JPH0231895A - Process and apparatus for treating filthy water - Google Patents

Process and apparatus for treating filthy water

Info

Publication number
JPH0231895A
JPH0231895A JP63178834A JP17883488A JPH0231895A JP H0231895 A JPH0231895 A JP H0231895A JP 63178834 A JP63178834 A JP 63178834A JP 17883488 A JP17883488 A JP 17883488A JP H0231895 A JPH0231895 A JP H0231895A
Authority
JP
Japan
Prior art keywords
tank
water
sewage
wastewater
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63178834A
Other languages
Japanese (ja)
Other versions
JPH0714519B2 (en
Inventor
Yasukazu Toda
泰和 戸田
Yoichi Hirose
洋一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Fuso Kensetsu Kogyo KK
Original Assignee
Penta Ocean Construction Co Ltd
Fuso Kensetsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd, Fuso Kensetsu Kogyo KK filed Critical Penta Ocean Construction Co Ltd
Priority to JP17883488A priority Critical patent/JPH0714519B2/en
Publication of JPH0231895A publication Critical patent/JPH0231895A/en
Publication of JPH0714519B2 publication Critical patent/JPH0714519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To obtain treated water having good quality having a value of BOD and SS each specified value or below in a short time by flocculating org. filthy water by adding an inorganic flocculant and stirring the mixture, separating the liquid phase from the solid phase primarily and transporting the liquid phase to a filtration tank, and treating with activated sludge again. CONSTITUTION:Org. filthy water is introduced into a stirring tank 1, mixed with an inorganic flocculant such as PAC injected quantiatively thereinto and stirred with a rapid stirring device 2, then fed to a flow stirring tank 3 where it stirred slowly with a slow stirring device 4. Flocs of SS, colloidal matters, and P, etc., are grown, and allowed to contact with fine bubble group from a reduced pressure bubble generating apparatus 8 in a floating separation tank 5. Thus, a floated sludge layer 10 is formed by the floc floated by the effect of adhered bubbles, and discharged by a discharging device 9. The water is then introduced into a biological filtration tank 14 with a pump 13 through a water level adjusting tank 11 and a primary water storage tank 12, and then treated with aerobic microorganisms deposited to a filtration layer 15 on a supporting gravel layer 16 and air from an air diffusing pipe 18. By this process, satisfactory treated water having improved value of BOD and SS each specified level or below is obtd. is a short time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、生活汚水、下水、食品工場廃水等、浮遊物を
含有する有機性汚水の処理において、生物化学的酸素要
求量(以下BODと記す、)、浮遊物質(以下SSと記
す、)、リンの除去を短時間で可能ならしめる汚水の処
理方法及びその装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to biochemical oxygen demand (hereinafter referred to as BOD) in the treatment of organic sewage containing suspended matter such as domestic sewage, sewage, and food factory wastewater. The present invention relates to a method and apparatus for treating wastewater that enables the removal of suspended solids (hereinafter referred to as SS), and phosphorus in a short period of time.

(従来の技術) 浮遊物を含有する有機性汚水の処理方法としては、従来
、活性汚泥法を主体とする好気性微生物による生物処理
が適用されてきた。
(Prior Art) As a method for treating organic wastewater containing suspended matter, biological treatment using aerobic microorganisms, mainly an activated sludge method, has conventionally been applied.

これらの方法は下水処理等の分野で広く適用されており
、適正な設計と運転管理が行われると、BODl 0■
/2以下、5S20■/2以下という良質の処理水が得
られるが、以下のような問題がある。
These methods are widely applied in fields such as sewage treatment, and with proper design and operation management, BODl 0■
Although it is possible to obtain high-quality treated water with a concentration of 5S20/2 or less and 5S20/2 or less, there are the following problems.

(1)処理施設の滞留時間が長い。(1) Residence time in the treatment facility is long.

活性汚泥法においては種々の方式があるが、処理の主体
となる曝気槽の滞留時間は、「標準活性汚泥法」の場合
8時間程度、r長時間曝気法」の場合24時間程度、「
オキシデーションディッチ法」の場合30〜40時間で
あるから、曝気槽の容量が大きく、従って施設敷地面積
ら大きくなり、大部画成では新たな下水処理場の立地が
困難となりつつある。
There are various methods for the activated sludge method, but the residence time in the aeration tank, which is the main part of the treatment, is about 8 hours for the standard activated sludge method, about 24 hours for the long aeration method, and about 24 hours for the long aeration method.
In the case of the ``oxidation ditch method'', the treatment time is 30 to 40 hours, so the capacity of the aeration tank is large, and therefore the facility site area is also large, making it difficult to locate new sewage treatment plants in large areas.

(2)活性汚泥への酸素の供給と曝気槽内の混合、撹拌
に多量の空気の吹き込みを必要とする。
(2) A large amount of air needs to be blown for supplying oxygen to activated sludge and for mixing and stirring in the aeration tank.

活性汚泥処理方式を採用している下水処理場におけるエ
ネルギー(電気)消費量の約40%がこの送気のための
ブロワー運転により占められている。
Approximately 40% of the energy (electricity) consumption in sewage treatment plants that employ the activated sludge treatment method is accounted for by blower operation for this air supply.

多量の空気を吹き込んで曝気槽を撹拌することにより、
槽内の発泡や、それらの飛散があるので非衛生的である
By blowing in a large amount of air and stirring the aeration tank,
It is unhygienic due to foaming inside the tank and the scattering of foam.

(3)曝気槽内の活性汚泥(以下MLSSと記す、)濃
度を適正に管理する必要がある。そのためには曝気槽に
後設する沈澱槽からの返送汚泥量やMLSSの引抜量を
適正にコントロールする必要があり、熟練した運転管理
用具を必要とする。
(3) It is necessary to appropriately manage the activated sludge (hereinafter referred to as MLSS) concentration in the aeration tank. For this purpose, it is necessary to appropriately control the amount of sludge returned from the settling tank installed after the aeration tank and the amount of MLSS drawn out, and skilled operation management tools are required.

(4)曝気槽に後設する沈澱槽でのMLSSの沈降、圧
密性が悪化(膨化、以下バルキングと記す、)すること
があり、良好な処理を継続できない場合もある。
(4) Sedimentation of MLSS in a settling tank installed after the aeration tank may cause deterioration of compaction (swelling, hereinafter referred to as bulking), and it may not be possible to continue good treatment.

