JPH0714519B2 - Sewage treatment method and device - Google Patents
Sewage treatment method and deviceInfo
- Publication number
- JPH0714519B2 JPH0714519B2 JP17883488A JP17883488A JPH0714519B2 JP H0714519 B2 JPH0714519 B2 JP H0714519B2 JP 17883488 A JP17883488 A JP 17883488A JP 17883488 A JP17883488 A JP 17883488A JP H0714519 B2 JPH0714519 B2 JP H0714519B2
- Authority
- JP
- Japan
- Prior art keywords
- tank
- sewage
- water
- treated water
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Physical Water Treatments (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、生活汚水、下水、食品工場廃水等、浮遊物を
含有する有機性汚水の処理において、生物化学的酸素要
求量(以下BODと記す。)、浮遊物質(以下SSと記
す。)、リンの除去を短時間で可能ならしめる汚水の処
理方法及びその装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to biochemical oxygen demand (hereinafter referred to as BOD and BOD) in the treatment of organic sewage containing suspended solids such as domestic sewage, sewage, and food factory wastewater. ), Suspended solids (hereinafter referred to as SS), and a method for treating sewage that enables removal of phosphorus in a short time and an apparatus therefor.
(従来の技術) 浮遊物を含有する有機性汚水の処理方法としては、従
来、活性汚泥法を主体とする好気性微生物による生物処
理が適用されてきた。(Prior Art) As a method for treating organic sewage containing suspended solids, biological treatment with aerobic microorganisms mainly based on the activated sludge method has been conventionally applied.
これらの方法は下水処理等の分野で広く適用されてお
り、適正な設計と運転管理が行われると、BOD10mg/l以
下、SS20mg/l以下という良質の処理水が得られるが、以
下のような問題がある。These methods are widely applied in the field of sewage treatment, etc., and if properly designed and operated and managed, high quality treated water of BOD 10 mg / l or less and SS 20 mg / l or less can be obtained. There's a problem.
(1) 処理施設の滞留時間が長い。(1) Residence time of the processing facility is long.
活性汚泥法においては種々の方式があるが、処理の主体
となる曝気槽の滞留時間は、「標準活性汚泥法」の場合
8時間程度、「長時間曝気法」の場合24時間程度、「オ
キシデーションディッチ法」の場合30〜40時間であるか
ら、曝気槽の容量が大きく、従って施設敷地面積も大き
くなり、大都市域では新たな下水処理場の立地が困難と
なりつつある。There are various methods in the activated sludge method, but the residence time of the aeration tank, which is the main treatment, is about 8 hours in the case of "standard activated sludge method", about 24 hours in the case of "long-time aeration method", In the case of the "dation ditch method", it takes 30 to 40 hours, so the capacity of the aeration tank is large, and the site area of the facility is also large, making it difficult to locate new sewage treatment plants in large urban areas.
(2) 活性汚泥への酸素の供給と曝気槽内の混合、撹
拌に多量の空気の吹き込みを必要とする。(2) It is necessary to blow a large amount of air for supplying oxygen to the activated sludge and for mixing and stirring in the aeration tank.
活性汚泥処理方式を採用している下水処理場におけるエ
ネルギー(電気)消費量の約40%がこの送気のためのブ
ロワー運転により占められている。About 40% of the energy (electricity) consumption at a sewage treatment plant that employs an activated sludge treatment system is dominated by the blower operation for this air supply.
多量の空気を吹き込んで曝気槽を撹拌することにより、
槽内の発泡や、それらの飛散があるので非衛生的であ
る。By blowing a large amount of air and stirring the aeration tank,
It is unsanitary because there is foaming in the tank and scattering of them.
(3) 曝気槽内の活性汚泥(以下MLSSと記す。)濃度
を適正に管理する必要がある。そのためには曝気槽に後
設する沈澱槽からの返送汚泥量やMLSSの引抜量を適正に
コントロールする必要があり、熟練した運転管理用員を
必要とする。(3) It is necessary to properly control the concentration of activated sludge (hereinafter referred to as MLSS) in the aeration tank. For that purpose, it is necessary to properly control the amount of sludge returned from the sedimentation tank that is installed after the aeration tank and the amount of MLSS drawn out, and skilled operation management personnel are required.
(4) 曝気槽に後設する沈澱槽でのMLSSの沈降、圧密
性が悪化(膨化、以下バルキングと記す。)することが
あり、良好な処理を継続できない場合もある。(4) The MLSS may settle down in the settling tank that is installed after the aeration tank, and the consolidation may deteriorate (expanding, hereinafter referred to as bulking), and good treatment may not be continued in some cases.
(5) 活性汚泥処理に伴って発生する汚泥は沈澱槽か
ら余剰汚泥として引抜くが、引抜かれる汚泥はMLSS濃度
として、8,000mg/l程度であり、施設に付随する脱水等
の汚泥処理のためには、重量濃縮、機械濃縮等の濃縮操
作を必要とする。(5) The sludge generated by the activated sludge process is extracted as excess sludge from the settling tank, but the extracted sludge has an MLSS concentration of about 8,000 mg / l, which is due to sludge treatment such as dehydration associated with the facility. Requires a concentration operation such as weight concentration or mechanical concentration.
(6) 通常の活性汚泥方式では、赤潮等富栄養化現象
の原因物質の一つであるリンは殆んど除去されない。(6) Phosphorus, which is one of the causative substances of eutrophication phenomenon such as red tide, is hardly removed by the usual activated sludge system.
本発明は上述の如き従来の技術にみられる問題点を解決
することを目的としたものである。The present invention is intended to solve the problems found in the conventional techniques as described above.
