JPH01218691A - Method for purifying treatment of organic waste water - Google Patents

Method for purifying treatment of organic waste water

Info

Publication number
JPH01218691A
JPH01218691A JP63046365A JP4636588A JPH01218691A JP H01218691 A JPH01218691 A JP H01218691A JP 63046365 A JP63046365 A JP 63046365A JP 4636588 A JP4636588 A JP 4636588A JP H01218691 A JPH01218691 A JP H01218691A
Authority
JP
Japan
Prior art keywords
purifying
purification
aeration
tank
organic wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63046365A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hatano
羽田野 一幸
Yukio Fukaya
深谷 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clion Co Ltd
Original Assignee
Onoda ALC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda ALC Co Ltd filed Critical Onoda ALC Co Ltd
Priority to JP63046365A priority Critical patent/JPH01218691A/en
Publication of JPH01218691A publication Critical patent/JPH01218691A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To purify waste water with high efficiency, by performing purifying treatment under the repetition of an aerobic state and an anaerobic state while a purifying material is fluidized. CONSTITUTION:A purifying tank 1 having a granular purifying material 19 charged therein is filled with org. waste water and compressed air is blown into the purifying tank 1 from an air diffusing cylinder 26 to stir waste water. Thereafter, aeration is stopped and, after an anaerobic state is held for a definite time, aeration is further performed to fluidize a purifying material. Subsequently, aeration is stopped after a definite time and raw water is replenished immediately after stoppage and the discharge of treated water is performed therewith. Since sludge 18 is accumulated on the bottom part 32 of the purifying tank 1 by repeating these operations, said sludge 18 is taken out by a discharge pipe 36. By this method, high purifying capacity can be kept.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、家畜@汚水、生活雑廃水、下水等の有機性排
水の浄化処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for purifying organic wastewater such as livestock @ sewage, miscellaneous wastewater, and sewage.

[従来の技術] 従来、有機性排水の−)量化処理方法として浸漬法床注
があり、この方法では、固体の濾材(浄化材)を槽内心
乙浸泊させ、その表面ないしは固体間の空隙に生物膜を
発生させて、生物膜と汚水との接触を図ることによって
浄化を行なっていた。そしてこの浸漬濾床性方法として
は、浄化材を濾床に密に充填する固定床を用いた方法と
、粒径が小さく浮上し易い粒状濾4才を充填して、空気
あるいは酸素6乙よって曝気することで浄化材を流動さ
せる流動層を用いた方法がある。
[Prior art] Conventionally, there has been a method of quantification of organic wastewater using the immersion method. In this method, a solid filter medium (purifying material) is immersed in the center of the tank, and the surface or voids between the solids are removed. Purification was performed by generating a biofilm on the wastewater and bringing the biofilm into contact with the wastewater. The immersed filter bed method includes a fixed bed method in which the filter bed is densely packed with purifying material, and a method in which a granular filter with small particle size and easy to float is used to fill the filter bed with air or oxygen. There is a method using a fluidized bed in which the purifying material is fluidized by aeration.

他方、¥i機性排水中しこ含まれる窒素を除去する一方
法として、生物学的硝化・脱窒法があり、そのなかには
有機性排水に含まれるBOD源を利用して脱窒を行う循
環式硝化・脱窒法や間欠式硝化・脱窒法がある。この循
環式硝化・脱窒法は循環量によって脱窒率□が決まるの
で、高温度の窒素を含む汚水では高度な処理水質を得る
ために多量の循環水が必要である。この様な場合、槽内
を間欠的に好気又は嫌気状態にすることで、同様な効果
を得ることができる。
On the other hand, there is a biological nitrification/denitrification method as a method for removing nitrogen contained in organic wastewater. There are nitrification/denitrification methods and intermittent nitrification/denitrification methods. In this circulating nitrification/denitrification method, the denitrification rate □ is determined by the amount of circulation, so a large amount of circulating water is required to obtain a high quality treated water for wastewater containing high temperature nitrogen. In such cases, similar effects can be obtained by intermittently bringing the inside of the tank into an aerobic or anaerobic state.

またリン分を除去する方法は、凝集沈澱法や晶析脱リン
法等があるが、本発明者らは多孔質珪酸カルシウムによ
って除去する方法を提案した(特開昭62−18389
8号公報参照)。
Methods for removing phosphorus include the coagulation-precipitation method and the crystallization dephosphorization method, but the present inventors proposed a method for removing phosphorus using porous calcium silicate (Japanese Patent Application Laid-Open No. 62-18389
(See Publication No. 8).