(5)活性汚泥処理に伴って発生する汚泥は沈澱槽から
余剰汚泥として引抜くが、引抜かれる汚泥はMLSS濃
度として、8,000■/Q程度であり、施設に付随す
る脱水等の汚泥処理のためには、重力濃縮、機械濃縮等
の濃縮操作を必要とする。
(5) The sludge generated during activated sludge treatment is extracted from the settling tank as surplus sludge, but the MLSS concentration of the sludge that is extracted is approximately 8,000 ■/Q, and sludge treatment such as dewatering that is attached to the facility This requires concentration operations such as gravity concentration and mechanical concentration.

(6)通常の活性汚泥方式では、赤潮等富栄養化現象の
原因物質の一つであるリンは殆んど除去されない。
(6) In the normal activated sludge method, phosphorus, which is one of the causative substances of eutrophication phenomena such as red tide, is hardly removed.

本発明は上述の如き従来の技術にみられる問題点を解決
することを目的としたものである。
The present invention aims to solve the problems seen in the conventional techniques as described above.

(問題を解決するための手段) 上述の如き従来の問題を解決するための本発明に係る汚
水の処理方法の特徴は、生活汚水、下水、食品工場廃水
等の浮遊物を含有する有機性汚水にPAC等の無m凝集
剤を添加して急速に撹拌する急速撹拌工程と、該急速撹
拌後、緩やかな撹拌により汚水中の浮遊物、コロイド物
質及びリン化合物をフロック化させる工程と、これによ
って形成されたフロックを加圧浮上分離により固液分離
する一次固液分離工程と、該工程によって処理された一
次処理水を粒径が2〜10w程度の濾材を充填した濾過
槽に導入し、該一次処理水中に含まれている溶解性の有
機物及びNH4” −Nを栄養源として前記濾材表面に
生育する活性汚泥状の好気性微生物の作用に必要な酸素
を前記濾過槽に供給し、一次処理水中に残留する溶解性
BOD、33、リンの除去を行う再処理工程との組み合
わせにある。
(Means for Solving the Problems) The sewage treatment method according to the present invention for solving the conventional problems as described above is characterized in that organic sewage containing suspended matter such as domestic sewage, sewage, food factory wastewater, etc. A rapid stirring step in which a non-molecular flocculant such as PAC is added to the wastewater and rapidly stirred; and after the rapid stirring, a step in which suspended matter, colloidal substances, and phosphorus compounds in the wastewater are flocculated by gentle stirring; A primary solid-liquid separation step in which the formed flocs are solid-liquid separated by pressure flotation, and the primary treated water treated in this step is introduced into a filtration tank filled with filter media with a particle size of about 2 to 10 W. Oxygen necessary for the action of activated sludge-like aerobic microorganisms growing on the surface of the filter medium is supplied to the filter tank using dissolved organic matter and NH4''-N contained in the primary treatment water as nutritional sources, and This method is combined with a reprocessing process that removes soluble BOD, 33, and phosphorus remaining in the water.

また本発明に係る汚水処理装置の特徴は、生活汚水、下
水、食品工場廃水等の浮遊物を含有する有機性汚水を収
容し、これにPAC等の無機凝集剤を添加して急速に撹
拌して混合させる急速撹拌槽と、該急速撹拌槽にて撹拌
混合された混合汚水を緩やかに撹拌し、微細なフロック
を大きく成長させる緩速撹拌槽と、該緩速撹拌槽からの
混合汚水を導入し、加圧により空気を過剰に溶解させた
加圧水を噴射する加圧水ノズルを底部に設けた加圧浮上
分離槽と、該加圧浮上分離槽上に浮上分離した成長フロ
ック集団を槽外に排出する汚泥除去手段と、前記加圧浮
上分離槽にてフロックが除去された一次処理水を連続的
に供給し、表面に生育した活性汚泥状の好気性微生物相
を有する粒径2〜10m+の濾材を充填した波層を内部
に設置し、かつ、該波層に空気を吹き込むブロワ−を具
備した濾過槽と、該濾過槽の波層が目詰まりした時に吹
き込み空気と処理水の送水により一定時間洗浄を行う逆
洗手段と、前記濾層内の目詰まりの進行状態を波層の上
部と下部の圧力損失で検知し、上記逆洗手段の稼動の開
始を指令する水位差圧発信器と、前記濾過槽から流出す
る処理水を貯留し、加圧浮上分離槽への気泡発生用循環
加圧水及び前記波層の逆洗用水として供給するための処
理水槽とを備えたことにある。
Furthermore, the sewage treatment equipment according to the present invention is characterized by storing organic sewage containing suspended matter such as domestic sewage, sewage, and food factory wastewater, and adding an inorganic flocculant such as PAC to this and rapidly stirring it. A rapid stirring tank is used to mix the wastewater, a slow stirring tank is used to gently stir the mixed wastewater in the rapid stirring tank to grow fine flocs, and the mixed wastewater from the slow stirring tank is introduced. Then, there is a pressurized flotation separation tank equipped with a pressurized water nozzle at the bottom that injects pressurized water in which air is dissolved in excess by pressurization, and a group of grown flocs floated and separated on the pressurized flotation separation tank is discharged to the outside of the tank. A sludge removal means and the primary treated water from which flocs have been removed in the pressurized flotation tank are continuously supplied, and a filter medium with a particle size of 2 to 10 m+ having activated sludge-like aerobic microorganisms grown on the surface is formed. A filtration tank with a filled wave layer installed inside and equipped with a blower to blow air into the wave layer, and when the wave layer in the filtration tank becomes clogged, it is cleaned for a certain period of time by blown air and treated water. a water level differential pressure transmitter that detects the progress of clogging in the filter layer by pressure loss between the upper and lower parts of the wave layer and instructs the start of operation of the backwashing means; The present invention is provided with a treated water tank for storing treated water flowing out from the filtration tank and supplying it to the pressurized flotation separation tank as circulation pressurized water for generating bubbles and water for backwashing the wave layer.

(作用) 浮遊物を含む下水等の有機性汚水中のBODは、SS成
分、コロイド状成分、溶解性成分より構成されている。
(Function) BOD in organic wastewater such as sewage containing suspended matter is composed of SS components, colloidal components, and soluble components.