(問題を解決するための手段) 上述の如き従来の問題を解決するための本発明に係る汚
水の処理方法の特徴は、生活汚水、下水、食品工場廃水
等の浮遊物を含有する有機性汚水にPAC等の無機凝集剤
を添加して急速に撹拌する急速撹拌工程と、該急速撹拌
後、緩やかな撹拌により汚水中の浮遊物、コロイド物質
及びリン化合物をフロック化させる工程と、これによっ
て形成されたフロックを加圧浮上分離により固液分離す
る一次固液分離工程と、該工程によって処理された一次
処理水を粒径が2〜10mm程度の濾材を充填した濾過槽に
導入し、該一次処理水中に含まれている溶解性の有機物
及びNH4 +−Nを栄養源として前記濾材表面に生育する活
性汚泥状の好気性微生物の作用に必要な酸素を前記濾過
槽に供給し、一次処理水中に残留する溶解性BOD、SS、
リンの除去を行う再処理工程との組み合わせにある。(Means for Solving Problems) The feature of the sewage treatment method according to the present invention for solving the above-mentioned conventional problems is that organic sewage containing suspended matters such as domestic sewage, sewage, and food factory wastewater. A rapid stirring step of adding an inorganic coagulant such as PAC to rapidly stir, and a step of flocculating suspended matter, colloidal substances and phosphorus compounds in the wastewater by gentle stirring after the rapid stirring, and forming by this A primary solid-liquid separation step of solid-liquid separating the flocs thus prepared by pressure floating separation, and the primary treated water treated by the step is introduced into a filtration tank filled with a filter medium having a particle size of about 2 to 10 mm, and the primary Oxygen required for the action of the activated sludge-like aerobic microorganisms growing on the surface of the filter medium is supplied to the filter tank by using the soluble organic matter and NH 4 + -N contained in the treated water as nutrient sources, and the primary treatment is performed. Solubility B remaining in water OD, SS,
It is in combination with a reprocessing step for removing phosphorus.
また本発明に係る汚水処理装置の特徴は、生活汚水、下
水、食品工場廃水等の浮遊物を含有する有機性汚水を収
容し、これにPAC等の無機凝集剤を添加して急速に撹拌
して混合させる急速撹拌槽と、該急速撹拌槽にて撹拌混
合された混合汚水を緩やかに撹拌し、微細なフロックを
大きく成長させる緩速撹拌槽と、該緩速撹拌槽からの混
合汚水を導入し、加圧により空気を過剰に溶解させた加
圧水を噴射する加圧水ノズルを底部に設けた加圧浮上分
離槽と、該加圧浮上分離槽上に浮上分離した成長フロッ
ク集団を槽外に排出する汚泥除去手段と、前記加圧浮上
分離槽にてフロックが除去された一次処理水を連続的に
供給し、表面に生育した活性汚泥状の好気性微生物相を
有する粒径2〜10mmの濾材を充填した濾層を内部に設置
し、かつ、該濾層に空気を吹き込むブロワーを具備した
濾過槽と、該濾過槽の濾層が目詰まりした時に吹き込み
空気と処理水の送水により一定時間洗浄を行う逆洗手段
と、前記濾層内の目詰まりの進行状態を濾層の上部と下
部の圧力損失で検知し、上記逆洗手段の稼動の開始を指
令する水位差圧発信器と、前記濾過槽から流出する処理
水を貯留し、加圧浮上分離槽への気泡発生用循環加圧水
及び前記濾層の逆洗用水として供給するための処理水槽
とを備えたことにある。Further, the feature of the sewage treatment apparatus according to the present invention is to store organic sewage containing suspended solids such as domestic sewage, sewage, food factory wastewater, etc., to which inorganic coagulant such as PAC is added and rapidly stirred. A rapid stirring tank for mixing and mixing, a slow stirring tank for gently stirring the mixed wastewater that has been stirred and mixed in the rapid stirring tank, and large growth of fine flocs, and a mixed wastewater from the slow stirring tank are introduced. Then, the pressurized flotation separation tank provided with a pressurized water nozzle for injecting pressurized water in which air is excessively dissolved by pressurization and the growth floc group floated and separated on the pressurized flotation separation tank are discharged to the outside of the tank. Sludge removing means and the primary treated water from which flocs have been removed in the pressure floating separation tank are continuously supplied, and a filter medium having a particle size of 2 to 10 mm and having an aerobic microflora in the form of activated sludge grown on the surface is obtained. The packed filter layer is placed inside and the filter layer is empty. A filter tank equipped with a blower for blowing air, a backwashing means for cleaning the filter layer of the filter tank for a certain period of time by blowing air and feeding treated water, and a state of progress of clogging in the filter layer. Is detected by the pressure loss of the upper and lower parts of the filter bed, and a water level differential pressure transmitter for instructing the start of the operation of the backwash means, and the treated water flowing out from the filter tank are stored and sent to the pressure floating separation tank. And a treated water tank for supplying the pressurized pressurized water for bubble generation and the water for backwashing the filter layer.
(作用) 浮遊物を含む下水等の有機性汚水中のBODは、SS成分、
コロイド状成分、溶解性成分より構成されている。未処
理の下水のBOD濃度は概ね200mg/lであるが、このような
汚水に前記の無機凝集剤を添加し、急速撹拌、緩速撹拌
することにより、SS成分のほぼ全て、コロイド状成分の
一部をフロックとして析出させ、加圧浮上分離すること
により、汚水中のBODの約1/2が除去される。(Function) BOD in organic wastewater such as sewage including suspended solids is
It is composed of colloidal components and soluble components. The BOD concentration of untreated sewage is about 200 mg / l, but by adding the above-mentioned inorganic coagulant to such sewage and stirring rapidly and slowly, almost all SS components and colloidal components About half of BOD in wastewater is removed by precipitating a part of it as flocs and separating it by pressure floating.
汚水中のリンは無機凝集剤と例えば以下のように反応し
てフロックとして析出させ、SS成分とほぼ同様に大部分
が除去される。The phosphorus in the wastewater reacts with the inorganic coagulant in the following manner, for example, to precipitate as flocs, and most of the phosphorus is removed in the same manner as the SS component.
