約70%程度である。 FIG. 5 shows the effect of removing the coliforms of the sewage sewage. Furthermore, the removal effect of E. coli is shown in FIG. In the CSH treatment of the present invention, the removal rate of coliform bacteria and E. coli is about 100% at a CSH addition amount of 0.15 DW / V%, but when using slaked lime, the removal rate of coliform bacteria at the same addition amount. Is about 90%, and the removal rate of E. coli is about 70%.

上記処理システムにおける炭酸ガス注入による中和処理効果を図7に示す。図示するように、本発明の処理システムでは炭酸ガスの注入によって液のpHは概ね6付近に安定して維持されている。 FIG. 7 shows the effect of neutralization treatment by carbon dioxide injection in the treatment system. As shown in the drawing, in the treatment system of the present invention, the pH of the liquid is stably maintained in the vicinity of 6 by the injection of carbon dioxide gas.

上記CSH処理によって回収したCSH含有スラリーと、該スラリーをポリエステル製筒状織布で濾過した濾液について、浮遊物質濃度を測定し固形分の回収率を調べた。この結果を表1に示した。固形分(使用済CSH)はほぼ完全に回収されることが確認された。また回収した固形分の含有成分を調べた。この結果を表2に示す。く溶性りん酸は約20wt%と高濃度である一方、有害金属は普通肥料の基準値以下であった。 About the CSH containing slurry collect | recovered by the said CSH process, and the filtrate which filtered this slurry with the polyester-made cylindrical woven fabric, the floating substance density | concentration was measured and the recovery rate of solid content was investigated. The results are shown in Table 1. It was confirmed that the solid content (used CSH) was almost completely recovered. In addition, the content of the collected solid content was examined. The results are shown in Table 2. Highly soluble phosphoric acid was a high concentration of about 20 wt%, while harmful metals were below the standard value for ordinary fertilizers.

Figure 2013202423
Figure 2013202423

Figure 2013202423
Figure 2013202423

中和脱窒槽の脱窒効果を図8に示す。なお、この効果検討は、流入NOx-N濃度約450mg/L、水理学的滞留時間(槽空塔容積あたり)2.6〜4.8日、水温16.9〜25.3℃、流入NOx-N濃度に対するチオ硫酸態硫黄濃度の比(硫黄/窒素)9.2の条件で実施した。中和脱窒槽の槽内にチオ硫酸ナトリウムが導入されることによって、槽内に脱窒細菌が増殖して脱窒が進行し、硝酸態および亜硝酸態窒素(NOx-N)の除去率は30〜75%であった。 The denitrification effect of the neutralization denitrification tank is shown in FIG. In addition, this effect examination is about inflow NOx-N concentration of about 450 mg / L, hydraulic residence time (per tank empty volume) 2.6 to 4.8 days, water temperature 16.9 to 25.3 ° C., inflow NOx The ratio of thiosulfate sulfur concentration to sulfur concentration (sulfur / nitrogen) was 9.2. By introducing sodium thiosulfate into the neutralization denitrification tank, denitrification bacteria grow in the tank and denitrification proceeds, and the removal rate of nitrate and nitrite nitrogen (NOx-N) is 30-75%.

〔実施例2〕
CSHを固形分5〜10DW/V%のスラリー状態で畜舎汚水に0.1〜0.15 DW/V%で添加し、一定時間、槽内に滞留させた後に、処理槽から抜き出した。抜き出したスラリーを固液分離槽のポリエステル製ろ布に投入し、液分を分離させた後に風乾した。さらに105℃で1日乾燥した後、乳鉢で微粉末とした。同様に未使用資材についても風乾後105℃で乾燥させた後微粉末化した。これらの粉末をそれぞれ、1、2、4、8、16、32DW/V%の添加量で、ビーカー中の25mLの試料液(非放射性塩化セシウムと塩化ストロンチウムを蒸留水に溶解して調製)に添加した。添加後にビーカーを超音波洗浄器(Branson社製、5510型)に水浴状態で静置し、30分超音波処理し、溶液中の粉末の分散を促進した。超音波処理後、分散液をフィルター(Millipore Millex-LH:疎水性PTFE製)で濾過し、濾液中のセシウム、ストロンチウム濃度を定量した。定量法として、未使用CSHの場合、イオンクロマトグラフィー装置(ダイオネクスDX-120型、CS-12Aカラム、溶離液20mmol/Lメタンスルホン酸)により、また使用済CSHの場合ICP−MS分析装置を用いた。この結果を図9、図10に示す。
[Example 2]
CSH was added to the livestock sewage in a slurry state having a solid content of 5 to 10 DW / V% at 0.1 to 0.15 DW / V%, and was retained in the tank for a certain time, and then extracted from the treatment tank. The extracted slurry was put into a polyester filter cloth in a solid-liquid separation tank, and after separating the liquid, it was air-dried. Furthermore, after drying at 105 degreeC for 1 day, it was made into fine powder with the mortar. Similarly, unused materials were air-dried and then dried at 105 ° C. and then pulverized. These powders were added to 25 mL sample solutions (prepared by dissolving non-radioactive cesium chloride and strontium chloride in distilled water) in beakers with the addition amount of 1, 2, 4, 8, 16, 32 DW / V%, respectively. Added. After the addition, the beaker was left in a water bath state in an ultrasonic cleaner (Branson, Model 5510) and sonicated for 30 minutes to promote dispersion of the powder in the solution. After sonication, the dispersion was filtered with a filter (Millipore Millex-LH: manufactured by hydrophobic PTFE), and the cesium and strontium concentrations in the filtrate were quantified. As a quantification method, in the case of unused CSH, an ion chromatography device (Dionex DX-120 type, CS-12A column, eluent 20 mmol / L methanesulfonic acid) is used. In the case of used CSH, an ICP-MS analyzer is used. It was. The results are shown in FIGS.