[発明が解決しようとする課題] ところが、浸漬法床法における流動床では、?浄化材と
して比表面積が高く浮上し易いものを用いなけれはなら
ず浄化能力が低いという問題点があった。また間欠式硝
化・脱窒法では、好気状態においてpHの調整を行わな
けれはならず、更に好気状態から嫌気状態にすばやく変
化させなけれはならないので、その操作や維持管理が大
変であるという問題点があった。また、脱リン材として
多孔質珪酸カルシウムを用いて充填カラムで処理する場
合には、閉塞などの関係から浄化材の比表面積を大きく
できない、即ち、粒径を小さくできないので浄化能力が
抑えられるという問題点かあ−〕た。
[Problem to be solved by the invention] However, what about the fluidized bed in the immersion bed method? There is a problem in that a purifying material having a high specific surface area and easily floating must be used, resulting in a low purifying ability. In addition, in the intermittent nitrification/denitrification method, the pH must be adjusted in an aerobic state, and furthermore, it must be quickly changed from an aerobic state to an anaerobic state, making operation and maintenance difficult. There was a point. In addition, when processing in a packed column using porous calcium silicate as a dephosphorizing agent, the specific surface area of the dephosphorizing material cannot be increased due to blockages, etc. In other words, the particle size cannot be reduced, so the purifying ability is suppressed. Is there a problem?

上述したように従来の浄化処理方法では、いずれも一長
一短があり、との?9化処理方法を採用しても、コンバ
クI・な浄化装置で維持管理が容易でありしかも高い浄
化能力があるという全ての長所を兼ね備えた方法は実現
できなかった。本発明は、窒素、リンを含めた有機性排
水の)量化処理を、コンパクトで維持管理の容易な装置
で効率的に浄化処理する方法を提供することを目的とす
る。
As mentioned above, all conventional purification methods have advantages and disadvantages. Even if the 9-ionization treatment method was adopted, it was not possible to realize a method that combines all the advantages of a combustible purification device, which is easy to maintain and manage, and has high purification ability. An object of the present invention is to provide a method for efficiently purifying organic wastewater containing nitrogen and phosphorus using a compact and easy-to-maintain device.

[課題を解決するための手段] 前記の課題を解決するために、本発明は以下の構成を採
用した。即ち、本発明は、 多孔質粒状珪酸カルシウム水和物を主成分とする浄化材
が投入された槽内で、有機性排水を前記−/1− 浄化材に付着生成した生物膜と接触させなから浄化処理
を行う方法において、該浄化処理な好気状態と嫌気状態
の反復下で行うとともに、該好気状態では前記浄化材を
流動させながら行い、さらに、前記槽に対する有機性排
水の供給は実質上嫌気下で行うことを特徴とする有機性
排水の浄化処理方法を要旨とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention employs the following configuration. That is, the present invention provides a method for preventing organic wastewater from coming into contact with the biofilm that has adhered to the purification material described above in a tank containing a purification material containing porous granular calcium silicate hydrate as a main component. In the method of carrying out purification treatment from water, the purification treatment is carried out under repeated aerobic conditions and anaerobic conditions, and in the aerobic condition, the purification material is flowed, and further, the organic wastewater is supplied to the tank. The gist of this paper is a method for purifying organic wastewater, which is characterized by being carried out under substantially anaerobic conditions.

ここで、前記多孔質粒状珪酸カルシウム水和物として、
例えはトバモライト、ゾノトライト、C3Hゲル、フオ
シャジャイト、ジャイロライト又はヒレプランダイトの
一種又は2種以上を成分とすることができ、これらの多
孔質粒状珪酸カルシウム水和物は浄化能力が高く好適で
ある。
Here, as the porous granular calcium silicate hydrate,
For example, one or more of tobermorite, xonotlite, C3H gel, phosagite, gyrolite, or hireplandite can be used as a component, and these porous granular calcium silicate hydrates have high purification ability and are suitable.

また、前記多孔質粒状珪酸カルシウム水和物の空隙率が
60〜85%の範囲では、浄化能力も高く、また使用す
る際の強度の点でも優れており好適である。
Further, it is preferable that the porous granular calcium silicate hydrate has a porosity in the range of 60 to 85% because it has high purification ability and is excellent in strength during use.

更に、前記槽内における多孔質粒状珪酸カルシウム水和
物の充填量が、50%容積量以下で序イヒ処理を行うこ
とにより−・層ン争イヒの効率を高めることができる。
Furthermore, by carrying out the initialization treatment when the amount of porous granular calcium silicate hydrate packed in the tank is 50% or less by volume, the efficiency of the layer competition can be increased.

[作用] 多孔質粒状珪酸カルシウム水和物を主成分とする浄化材
が投入された槽内において、有機性排水を暖気すること
により、槽内に十分な酸素を供給して好気性菌の活動に
好適な好気状態を保つ。この好気状態では、;浄化材に
何着した生物膜乙こよって有機物を分解し、かつ脱リン
及び硝化を行う。
[Function] By heating organic wastewater in a tank containing a purification material mainly composed of porous granular calcium silicate hydrate, sufficient oxygen is supplied to the tank and aerobic bacteria are activated. Maintain suitable aerobic conditions. In this aerobic state, organic matter is decomposed by the biofilm deposited on the purification material, and dephosphorization and nitrification are performed.