Al3++PO4 3-→AlPO4↓ ……(1) Fe3++PO4 3-→FePO4↓ ……(2) 上記のリンの除去割合は(1)、(2)式に示されるよ
うに無機凝集剤の添加量によって左右される。本発明に
おいては、上記加圧浮上分離による一次処理に後設し
て、好気性微生物による生物処理を行うので、これら微
生物の生存及び活動に必要な程度のリンを一次処理水中
に敢えて残留せしめるように、処理すべき汚水中のリン
濃度に応じて無機凝集剤の添加量を調整する。Al 3+ + PO 4 3- > AlPO 4 ↓ (1) Fe 3+ + PO 4 3- > FePO 4 ↓ (2) The above phosphorus removal rate is shown in equations (1) and (2). Thus, it depends on the addition amount of the inorganic coagulant. In the present invention, since the biological treatment with aerobic microorganisms is performed after the primary treatment by the pressure floating separation, it is possible to intentionally allow phosphorus to remain in the primary treated water to the extent necessary for the survival and activity of these microorganisms. First, the addition amount of the inorganic coagulant is adjusted according to the phosphorus concentration in the wastewater to be treated.
上記の如き目的に合致する無機凝集剤の添加量は、下水
(汚水中のリン濃度を5mg/l、一次処理水中のリン濃度
を1.5mg/lとして)を例にとると、無機凝集剤として液
体硫酸バンドを使用した場合、160mg/l、PACの場合125m
g/l、塩化第二鉄の場合20mg/l程度である。The amount of inorganic flocculant added to meet the above purposes is, for example, sewage (phosphorus concentration in wastewater is 5 mg / l, phosphorus concentration in primary treated water is 1.5 mg / l) 160 mg / l with liquid sulfuric acid band, 125 m with PAC
g / l, about 20 mg / l for ferric chloride.
このような一次処理を行った後、表面に好気性微生物を
付着生育させた、粒径2〜10mmのゼオライト等の天然
物、石炭系、プラスチック系人工物で調製した濾材から
なる厚さ1〜2mの濾層を有する生物濾過装置にて、一次
処理水中に残留する溶解性のBOD成分、SS、リンを上記
好気性微生物の作用により除去し、BOD、SSとも10mg/
l、リン1mg/l以下の良好な水質の最終処理水が得られ
る。After performing such a primary treatment, aerobic microorganisms adhered and grown on the surface, a natural product such as zeolite having a particle diameter of 2 to 10 mm, a coal-based material, and a thickness of a filter material prepared from a plastic-based artificial material 1 to 1 In a biological filtration device having a filter layer of 2 m, soluble BOD components remaining in the primary treated water, SS, phosphorus is removed by the action of the aerobic microorganisms, both BOD, SS 10 mg /
l, Phosphorus 1 mg / l or less, and finally treated water of good quality can be obtained.
このように生物反応を伴わない一次処理において、BOD
の約1/2、コロイド状成分の一部、リンの一部を除去す
るため、生物反応を行う生物濾過装置における負荷が軽
減され、滞留時間が短縮される。また、固液分離として
の加圧浮上分離法は沈澱法に比べて所要時間が約1/20と
著しく短いため、本装置全体の滞留時間は標準活性汚泥
法と比較して1/5〜1/8程度となる。Thus, in the primary treatment without biological reaction, BOD
Approximately one half of the above, a part of the colloidal component and a part of phosphorus are removed, so that the load on the biological filtration device for carrying out the biological reaction is reduced and the residence time is shortened. In addition, the pressure flotation method for solid-liquid separation requires a remarkably short time of about 1/20 as compared with the precipitation method, so the residence time of the entire device is 1/5 to 1 compared to the standard activated sludge method. It will be about / 8.
また本発明においては、濾層に付着生育する好気性微生
物への溶存酸素(以下DOと記す)補給源たる空気量は、
加圧浮上分離工程で一次処理をして負荷を軽減している
こと、加圧浮上分離工程において、固液分離のために発
生させる微細気泡が結果として一次処理水中へのDO補給
を兼ねることになることにより、処理対象汚水を下水と
した場合、供給下水量に対して所要空気量は概ね2倍以
下となり、従来技術と比較すると1/3以下に低減され
る。Further, in the present invention, the amount of air as a supply source of dissolved oxygen (hereinafter referred to as DO) to the aerobic microorganisms that adhere and grow on the filter layer is
The primary treatment is carried out in the pressure floating separation process to reduce the load, and the fine bubbles generated for solid-liquid separation in the pressure floating separation process also serve as DO supply to the primary treated water. As a result, when sewage to be treated is sewage, the required air volume is approximately twice or less than the supplied sewage volume, and is reduced to 1/3 or less as compared with the conventional technology.
また、本発明における固液分離は、生物反応を行う以前
の加圧浮上分離と生物反応を伴った濾過であり、バルキ
ングの影響による装置運転上のトラブルがまったくな
い。Further, the solid-liquid separation in the present invention is pressure floating separation before biological reaction and filtration accompanied by biological reaction, and there is no trouble in operation of the apparatus due to the influence of bulking.
また、加圧浮上分離により固液分離された汚泥は、濃度
がSSとして30,000mg/l程度と高いため、汚泥処理におけ
る濃縮操作が不要となる。Further, the sludge solid-liquid separated by the pressure floating separation has a high concentration of about 30,000 mg / l as SS, and therefore, the concentration operation in the sludge treatment is unnecessary.
更に本発明では活性汚泥法のような生物反応のみからな
る処理と無機凝集剤による物理化学的処理と組み合わせ
ているため、生物反応のみでは除去しにくいリンも前記
に説明したように化学的反応によって除去される。Further, in the present invention, since the treatment consisting of only a biological reaction such as the activated sludge method and the physicochemical treatment with an inorganic coagulant are combined, phosphorus, which is difficult to remove only by the biological reaction, can be treated by the chemical reaction as described above. To be removed.
(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.