未処理の下水のBODJ度は概ね200■/2であるが
、このような汚水に前、記の無tll′a集剤を添加し
、急速撹拌、緩速撹拌することにより、SS成分のほぼ
全て、コロイド状成分の一部をフロックとして析出させ
、加圧浮上分離することにより、汚水中のBODの約1
/2が除去される。
The BODJ degree of untreated sewage is approximately 200/2, but by adding the Tll'a-free collector described above to such sewage and stirring rapidly and slowly, almost all of the SS components are removed. By precipitating some of the colloidal components as flocs and separating them by pressure flotation, approximately 1% of the BOD in wastewater is removed.
/2 is removed.

汚水中のリンは無機凝集剤と例えば以下のように反応し
てフロックとして析出させ、SS成分とほぼ同様に大部
分が除去される。
Phosphorus in wastewater reacts with an inorganic flocculant, for example, as described below, and is precipitated as flocs, and most of it is removed in substantially the same manner as the SS component.

AI”十PO4’−→A I PO,↓・・・・・・(
1)Fe’+モPO4’−−+F e PO4↓−・−
(2)上記のリンの除去割合は(1)、(2)式に示さ
れるように無機凝集剤の添加量によって左右される0本
発明においては、上記加圧浮上分離による一次処理に後
設して、好気性微生物による生物処理を行うので、これ
ら微生物の生存及び活動に必要な程度のリンを一次処理
水中に敢えて残留せしめるように、処理すべき汚水中の
リン濃度に応じて無II凝集剤の添加量を調整する。
AI"10PO4'-→A I PO, ↓・・・・・・(
1) Fe'+MoPO4'--+Fe PO4↓--・-
(2) The above phosphorus removal rate depends on the amount of inorganic flocculant added as shown in equations (1) and (2). Since biological treatment is carried out using aerobic microorganisms, the amount of phosphorus required for the survival and activity of these microorganisms is intentionally left in the primary treatment water. Adjust the amount of agent added.

上記の如き目的に合致する無機凝集剤の添加量は、下水
(汚水中のリン濃度を5r&t/ffi、一次処理水中
のリン濃度を1.5111!/ffiとして)を例にと
ると、無機凝集剤として液体硫酸バンドを使用した場合
、160■/β、PACの場合125■/g、、塩化第
二鉄の場合20■/2程度である。
Taking sewage as an example (assuming the phosphorus concentration in sewage to be 5r&t/ffi and the phosphorus concentration in primary treated water to be 1.5111!/ffi), the amount of inorganic flocculant to be added that meets the above objectives is as follows: When liquid sulfuric acid band is used as the agent, it is about 160 ■/β, in case of PAC it is 125 ■/g, and in the case of ferric chloride it is about 20 ■/2.

このような一次処理を行った後、表面に好気性微生物を
付着生育させた、粒径2〜10IllIのゼオライト等
の天然物、石炭系、プラスチック系人工物で調製した濾
材からなる厚さ1〜2mの波層を有する生物濾過装置に
て、一次処理水中に残留する溶解性のBOD成分、SS
、リンを上記好気性微生物の作用により除去し、BOD
、33とも10■/2、リン1■/2以下の良好な水質
の最終処理水が得られる。
After such primary treatment, a filter medium with a thickness of 1 to 100 ml made of a natural material such as zeolite, a coal-based material, or a plastic-based artificial material with a particle size of 2 to 10 IllI, on which aerobic microorganisms are grown attached, is prepared. A biological filtration device with a 2m wave layer removes soluble BOD components and SS remaining in the primary treatment water.
, phosphorus is removed by the action of the above aerobic microorganisms, and BOD
, 33, final treated water with good water quality of less than 10 /2 and 1 /2 phosphorus can be obtained.

このように生物反応を伴わない一次処理において、BO
Dの約1/2、コロイド状成分の一部、リンの一部を除
去するため、生物反応を行う生物濾過装置における負荷
が軽減され、滞留時間が短縮される。また、固液分離と
しての加圧浮上分離法は沈澱法に比べて所要時間が約1
/2oと著しく短いため、本装置全体の滞留時間は標準
活性汚泥法と比較して115〜1/8程度となる。
In this way, in the primary treatment that does not involve biological reactions, BO
Since approximately 1/2 of D, part of the colloidal components, and part of the phosphorus are removed, the load on the biological filtration device that performs the biological reaction is reduced, and the residence time is shortened. In addition, the pressure flotation method for solid-liquid separation requires approximately 10% less time than the sedimentation method.
/2o, which is extremely short, so the residence time of the entire apparatus is about 115 to 1/8 of that of the standard activated sludge method.

また本発明においては、濾層に付着生育する好気性微生
物への溶存酸素(以下DOと記す)補給源たる空気量は
、加圧浮上分離工程で一次処理をして負荷を軽減してい
ること、加圧浮上分離工程において、固液分離のために
発生させる微細気泡が結果として一次処理水中へのDo
補給を兼ねることになることにより、処理対象汚水を下
水とした場合、供給下水量に対して所要空気量は概ね2
倍以下となり、従来技術と比較すると1/3以下に低減
される。
In addition, in the present invention, the amount of air that serves as a source of dissolved oxygen (hereinafter referred to as DO) for aerobic microorganisms that grow attached to the filter layer is reduced by primary treatment in the pressure flotation separation process. In the pressure flotation separation process, fine bubbles generated for solid-liquid separation result in Do
Since it also serves as replenishment, if the wastewater to be treated is sewage, the amount of air required for the amount of sewage supplied is approximately 2.
This is less than twice as much, and is reduced to less than 1/3 compared to the conventional technology.

また、本発明における固液分離は、生物反応を行う以前
の加圧浮上分離と生物反応を伴った濾過であり、バルキ
ングの影響による装置運転上のトラブルがまったくない
Moreover, the solid-liquid separation in the present invention involves pressurized flotation separation before performing a biological reaction and filtration accompanied by a biological reaction, and there is no trouble in operating the apparatus due to the influence of bulking.

また、加圧浮上分離により固液分離された汚泥は、濃度
がSSとして30,000■/β程度と高いため、汚泥
処理における濃縮操作が不要となる。
In addition, since the sludge separated into solid and liquid by pressure flotation has a high concentration of about 30,000 μ/β in terms of SS, a concentration operation in sludge treatment is not necessary.

