JP2000070989A - Method and apparatus removing nitrogen in waste water - Google Patents
Method and apparatus removing nitrogen in waste waterInfo
- Publication number
- JP2000070989A JP2000070989A JP10249320A JP24932098A JP2000070989A JP 2000070989 A JP2000070989 A JP 2000070989A JP 10249320 A JP10249320 A JP 10249320A JP 24932098 A JP24932098 A JP 24932098A JP 2000070989 A JP2000070989 A JP 2000070989A
- Authority
- JP
- Japan
- Prior art keywords
- denitrification
- tank
- sedimentation basin
- wastewater
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、広くは下水・廃水
処理分野に属し、特に廃水からの窒素除去方法およびそ
の装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally belongs to the field of sewage and wastewater treatment, and more particularly to a method and an apparatus for removing nitrogen from wastewater.
【0002】[0002]
【従来の技術】廃水中から有機物を除去するための従来
の代表的な処理プロセスとして活性汚泥法プロセスがあ
り、窒素化合物および有機物を同時に除去する従来の方
法としては生物学的硝化脱窒法プロセスがある。2. Description of the Related Art An activated sludge process is one of the conventional typical treatment processes for removing organic substances from wastewater, and a biological nitrification denitrification process is a conventional method for simultaneously removing nitrogen compounds and organic substances. is there.
【0003】生物学的硝化脱窒法による廃水処理装置の
一例を図6に示す。生物学的硝化脱窒法による排水処理
装置は、最初沈殿池2と廃水中の窒素化合物を硝酸性窒
素または亜硝酸性窒素にまで酸化(硝化)する硝化槽4
と硝酸性窒素または亜硝酸性窒素を窒素にまで還元(脱
窒)する脱窒槽3と最終沈殿池7とから構成される。最
初沈殿池2において廃水1中に含まれる比較的大きくて
重い固形物を除去した後、窒素は、硝化工程および脱窒
工程を経て最終的には窒素ガスの形で大気中に放散され
ることによって排水中より除去される。また、排水中の
有機物は脱窒工程および硝化工程の双方において除去さ
れる。FIG. 6 shows an example of a wastewater treatment apparatus using a biological nitrification and denitrification method. A wastewater treatment apparatus based on the biological nitrification and denitrification method comprises a nitrification tank 4 for oxidizing (nitrifying) nitrogen compounds in a sedimentation basin 2 and wastewater to nitrate nitrogen or nitrite nitrogen.
And a denitrification tank 3 for reducing (nitrifying) nitrate nitrogen or nitrite nitrogen to nitrogen and a final sedimentation tank 7. After removing relatively large and heavy solids contained in the wastewater 1 in the first sedimentation basin 2, nitrogen is finally released into the atmosphere in the form of nitrogen gas through a nitrification step and a denitrification step. Is removed from the wastewater. Organic matter in the wastewater is removed in both the denitrification step and the nitrification step.
【0004】生物学的硝化脱窒法による廃水処理装置を
用いた廃水からの窒素除去においては次のような問題が
ある。すなわち、雨水の流入等により廃水の有機物濃度
が低下する場合、廃水は酸素を供給されつつ希釈される
ため、排水中の有機物は酸化と希釈とを受けた後、脱窒
工程へ供給される。この結果、脱窒工程へ供給される有
機物濃度は窒素濃度に比してより低下するため、脱窒工
程での脱窒反応速度が低くなり、処理水の水質が悪化す
る。There are the following problems in removing nitrogen from wastewater using a wastewater treatment apparatus based on biological nitrification and denitrification. That is, when the concentration of organic matter in the wastewater is reduced due to inflow of rainwater or the like, the wastewater is diluted while being supplied with oxygen. Therefore, the organic matter in the wastewater is supplied to the denitrification step after being oxidized and diluted. As a result, the organic matter concentration supplied to the denitrification step is lower than the nitrogen concentration, so that the denitrification reaction rate in the denitrification step becomes lower, and the quality of the treated water deteriorates.
【0005】また、最初沈殿池において廃水の固形汚濁
物質が沈降分離されるため、最初沈殿池を経由して脱窒
工程へ供給される排水は溶解性汚濁物質を主体とした構
成となる。従って、脱窒工程へ供給される廃水中の溶解
性汚濁物質の有機物濃度/窒素濃度比が低い場合におい
ても、脱窒工程での脱窒反応速度が低くなり、処理水の
水質が悪化する。[0005] Further, since solid pollutants of wastewater are settled and separated in the first sedimentation basin, the wastewater supplied to the denitrification step via the first sedimentation basin is mainly composed of soluble pollutants. Therefore, even when the organic matter concentration / nitrogen concentration ratio of the soluble pollutants in the wastewater supplied to the denitrification step is low, the denitrification reaction rate in the denitrification step becomes low, and the quality of the treated water deteriorates.