一方、曝気を停止することにより、槽内の酸素を減少さ
せて@気性前の活動ζこ好適な嫌気状態に保ち、脱窒菌
による脱窒素を行う。また、前記曝気の停止によって)
浄化材を非流動状態にすることにより汚泥を速やかζこ
沈降させる。この様に、好気状態と嫌気状態とを反復さ
せ、更にその反復にともなって流動状態と非流動状態と
を反復させることここより、1つの槽内で順次各々の状
態に応じて環境を汚染する物質を除去する。
On the other hand, by stopping aeration, the oxygen in the tank is reduced to maintain a suitable anaerobic state, and denitrification is performed by denitrifying bacteria. Also, by stopping the aeration)
By making the purification material non-fluid, the sludge is quickly settled. In this way, by repeating an aerobic state and an anaerobic state, and then repeating a fluid state and a non-fluid state as the aerobic state is repeated, the environment can be polluted sequentially according to each state within one tank. remove substances that cause

また、前記有機性排水の供給を嫌気状態で行うことによ
り、脱窒むこ必要なりOD源を補給するとともに、水中
のDOを迅速に減少させて脱窒効果を高める。また好気
状態での菌の浄化活動を妨げないので浄化能力を常に高
い状態に保つ。
In addition, by supplying the organic wastewater in an anaerobic state, the OD source necessary for denitrification is replenished, and the DO in the water is quickly reduced to enhance the denitrification effect. Also, since it does not interfere with the purification activity of bacteria in an aerobic state, the purification ability is always maintained at a high level.

上述した作用によって、本発明の浄化・処理方法は、窒
素、リンを含めた有機性排水の浄化処理を、コンパクト
で維持管理の容易な装置で効率的に行うことができる。
Due to the above-described effects, the purification/treatment method of the present invention can efficiently purify organic wastewater containing nitrogen and phosphorus with a compact and easy-to-maintain device.

[実施例] 以下本発明の実施例を図面に従って説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本実施例の浄化処理方法に用いられるン浄化種
1を示している。乙のン浄化種1は円筒部材4の一端と
ロート状部材6の広口部とが接合されたものである。
FIG. 1 shows a purification species 1 used in the purification method of this embodiment. The purifying seed 1 is made by joining one end of a cylindrical member 4 and the wide mouth part of a funnel-shaped member 6.

前記浄化槽1の上部には、有機性排水を浄化槽1に送る
供給パイプ10と、浄化した後の処理水を取り出す放流
パイプ12とが設けられている。
At the top of the septic tank 1, there are provided a supply pipe 10 for sending organic wastewater to the septic tank 1, and a discharge pipe 12 for taking out the purified treated water.

前記浄化槽1に入れられた供給パイプ10の周囲には、
高濃度の有機性排水が浄化槽1の中央部jj直接流れ込
んで、浄化の状態を急変させない様に、第1の分離壁1
4が?浄化槽1の下部の近くまで設けられている。そし
て浄化槽1内に一方向の流れ=7− を作るために、第1の分離壁14と平行に第2の分離壁
16及び第3の分離壁17が、浄化槽1の中心側に設け
られている。尚、第2の分離壁16の下端には沈降した
汚泥18及び粒状浄イヒ材19を通すような隙間20が
設けられている。また、上)登み液を取るように浄化槽
1の上部に設けられた放流口22の周囲乞こは、水面の
浮遊物等が混入しない様に、第4の分離壁24が設けら
れている。
Around the supply pipe 10 placed in the septic tank 1,
The first separation wall 1 is installed to prevent high concentration organic wastewater from directly flowing into the center of the septic tank 1 and causing a sudden change in the purification state.
4? It is provided near the bottom of the septic tank 1. In order to create a one-way flow = 7- in the septic tank 1, a second separation wall 16 and a third separation wall 17 are provided on the center side of the septic tank 1 in parallel with the first separation wall 14. There is. Note that a gap 20 is provided at the lower end of the second separation wall 16 to allow the settled sludge 18 and granular cleaning material 19 to pass through. In addition, a fourth separation wall 24 is provided around the outlet 22 provided at the top of the septic tank 1 to collect the rising liquid to prevent floating matter from the water surface from getting mixed in. .