第1図は第一実施例を示しており、この実施例では、生
活汚水、下水、食品工場廃水等、浮遊物を含有する有機
性汚水を連続的かつ定量的に急速撹拌槽1に供給し、該
槽内に定量的に注入されるPAC等の無機凝集剤と急速撹
拌装置2により混合させる。上記操作により化学的或い
は電気化学的作用によって汚水中のSS、コロイド状物
質、リン等を微細なフロックとして形成させる。これら
のフロックを含んだ汚水を緩速撹拌槽3に流入させ、該
槽において緩速撹拌装置4により緩速撹拌する。この工
程では前工程で形成された微細なフロック同志を相互に
衝突付着せしめ、直径が概ね1mm程度のフロックに成長
させる。成長したフロックを含む汚水を加圧浮上分離槽
5に供給し、該槽内の垂直の隔壁6にて形成される流入
部底部に設置した減圧気泡発生装置8を介して発生させ
る直径概ね30〜60μの微細な気泡群と混合、接触させ
る。減圧気泡発生装置8へは加圧水を供給する。この加
圧水は本発明方法による最終処理水を貯留した処理水貯
槽25から、加圧水ポンプ26を介して加圧水調整槽28内に
該処理水を供給し、該槽28内圧力を概ね4kg/cm2に保ち
ながら、該槽内に設置した充填材30を介してコンプレッ
サー29より連続的に供給される加圧空気と接触させるこ
とにより、空気を通常の大気圧下と比較して過剰に溶解
している。FIG. 1 shows a first embodiment. In this embodiment, organic sewage containing suspended solids such as domestic sewage, sewage, food factory wastewater, etc. is continuously and quantitatively supplied to the rapid stirring tank 1. The mixture is mixed with an inorganic coagulant such as PAC which is quantitatively injected into the tank by the rapid stirring device 2. By the above-mentioned operation, SS, colloidal substances, phosphorus, etc. in wastewater are formed as fine flocs by chemical or electrochemical action. Sewage containing these flocs is caused to flow into the slow stirring tank 3 and is slowly stirred by the slow stirring device 4 in the tank. In this process, the fine flocs formed in the previous process are made to collide with each other and adhere to each other to grow into flocs having a diameter of about 1 mm. The sewage containing the grown flocs is supplied to the pressure flotation separation tank 5 and is generated through a depressurized bubble generator 8 installed at the bottom of the inflow section formed by a vertical partition 6 in the tank. Mix and contact with microscopic bubbles of 60μ. Pressurized water is supplied to the depressurized bubble generator 8. This pressurized water is supplied from the treated water storage tank 25 storing the final treated water according to the method of the present invention into the pressurized water adjusting tank 28 via the pressurized water pump 26, and the pressure inside the tank 28 is approximately 4 kg / cm 2 . While maintaining, by contacting with pressurized air continuously supplied from the compressor 29 through the filler 30 installed in the tank, the air is excessively dissolved as compared with under normal atmospheric pressure. .
前工程で形成したフロックに微細気泡が付着したフロッ
ク・気泡会合物は一体として挙動し、その密度が水の密
度より小さくなるので、加圧浮上分離槽5内に斜めに設
置した隔壁7に沿って上昇した後、該槽5の水面に達
し、汚水から分離される。該槽5の水面に分離したこれ
らフロックは集積して浮上汚泥層10を形成する。該汚泥
層10は浮上汚泥排出装置9により、連続的或いは間欠的
に加圧浮上分離槽流出側へ掻き寄せ、加圧浮上分離槽5
に隣接して設ける浮上汚泥排出槽32に排出し外部へ排出
させる。The floc / bubble associations in which fine bubbles adhere to the flocs formed in the previous step behave as a unit and their density is lower than that of water. Therefore, along the partition walls 7 installed diagonally in the pressure floating separation tank 5. After rising, the water reaches the water surface of the tank 5 and is separated from waste water. These flocs separated on the water surface of the tank 5 accumulate to form a floating sludge layer 10. The sludge layer 10 is continuously or intermittently scraped by the floating sludge discharge device 9 toward the outflow side of the pressure floating separation tank, and the pressure floating separation tank 5 is discharged.
It is discharged to the floating sludge discharge tank 32 which is provided adjacent to and is discharged to the outside.
加圧浮上分離工程を終了した一次処理水を加圧浮上分離
槽5内水位を調整する目的で設けた水位調整堰11を介し
て一次処理水貯槽12に流入させ、一時貯留する。この一
次処理水は、上記工程終了時において流入汚水中のSS、
リンの大部分、BODの概ね1/2が除去されている。また、
加圧浮上分離に寄与する微細気泡群と概ね15〜20分間混
合接触することにより、DO濃度が高められている。The primary treated water that has undergone the pressure floating separation step is flowed into the primary treated water storage tank 12 through a water level adjusting weir 11 provided for the purpose of adjusting the water level in the pressure floating separation tank 5, and is temporarily stored. This primary treated water is SS in the inflowing wastewater at the end of the above process,
Most of phosphorus is removed, and about 1/2 of BOD is removed. Also,
The DO concentration is increased by mixing and contacting with the micro-bubble group that contributes to the pressure floating separation for about 15 to 20 minutes.
一次処理水は一次処理水供給ポンプ13を介して生物濾過
槽14に連続的、かつ定量的に供給される。該槽14内には
底部に濾過水を均等に集めるための集水装置17が収容さ
れ、その上部に濾材を物理的に支持するための支持砂利
層16、最上部に粒径が2〜10mmの範囲で比較的均等な粒
径分布となるように、天然物或いは人工物を素材とする
濾材を厚さ1〜2mに充填した濾層15が順に重ねられて収
容されている。The primary treated water is continuously and quantitatively supplied to the biological filtration tank 14 via the primary treated water supply pump 13. A water collecting device 17 for evenly collecting the filtered water is accommodated in the bottom of the tank 14, a supporting gravel layer 16 for physically supporting the filter medium on the upper part thereof, and a particle size of 2 to 10 mm at the uppermost part. The filter layers 15 each having a thickness of 1 to 2 m and filled with a filter material made of a natural product or an artificial product are sequentially stacked and housed so that the particle size distribution becomes relatively uniform in the range.