【0006】このような問題点に対処するために、廃水
と共にメタノール等の有機薬剤を脱窒工程へ供給し、廃
水中の有機物濃度の不足分を補うことにより脱窒反応速
度の低下を防ぐ、という方法が用いられている。In order to cope with such a problem, an organic chemical such as methanol is supplied to the denitrification step together with the wastewater to compensate for the shortage of the organic matter concentration in the wastewater, thereby preventing a reduction in the denitrification reaction rate. Is used.
【0007】有機薬剤を脱窒工程へ流入させるという従
来技術において、通常、比較的価格の安いメタノールが
用いられてきたが、それでも薬剤費がかかるという点は
運転費に関する大きな問題点である。しかも、メタノー
ルは第4類危険物であるため、安全を考慮した取り扱い
が必要となり、貯蔵設備や受け入れ・供給のための設備
に関する対策も必要で、設備費がかかると共に取り扱い
にくいという問題もある。[0007] In the prior art in which organic chemicals are flowed into the denitrification step, relatively inexpensive methanol has usually been used, but the fact that chemicals are still expensive is a major problem with operating costs. In addition, since methanol is a fourth-class hazardous substance, it must be handled in consideration of safety, and measures must be taken for storage facilities and facilities for receiving and supplying.
【0008】脱窒工程へ供給される廃水の有機物濃度/
窒素濃度比が低い場合、有機物不足によって充分な窒素
除去反応、特に脱窒反応を起こすことが困難であるため
良好な窒素除去処理成績が得られないことからすれば、
最初沈殿池へ流入する廃水が含有し、最初沈殿池で除去
される有機物、すなわち固形物を主体とする有機物を脱
窒工程へ導入することは、窒素除去処理成績を向上させ
るために効果的である。[0008] The organic matter concentration of the wastewater supplied to the denitrification process /
If the nitrogen concentration ratio is low, it is difficult to cause a sufficient nitrogen removal reaction, particularly a denitrification reaction due to a shortage of organic substances.
The introduction of the organic matter contained in the wastewater flowing into the first sedimentation basin and removed in the first sedimentation basin, that is, the organic matter mainly composed of solid matter, into the denitrification step is effective for improving the nitrogen removal treatment performance. is there.
【0009】このような効果を有する従来の設備運転方
法として、複数の処理系列を有する廃水処理設備におけ
る最初沈殿池の使用池数を減少させ最初沈殿池に対する
水面積負荷増加運転を行って、最初沈殿池流出水のSS
を増加させ、もって脱窒工程へ流入する有機物を増加さ
せるという方法がある。[0009] As a conventional facility operation method having such an effect, the number of first sedimentation ponds used in a wastewater treatment facility having a plurality of treatment systems is reduced, and the operation of increasing the water area load on the first sedimentation basin is performed. Sedimentation basin effluent SS
And increasing the amount of organic matter flowing into the denitrification step.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、最初沈
殿池数の変更というデジタルな制御によって、脱窒工程
へ流入する固形有機物を正確に制御することは困難であ
る。However, it is difficult to accurately control the solid organic matter flowing into the denitrification step by digital control of changing the number of first settling ponds.
【0011】かかる問題点を解決するために、本発明者
は、脱窒槽または嫌気槽へ供給する有機物量を増加させ
ることによって良好な窒素除去処理をはかることのでき
る技術として、最初沈殿池の沈殿物の少なくとも一部を
脱窒槽または嫌気槽へ流入させることを特徴とする廃水
の窒素除去方法ならびに該沈殿物に対して超音波処理を
行って脱窒槽または嫌気槽へ流入させることを特徴とす
る廃水の窒素除去方法(特願平9−133989号)お
よび該沈殿物に対してオゾン処理を行って脱窒槽または
嫌気槽へ流入させることを特徴とする廃水の窒素除去方
法(特願平9−133988号)を既に出願している。
しかしながら、これらの方法は、以下のような問題点を
有している。最初沈殿池の沈殿物をそのまま脱窒槽また
は嫌気槽へ導入した場合、該沈殿汚泥に含まれる固形物
の粒子は比較的大きく、単位重量当たりの表面積が少な
いものであるため、脱窒槽または嫌気槽などの生物処理
反応槽において分解・処理される速度が比較的小さいと
いう問題がある。また、最初沈殿池の沈殿物に対して超
音波処理を施してから脱窒槽または嫌気槽へ導入した場
合、該沈殿物である固形物には比較的硬い細胞壁あるい
は細胞膜で包まれた微生物やセルロース繊維などが含ま
れており、これらは超音波による振動処理によっては破
壊されにくいため、脱窒槽または嫌気槽へ導入される固
形物の粒子径が充分小さくならないという問題がある。
さらに、最初沈殿池の沈殿物に対してオゾン処理を施し
てから脱窒槽または嫌気槽へ導入する場合、該沈殿物に
含まれる有機物の一部が酸化されて無機化して有機物と
しての有効性を失うと共に、オゾンの発生には約10〜
15kWh/kgO3という比較的多くの電力を消費す
るため運転費が比較的大となるという問題がある。[0011] In order to solve such a problem, the present inventor has proposed a technique capable of performing a good nitrogen removal treatment by increasing the amount of organic substances supplied to a denitrification tank or an anaerobic tank. A method for removing nitrogen from wastewater, wherein at least a part of the material is flowed into a denitrification tank or an anaerobic tank, and a method wherein ultrasonic treatment is performed on the precipitate to flow into the denitrification tank or the anaerobic tank. A nitrogen removal method for wastewater (Japanese Patent Application No. 9-133,893) and a nitrogen removal method for wastewater characterized by subjecting the precipitate to ozone treatment and flowing into a denitrification tank or an anaerobic tank. No. 133988) has already been filed.