一方、前記?浄化槽1の下部には、空気を?浄化槽1内
に吹き出す散気筒26が設けられており、この散気筒2
日はエアー配管28を介してエアーポンプ301こ接続
されている。甲乙こ、ン浄化種1の底部32ここは、汚
泥18を汲み出す排出ポンプ34に接続された排出パイ
プ36が設けられている。
On the other hand, said? Is there air at the bottom of septic tank 1? A diffuser pipe 26 that blows air into the septic tank 1 is provided, and this diffuser pipe 2
The air pump 301 is connected via an air pipe 28. A discharge pipe 36 connected to a discharge pump 34 for pumping out the sludge 18 is provided at the bottom 32 of the purification type 1.

そして、浄化槽1の内部には、浄化材として、珪酸カル
シウム水和物のトバモライトを主成分とした粒径3 m
 IT1以下、空隙率75%の多孔質の粒状ン浄化材1
9が、槽容量10Qの25%に相当する2、50投入さ
れている。尚、粒状浄化材19の粒径は20mm以下で
あれはよく、特に粒径が5mm以下であれは、浄化能力
ここもすぐれ好適である。また粒状ン浄化材19の空隙
率か60〜85%の範囲内では、使用しても十分使用に
耐える浄化能力及び強度を示す。粒状浄化材19の浄化
能力及び強度も高く好適である。更に槽内への充填量と
り、ては容積比で50%以下であれは浄化能力も高く、
特に充填量が10〜30%の範囲であれは一層浄化能力
も高く好適である。
Inside the septic tank 1, a particle size of 3 m containing tobermorite, a calcium silicate hydrate, as a main component is used as a purification material.
Porous granular cleaning material 1 with an IT of 1 or less and a porosity of 75%
9, 2,50, which corresponds to 25% of the tank capacity 10Q, is put in. Incidentally, the particle size of the granular purifying material 19 may be 20 mm or less, and particularly, if the particle size is 5 mm or less, the purifying ability is also excellent. Further, when the porosity of the granular purifying material 19 is within the range of 60 to 85%, it exhibits sufficient purifying ability and strength to withstand use. The granular purifying material 19 is suitable because of its high purifying ability and strength. Furthermore, if the amount filled in the tank is less than 50% by volume, the purification ability will be high.
In particular, if the filling amount is in the range of 10 to 30%, the purification ability will be higher and it is preferable.

この粒状浄化材19としては、トバモライl−以外に、
例えは、ゾノトライr−、C3Hゲル、フオシャジャイ
ト、ジャイロライト、ヒレプランダイト等の1種又2種
以上から構成された珪酸カルシウム水和物が利用できる
。特にこれらの中でもl・バモライト、ゾノトライ)、
CSHゲルはpHi衝能が高く、比表面積が20〜40
0 m2/ gと大きいので好ましい粒状浄化材である
As this granular purifying material 19, in addition to Tobermoray l-,
For example, a calcium silicate hydrate composed of one or more of zonotri r-, C3H gel, phoshagite, gyrolite, and hireplandite can be used. Among these, L. bamorite, zonotrai),
CSH gel has high pHi binding capacity and a specific surface area of 20-40
It is a preferable granular purifying material because it has a large particle size of 0 m2/g.

次に、前記構成の浄化槽1を用いた有機性排水の?浄化
処理方法について、第2図に示すタイムスケシューLl
こ従って説明する。尚、第2図は原水の流人、攪拌、処
理水の放流及びエアレージヨシの操作別乙こ各操作を行
う時期を横軸tこ取ったものである。
Next, how about organic wastewater using the septic tank 1 with the above configuration? Regarding the purification treatment method, the time schedule Ll shown in FIG.
This will be explained accordingly. In addition, in FIG. 2, the timing of each operation for draining raw water, stirring, discharging treated water, and aeration retraction is plotted on the horizontal axis t.

まず最初に、時刻t1にて粒状浄化材19を投入した)
浄化槽1に有機性排水として豚舎排水(原水)を満たし
、散気筒26から加圧空気を吹き出して原水を5分間攪
拌する(攪拌のエアレージヨシ)。
First, granular purifying material 19 was introduced at time t1)
The septic tank 1 is filled with pigsty waste water (raw water) as organic waste water, and pressurized air is blown out from the aeration pipe 26 to stir the raw water for 5 minutes (agitation aeration).

その後、エアレージヨシを行うことなく2時間原水を静
置するが、エアレージヨシを停止すること乙こより嫌気
状態が保たれる。
Thereafter, the raw water is allowed to stand for 2 hours without aeration, but an anaerobic state is maintained by stopping the aeration.

そして、原水の供給から2時間後の時刻t2jこて、加
圧空気を吹き出しでエアレージヨシを開始する(好気の
エアレージヨシ)。このエアレージヨシは毎分2Qの空
気を浄化槽内に送り込むことによって、酸素の供給及び
浄化材の流動化を行うものCあり、エアレージヨシを行
うことここより好気状態が保たれる。
Then, at time t2j, two hours after the supply of raw water, aeration is started by blowing out pressurized air (aerobic aeration). This aeration system supplies oxygen and fluidizes the purification material by feeding 2 Q of air into the septic tank per minute. By performing the aeration system, an aerobic state is maintained.