生物濾過槽14に供給された一次処理水は、濾層15上部の
水頭圧力により、濾層→支持砂利層→集水装置という経
路で該槽外へ流出する。この過程において、濾層15を構
成する濾材表面上に付着生育した好気性微生物の作用に
より、一次処理水中に残留する溶解性のBOD成分、NH4 +
−N、リンが除去される。好気性微生物によるこれら汚
濁成分の除去反応に必要なDOは、濾層15と支持砂利層16
の境界面に設置した散気管18を介してブロワー19より供
給される空気が濾層を上昇する間に剪断され、水中へ溶
解する。The primary treated water supplied to the biological filter tank 14 flows out of the tank through the route of filter layer → supporting gravel layer → water collecting device due to the head pressure of the upper part of the filter layer 15. In this process, due to the action of aerobic microorganisms that have adhered and grown on the surface of the filter medium that constitutes the filter layer 15, the soluble BOD component remaining in the primary treated water, NH 4 +
-N, phosphorus is removed. The DO required for the removal reaction of these pollutants by aerobic microorganisms is the filter layer 15 and the supporting gravel layer 16
The air supplied from the blower 19 via the air diffuser 18 installed on the boundary surface of the is sheared while rising in the filter layer and dissolved in water.
生物濾過槽14内の水位は、濾材上の好気性微生物の増殖
につれて上昇する。該槽14内に設置した水位検出器27が
あらかじめ設定した該槽14内の上限水位を検出すれば、
一次処理水供給ポンプ13を停止する。その後、水位があ
らかじめ設定した下限水位まで低下したら、処理水自動
弁21及び空気供給自動弁24を閉とした後、空気洗浄自動
弁23を開として、ブロワー19からの空気を集水装置17を
介して支持砂利層16下部より供給し、濾材表面上に過剰
に生育した好気性微生物群を気泡の上昇による物理的な
剪断力により剥離させる。この工程を概ね2分間継続し
た後、ブロワー19を停止し、空気洗浄自動弁23を閉とし
た後、更に逆洗ポンプ20を運転し、逆洗自動弁22を開と
して、処理水貯槽25にあらかじめ貯留しておいた最終処
理水を集水装置17を介して、生物濾過槽14の下部より濾
層15を膨張させるに足りる程度の流速で供給することに
より、剥離した好気性微生物群を廃水トラフ31を介して
該槽外へ排出する。この排出水は汚水と混合し本装置流
入部たる急速撹拌槽1に供給し、急速撹拌工程、緩速撹
拌工程、加圧浮上分離工程により再処理する。The water level in the biological filter tank 14 rises as aerobic microorganisms grow on the filter medium. If the water level detector 27 installed in the tank 14 detects the preset upper limit water level in the tank 14,
The primary treated water supply pump 13 is stopped. After that, when the water level drops to a preset lower limit water level, the treated water automatic valve 21 and the air supply automatic valve 24 are closed, the air cleaning automatic valve 23 is opened, and the air from the blower 19 is collected by the water collecting device 17. It is supplied from the lower part of the supporting gravel layer 16 and the aerobic microorganisms excessively grown on the surface of the filter medium are separated by physical shearing force due to the rise of bubbles. After continuing this process for about 2 minutes, the blower 19 is stopped, the air washing automatic valve 23 is closed, the backwash pump 20 is further operated, the backwash automatic valve 22 is opened, and the treated water storage tank 25 is opened. By supplying the final treated water stored in advance through the water collecting device 17 from the lower part of the biological filter tank 14 at a flow velocity sufficient to expand the filter layer 15, the separated aerobic microorganisms are treated as waste water. It is discharged to the outside of the tank through the trough 31. This discharged water is mixed with sewage and supplied to the rapid stirring tank 1 which is the inflow portion of the apparatus, and is reprocessed by the rapid stirring process, the slow stirring process, and the pressure floating separation process.
本発明装置における所要滞留時間は急速・緩速撹拌工程
が概ね15分、加圧浮上分離工程が概ね15〜20分、生物濾
過工程が概ね30〜60分、合計1時間〜1時間30分とな
り、従来技術と比較して極めて短時間で汚水の処理が可
能であり、汚水処理装置として著しくコンパクトとな
る。The required residence time in the device of the present invention is about 15 minutes for the rapid / slow stirring process, about 15 to 20 minutes for the pressure floating separation process, about 30 to 60 minutes for the biological filtration process, and a total of 1 hour to 1 hour 30 minutes. The wastewater can be treated in an extremely short time as compared with the prior art, and the wastewater treatment device becomes extremely compact.
第2図は第二実施例を示しており、これは本発明におい
て、汚水の一次処理たる加圧浮上分離工程と、最終処理
たる生物濾過工程とを加圧浮上分離槽5の下部に生物濾
過槽14を一体に形成することにより、単一槽において既
述の如き本発明による作用がなされるように成した装置
である。FIG. 2 shows a second embodiment. In the present invention, the pressure flotation separation step which is the primary treatment of sewage and the biological filtration step which is the final treatment are carried out at the bottom of the pressure flotation separation tank 5. By integrally forming the tank 14, the device according to the present invention can be operated as described above in a single tank.
なお、第2図において第一実施例と同じ部分には、同じ
符号を付して説明を省略する。In FIG. 2, the same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
この第二実施例においては、加圧浮上分離槽5と生物濾
過槽14とを上下方向に連続して一体に形成しているた
め、加圧浮上分離部の水位を経時的に一定に保持する必
要があり、そのため濾層15の直上部と支持砂利層16の直
下部に差圧発信器27を設け、該発信器と電気的に連結す
る調節計31を介して生物濾過槽上下間の差圧増加に対応
して処理水量調節弁33の開度を順次連続的に変更せし
め、浮上分離部水位を一定に保つ。In the second embodiment, since the pressure floating separation tank 5 and the biological filtration tank 14 are integrally formed continuously in the vertical direction, the water level of the pressure floating separation unit is kept constant over time. Therefore, a differential pressure transmitter 27 is provided just above the filter layer 15 and just below the supporting gravel layer 16, and the difference between the top and bottom of the biological filter tank is provided via a controller 31 electrically connected to the transmitter. The opening of the treated water amount control valve 33 is sequentially and continuously changed in response to the increase in pressure to keep the water level in the levitation separation part constant.