However, these methods have the following problems. When the sediment of the first sedimentation basin is directly introduced into a denitrification tank or an anaerobic tank, the solid particles contained in the settling sludge are relatively large and have a small surface area per unit weight. However, there is a problem that the speed of decomposition and treatment in the biological treatment reaction tank is relatively low. In addition, when the sediment in the sedimentation tank is first subjected to ultrasonic treatment and then introduced into a denitrification tank or an anaerobic tank, microorganisms or cellulose wrapped in relatively hard cell walls or cell membranes are contained in the solid matter as the sediment. Fibers and the like are contained and are not easily destroyed by the ultrasonic vibration treatment. Therefore, there is a problem that the particle diameter of the solid introduced into the denitrification tank or the anaerobic tank does not become sufficiently small.
Furthermore, when the sediment in the sedimentation basin is first subjected to ozone treatment and then introduced into a denitrification tank or an anaerobic tank, some of the organic matter contained in the sediment is oxidized and mineralized to reduce its effectiveness as an organic matter. And lose about 10 to ozone
There is a problem that a relatively large amount of power of 15 kWh / kgO 3 is consumed, so that the operation cost is relatively large.
【0012】本発明は、廃水中の有機物濃度、特に溶解
性有機物濃度の不足によって生じる生物学的硝化脱窒法
廃水処理装置の窒素除去性能の悪化という問題を解決す
るためになされたもので、最初沈殿池で発生する、固形
有機物質を含む汚泥を脱窒槽または嫌気槽へ供給して脱
窒槽または嫌気槽へ流入する廃水の有機物濃度の不足を
補うことにより、廃水処理施設内で発生する有機物質を
有効利用しつつ窒素除去性能の悪化を防止する方法を、
より効果的かつ経済的に実施しうる方法および装置を提
供することを目的としている。SUMMARY OF THE INVENTION The present invention has been made to solve the problem of deterioration of nitrogen removal performance of a biological nitrification and denitrification wastewater treatment apparatus caused by an insufficient concentration of organic substances in wastewater, particularly, a concentration of soluble organic substances. Organic substances generated in the wastewater treatment facility by supplying sludge containing solid organic substances generated in the sedimentation basin to the denitrification tank or anaerobic tank to compensate for the lack of organic matter concentration in the wastewater flowing into the denitrification tank or anaerobic tank Method to prevent deterioration of nitrogen removal performance while effectively utilizing
It is an object of the present invention to provide a method and apparatus that can be implemented more effectively and economically.
【0013】[0013]
【課題を解決するための手段】かかる本発明は、少なく
とも処理される廃水の沈殿池、脱窒槽または嫌気槽およ
び硝化槽よりなる装置を用いて廃水の窒素を除去する際
に、該処理される廃水の沈殿池の沈殿物の少なくとも一
部を破砕または磨砕して脱窒槽または嫌気槽へ供給する
ことを特徴とする廃水の窒素除去方法およびその装置に
関するものである。SUMMARY OF THE INVENTION According to the present invention, at least the wastewater to be treated is treated at the time of removing nitrogen from the wastewater by using an apparatus consisting of a sedimentation basin, a denitrification tank or an anaerobic tank and a nitrification tank. The present invention relates to a method and an apparatus for removing nitrogen from wastewater, which comprises crushing or grinding at least a part of the sediment of a wastewater settling tank and supplying the crushed or crushed wastewater to a denitrification tank or an anaerobic tank.