次に、この好気の1アレージヨンの開始から4時間後の
時刻t3jこでエアレージヨシを停止する。
Next, the aeration is stopped at time t3j, which is 4 hours after the start of one aerobic aeration.

そして、そのエアレージヨシを停止した直後しこ、まず
原水を0.50補給し、それとこ伴って処理水の放流を
行い、次に前記と同様に5分間のエアレーションによっ
て浄化槽1内の攪拌を行う。
Immediately after stopping the aeration, first, 0.50% of raw water is replenished, and along with this, treated water is discharged, and then the inside of the septic tank 1 is stirred by aeration for 5 minutes in the same manner as described above.

以後上述した様な操作を繰り返し、2時間のエアレーシ
ョンの停止と4時間のエアレーションを行い、rIiI
I気状態と好気状態とを反復させる。そして原水の供給
は、エアレーションの停止の直後、即ち嫌気状態毎に行
うものである。尚、好気状態と嫌気状態を反復する間隔
は、好気状態の期間:嫌気状態の期間=1:2〜4: 
1で浄化能力が高く、特に好気状態の期間:嫌気状態の
期間=1:1〜3: 1の範囲内であれは、浄化能力も
一層高く好適である。
After that, repeat the above-mentioned operation, stop the aeration for 2 hours, perform the aeration for 4 hours, and perform rIiI.
Repeat the aerobic state and the aerobic state. The supply of raw water is performed immediately after the aeration is stopped, that is, in each anaerobic state. The interval at which the aerobic state and anaerobic state are repeated is aerobic state period: anaerobic state period = 1:2 to 4:
1, the purification ability is high, and in particular, if the ratio of aerobic state period: anaerobic state period is within the range of 1:1 to 3:1, the purifying ability is even higher and is suitable.

また、これらの操作を繰り返すと、浄化槽1の底部32
に汚泥18が溜るので、所定期間毎に排出ポンプ34を
駆動して排出バイブ36により汚泥18を取り出す。こ
の汚泥18を取り出す際に、汚泥1日の取り出し量IQ
jこ対して粒状?浄化材19を0.5Q補充する。尚、
原水の供給は1日2Qとして0.5Qずつ4回に分けて
行う。
Moreover, if these operations are repeated, the bottom part 32 of the septic tank 1
Since the sludge 18 accumulates in the tank, the discharge pump 34 is driven at predetermined intervals and the sludge 18 is taken out by the discharge vibrator 36. When taking out this sludge 18, the amount of sludge taken out per day IQ
Is it granular compared to j? Replenish 0.5Q of purifying material 19. still,
The supply of raw water is divided into four times of 0.5Q each for 2Q a day.

前記操作とこよって次の作用効果がある。The above operation has the following effects.

まず、第3図に示すエアレーションによる溶存酸素量(
D O)の変化から明らなように、エアレーションの実
行や停止によって、好気状態と嫌気状態が明瞭に区分さ
れる。また、エアレーションを停止させた後に原水を流
人することにより、原水の有機物を好気性微生物が分解
し、水中の溶存酸素を減少ざぜてvA気性乙こする。従
って各状態ζこおける浄化活動が活発になる。
First, the amount of dissolved oxygen (
As is clear from the change in D O), an aerobic state and an anaerobic state can be clearly distinguished depending on whether or not aeration is performed. Furthermore, by discharging raw water after stopping aeration, aerobic microorganisms decompose organic matter in the raw water, reducing dissolved oxygen in the water and causing air pollution. Therefore, purification activities in each state ζ become active.

即ち、好気状態においては、多孔質の粒状浄化材19の
表面に、前記珪酸カルシウム水和物の結晶により微細な
凹凸面が形成されているので、粒状浄化材19の表面に
おける生物膜の形成が容易であり、この生物膜によって
原水の有機物除去を行うことができ、更に脱リンや硝化
も十分に行うことができる。その上、粒状ン浄化材19
同志が、流動化乙こよって互り只乙擦れ合って、その表
面が適度に露出するので、當に高い浄化性能を持続する
ことができる。
That is, in an aerobic state, a fine uneven surface is formed on the surface of the porous granular purifying material 19 by the crystals of the calcium silicate hydrate, so that the formation of a biofilm on the surface of the granular purifying material 19 is prevented. This biofilm can be used to remove organic matter from raw water, and can also sufficiently perform dephosphorization and nitrification. In addition, granular purifying material 19
As the particles rub against each other during fluidization, their surfaces are exposed to an appropriate degree, so that extremely high purification performance can be maintained.