第二実施例においても、急速撹拌、緩速撹拌工程、微細
気泡発生のための加圧水の調整工程、生物濾層の目詰ま
りに伴う空気洗浄、逆洗工程及び自動弁の開閉操作は、
第一実施例と同様である。Also in the second embodiment, the rapid stirring, slow stirring step, the step of adjusting the pressurized water for the generation of fine bubbles, the air washing due to the clogging of the biological filter layer, the back washing step and the opening / closing operation of the automatic valve,
It is similar to the first embodiment.
第二実施例では、通常の処理継続時において加圧浮上分
離槽5水面に形成される浮上汚泥10は、浮上汚泥掻寄装
置9を間欠的或いは連続的に運転することにより、浮上
汚泥貯留槽32を介して槽外に排出し、汚泥処理工程に供
する。In the second embodiment, the floating sludge 10 formed on the water surface of the pressure flotation separation tank 5 during the normal treatment is operated by operating the floating sludge attracting device 9 intermittently or continuously so that the floating sludge storage tank It is discharged to the outside of the tank via 32 and used in the sludge treatment process.
生物濾過槽14の逆洗工程においては、剥離した好気性微
生物を含む逆洗排出は、加圧浮上分離槽5の天端より浮
上汚泥貯留槽32を介して槽外へ排出し、本発明装置流入
部において流入汚水と混合し、急速撹拌・緩速撹拌、加
圧浮上分離工程を経て再処理を行う。また、生物濾過層
の逆洗工程における排出水の越流を円滑ならしめるため
に、浮上汚泥掻寄装置9を連続的に運転する。該工程に
おいては流入汚水自動弁34を閉とし、汚水の流入を停止
する他、急速撹拌槽1への無機凝集剤の注入も停止する
が、減圧気泡発生装置8を介しての加圧水の供給は継続
する。In the step of backwashing the biological filtration tank 14, the backwash discharge containing the separated aerobic microorganisms is discharged from the top of the pressure floating separation tank 5 to the outside of the tank via the floating sludge storage tank 32, and the device of the present invention is provided. In the inflow part, it mixes with the inflowing wastewater, and is reprocessed through the rapid stirring / slow stirring and the pressure floating separation process. Further, in order to smooth the overflow of the discharged water in the backwashing step of the biological filtration layer, the floating sludge attracting device 9 is continuously operated. In this step, the inflow sewage automatic valve 34 is closed to stop the inflow of sewage, and also the injection of the inorganic coagulant into the rapid stirring tank 1 is stopped, but the pressurized water is not supplied through the reduced pressure bubble generator 8. continue.
第1図、第2図双方において特に図示はしていないが、
緩速撹拌工程で形成されるフロックの物理的強度が不足
する場合においては、流入汚水量に対して1mg/l程度の
高分子凝集剤を緩速撹拌槽に注入すること対応すること
もできる。Although not particularly shown in FIGS. 1 and 2,
When the physical strength of the flocs formed in the slow stirring step is insufficient, it is possible to inject a polymer flocculant of about 1 mg / l to the slow stirring tank with respect to the inflowing wastewater amount.
第1表は、下水を対象汚水とした本発明実施例における
各工程毎の処理水質の一例である。Table 1 is an example of the treated water quality in each step in the embodiment of the present invention in which sewage is the target sewage.
(発明の効果) 本発明の汚水処理方法・装置による浮遊物を含有する有
機性汚水の処理における発明の効果は以下の如くであ
る。 (Effects of the Invention) The effects of the invention in the treatment of organic wastewater containing suspended matter by the wastewater treatment method / apparatus of the present invention are as follows.
本発明の方法・装置によれば、装置内合計滞留時間
が1〜1.5時間という短時間で、BOD、SSとも10mg/l以
下、T−P1mg/l以下という良好な水質の処理水が得られ
る。According to the method / apparatus of the present invention, the treated water having a good water quality of 10 mg / l or less for both BOD and SS and 1 mg / l or less for T-P can be obtained in a short time of 1 to 1.5 hours in total in the apparatus. .
従来法と比して、装置の容積及び設置面積を著しく
小さくすることができ、施設費も安価となる。特に第二
実施例に示す如く、一次処理たる加圧浮上分離と最終処
理たる生物濾過を一体に形成した単一槽で行なうことに
より、本発明による汚水処理装置は著しくコンパクトと
なる。Compared with the conventional method, the volume and installation area of the device can be significantly reduced, and the facility cost can be reduced. In particular, as shown in the second embodiment, by performing the pressure floating separation as the primary treatment and the biological filtration as the final treatment in a single tank integrally formed, the sewage treatment apparatus according to the present invention becomes extremely compact.
本発明装置は全自動運転が可能であり、運転に際し
ては熟練及び高度の技術的経験を必要としない。The device of the present invention is capable of fully automatic operation and does not require skill and high technical experience in operation.
酸素供給源としての空気量が従来法の1/3以下とな
り、必要なブロワーの容量が小さくなる。The amount of air as an oxygen supply source is less than 1/3 of the conventional method, and the required blower capacity is reduced.
排出される汚泥の濃度が従来法と比して3倍程度高
濃度となるので、発生する汚泥の容量が1/3程度とな
り、汚泥処理工程において濃縮操作が不要となる他、汚
泥処理設備の容量を小さくできる。Since the concentration of discharged sludge is about 3 times higher than that of the conventional method, the volume of generated sludge becomes about 1/3, which makes concentration operation unnecessary in the sludge treatment process, and The capacity can be reduced.