【0014】本発明に基づく廃水の生物学的窒素除去方
法およびその装置においては、固形有機物を豊富に含む
最初沈殿池の沈殿物の少なくとも一部、すなわち固形有
機物の少なくとも一部を脱窒工程もしくは嫌気工程へ流
入させ、脱窒工程での脱窒反応に必要な有機物濃度を確
保するものであるが、該固形有機物を微生物が脱窒反応
のために効果的かつ迅速に利用できるようにするため
に、該最初沈殿池の沈殿物の少なくとも一部に対して破
砕処理もしくは磨砕処理を行うことによって、最初沈殿
池の沈殿物に含まれる固形有機物を微細粒子化または可
溶化させる。さらに、廃水の有機物濃度が低く、脱窒工
程において脱窒反応を行うに必要な有機物濃度が確保で
きていない場合には、脱窒工程における酸化還元電位
(ORP)が0mV以上になるという本発明者らの実験
に基づいた知見に従って、脱窒工程におけるORPを測
定し、ORPが0mV以上の値である場合、すなわち脱
窒工程において脱窒反応を行うに必要な有機物濃度が確
保されていない場合にのみ最初沈殿池の沈殿物に対して
破砕処理または磨砕処理を施したものを脱窒槽または嫌
気槽へ流入させ、固形物由来の有機物を補給することに
よって、脱窒反応に必要な有機物濃度を確保する。In the method and apparatus for removing biological nitrogen from wastewater according to the present invention, at least a part of the sediment of the first sedimentation basin rich in solid organic matter, that is, at least a part of the solid organic matter is subjected to a denitrification step or It is to flow into the anaerobic process to secure the concentration of organic substances required for the denitrification reaction in the denitrification step, but to enable the microorganisms to use the solid organic substance effectively and quickly for the denitrification reaction Then, by subjecting at least a part of the sediment in the first sedimentation basin to a crushing or grinding treatment, solid organic substances contained in the sediment in the first sedimentation basin are made into fine particles or solubilized. Further, when the organic matter concentration of the wastewater is low and the organic matter concentration required for performing the denitrification reaction in the denitrification step cannot be secured, the oxidation-reduction potential (ORP) in the denitrification step becomes 0 mV or more. ORP in the denitrification step was measured according to the findings based on the experiments of the present inventors, and when ORP was a value of 0 mV or more, that is, when the organic matter concentration required for performing the denitrification reaction in the denitrification step was not ensured. Only the first sedimentation basin, which has been subjected to crushing or grinding treatment, flows into a denitrification tank or an anaerobic tank, and replenishes organic matter derived from solids. To secure.
【0015】[0015]
【発明の実施の形態】本発明に基づく生物学的窒素除去
処理装置の一例を図1に示した。この図を用いて本発明
を詳細に説明する。FIG. 1 shows an example of a biological nitrogen removal treatment apparatus according to the present invention. The present invention will be described in detail with reference to FIG.
【0016】本発明に基づく生物学的窒素除去処理装置
は図1に示したように、主として最初沈殿池2、脱窒槽
3、硝化槽4および最終沈殿池7から構成される。脱窒
槽3では攪拌のみが行われ、硝化槽4では散気装置5に
より酸素供給が行われると共に、散気に伴って生じる水
流により攪拌が行われる。As shown in FIG. 1, the biological nitrogen removal treatment apparatus according to the present invention mainly comprises a first sedimentation tank 2, a denitrification tank 3, a nitrification tank 4, and a final sedimentation tank 7. In the denitrification tank 3, only stirring is performed, and in the nitrification tank 4, oxygen is supplied by the diffuser 5, and stirring is performed by a water flow generated by the diffusion.
【0017】図1に示した本発明に基づく生物学的窒素
除去処理装置において、廃水1は最初沈殿池2での固液
分離を経て脱窒槽3および硝化槽4へと順次通水され
る。硝化槽4を流出し最終沈殿池7へ流入する流出液は
最終沈殿池7で処理水9と活性汚泥とに分離され、最終
沈殿池7で分離、濃縮された活性汚泥の少なくとも一部
は返送汚泥8として脱窒槽3へ送られる。また、硝化槽
4を流出した流出液の一部は硝化循環液6として脱窒槽
3へ送られる。In the biological nitrogen removal treatment apparatus according to the present invention shown in FIG. 1, wastewater 1 is first passed through a sedimentation basin 2 through a solid-liquid separation to a denitrification tank 3 and a nitrification tank 4 sequentially. The effluent flowing out of the nitrification tank 4 and flowing into the final sedimentation basin 7 is separated into treated water 9 and activated sludge in the final sedimentation basin 7, and at least a part of the activated sludge separated and concentrated in the final sedimentation basin 7 is returned. It is sent to the denitrification tank 3 as sludge 8. A part of the effluent flowing out of the nitrification tank 4 is sent to the denitrification tank 3 as a nitrification circulating liquid 6.