更に本発明では活性汚泥法のような生物反応のみからな
る処理と無機凝集剤による物理化学的処理と組み合わせ
ているため、生物反応のみでは除去しにくいリンも前記
に説明したように化学的反応によって除去される。
Furthermore, since the present invention combines a treatment consisting only of biological reactions, such as the activated sludge method, with a physicochemical treatment using an inorganic flocculant, phosphorus, which is difficult to remove by biological reactions alone, can be removed by chemical reactions as explained above. removed.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は第一実施例を示しており、この実施例では、生
活汚水、下水、食品工場廃水等、浮遊物を含有する有機
性汚水を連続的かつ定量的に急速撹拌槽1に供給し、該
槽内に定量的に注入されるPAC等の無機凝集剤と急速
撹拌装置2により混合させる。上記操作により化学的或
いは電気化学的作用によって汚水中のSS、コロイド状
物質、リン等を微細なフロックとして形成させる。これ
らのフロックを含んだ汚水を緩速撹拌槽3に流入させ、
該槽において緩速撹拌装置4により緩速撹拌する。この
工程では前工程で形成された微細なフロック同志を相互
に衝突付着せしめ、直径が概ね1間程度のフロックに成
長させる。成長したフロックを含む汚水を加圧浮上分離
槽5に供給し、該槽内の垂直の隔16にて形成される流
入部底部に設置した減圧気泡発生装置f8を介して発生
させる直径概ね30〜60μの微細な気泡群と混合、接
触させる。減圧気泡発生装置8へは加圧水を供給する。
FIG. 1 shows a first embodiment. In this embodiment, organic wastewater containing suspended matter, such as domestic sewage, sewage, and food factory wastewater, is continuously and quantitatively supplied to a rapid stirring tank 1. , is mixed with an inorganic flocculant such as PAC which is quantitatively injected into the tank using a rapid stirring device 2. By the above operation, SS, colloidal substances, phosphorus, etc. in the wastewater are formed as fine flocs by chemical or electrochemical action. The wastewater containing these flocs is made to flow into the slow stirring tank 3,
Slow stirring is performed in the tank using a slow stirring device 4. In this step, the fine flocs formed in the previous step are caused to collide and adhere to each other, and grow into flocs with a diameter of about 1 inch. The wastewater containing the grown flocs is supplied to the pressure flotation separation tank 5, and bubbles with a diameter of approximately 30~ Mix and contact with a group of 60μ fine bubbles. Pressurized water is supplied to the reduced pressure bubble generator 8.

この加圧水は本発明方法による最終処理水を貯留した処
理水貯槽25から、加圧水ポンプ26を介して加圧水調
整槽28内に該処理水を供給し、該槽28内圧力を概ね
4kg/−に保ちながら、該槽内に設置した充填材30
を介してコンプレッサー29より連続的に供給される加
圧空気と接触させることにより、空気を通常の大気圧下
と比較して過剰に溶解している。
This pressurized water is supplied from the treated water storage tank 25 that stores the final treated water according to the method of the present invention into the pressurized water adjustment tank 28 via the pressurized water pump 26, and maintains the internal pressure of the tank 28 at approximately 4 kg/-. While filling material 30 installed in the tank
By contacting with pressurized air that is continuously supplied from the compressor 29 via the compressor 29, air is dissolved in excess compared to normal atmospheric pressure.

前工程で形成したフロックに微細気泡が付着したフロッ
ク・気泡会合物は一体として挙動し、その密度が水の密
度より小さくなるので、加圧浮上分離槽5内に斜めに設
置した隔壁7に沿って上昇した後、核種5の水面に達し
、汚水から分離される。核種5の水面に分離したこれら
フロックは集積して浮上汚泥層10を形成する。該汚泥
層10は浮上汚泥排出装置9により、連続的或いは間欠
的に加圧浮上分離槽流出側へ掻き寄せ、加圧浮上分離槽
5に隣接して設ける浮上汚泥排出槽32に排出し外部へ
排出させる。
The floc/bubble aggregates, in which fine air bubbles are attached to the flocs formed in the previous step, behave as a unit and their density is lower than that of water, so they move along the partition wall 7 installed diagonally in the pressure flotation tank 5. After rising, it reaches the water surface of nuclide 5 and is separated from the wastewater. These flocs separated on the water surface of the nuclide 5 accumulate to form a floating sludge layer 10. The sludge layer 10 is continuously or intermittently scraped up to the outlet side of the pressurized flotation tank by the floated sludge discharge device 9, and is discharged to the floated sludge discharge tank 32 provided adjacent to the pressurized flotation tank 5 to the outside. Let it drain.

加圧浮上分離工程を終了した一次処理水を加圧浮上分離
槽5内水位を調整する目的で設けた水位調整堰11を介
して一次処理水貯槽12に流入させ、−時貯留する。こ
の一次処理水は、上記工程終了時において流入汚水中の
SS、リンの大部分、BODの概ね1/2が除去されて
いる。また、加圧浮上分離に寄与する微細気泡群と概ね
15〜20分間混合接触することにより、Do濃度が高
められている。
The primary treated water that has completed the pressurized flotation separation process is made to flow into the primary treated water storage tank 12 via the water level adjustment weir 11 provided for the purpose of adjusting the water level in the pressurized flotation separation tank 5, and is stored there. In this primary treated water, most of the SS and phosphorus and approximately 1/2 of the BOD in the inflowing wastewater have been removed at the end of the above process. In addition, the Do concentration is increased by mixing and contacting for approximately 15 to 20 minutes with a group of fine bubbles that contribute to pressure flotation separation.

一次処理水は一次処理水供給ボンプ13を介して生物濾
過槽14に連続的、かつ定量的に供給される。該槽14
内には底部に濾過水を均等に集めるための集水装置17
が収容され、その上部に濾材を物理的に支持するための
支持砂利層16、最上部に粒径が2〜10間の範囲で比
較的均等な粒径分布となるように、天然物或いは人工物
を素材とする濾材を厚さ1〜2mに充填した波層15が
順に重ねられて収容されている。
The primary treated water is continuously and quantitatively supplied to the biological filtration tank 14 via the primary treated water supply pump 13. The tank 14
There is a water collecting device 17 inside to collect filtered water evenly at the bottom.
is accommodated, on top of which is a support gravel layer 16 for physically supporting the filter medium, and on top is a layer of natural or artificial gravel so as to have a relatively even particle size distribution in the range of 2 to 10 particles. Wave layers 15 filled with filter media made of plastic to a thickness of 1 to 2 m are housed in a stacked manner.