この結果、未使用CSHでは全く吸着能が見られなかったのに対し(図9)、使用済CSHでは両成分とも吸着能が確認された(図10)。特に、ストロンチウムについては、1DW/V %の低い使用済CSH添加量でも82%に達する高い吸着率が得られた。 As a result, no adsorption ability was observed in the unused CSH (FIG. 9), whereas the adsorption ability of both components was confirmed in the used CSH (FIG. 10). In particular, for strontium, a high adsorption rate reaching 82% was obtained even with a low spent CSH addition amount of 1 DW / V%.

10−処理槽、11−中和脱窒槽、12−固液分離槽、13−貯留槽、14−貯留槽、15−管路。16−管路、17−ポンプ、18−ダイアフラム弁、19−炭酸ガスボンベ、20−管路、21−ポンプ、25−CSH層、26−管路、27−貯留槽、28−ポンプ、29−管路、30−流量計、31−スタティックミキサー、32−管路、33−管路、34−ポンプ、40−管路、41−活性炭、42−管路、43−管路 10-treatment tank, 11-neutralization denitrification tank, 12-solid-liquid separation tank, 13-storage tank, 14-storage tank, 15-pipe. 16-line, 17-pump, 18-diaphragm valve, 19-carbon dioxide cylinder, 20-line, 21-pump, 25-CSH layer, 26-line, 27-reservoir, 28-pump, 29-line 30-flow meter, 31-static mixer, 32-pipe, 33-pipe, 34-pump, 40-pipe, 41-activated carbon, 42-pipe, 43-pipe

Claims (7)