第1図は本発明の第一実施例を示す概略図、第2図は本
発明の第二実施例を示す概略図である。 1……急速撹拌槽、2……急速撹拌装置、3……緩速撹
拌槽、4……緩速撹拌装置、5……加圧浮上分離槽、6
……隔壁、8……減圧気泡発生装置、9……浮上汚泥排
出装置、12……一次処理水貯槽、14……生物濾過槽、15
……濾層、16……支持砂利層、17……集水装置、18……
散気管、19……ブロワー、21……処理水自動弁、22……
逆洗自動弁、23……空気洗浄自動弁、24……空気供給自
動弁、25……処理水貯槽、28……加圧水調整槽、29……
コンプレッサー、30……充填材。FIG. 1 is a schematic diagram showing a first embodiment of the present invention, and FIG. 2 is a schematic diagram showing a second embodiment of the present invention. 1 ... Rapid stirring tank, 2 ... Rapid stirring device, 3 ... Slow stirring tank, 4 ... Slow stirring device, 5 ... Pressurized floating separation tank, 6
...... Partition wall, 8 ...... decompression bubble generator, 9 ...... floating sludge discharge device, 12 …… primary treated water storage tank, 14 …… biological filtration tank, 15
…… Filter layer, 16 …… Supporting gravel layer, 17 …… Water collecting device, 18 ……
Air diffuser, 19 …… Blower, 21 …… Automatic treated water valve, 22 ……
Backwash automatic valve, 23 …… Air cleaning automatic valve, 24 …… Air supply automatic valve, 25 …… Treated water storage tank, 28 …… Pressurized water adjusting tank, 29 ……
Compressor, 30 ... Filling material.
Claims (5)
を含有する有機性汚水にポリ塩化アルミニウム(以下PA
Cと記す。)等の無機凝集剤を添加して急速に撹拌する
急速撹拌工程と、該急速撹拌後、緩やかな撹拌により汚
水中の浮遊物、コロイド物質及びリン化合物をフロック
化させる工程と、これによって形成されたフロックを加
圧浮上分離により固液分離する一次固液分離工程と、該
工程によって処理された一次処理水を粒径が2〜10mm程
度の濾材を充填した濾過槽に導入し、該一次処理水中に
含まれている溶解性の有機物及びアンモニア性窒素(以
下NH4 +−Nと記す。)を栄養源として前記濾材表面に生
育する活性汚泥状の好気性微生物の作用に必要な酸素を
前記濾過槽に供給し、一次処理水の再処理を行う工程と
の組み合わせからなる汚水の処理方法。Claims: 1. Organic sewage containing suspended solids such as domestic sewage, sewage, food factory wastewater, etc.
Write as C. ) And the like, and a rapid stirring step of rapidly stirring and a step of flocculating the suspended matter, colloidal substance and phosphorus compound in the wastewater by gentle stirring after the rapid stirring, The primary solid-liquid separation step of solid-liquid separation of the flocs by pressure floating separation, and the primary treated water treated by the step is introduced into a filter tank filled with a filter medium having a particle size of about 2 to 10 mm, and the primary treatment is carried out. The oxygen necessary for the action of the aerobic microorganisms in the form of activated sludge that grows on the surface of the filter medium is obtained by using soluble organic matter and ammonia nitrogen (hereinafter referred to as NH 4 + -N) contained in water as nutrients. A method for treating sewage, which is combined with a step of re-treating the primary treated water by supplying it to a filtration tank.
や濾層に供給する気体源として高濃度酸素空気を使用す
る特許請求の範囲第1項に記載の汚水の処理方法。2. The method for treating sewage according to claim 1, wherein high-concentration oxygen air is used as a gas source for fine bubbles required for pressure floating separation and a gas source supplied to a filter layer.
を含有する有機性汚水を収容し、これにPAC等の無機凝
集剤を添加して急速に撹拌して混合させる急速撹拌槽
と、該急速撹拌槽にて撹拌混合された混合汚水を緩やか
に撹拌し、微細なフロックを大きく成長させる緩速撹拌
槽と、該緩速撹拌槽からの混合汚水を導入し、底部に設
けた加圧水ノズルから加圧により空気を過剰に溶解させ
た加圧水を噴射して混合汚水と加圧水が一気に減圧され
ることにより発生する微細気泡を接触させ、成長フロッ
クと一次処理水に固液分離させる加圧浮上分離槽と、該
加圧浮上分離槽上に浮上分離した成長フロック集団を槽
外に排出する汚泥除去手段と、前記加圧浮上分離槽にて
フロックが除去された一次処理水を連続的に供給し、表
面に生育した活性汚泥状の好気性微生物相を有する粒径
2〜10mmの濾材で充填された濾層を内部に設置し、か
つ、該濾層に空気を吹き込むブロワーを具備した濾過槽
と、該濾過槽の濾層が目詰まりした時に吹き込み空気と
処理水の送水により一定時間洗浄を行う逆洗手段と、前
記濾層内の目詰まりの進行状態を濾層の上部と下部の圧
力損失で検知し、上記逆洗手段の稼動の開始を指令する
水位差圧発信器と、前記濾過槽から流出する処理水を貯
留し、加圧浮上分離槽への気泡発生用循環加圧水及び前
記濾層の逆洗用水として供給するための処理水槽とを備
えてなる汚水処理装置。3. A rapid agitation tank for accommodating organic sewage containing suspended solids such as domestic sewage, sewage, food factory wastewater, etc., to which inorganic coagulant such as PAC is added and rapidly agitated and mixed. , A slow stirring tank that gently stirs the mixed wastewater that has been stirred and mixed in the rapid stirring tank to grow fine flocs to a large extent, and a mixed wastewater from the slow stirring tank is introduced, and pressurized water provided at the bottom Pressurized water that jets pressurized water with excess air dissolved by pressurizing from the nozzle to bring mixed sewage into contact with fine air bubbles that are generated when the pressurized water is depressurized at once, and solid-liquid separation into growth flocs and primary treated water Separation tank, sludge removing means for discharging the growth floc group floated and separated on the pressure flotation separation tank to the outside of the tank, and primary treated water from which flocs have been removed in the pressure flotation separation tank are continuously supplied. Activated sludge that grew on the surface Of a filter tank having an aerobic microbiota having a particle size of 2 to 10 mm and having a blower for blowing air into the filter layer, and a filter layer of the filter tank. Backwashing means for washing for a certain period of time by blowing air and treated water when clogging, and the progress of clogging in the filter layer is detected by pressure loss in the upper and lower parts of the filter layer, and the backwashing means To store the treated water flowing out from the filtration tank and to supply it to the pressurized flotation separation tank as circulating pressurized water for bubble generation and as backwash water for the filtration layer. Sewage treatment equipment comprising the treated water tank of.