生物濾過槽14に供給された一次処理水は、濾層15上
部の水頭圧力により、波層→支持砂利層→集水装置とい
う経路で該槽外へ流出する。この過程において、波層1
5を構成する濾材表面上に付着生育した好気性微生物の
作用により、一次処理水中に残留する溶解性のBOD成
分、NH4−N、リンが除去される。好気性微生物によ
るこれら汚濁成分の除去反応に必要なりoは、波層15
と支持砂利層16の境界面に設置した散気管18を介し
てブロワ−19より供給される空気が波層を上昇する間
に剪断され、水中へ溶解する。
The primary treated water supplied to the biological filtration tank 14 flows out of the tank via the wave layer → supporting gravel layer → water collection device due to the water head pressure above the filter layer 15 . In this process, wave layer 1
Due to the action of aerobic microorganisms grown on the surface of the filter medium constituting 5, soluble BOD components, NH4-N, and phosphorus remaining in the primary treated water are removed. The wave layer 15 is necessary for the reaction of removing these pollutants by aerobic microorganisms.
Air supplied from a blower 19 through an aeration pipe 18 installed at the interface between the support gravel layer 16 and the support gravel layer 16 is sheared while rising through the wave layer, and is dissolved in the water.

生物濾過槽14内の水位は、濾材上の好気性微生物の増
殖につれて上昇する。該槽14内に設置した水位検出器
27があらかじめ設定した該槽14内の上限水位を検出
すれば、一次処理水供給ポンプ13を停止する。その後
、水位があらかじめ設定した下限水位まで低下したら、
処理水自動弁21及び空気供給自動弁24を閉とした後
、空気洗浄自動弁23を開として、ブロワ−19からの
空気を集水装置17を介して支持砂利層16下部より供
給し、濾材表面上に過剰に生育した好気性微生物群を気
泡の上昇による物理的な剪断力により剥離させる。この
工程を概ね2分間[j!した後、ブロワ−19を停止し
、空気洗浄自動弁23を閉とした後、更に逆洗ポンプ2
0を運転し、逆洗自動弁22を開として、処理水貯槽2
5にあらかじめ貯留しておいた最終処理水を集水装置1
7を介して、生物濾過槽14の下部より波層15を膨張
させるに足りる程度の流速で供給することにより、剥離
した好気性微生物群を排水トラフ31を介して該槽外へ
排出する。この排出水は汚水と混合し本装置流入部たる
急速撹拌槽1に供給し、急速撹拌工程、緩速撹拌工程、
加圧浮上分離工程により再処理する。
The water level in the biological filter tank 14 rises as aerobic microorganisms on the filter medium grow. When the water level detector 27 installed in the tank 14 detects the preset upper limit water level in the tank 14, the primary treated water supply pump 13 is stopped. After that, when the water level drops to the preset lower limit water level,
After closing the treated water automatic valve 21 and the air supply automatic valve 24, the air cleaning automatic valve 23 is opened and air from the blower 19 is supplied from the lower part of the supporting gravel layer 16 through the water collection device 17, and the filter medium is The aerobic microorganisms that have grown excessively on the surface are removed by the physical shearing force caused by the rising air bubbles. This process takes about 2 minutes [j! After that, the blower 19 is stopped and the automatic air cleaning valve 23 is closed, and then the backwash pump 2 is turned on.
0, open the automatic backwash valve 22, and open the treated water storage tank 2.
The final treated water stored in advance in 5 is transferred to water collection device 1.
7 from the lower part of the biological filtration tank 14 at a flow rate sufficient to expand the wave layer 15, the detached aerobic microorganisms are discharged to the outside of the tank via the drainage trough 31. This discharged water is mixed with sewage and supplied to the rapid stirring tank 1 which is the inflow part of this device, and is used for rapid stirring process, slow stirring process,
Reprocess by pressure flotation separation process.

本発明装置における所要滞留時間は急速・緩速撹拌工程
が概ね15分、加圧浮上分離工程が概ね15〜20分、
生物濾過工程が概ね30〜60分、合計1時間〜1時間
30分となり、従来技術と比較して極めて短時間で汚水
の処理が可能であり、汚水処理装置として著しくコンパ
クトとなる。
The required residence time in the apparatus of the present invention is approximately 15 minutes for the rapid/slow stirring process, approximately 15 to 20 minutes for the pressure flotation separation process,
The biological filtration process takes approximately 30 to 60 minutes, total time of 1 hour to 1 hour and 30 minutes, making it possible to treat wastewater in an extremely short time compared to conventional techniques, and making the wastewater treatment device extremely compact.

第2図は第二実施例を示しており、これは本発明におい
て、汚水の一次処理たる加圧浮上分離工程と、最終処理
たる生物濾過工程とを加圧浮上分離槽5の下部に生物濾
過槽14を一体に形成することにより、単一槽において
既述の如き本発明による作用がなされるように成した装
置である。
FIG. 2 shows a second embodiment, in which a pressure flotation separation process, which is the primary treatment of wastewater, and a biological filtration process, which is the final treatment, are carried out in the lower part of the pressure flotation tank 5. By integrally forming the tank 14, this device is capable of performing the functions of the present invention as described above in a single tank.

なお、第2図において第一実施例と同じ部分には、同じ
符号を付して説明を省略する。
In addition, in FIG. 2, the same parts as in the first embodiment are given the same reference numerals, and the description thereof will be omitted.

この第二実施例においては、加圧浮上分離槽5・と生物
濾過槽14とを上下方向に連続して一体に形成している
ため、加圧浮上分離部の水位を経時的に一定に保持する
必要があり、そのため波層15の直上部と支持砂利層1
6の直下部に差圧発信器27を設け、該発信器と電気的
に連結する調節計31を介して生物濾過槽上下間の差圧
増加に対応して処理水量調節弁33の開度を順次連続的
に変更せしめ、浮上分離部水位を一定に保つ。
In this second embodiment, the pressure flotation tank 5 and the biological filtration tank 14 are vertically continuous and integrally formed, so that the water level in the pressure flotation section is maintained constant over time. Therefore, the area directly above the wave layer 15 and the supporting gravel layer 1 must be
A differential pressure transmitter 27 is installed directly below the biological filtration tank 6, and a controller 31 electrically connected to the transmitter controls the opening of the treated water flow control valve 33 in response to an increase in the differential pressure between the upper and lower sides of the biological filtration tank. The water level of the flotation separation section is kept constant by changing the water level one after another.