また、嫌気状態においては脱窒菌等によって、−12= 脱窒素が行われる。この脱窒素による溶存窒素量の変化
を第4図に示す。この図から明らかなように、原水;乙
60 m g / Q含まれていた窒素が、嫌気状態を
2時間持続させると、40mg/Qに低下する。また、
粒状ン浄化材19の一部は汚泥18の取り出しの際乙こ
流出するが、その補充は汚泥18の取り出しの際に投入
するだけでよい。
In addition, in an anaerobic state, -12= denitrification is performed by denitrifying bacteria and the like. Figure 4 shows the change in dissolved nitrogen amount due to this denitrification. As is clear from this figure, the nitrogen contained in the raw water (60 mg/Q) decreases to 40 mg/Q when the anaerobic condition is maintained for 2 hours. Also,
A part of the granular purification material 19 flows out when the sludge 18 is taken out, but it only needs to be replenished by adding it when the sludge 18 is taken out.

次に、前記処理によって得られた処理水の浄化の程度を
、従来例と対比して下記の表に示す。この実施例のpH
,透視度、生物学酸素要求量(BOD)、浮遊物質(S
S)、全窒素(T−N)。
Next, the degree of purification of the treated water obtained by the above treatment is shown in the table below in comparison with the conventional example. The pH of this example
, visibility, biological oxygen demand (BOD), suspended solids (S
S), total nitrogen (TN).

全リン(T−P)のデータは、ン浄化種1の馴化が終了
した第6〜第8週目のデータである。尚、浄化する原水
は同じ豚舎排水を用いた。
The total phosphorus (TP) data is from the 6th to 8th week after the acclimatization of the purified species 1 was completed. The raw water to be purified was the same wastewater from a pigsty.

この表から明かな様に、本実施例では、透視度が向上し
、BOD、SS、’r−N、T−Pの値も顕著ここ低下
している。
As is clear from this table, in this example, the visibility is improved, and the values of BOD, SS, 'r-N, and TP are also significantly reduced.

この様に、本実施例ここよれは、エアレーションの実行
や停止を調節するだけで、1つのン浄化種1で、好気槽
や嫌気槽の役割を果たすことができる。
In this way, in this embodiment, one purification type 1 can serve as an aerobic tank or an anaerobic tank by simply adjusting the execution or stopping of aeration.

即ち、1つの槽で、浮遊物質の除去、有機物の分解、脱
リン、硝化及び脱窒等を行うことができるので、有機性
排水の処理装置が非常にコンパクトになり、浄化能力も
従来と比較しでも劣ることがない。従って、広い浄化処
理場を必要としないという顕著な利点がある。
In other words, since it is possible to remove suspended solids, decompose organic matter, dephosphorize, nitrify, denitrify, etc. in one tank, the organic wastewater treatment equipment becomes extremely compact and the purification capacity is also improved compared to conventional methods. However, it is not inferior. Therefore, there is a significant advantage that a large purification plant is not required.

また、槽は1つで済み、複数の槽を用いる場合の様に、
有機排水を循環させる必要がないので、この点からも設
備が簡略化できる。
Also, only one tank is required, and like when multiple tanks are used,
Since there is no need to circulate organic wastewater, the equipment can be simplified from this point as well.

更に、好気状態のエアレーションによって、粒状浄化材
19を流動化するので、目づまりして浄化性能が低下す
ることもなく、常に高い浄化能力を保つことができる。
Furthermore, since the granular purifying material 19 is fluidized by aerobic aeration, the purifying performance does not deteriorate due to clogging, and a high purifying ability can always be maintained.

その上、粒状浄化材19をエアレーションによって攪拌
するので、粒状浄化材19の間に滞留した汚泥18や粒
状浄化材19に付着した汚泥18が取れ、その後エアレ
ーションを停止して静置することによって取れた汚泥1
8の沈降性がよい。
Furthermore, since the granular purification material 19 is stirred by aeration, the sludge 18 that has accumulated between the granular purification materials 19 and the sludge 18 that has adhered to the granular purification material 19 can be removed by stopping the aeration and allowing it to stand still. sludge 1
8 has good sedimentation properties.

そして、その汚泥18の取り出しも浄化槽1の底部32
から引き抜くだけで容易にできる。
The sludge 18 is also removed from the bottom 3 of the septic tank 1.
It can be easily done by just pulling it out.

また、減少した粒状浄化材19の交換は、従来の様に一
旦浄化処理の作業を中断して全部を入れ換えるのではな
く、汚泥1日の取り出しの際に流失した分を浄化槽1に
投入して補充するだけでよく、浄化処理を中断すること
もなく非常に簡単である。
In addition, to replace the reduced amount of granular purification material 19, instead of suspending the purification process and replacing it all as is the case in the past, the part that was washed away during the day's sludge removal is put into the septic tank 1. All you have to do is replenish it, and the purification process is not interrupted and is very simple.