【0018】最初沈殿池沈殿物10は、破砕処理装置も
しくは磨砕処理装置11によって破砕処理もしくは磨砕
処理を受けた後、最初沈殿池沈殿物の破砕物または磨砕
物12として直接脱窒槽3へ送るか、最初沈殿池2の流
出水路を経由して脱窒槽3へ送るか、あるいは最初沈殿
池2の流入水路を経由して最初沈殿池2において再び沈
殿する部分を除いたものを最初沈殿池2の流出水路を経
由して脱窒槽3へ送る。The first sedimentation basin sediment 10 is subjected to crushing or grinding treatment by a crushing treatment device or attrition treatment device 11, and then directly to the denitrification tank 3 as a crushed or crushed material 12 of the first sedimentation basin sediment. It is sent to the denitrification tank 3 via the outflow channel of the first sedimentation basin 2, or the portion of the first sedimentation basin 2 excluding the portion that re-sediments in the first sedimentation basin 2 via the inflow channel of the first sedimentation basin 2. It is sent to the denitrification tank 3 via the outflow channel 2.
【0019】硝化槽4においては活性汚泥の作用により
排水中の窒素化合物を硝酸性窒素または亜硝酸性窒素に
まで酸化(=硝化反応)すると共に、有機物の酸化分解
除去を行う。脱窒槽3においては活性汚泥が廃水1中の
溶解性成分を主体とする有機物および最初沈殿池沈殿物
10に由来する有機物を利用して、廃水1、返送汚泥8
および硝化循環液6に含まれる硝酸性窒素または亜硝酸
性窒素を窒素ガスにまで還元(=脱窒反応)し、脱窒処
理する。In the nitrification tank 4, the nitrogen compounds in the wastewater are oxidized to nitrate nitrogen or nitrite nitrogen (= nitrification reaction) by the action of activated sludge, and the organic substances are oxidatively decomposed and removed. In the denitrification tank 3, the activated sludge is made up of the wastewater 1 and the return sludge 8 by utilizing the organic matter mainly composed of the soluble component in the wastewater 1 and the organic matter derived from the first sedimentation tank sediment 10.
And nitrate nitrogen or nitrite nitrogen contained in the nitrification circulating fluid 6 is reduced to nitrogen gas (= denitrification reaction) and denitrification treatment is performed.
【0020】最初沈殿池沈殿物10に含まれる固形有機
物は破砕処理装置もしくは磨砕処理装置11によって処
理を受けて、少なくとも一部は微細な粒子となり、また
少なくとも一部は溶解性成分となる。すなわち、破砕処
理もしくは磨砕処理によって、固形物の粒子径が小さく
なると、同じ重量の固形物においては表面積が増加する
ことになる。また、最初沈殿池沈殿物10には微生物体
や動植物体などが含まれているが、これらの生物体は細
胞膜あるいは細胞壁で包まれた細胞より構成されてお
り、これらの膜状構造物が破砕処理もしくは磨砕処理に
よって破壊されると細胞液が細胞外へ放出されるため、
破砕処理後もしくは磨砕処理後の最初沈殿池沈殿物12
の投入された廃水の溶解性有機物濃度は上昇する結果と
なる。The solid organic matter contained in the first sedimentation tank sediment 10 is treated by a crushing device or a grinding device 11 so that at least a part thereof becomes fine particles and at least a part thereof becomes a soluble component. That is, when the particle diameter of the solid is reduced by the crushing or grinding treatment, the surface area of the solid having the same weight increases. The first sedimentation basin sediment 10 contains microorganisms, animals and plants, and the like, and these organisms are composed of cells wrapped in cell membranes or cell walls, and these membrane-like structures are crushed. Cell liquid is released outside the cell when destroyed by processing or grinding,
First sedimentation tank sediment 12 after crushing or grinding
As a result, the concentration of the soluble organic matter in the wastewater charged into the wastewater is increased.