非晶質けい酸カルシウム水和物(CSHと云う)のスラリーと原水が導入される処理槽、該処理槽から抜き出した液が導入される中和脱窒槽、および該処理槽から抜き出したスラリーが導入される固液分離槽とを有し、
上記処理槽においてアルカリ性の液性下で原水に含まれるりんまたはりんと着色成分を取り込んだ沈澱を生成させ、該沈澱を含むスラリーを処理槽から抜き出して固液分離槽に導き、該固液分離槽において上記沈澱を含む使用済CSHを回収し、
一方、上記中和脱窒槽には脱窒細菌を担持した多孔質無機性粒状物が充填されており、上記処理槽から抜き出した液が該中和脱窒槽に導入されると共に、該中和脱窒槽にはチオ硫酸ナトリウムと炭酸ガスが導入され、該中和脱窒槽において液中に含まれる硝酸性窒素が窒素ガスに還元除去されると共に炭酸ガスによって液が中和されることを特徴とする排水処理システム。
A processing tank into which a slurry of amorphous calcium silicate hydrate (referred to as CSH) and raw water are introduced, a neutralization denitrification tank into which a liquid extracted from the processing tank is introduced, and a slurry extracted from the processing tank A solid-liquid separation tank to be introduced,
In the treatment tank, a precipitate containing phosphorus or phosphorus and coloring components contained in the raw water is produced under alkaline liquidity, and the slurry containing the precipitate is extracted from the treatment tank and led to a solid-liquid separation tank, and the solid-liquid separation tank And collecting used CSH containing the above precipitate,
On the other hand, the neutralization denitrification tank is filled with porous inorganic particulates carrying denitrification bacteria, and the liquid extracted from the treatment tank is introduced into the neutralization denitrification tank, and the neutralization denitrification tank is introduced. Sodium thiosulfate and carbon dioxide gas are introduced into the nitrogen tank, and nitrate nitrogen contained in the liquid is reduced and removed to nitrogen gas in the neutralization denitrification tank, and the liquid is neutralized with carbon dioxide gas. Wastewater treatment system.
原水が畜舎から放流される排水、または有機性産業廃水である請求項1に記載する排水処理システム。
The wastewater treatment system according to claim 1, wherein the raw water is wastewater discharged from a barn or organic industrial wastewater.
処理槽内をpH8以上に調整してりんを取り込んだ沈澱を生成させ、あるいはpH11以上に調整してりんと共に着色成分を取り込んだ沈澱を生成させると共に消毒を行う請求項1または請求項2に記載する排水処理システム。
The inside of the treatment tank is adjusted to pH 8 or more to produce a precipitate incorporating phosphorus, or the pH is adjusted to 11 or more to produce a precipitate incorporating a coloring component together with phosphorus and sterilization is performed. Wastewater treatment system.
CSHを処理槽に注入する管路にガス圧で作動するダイアフラム弁が介設されており、該ダイアフラム弁には中和脱窒槽に導入される炭酸ガスのボンベから炭酸ガスが導入されており、該ボンベの圧力低下によってCSHの処理槽への注入が停止される請求項1〜請求項3の何れかに記載する排水処理システム。
A diaphragm valve operated by gas pressure is interposed in a pipe line for injecting CSH into the treatment tank, and carbon dioxide gas is introduced into the diaphragm valve from a cylinder of carbon dioxide gas introduced into the neutralization denitrification tank. The wastewater treatment system according to any one of claims 1 to 3, wherein injection of CSH into the treatment tank is stopped by a pressure drop of the cylinder.
固液分離して回収した固形分を副産りん酸肥料として利用する請求項1〜請求項4の何れかに記載する排水処理システム。
The wastewater treatment system according to any one of claims 1 to 4, wherein the solid content recovered by solid-liquid separation is used as a by-product phosphate fertilizer.
固液分離して回収した固形分を遊離セシウムおよび遊離ストロンチウムの吸着材として用いる請求項1〜請求項5の何れかに記載する排水処理システム。
The wastewater treatment system according to any one of claims 1 to 5, wherein a solid content recovered by solid-liquid separation is used as an adsorbent for free cesium and free strontium.
請求項1に記載する排水処理システムの固液分離槽から回収された固形分(使用済CSH)からなる副産りん酸肥料または遊離セシウムおよび遊離ストロンチウムの吸着材。 A by-product phosphate fertilizer or an adsorbent for free cesium and free strontium comprising a solid content (used CSH) recovered from the solid-liquid separation tank of the wastewater treatment system according to claim 1.
JP2012070682A 2012-03-27 2012-03-27 Wastewater treatment system with amorphous calcium silicate hydrate. Active JP5931534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070682A JP5931534B2 (en) 2012-03-27 2012-03-27 Wastewater treatment system with amorphous calcium silicate hydrate.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070682A JP5931534B2 (en) 2012-03-27 2012-03-27 Wastewater treatment system with amorphous calcium silicate hydrate.

Publications (2)

Publication Number Publication Date
JP2013202423A true JP2013202423A (en) 2013-10-07
JP5931534B2 JP5931534B2 (en) 2016-06-08

Family

ID=49522132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070682A Active JP5931534B2 (en) 2012-03-27 2012-03-27 Wastewater treatment system with amorphous calcium silicate hydrate.

Country Status (1)