従って、?浄化槽1の維持管理が極めて容易であるとい
う利点がある。
Therefore? There is an advantage that maintenance and management of the septic tank 1 is extremely easy.

尚、本発明は上述した実施例に何等限定されるものでは
なく、本発明の要旨を逸脱しない範囲でどの様な態様で
も実施することができる。
It should be noted that the present invention is not limited to the above-described embodiments, and can be implemented in any manner without departing from the gist of the present invention.

[発明の効果] 以−F説明したように、本発明の方法ζこよると、1つ
のン浄化種で、好気槽と嫌気槽の役割を果たして、有機
性排水を十分に浄化することができるとともに、窒素及
びリンも除去できる。更に、循環水も必要とせず、その
維持管理が非常に容易である。また浄化性能を常時高く
維持することができ、ン浄化材の補充も簡単であり、生
成する汚泥の沈降性も良い。
[Effects of the Invention] As explained below, according to the method of the present invention, one purifying species can function as an aerobic tank and an anaerobic tank to sufficiently purify organic wastewater. At the same time, nitrogen and phosphorus can also be removed. Furthermore, it does not require circulating water and is very easy to maintain. In addition, purification performance can be maintained at a high level at all times, replenishment of purification material is easy, and the sludge produced has good settling properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例のン浄化装置の断面図、第2図は浄化
のタイムスケジュールを示す説明図、第3図はD○の量
の変化を示すグラフ、第4図は窒素−I C’、 − の量の変化を示すグラフである。 1 ・・・?浄化(曹 10・・・供給パーイブ 19・・・粒状浄化材 22・・・放流口 26・・・散気筒 36・・・排出パイプ
Fig. 1 is a sectional view of the nitrogen purification apparatus of this embodiment, Fig. 2 is an explanatory diagram showing the purification time schedule, Fig. 3 is a graph showing changes in the amount of D○, and Fig. 4 is a graph showing the change in the amount of nitrogen-IC. It is a graph showing changes in the amounts of ' and -. 1...? Purification (sodium 10...supply purive 19...granular purifying material 22...discharge port 26...dispersion pipe 36...discharge pipe

Claims (1)

【特許請求の範囲】 1、多孔質粒状珪酸カルシウム水和物を主成分とする浄
化材が投入された槽内で、有機性排水を前記浄化材に付
着生成した生物膜と接触させながら浄化処理を行う方法
において、該浄化処理を好気状態と嫌気状態の反復下で
行うとともに、該好気状態では前記浄化材を流動させな
がら行い、さらに、前記槽に対する有機性排水の供給は
実質上嫌気下で行うことを特徴とする有機性排水の浄化
処理方法。 2、前記多孔質粒状珪酸カルシウム水和物が、トバモラ
イト、ゾノトライト、CSHゲル、フオシヤジヤイト、
ジャイロライト又はヒレプランダイトの一種又は2種以
上を成分とする請求項1記載の有機性排水の浄化処理方
法。 3、前記多孔質粒状珪酸カルシウム水和物の空隙率が、
60〜85%である請求項1記載の有機性排水の浄化処
理方法。 4、前記槽内における多孔質粒状珪酸カルシウム水和物
の充填量が、50%容積量以下である請求項1記載の有
機性排水の浄化処理方法。
[Claims] 1. Purifying organic wastewater while bringing it into contact with a biofilm formed on the purifying material in a tank containing a purifying material whose main component is porous granular calcium silicate hydrate. In the method, the purification treatment is carried out under repeated aerobic conditions and anaerobic conditions, and in the aerobic condition, the purification material is flowed, and further, the supply of organic wastewater to the tank is substantially anaerobic. A method for purifying organic wastewater, which is characterized in that it is carried out below. 2. The porous granular calcium silicate hydrate is tobermorite, xonotlite, CSH gel, phosiyaite,
2. The method for purifying organic wastewater according to claim 1, comprising one or more of gyrolite and hireplandite as a component. 3. The porosity of the porous granular calcium silicate hydrate is
The method for purifying organic wastewater according to claim 1, wherein the concentration is 60 to 85%. 4. The method for purifying organic wastewater according to claim 1, wherein the amount of porous granular calcium silicate hydrate packed in the tank is 50% or less by volume.
JP63046365A 1988-02-29 1988-02-29 Method for purifying treatment of organic waste water Pending JPH01218691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046365A JPH01218691A (en) 1988-02-29 1988-02-29 Method for purifying treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046365A JPH01218691A (en) 1988-02-29 1988-02-29 Method for purifying treatment of organic waste water

Publications (1)

Publication Number Publication Date
JPH01218691A true JPH01218691A (en) 1989-08-31