【0021】一般的に、微生物が有機物を分解・利用し
て増殖する場合、分子量の大きなものほどその分解・利
用が終了するまでに時間がかかり、分子量の小さなもの
ほど利用し易く反応速度が大である。有機物を固形有機
物と溶解性有機物とに分けて考えると、固形有機物の方
が一般的に分子量が大きいため、固形有機物の方が微生
物にとっては利用しにくい。これは、微生物が、細胞膜
あるいは細胞壁を経由して有機物を微生物体内へ取り込
むにおいては、その有機物は充分に分子量の小さなもの
である必要があり、分子量の大きな有機物を微生物が利
用するにおいては、分子量の大きな有機物をまず分子量
の小さな有機物まで分解するという反応を必要とするた
め、分解・利用に時間がかかると考えられている。分子
量の大きな有機物を分子量の小さな有機物まで分解する
という反応も生物においては主に酵素反応によって行わ
れるが、このような反応においては、酵素の作用する表
面が多いほど、すなわち、同じ重量の固形有機物で比較
した場合には粒子径の小さい場合ほど反応が早く進む。
つまり、本発明方法において、最初沈殿池沈殿物10に
対して破砕処理もしくは磨砕処理を施し、固形物の粒子
径を小さくすることは、微生物による固形有機物の分解
・利用のための酵素反応の進行を助け、固形有機物の分
解・利用速度を高めるのに貢献し、限られた反応槽容積
でもって微生物反応を終了させるために有効である。ま
た、最初沈殿池沈殿物10に対して破砕処理もしくは磨
砕処理を施すことによって生じた溶解性有機物も、脱窒
槽3へ導入されると、脱窒細菌による脱窒反応のため
に、効果的かつ迅速に利用されるので、この点について
も、最初沈殿池沈殿物10に対して破砕処理もしくは磨
砕処理を施すという操作は、流入廃水1中の固形物に含
まれていた有機物が反応槽における微生物によって分解
・利用される速度を高めるのに貢献し、限られた反応槽
容積でもって微生物反応を終了させるために有効であ
る。In general, when microorganisms proliferate by decomposing and utilizing organic substances, it takes a longer time to complete the decomposition and utilization of a substance having a large molecular weight, and a substance having a small molecular weight is easy to use and has a high reaction rate. It is. When organic matter is divided into solid organic matter and soluble organic matter, solid organic matter is generally harder to use for microorganisms because solid organic matter generally has a higher molecular weight. This is because when a microorganism takes in an organic substance into a microorganism via a cell membrane or a cell wall, the organic substance needs to have a sufficiently small molecular weight. It is considered that it takes a long time to decompose and use organic compounds, because a reaction of first decomposing organic substances having a large molecular weight into organic substances having a small molecular weight is required. In organisms, the reaction of decomposing high molecular weight organic substances into small molecular weight organic substances is mainly performed by enzymatic reactions.In such reactions, the more surfaces on which the enzyme acts, that is, the same weight of solid organic substances When the particle size is smaller, the reaction proceeds faster.
That is, in the method of the present invention, the crushing treatment or the grinding treatment of the sedimentation basin sediment 10 first to reduce the particle diameter of the solid substance is achieved by enzymatic reaction for decomposing and utilizing solid organic substances by microorganisms. It contributes to speeding up the progress of decomposition and utilization of solid organic matter, and is effective for terminating the microbial reaction with a limited reactor volume. Further, when the soluble organic matter generated by subjecting the sedimentation basin sediment 10 to crushing or grinding treatment is also introduced into the denitrification tank 3, it is effective for denitrification by denitrification bacteria. In this regard, the operation of subjecting the sedimentation basin sediment 10 to crushing or grinding treatment firstly requires the organic matter contained in the solid matter in the inflow wastewater 1 to be removed from the reaction tank. This contributes to increasing the rate of decomposition and utilization by microorganisms in the above, and is effective for terminating the microbial reaction with a limited reactor volume.
【0022】最初沈殿池沈殿物の破砕物または磨砕物1
2を脱窒槽3へ流入させるに当たり、該破砕物または磨
砕物12を直接該脱窒槽3へ流入させることも可能であ
り、該破砕物または磨砕物12を最初沈殿池2の越流堰
から該脱窒槽3に至る廃水の流路のいずれかの地点へ流
入させることも可能である。このような方法を用いた場
合、破砕物または磨砕物12をすべて脱窒槽3へ流入さ
せることができる。また、該破砕物または磨砕物12の
供給地点から該脱窒槽3に至る水路の容量が比較的小さ
く、滞留時間が比較的短くなるので、該破砕物または磨
砕物12の供給量を変更して比較的短時間のうちに、該
脱窒槽3での反応に対して影響を及ぼすことができる。
破砕物または磨砕物12を脱窒槽3へ流入させるに当た
り、該破砕物または磨砕物12を直接該脱窒槽3へ流入
させるか、該破砕物または磨砕物12を最初沈殿池2の
越流堰から該脱窒槽3に至る廃水の流路のいずれかの地
点へ流入させるかについては、破砕処理装置もしくは磨
砕処理装置11の設置位置と破砕物または磨砕物12の
供給位置との距離や水頭差などを考慮して決定すること
ができる。Crushed or ground material of the first sedimentation tank sediment 1
When the crushed material or the crushed material 12 flows into the denitrification tank 3 directly, the crushed material or the crushed material 12 can be directly flown into the denitrification tank 3. It is also possible to make the wastewater flow into any point of the flow path of the wastewater reaching the denitrification tank 3. When such a method is used, all of the crushed or crushed material 12 can flow into the denitrification tank 3. Further, since the capacity of the water channel from the supply point of the crushed material or the crushed material 12 to the denitrification tank 3 is relatively small and the residence time is relatively short, the supply amount of the crushed material or the crushed material 12 is changed. The reaction in the denitrification tank 3 can be affected in a relatively short time.