Country Link
JP (1) JP5931534B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601290A (en) * 2013-11-21 2014-02-26 张列宇 Method and device for quickly improving black-odorous large and medium rivers
JP2015091566A (en) * 2013-11-08 2015-05-14 太平洋セメント株式会社 Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886499A (en) * 1981-10-26 1983-05-24 レアクトルブレンエレメント、ウニオン、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Method of fastening foreign material in water
JPH01218691A (en) * 1988-02-29 1989-08-31 Onoda Autoclaved Light Weight Concrete Co Ltd Method for purifying treatment of organic waste water
JPH02164492A (en) * 1988-12-19 1990-06-25 Osaka Gas Co Ltd Dephosphorization of waste water
JP2004276021A (en) * 2003-02-25 2004-10-07 Tamuraya:Kk Method and apparatus for treating waste water
JP2006051466A (en) * 2004-08-16 2006-02-23 Aichi Prefecture Method for treating waste water from nutrient liquid cultivation
JP2006281001A (en) * 2005-03-31 2006-10-19 Kubota Corp Method and apparatus for treating water
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
JP2009285635A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material and method for recovering phosphorus
US20100284881A1 (en) * 2009-05-08 2010-11-11 Nippon Concrete Industries Co., Ltd. Dephosphorization material, dephosphorization apparatus, and dephosphorization by-product
JP2011092811A (en) * 2009-10-27 2011-05-12 Asahi Kasei Engineering Kk Waste water treatment apparatus and waste water treatment method
JP2013027809A (en) * 2011-07-27 2013-02-07 Vision Development Co Ltd Treatment method and adsorbent for metal atom-containing waste liquor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886499A (en) * 1981-10-26 1983-05-24 レアクトルブレンエレメント、ウニオン、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Method of fastening foreign material in water
JPH01218691A (en) * 1988-02-29 1989-08-31 Onoda Autoclaved Light Weight Concrete Co Ltd Method for purifying treatment of organic waste water
JPH02164492A (en) * 1988-12-19 1990-06-25 Osaka Gas Co Ltd Dephosphorization of waste water
JP2004276021A (en) * 2003-02-25 2004-10-07 Tamuraya:Kk Method and apparatus for treating waste water
JP2006051466A (en) * 2004-08-16 2006-02-23 Aichi Prefecture Method for treating waste water from nutrient liquid cultivation
JP2006281001A (en) * 2005-03-31 2006-10-19 Kubota Corp Method and apparatus for treating water
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
JP2009285635A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material and method for recovering phosphorus
US20100284881A1 (en) * 2009-05-08 2010-11-11 Nippon Concrete Industries Co., Ltd. Dephosphorization material, dephosphorization apparatus, and dephosphorization by-product
JP2010260015A (en) * 2009-05-08 2010-11-18 Yukio Yanagisawa Dephosphorizing material, dephosphorizing apparatus, and dephosphorizing by-product
JP2011092811A (en) * 2009-10-27 2011-05-12 Asahi Kasei Engineering Kk Waste water treatment apparatus and waste water treatment method
JP2013027809A (en) * 2011-07-27 2013-02-07 Vision Development Co Ltd Treatment method and adsorbent for metal atom-containing waste liquor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091566A (en) * 2013-11-08 2015-05-14 太平洋セメント株式会社 Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water
CN103601290A (en) * 2013-11-21 2014-02-26 张列宇 Method and device for quickly improving black-odorous large and medium rivers

Also Published As

Publication number Publication date
JP5931534B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
RU2482068C2 (en) Calcium carbonate having treated surface and use thereof in waste water treatment
US5500131A (en) Compositions and methods for water treatment
CN103265141B (en) Acidic mine waste water treatment system and use method thereof
CN105036495A (en) Method for removing nitrate nitrogen in water through ion exchange and denitrification integration
KR102620469B1 (en) Systems and methods for handling contaminated fluids with low environmental impact
CN102951752A (en) Filter-pressing action-based acid mine drainage treatment system and treatment method
JP2012086107A (en) Disinfectant for dephosphorizing/decoloring wastewater, and treatment method and device
CN210796127U (en) Coking wastewater defluorination decoloration advanced treatment system
RU2480423C1 (en) Combined method of treating waste water containing organic contaminants
Wang et al. A comparison of the phosphorus immobilization capabilities of water treatment residuals before and after settling from lake water
JPWO2012081715A1 (en) Biological purification agent of treated water, biological purification system, and biological purification method
CN208345993U (en) A kind of processing system of Tofu processing waste water
JP5931534B2 (en) Wastewater treatment system with amorphous calcium silicate hydrate.
US6896813B1 (en) Sorbant sequestration and removal of toxic metal ions
JP5730626B2 (en) Selenium-containing water reduction treatment apparatus and selenium-containing water reduction treatment method
KR101119394B1 (en) Movable leachate purifying system
Zhou et al. The use of modified coal gangue for the remediation and removal of phosphorus in an enclosed water area
CN107337321A (en) Anaerobic digestion of kitchen wastes wastewater treatment equipment
CN208532521U (en) A kind of garbage percolation liquid treating system
Singh Approaches for removal of arsenic from groundwater of northeastern India
CN109908860A (en) A kind of phosphorus adsorbent and its application using waterworks sludge preparation
CN209113685U (en) A kind of black and odorous water processing unit
Yettefti et al. Performance evaluation of sand filter for tertiary treatment of secondary effluent of wastewater: effect of hydraulic loading evaluation des performances des filtres a sable pour le traitement tertiaire de l’effluent secondaire des eaux usees: effet de la charge hydraulique
JP2008023417A (en) Water purifying apparatus and water purifying method
KR20140128717A (en) Waste water treatment agent for phosphorus removal andpreparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160427

R150 Certificate of patent or registration of utility model

Ref document number: 5931534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250