第二実施例においても、急速撹拌、緩速撹拌工程、微細
気泡発生のための加圧水の11N工程、生物濾層の目詰
まりに伴う空気洗浄、逆洗工程及び自動弁の開閉操作は
、第一実施例と同様である。
In the second embodiment as well, the rapid stirring, slow stirring process, 11N pressurized water process for generating fine bubbles, air cleaning due to clogging of the biological filter layer, backwashing process, and automatic valve opening/closing operation are performed in the first embodiment. This is similar to the example.

第二実施例では、通常の処理継続時において加圧浮上分
離槽5水面に形成される浮上汚泥10は、浮上汚泥掻寄
装置9を間欠的或いは連続的に運転することにより、浮
上汚泥貯留槽32を介して槽外に排出し、汚泥処理工程
に供する。
In the second embodiment, the floated sludge 10 formed on the water surface of the pressurized flotation separation tank 5 during normal processing is removed from the floated sludge storage tank by operating the floated sludge scraping device 9 intermittently or continuously. 32 to the outside of the tank and subjected to a sludge treatment process.

生物濾過槽14の逆洗工程においては、剥離した好気性
微生物を含む逆洗排水は、加圧浮上分離槽5の天端より
浮上汚泥貯留槽32を介して槽外へ排出し、本発明装置
流入部において流入汚水と混合し、急速撹拌・緩速撹拌
、加圧浮上分離工程を経て再処理を行う、また、生物濾
過層の逆洗工程における排出水の越流を円滑ならしめる
ために、浮上汚泥掻寄装置9を連続的に運転する。該工
程においては流入汚水自動弁34を閉とし、汚水の流入
を停止する他、急速撹拌槽1への無111凝集剤の注入
も停止するが、減圧気泡発生装置8を介しての加圧水の
供給は継続する。
In the backwash process of the biological filtration tank 14, backwash wastewater containing separated aerobic microorganisms is discharged from the top of the pressurized flotation separation tank 5 to the outside of the tank via the floatation sludge storage tank 32, and the device of the present invention In order to mix with the inflowing wastewater at the inflow part and perform reprocessing through rapid stirring, slow stirring, and pressure flotation separation processes, and to smooth the overflow of wastewater in the backwashing process of the biological filtration layer, The floating sludge scraping device 9 is operated continuously. In this process, the automatic inflow sewage valve 34 is closed to stop the inflow of sewage, and the injection of No-111 flocculant into the rapid stirring tank 1 is also stopped, but pressurized water is supplied via the decompression bubble generator 8. continues.

第1図、第2図双方において特に図示はしていないが、
緩速撹拌工程で形成されるフロックの物理的強度が不足
する場合においては、流入汚水量に対して1■/2程度
の高分子凝集剤を緩速撹拌槽に注入することで対応する
こともできる。
Although not particularly illustrated in both Figures 1 and 2,
If the physical strength of the flocs formed in the slow stirring process is insufficient, this can be dealt with by injecting about 1/2 of the amount of polymer flocculant into the slow stirring tank based on the amount of inflowing sewage. can.

第1表は、下水を対象汚水とした本発明実施例における
各工程毎の処理水質の一例である。
Table 1 shows an example of the quality of treated water for each process in the embodiment of the present invention, in which sewage is the target wastewater.

第   1   表 ※T Pは全リンをあられす。Chapter 1 Table *T P hails total phosphorus.

(発明の効果) 本発明の汚水処理方法・装置による浮遊物を含有する有
機性汚水の処理における発明の効果は以下の如くである
(Effects of the Invention) The effects of the invention in treating organic sewage containing suspended matter by the sewage treatment method and apparatus of the present invention are as follows.

■本発明の方法・装置によれば、装置内合計滞留時間が
1〜1.5時間という短時間で、BOD、SSとも10
111r/fl以下、T  Plq/ffi以下という
良好な水質の処理水が得られる。
■According to the method and apparatus of the present invention, the total residence time in the apparatus is as short as 1 to 1.5 hours, and both BOD and SS are 10
Treated water with good water quality of 111 r/fl or less and T Plq/ffi or less can be obtained.

■従来法と比して、装置の容積及び設置面積を著しく小
さくすることができ、施設費も安価となる。
■Compared to the conventional method, the volume and installation area of the device can be significantly reduced, and the facility cost can also be reduced.

特に第二実施例に示す如く、一次処理たる加圧浮上分離
と′IfL終処理たる生物濾過を一体に形成した単一槽
で行なうことにより、本発明による汚水処理装置は著し
くコンパクトとなる。
In particular, as shown in the second embodiment, the sewage treatment apparatus according to the present invention can be made extremely compact by carrying out the pressure flotation separation as the primary treatment and the biological filtration as the 'IfL final treatment in a single integrated tank.

■本発明装置は全自動運転が可能であり、運転に際して
は熟練及び高度の技術的経験を必要としない ■酸素供給源としての空気量が従来法の1/3以下とな
り、必要なブロワ−の容量が小さくなる。
■The device of the present invention is capable of fully automatic operation and does not require skill or advanced technical experience.■The amount of air as an oxygen supply source is less than 1/3 of the conventional method, and the blower is not required. Capacity becomes smaller.