Family

ID=12745128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046365A Pending JPH01218691A (en) 1988-02-29 1988-02-29 Method for purifying treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPH01218691A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287145A (en) * 1988-05-13 1989-11-17 Showa Denko Kk Laminated board for electric circuit
JPH05309389A (en) * 1992-05-11 1993-11-22 Kubota Corp Treatment of sewage
JPH0623390A (en) * 1992-03-18 1994-02-01 Ebara Infilco Co Ltd Biological dephosphorizing and denitrifying treatment of organic sewage
US5643453A (en) * 1994-06-02 1997-07-01 Degremont Process for the treatment of liquid effluents by activated sludge
US6139745A (en) * 1994-12-13 2000-10-31 Hitachi, Ltd. Purification apparatus
JP2006239536A (en) * 2005-03-02 2006-09-14 Clion Co Ltd Sewage treatment apparatus and method
JP2013202423A (en) * 2012-03-27 2013-10-07 National Agriculture & Food Research Organization Waste water treatment system by amorphous calcium silicate hydrate, and method for utilizing the recovered substance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171892A (en) * 1984-09-17 1986-04-12 Waseda Daigaku Purification of water by three-phase fluidized bed
JPS6233593A (en) * 1985-08-05 1987-02-13 Kobe Steel Ltd Biological treatment of waste water
JPS6328496A (en) * 1986-07-18 1988-02-06 Onoda Ee L C Kk Treatment of organic sanitary sewage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171892A (en) * 1984-09-17 1986-04-12 Waseda Daigaku Purification of water by three-phase fluidized bed
JPS6233593A (en) * 1985-08-05 1987-02-13 Kobe Steel Ltd Biological treatment of waste water
JPS6328496A (en) * 1986-07-18 1988-02-06 Onoda Ee L C Kk Treatment of organic sanitary sewage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287145A (en) * 1988-05-13 1989-11-17 Showa Denko Kk Laminated board for electric circuit
JPH0583098B2 (en) * 1988-05-13 1993-11-24 Showa Denko Kk
JPH0623390A (en) * 1992-03-18 1994-02-01 Ebara Infilco Co Ltd Biological dephosphorizing and denitrifying treatment of organic sewage
JPH05309389A (en) * 1992-05-11 1993-11-22 Kubota Corp Treatment of sewage
US5643453A (en) * 1994-06-02 1997-07-01 Degremont Process for the treatment of liquid effluents by activated sludge
US6139745A (en) * 1994-12-13 2000-10-31 Hitachi, Ltd. Purification apparatus
JP2006239536A (en) * 2005-03-02 2006-09-14 Clion Co Ltd Sewage treatment apparatus and method
JP4578278B2 (en) * 2005-03-02 2010-11-10 クリオン株式会社 Sewage treatment apparatus and treatment method
JP2013202423A (en) * 2012-03-27 2013-10-07 National Agriculture & Food Research Organization Waste water treatment system by amorphous calcium silicate hydrate, and method for utilizing the recovered substance

Similar Documents

Publication Publication Date Title
JPH01218691A (en) Method for purifying treatment of organic waste water
JPH05169090A (en) Device for supplying nitrification bacteria in biological activated carbon treatment tower
JP3136902B2 (en) Wastewater treatment method
KR20130079834A (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
JP3963667B2 (en) Sewage treatment apparatus and operation method thereof
JPH10296283A (en) Carrier separating method for biological reaction tank using carrier combinedly
CN109179644A (en) Waste water treatment system of circuit board and its processing method
JPH11197685A (en) Method for treating membrane-separated activated sludge
JPH11188378A (en) Organism fixing carrier for drainage treatment and drainage treatment apparatus
JPH0623390A (en) Biological dephosphorizing and denitrifying treatment of organic sewage
JPS5851986A (en) Apparatus for biologically purifying waste water with aerobes
CN113716803A (en) Integrated enhanced denitrification sewage treatment device and treatment method
JP2000246272A (en) Method for removing nitrogen of sewage
JPH1085783A (en) Denitrification method and apparatus for drainage containing nitric acid type nitrogen
JP2002233888A (en) Waste water clarifying system
JPH09276893A (en) Method for treating nitrogen-containing waste water
JP7298785B1 (en) Sewage purification equipment
JPH0231895A (en) Process and apparatus for treating filthy water
JP2002066583A (en) Filter medium, water treating apparatus using the filter medium, and water treatment method
JP3633001B2 (en) Cleaning method for biological filtration device
JPH02238835A (en) Filter of breeding water of fishes
JPS61271089A (en) Filter for waste water using immobilized microorganism
JPH01151998A (en) Method for purifying water using ceramics
JPH0884998A (en) Organic sewage treatment device
JPH04197493A (en) Method and apparatus for filtering sewage