When the crushed material or the crushed material 12 flows into the denitrification tank 3, the crushed material or the crushed material 12 is allowed to flow directly into the denitrification tank 3, or the crushed material or the crushed material 12 is first discharged from the overflow weir of the sedimentation basin 2. Whether to flow into any point of the flow path of the wastewater to the denitrification tank 3 depends on the distance or the water head difference between the installation position of the crushing device or the grinding device 11 and the supply position of the crushed material or the crushed material 12. It can be determined in consideration of such factors.
【0023】該破砕物または磨砕物12を該最初沈殿池
2の流入水路のいずれかの地点へ流入させて再び該最初
沈殿池2で沈殿する固形物を分離除去してから該破砕物
または磨砕物12のうちの沈降しない成分を該最初沈殿
池2の越流水と共に該脱窒槽3へ流入させることも可能
である。このような方法を用いた場合、破砕物または磨
砕物12をすべて脱窒槽3へ流入させることはできない
が、該破砕物または磨砕物12の供給地点から脱窒槽3
に至る水路の容量が大きく、滞留時間が長くなるので、
比較的安定した濃度でもって、該破砕物または磨砕物1
2に由来する、沈降し易い固形物を除く成分を、脱窒槽
3へ流入させることができる。The crushed material or the crushed material 12 is caused to flow into any point of the inflow channel of the first sedimentation basin 2 to separate and remove solids precipitated in the first sedimentation basin 2 again. It is also possible to allow the non-settling component of the crushed material 12 to flow into the denitrification tank 3 together with the overflow water of the first settling tank 2. When such a method is used, all of the crushed material or the crushed material 12 cannot flow into the denitrification tank 3, but the denitrification tank 3 is supplied from the supply point of the crushed or crushed material 12.
Because the capacity of the waterway leading to is large and the residence time is long,
The crushed material or the crushed material 1 having a relatively stable concentration
The components derived from 2 and excluding solids that easily settle can flow into the denitrification tank 3.
【0024】最初沈殿池2からの沈殿物10の抜き出し
は最初沈殿池2の下部または底部に設けた排出口を開口
することによって行うことができる。これは最初沈殿池
2の位置に応じて自然流出させあるいは送液ポンプを利
用すればよい。The removal of the sediment 10 from the first sedimentation basin 2 can be performed by opening a discharge port provided at a lower portion or a bottom portion of the first sedimentation basin 2. This may be done by natural drainage or by using a liquid feed pump depending on the position of the first sedimentation basin 2.
【0025】破砕処理装置または磨砕処理装置で処理す
る沈殿物は廃水中に懸濁ないしスラリー状態のものであ
り、濃度は3000〜12000mg/l程度、通常5
000〜10000mg/l程度のものである。The sediment to be treated by the crushing device or the attrition treatment device is in the form of a suspension or slurry in wastewater, and has a concentration of about 3000 to 12000 mg / l, usually about 5 mg / l.
It is about 000 to 10000 mg / l.
【0026】破砕物または磨砕物の添加時期は、例えば
脱窒槽の酸化還元電位を測定することによって知ること
ができ、それが0mV以上になったときに添加を行う。
また、廃水1の溶解性汚濁物質の有機物濃度/窒素濃度
比がほぼ常に低いような場合には、破砕物または磨砕物
を常時添加運転することが実際的である。The time of addition of the crushed material or the crushed material can be known, for example, by measuring the oxidation-reduction potential of the denitrification tank, and the addition is performed when it becomes 0 mV or more.
In addition, when the ratio of the organic matter concentration / nitrogen concentration of the soluble pollutants in the wastewater 1 is almost always low, it is practical to always add the crushed material or the crushed material.