せ、単一槽として形成し、該槽に供給される成長フロッ
クを含む汚水を該槽上部にて加圧浮上分離し、下部の濾
過槽にて好気性微生物による処理を行わせる特許請求の
範囲第3項に記載の汚水処理装置。4. A pressure levitation separation tank is integrated with a filtration tank at a lower part to form a single tank, and sewage containing growth flocs supplied to the tank is pressure levitation separated at the top of the tank. The sewage treatment apparatus according to claim 3, wherein treatment with aerobic microorganisms is performed in the lower filtration tank.
や濾層に供給する気体源として高濃度酸素空気を使用す
る特許請求の範囲第3項もしくは第4項に記載の汚水処
理装置。5. The sewage treatment apparatus according to claim 3 or 4, wherein high-concentration oxygen air is used as a gas source for fine bubbles required for pressure floating separation and a gas source supplied to a filter layer. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17883488A JPH0714519B2 (en) | 1988-07-18 | 1988-07-18 | Sewage treatment method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17883488A JPH0714519B2 (en) | 1988-07-18 | 1988-07-18 | Sewage treatment method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0231895A JPH0231895A (en) | 1990-02-01 |
JPH0714519B2 true JPH0714519B2 (en) | 1995-02-22 |
Family
ID=16055479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17883488A Expired - Lifetime JPH0714519B2 (en) | 1988-07-18 | 1988-07-18 | Sewage treatment method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0714519B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100433469B1 (en) * | 2000-03-25 | 2004-05-31 | 주식회사 원창엔텍 | Wastewater Treatment System |
KR100521649B1 (en) * | 2003-09-24 | 2005-10-13 | 손을택 | Small sewage terminal treatment method |
JP4908542B2 (en) * | 2009-03-31 | 2012-04-04 | 和典 小石 | Filtration method, filtration device and filtration pond |
CN107021551A (en) * | 2016-01-29 | 2017-08-08 | 江苏扬子江天悦新材料有限公司 | A kind for the treatment of tank with cleaning equipment |
CN112479468A (en) * | 2020-11-18 | 2021-03-12 | 三桶油环保科技(宜兴)有限公司 | Two-stage magnetic method rapid separation treatment method for fracturing flow-back fluid |
CN118545827A (en) * | 2024-07-26 | 2024-08-27 | 泉州科权工业技术研究院有限公司 | Microbial reactor for construction engineering sewage treatment and application method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5226763A (en) * | 1975-08-22 | 1977-02-28 | Nippon Paint Co Ltd | Waste water treating apparatus |
JPS5463547A (en) * | 1977-10-31 | 1979-05-22 | Kurita Water Ind Ltd | Floating separator |
JPS5614358A (en) * | 1979-07-13 | 1981-02-12 | Nec Corp | Operation log storing system |
JPS5689892A (en) * | 1979-12-25 | 1981-07-21 | Mitsubishi Heavy Ind Ltd | Method of treating waste water |
JPS6251159A (en) * | 1985-08-28 | 1987-03-05 | Sanyo Electric Co Ltd | Manufacture of plate for alkaline battery |
-
1988
- 1988-07-18 JP JP17883488A patent/JPH0714519B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5226763A (en) * | 1975-08-22 | 1977-02-28 | Nippon Paint Co Ltd | Waste water treating apparatus |
JPS5463547A (en) * | 1977-10-31 | 1979-05-22 | Kurita Water Ind Ltd | Floating separator |
JPS5614358A (en) * | 1979-07-13 | 1981-02-12 | Nec Corp | Operation log storing system |
JPS5689892A (en) * | 1979-12-25 | 1981-07-21 | Mitsubishi Heavy Ind Ltd | Method of treating waste water |
JPS6251159A (en) * | 1985-08-28 | 1987-03-05 | Sanyo Electric Co Ltd | Manufacture of plate for alkaline battery |
Also Published As
Publication number | Publication date |
---|---|
JPH0231895A (en) | 1990-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5364529A (en) | Wastewater treatment system | |
EP0323705B1 (en) | Two-stage wastewater treatment process | |
US3617539A (en) | Process for removing contaminants from waste-water | |
US3462360A (en) | Waste treatment | |
JPH02245297A (en) | Two-stage treating method of waste water | |
JP2007136367A (en) | Biological wastewater treatment apparatus and biological wastewater treatment method | |
JPH01228599A (en) | Two-stage batchwise waste water treatment | |
CN110386724A (en) | A kind of sewage whole process processing system and method based on MBBR and Magneto separate | |
KR20210009111A (en) | Wastewater treatment facility with granule sludge acceleration reactor and recovery device and method using the same | |
KR101462033B1 (en) | Sewage and wastewater treatment system with crystallization apparatus for phosphorus recovery | |
JP3122654B2 (en) | Method and apparatus for treating highly concentrated wastewater | |
JP2004261711A (en) | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method | |
JPH0714519B2 (en) | Sewage treatment method and device | |
KR101278475B1 (en) | Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor | |
AU6637296A (en) | Process for purifying waste water | |
KR100876104B1 (en) | Livestock Manure Treatment Apparatus and Method | |
JPH09220592A (en) | Unaerobic treatment apparatus | |
JPH0210717B2 (en) | ||
JP2709357B2 (en) | Aerobic wastewater treatment equipment | |
JP2000107797A (en) | Purification method and apparatus | |
JPH0636918B2 (en) | Wastewater treatment method | |
KR20030026950A (en) | Livestock wastewater treatment method and equipment using STP waste excess sludge | |
JP2520798B2 (en) | Method and apparatus for biological dephosphorization of organic wastewater | |
CN208182798U (en) | A kind of flush-with-ground type sewage treating device | |
JPH10211499A (en) | Apparatus for treating wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090222 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090222 Year of fee payment: 14 |