■排出される汚泥の濃度が従来法と比して3倍程度高濃
度となるので、発生する汚泥の容量が1/3程度となり
、汚泥処理工程において濃縮操作が不要となる他、汚泥
処理設備の容量を小さくできる。
■Since the concentration of the sludge discharged is about three times higher than that of conventional methods, the volume of sludge generated is reduced to about 1/3, eliminating the need for thickening operations in the sludge treatment process, and sludge treatment equipment. capacity can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例を示す概略図、第2図は本
発明の第二実施例を示す概略図である。 1・・・・・・急速撹拌槽、2・・・・・・急速撹拌装
置、3・・・・・・緩速撹拌槽、4・・・・・・緩速撹
拌装置、5・・・・・・加圧浮上分離槽、6・・・・・
・隔壁、8・・・・・・減圧気泡発生装置、 9・・・・・・浮上汚泥排出装置、 12・・・・・・一次処理水貯槽、14・・・・・・生
物濾過槽、15・・・・・・濾層、16・・・・・・支
持砂利層、17・・・・・・集水装置、18・・・・・
・散気管、19・・・・・・ブロワ−521・・・・・
・処理水自動弁、22・・・・・・逆洗自動弁、23・
・・・・・空気洗浄自動弁、24・・・・・・空気供給
自動弁、25・・・・・・処理水貯槽、28・・・・・
・加圧水調整槽、29・旧・・コンプレッサー30・・
・・・・充填材。
FIG. 1 is a schematic diagram showing a first embodiment of the invention, and FIG. 2 is a schematic diagram showing a second embodiment of the invention. 1... Rapid stirring tank, 2... Rapid stirring device, 3... Slow stirring tank, 4... Slow stirring device, 5... ...Pressure flotation separation tank, 6...
・Partition wall, 8... Decompression bubble generator, 9... Floating sludge discharge device, 12... Primary treated water storage tank, 14... Biological filtration tank, 15...Filter layer, 16...Supporting gravel layer, 17...Water collection device, 18...
・Diffuser pipe, 19...Blower-521...
・Treatment water automatic valve, 22... Automatic backwash valve, 23.
... Air cleaning automatic valve, 24 ... Air supply automatic valve, 25 ... Treated water storage tank, 28 ...
- Pressurized water adjustment tank, 29 - Old... Compressor 30...
...Filling material.

Claims (5)

【特許請求の範囲】[Claims] (1)生活汚水、下水、食品工場廃水等の浮遊物を含有
する有機性汚水にポリ塩化アルミニウム(以下PACと
記す。)等の無機凝集剤を添加して急速に撹拌する急速
撹拌工程と、該急速撹拌後、緩やかな撹拌により汚水中
の浮遊物、コロイド物質及びリン化合物をフロック化さ
せる工程と、これによつて形成されたフロックを加圧浮
上分離により固液分離する一次固液分離工程と、該工程
によって処理された一次処理水を粒径が2〜10mm程
度の濾材を充填した濾過槽に導入し、該一次処理水中に
含まれている溶解性の有機物及びアンモニア性窒素(以
下NH_4^+−Nと記す。)を栄養源として前記濾材
表面に生育する活性汚泥状の好気性微生物の作用に必要
な酸素を前記濾過槽に供給し、一次処理水の再処理を行
う工程との組み合わせからなる汚水の処理方法。
(1) A rapid stirring step in which an inorganic flocculant such as polyaluminum chloride (hereinafter referred to as PAC) is added to organic wastewater containing suspended matter such as domestic sewage, sewage, food factory wastewater, etc. and rapidly stirred; After the rapid stirring, a step of forming suspended matter, colloidal substances, and phosphorus compounds in the wastewater into flocs by gentle stirring, and a primary solid-liquid separation step of separating the flocs thus formed into solid-liquid by pressure flotation separation. The primary treated water treated in this step is introduced into a filter tank filled with filter media with a particle size of about 2 to 10 mm, and the soluble organic matter and ammonia nitrogen (hereinafter NH_4) contained in the primary treated water are removed. ^+-N) is used as a nutrient source to supply oxygen necessary for the action of activated sludge-like aerobic microorganisms growing on the surface of the filter medium to the filtration tank, and reprocessing the primary treated water. A wastewater treatment method consisting of a combination.
(2)加圧浮上分離に要する微細気泡用の気体源や濾層
に供給する気体源として高濃度酸素空気を使用する特許
請求の範囲第1項に記載の汚水の処理方法。
(2) The wastewater treatment method according to claim 1, wherein high-oxygen air is used as a gas source for fine bubbles required for pressurized flotation separation and as a gas source to be supplied to the filter layer.
(3)生活汚水、下水、食品工場廃水等の浮遊物を含有
する有機性汚水を収容し、これにPAC等の無機凝集剤
を添加して急速に撹拌して混合させる急速撹拌槽と、該
急速撹拌槽にて撹拌混合された混合汚水を緩やかに撹拌
し、微細なフロックを大きく成長させる緩速撹拌槽と、
該緩速撹拌槽からの混合汚水を導入し、底部に設けた加
圧水ノズルから加圧により空気を過剰に溶解させた加圧
水を噴射して混合汚水と加圧水が一気に減圧されること
により発生する微細気泡を接触させ、成長フロックと一
次処理水に固液分離させる加圧浮上分離槽と、該加圧浮
上分離槽上に浮上分離した成長フロック集団を槽外に排
出する汚泥除去手段と、前記加圧浮上分離槽にてフロッ
クが除去された一次処理水を連続的に供給し、表面に生
育した活性汚泥状の好気性微生物相を有する粒径2〜1
0mmの濾材で充填された濾層を内部に設置し、かつ、
該濾層に空気を吹き込むブロワーを具備した濾過槽と、
該濾過槽の濾層が目詰まりした時に吹き込み空気と処理
水の送水により一定時間洗浄を行う逆洗手段と、前記濾
層内の目詰まりの進行状態を濾層の上部と下部の圧力損
失で検知し、上記逆洗手段の稼動の開始を指令する水位
差圧発信器と、前記濾過槽から流出する処理水を貯留し
、加圧浮上分離槽への気泡発生用循環加圧水及び前記濾
層の逆洗用水として供給するための処理水槽とを備えて
なる汚水処理装置。
(3) A rapid stirring tank that stores organic sewage containing suspended solids such as domestic sewage, sewage, and food factory wastewater, adds an inorganic flocculant such as PAC, and rapidly stirs and mixes the organic sewage. A slow stirring tank that gently stirs the mixed wastewater mixed in the rapid stirring tank to grow fine flocs,
The mixed sewage from the slow stirring tank is introduced, and pressurized water with excessively dissolved air is sprayed from the pressurized water nozzle installed at the bottom, and the mixed sewage and pressurized water are depressurized at once, resulting in fine bubbles generated. a pressurized flotation tank that separates the grown flocs and primary treated water into solid-liquid by contacting them, a sludge removal means that discharges the group of grown flocs floated and separated on the pressurized flotation tank to the outside of the tank, and the pressurized Continuously supply primary treated water from which flocs have been removed in a flotation separation tank, and produce activated sludge-like aerobic microflora grown on the surface with a particle size of 2 to 1.
A filter layer filled with a 0 mm filter medium is installed inside, and
a filtration tank equipped with a blower that blows air into the filtration layer;
A backwash means for cleaning the filter layer of the filter tank for a certain period of time by blowing air and water supply when the filter layer of the filter tank becomes clogged; A water level differential pressure transmitter that detects and commands the start of operation of the backwashing means, and a water level differential pressure transmitter that stores treated water flowing out from the filtration tank and circulates pressurized water for generating bubbles to the pressurized flotation separation tank and A sewage treatment device comprising a treated water tank for supplying water for backwashing.
(4)加圧浮上分離槽の下部に濾過槽を一体化させ、単
一槽として形成し、該槽に供給される成長フロックを含
む汚水を該槽上部にて加圧浮上分離し、下部の濾過槽に
て好気性微生物による処理を行わせる特許請求の範囲第
3項に記載の汚水処理装置。
(4) A filtration tank is integrated in the lower part of the pressure flotation separation tank to form a single tank, and the wastewater containing the grown flocs supplied to the tank is separated by pressure flotation in the upper part of the tank, and the filtration tank is separated in the lower part of the tank. The sewage treatment device according to claim 3, wherein the sewage treatment device is configured to perform treatment using aerobic microorganisms in a filtration tank.
(5)加圧浮上分離に要する微細気泡用の気体源や濾層
に供給する気体源として高濃度酸素空気を使用する特許
請求の範囲第3項もしくは第4項に記載の汚水処理装置
(5) The sewage treatment apparatus according to claim 3 or 4, wherein high-concentration oxygen air is used as a gas source for fine bubbles required for pressure flotation separation and as a gas source to be supplied to the filter layer.
JP17883488A 1988-07-18 1988-07-18 Sewage treatment method and device Expired - Lifetime JPH0714519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17883488A JPH0714519B2 (en) 1988-07-18 1988-07-18 Sewage treatment method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17883488A JPH0714519B2 (en) 1988-07-18 1988-07-18 Sewage treatment method and device

Publications (2)

Publication Number Publication Date
JPH0231895A true JPH0231895A (en) 1990-02-01
JPH0714519B2 JPH0714519B2 (en) 1995-02-22

Family

ID=16055479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17883488A Expired - Lifetime JPH0714519B2 (en) 1988-07-18 1988-07-18 Sewage treatment method and device

Country Status (1)

Country Link
JP (1) JPH0714519B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433469B1 (en) * 2000-03-25 2004-05-31 주식회사 원창엔텍 Wastewater Treatment System
KR100521649B1 (en) * 2003-09-24 2005-10-13 손을택 Small sewage terminal treatment method
JP2010234324A (en) * 2009-03-31 2010-10-21 Kazunori Koishi Filtration method, filtration apparatus and filter bed
CN107021551A (en) * 2016-01-29 2017-08-08 江苏扬子江天悦新材料有限公司 A kind for the treatment of tank with cleaning equipment
CN112479468A (en) * 2020-11-18 2021-03-12 三桶油环保科技(宜兴)有限公司 Two-stage magnetic method rapid separation treatment method for fracturing flow-back fluid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226763A (en) * 1975-08-22 1977-02-28 Nippon Paint Co Ltd Waste water treating apparatus
JPS5463547A (en) * 1977-10-31 1979-05-22 Kurita Water Ind Ltd Floating separator
JPS5614358A (en) * 1979-07-13 1981-02-12 Nec Corp Operation log storing system
JPS5689892A (en) * 1979-12-25 1981-07-21 Mitsubishi Heavy Ind Ltd Method of treating waste water
JPS6251159A (en) * 1985-08-28 1987-03-05 Sanyo Electric Co Ltd Manufacture of plate for alkaline battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226763A (en) * 1975-08-22 1977-02-28 Nippon Paint Co Ltd Waste water treating apparatus
JPS5463547A (en) * 1977-10-31 1979-05-22 Kurita Water Ind Ltd Floating separator
JPS5614358A (en) * 1979-07-13 1981-02-12 Nec Corp Operation log storing system
JPS5689892A (en) * 1979-12-25 1981-07-21 Mitsubishi Heavy Ind Ltd Method of treating waste water
JPS6251159A (en) * 1985-08-28 1987-03-05 Sanyo Electric Co Ltd Manufacture of plate for alkaline battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433469B1 (en) * 2000-03-25 2004-05-31 주식회사 원창엔텍 Wastewater Treatment System
KR100521649B1 (en) * 2003-09-24 2005-10-13 손을택 Small sewage terminal treatment method
JP2010234324A (en) * 2009-03-31 2010-10-21 Kazunori Koishi Filtration method, filtration apparatus and filter bed
CN107021551A (en) * 2016-01-29 2017-08-08 江苏扬子江天悦新材料有限公司 A kind for the treatment of tank with cleaning equipment
CN112479468A (en) * 2020-11-18 2021-03-12 三桶油环保科技(宜兴)有限公司 Two-stage magnetic method rapid separation treatment method for fracturing flow-back fluid

Also Published As

Publication number Publication date
JPH0714519B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US5364529A (en) Wastewater treatment system
US3709364A (en) Method and apparatus for denitrification of treated sewage
JPH02245297A (en) Two-stage treating method of waste water
JPH1080693A (en) Treatment of waste water and waste water treating device
KR101714446B1 (en) Advanced sewage wastewater treatment system combined with biological aerated filter and ultra rapid sedimentation
US4159945A (en) Method for denitrification of treated sewage
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP3122654B2 (en) Method and apparatus for treating highly concentrated wastewater
KR101758049B1 (en) Hybrid water treatment apparatus removable nitrogen and phosphorus by floatation and consecutive filtration
KR101278475B1 (en) Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor
JPH0231895A (en) Process and apparatus for treating filthy water
KR101037888B1 (en) Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor
US2615842A (en) Method of and apparatus for concentrating sewage sludges
JP3456022B2 (en) Sewage treatment equipment
JPH01242187A (en) Treatment of aqueous suspension in single tank and equipment therefor
GB2084041A (en) Process and apparatus for wastewater treatment
JPH01123697A (en) Aerobic biological treatment device for organic waste water
JP2709357B2 (en) Aerobic wastewater treatment equipment
TW201623155A (en) Wastewater treatment method and wastewater treatment device
JP2000107797A (en) Purification method and apparatus
KR100457698B1 (en) Livestock wastewater treatment method and equipment using STP waste excess sludge
JP2585187B2 (en) Organic wastewater biological treatment method
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
JPH0611440B2 (en) Sewage treatment method
JP6548937B2 (en) Waste water treatment method and waste water treatment apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 14