【0027】最初沈殿池沈殿物9の引き抜きに用いられ
るポンプは、通常、目詰りの起こりにくいスラリーポン
プであるため、該沈殿物を破砕または磨砕する効果はほ
とんどない。したがって、該沈殿物を破砕または磨砕す
るためには破砕装置または磨砕装置を備えることが必要
である。破砕処理装置または磨砕処理装置10は、ギヤ
型、多軸円盤型等、様々なタイプのものを使用すること
ができる。破砕度もしくは磨砕度を制御するためには、
破砕後もしくは磨砕後に通過させるスクリーンの目巾を
選定することが有効であるが、その目巾が小さ過ぎると
目詰りしやすく、大き過ぎると粒径の大きな固形物が出
て行き易いため、スクリーンの目巾を1〜5mm程度と
することが好ましい。また、破砕処理装置もしくは磨砕
処理装置11をインライン設置もしくは開水路設置とす
ることができるが、最初沈殿池沈殿物10が悪臭の発生
源となることを考慮すれば、インライン設置とすること
が好ましい。かかる破砕処理装置もしくは磨砕処理装置
11として市販の汎用品を適用することが可能であるた
め設備費は比較的安価であり、モーターの動力費を主体
とする運転費も比較的安価で、かつ固形物の粒子径低減
効果も比較的大きい。The pump used for pulling out the sediment 9 in the first sedimentation basin is usually a slurry pump in which clogging does not easily occur, and thus has little effect of crushing or grinding the sediment. Therefore, in order to crush or grind the precipitate, it is necessary to provide a crushing device or a grinding device. As the crushing device or the grinding device 10, various types such as a gear type and a multi-shaft disk type can be used. To control the degree of crushing or grinding,
It is effective to select the screen width of the screen to be passed after crushing or grinding, but if the screen width is too small, it is easy to clog, and if it is too large, solids with a large particle size tend to come out, The screen width of the screen is preferably about 1 to 5 mm. In addition, the crushing treatment device or the grinding treatment device 11 can be installed in-line or in an open channel, but in consideration of the fact that the sedimentation basin sediment 10 first becomes a source of offensive odor, the in-line installation is preferable. preferable. Since it is possible to apply a commercially available general-purpose product as the crushing device or the grinding device 11, the equipment cost is relatively low, and the operating cost mainly including the power cost of the motor is relatively low. The effect of reducing the particle size of the solid is relatively large.
【0028】破砕物または磨砕物の添加量は廃水1の容
量に対して0.1〜1.5%程度、通常0.5〜1.0
%程度が適当である。添加は連続的であってもよく、間
欠的であってもよい。The amount of the crushed material or the crushed material is about 0.1 to 1.5% with respect to the volume of the wastewater 1, usually 0.5 to 1.0%.
% Is appropriate. The addition may be continuous or intermittent.
【0029】添加の終了は酸化還元電位が−50〜−1
50mV程度に達したところが適当であり、その結果、
常時添加を続けることも有効である。When the addition is completed, the oxidation-reduction potential is -50 to -1.
It is appropriate to reach about 50 mV, and as a result,
It is also effective to continue the addition at all times.
【0030】図2に本発明に基づく生物学的窒素除去処
理装置の他の一例を示す。図6に示した従来技術に基づ
く生物学的窒素除去処理装置において、発明者の実験的
知見によれば、廃水1の溶解性有機物濃度が高く、脱窒
槽3での脱窒反応に必要な有機物濃度が得られている場
合には、脱窒槽3内のORPが0mV以下となり、廃水
1の有機物濃度が低く、脱窒槽3での脱窒反応に必要な
濃度の有機物が供給されていない場合には、脱窒槽3内
のORPが0mV以上となる。これらの知見を基に、図
2の本発明に基づく生物学的窒素除去処理装置におい
て、脱窒槽3に設置されたORP計13の測定値が0m
V以下の場合には最初沈殿池沈殿物の破砕物または磨砕
物12の脱窒槽3への流入を停止するかあるいは破砕処
理装置もしくは磨砕処理装置11の運転を停止するなど
の運転操作を行い、該測定値が0mV以上の場合には破
砕物または磨砕物12の脱窒槽3への流入を行うよう装
置の運転を制御する。これらの制御を制御装置14によ
って行う。FIG. 2 shows another example of the biological nitrogen removal treatment apparatus according to the present invention. According to the biological nitrogen removal treatment apparatus based on the prior art shown in FIG. 6, according to the experimental findings of the inventor, the concentration of the soluble organic matter in the wastewater 1 is high, and the organic matter necessary for the denitrification reaction in the denitrification tank 3. When the concentration is obtained, the ORP in the denitrification tank 3 becomes 0 mV or less, the organic matter concentration of the wastewater 1 is low, and the organic matter of the concentration required for the denitrification reaction in the denitrification tank 3 is not supplied. The ORP in the denitrification tank 3 becomes 0 mV or more. Based on these findings, in the biological nitrogen removal treatment apparatus according to the present invention in FIG. 2, the measured value of the ORP meter 13 installed in the denitrification tank 3 is 0 m.
In the case of V or less, an operation such as stopping the flow of the crushed material or the crushed material 12 of the sedimentation tank sediment into the denitrification tank 3 or stopping the operation of the crushing device or the crushing device 11 is performed first. When the measured value is 0 mV or more, the operation of the apparatus is controlled so that the crushed or crushed material 12 flows into the denitrification tank 3. These controls are performed by the control device 14.
【0031】脱窒工程および硝化工程から成る廃水処理
装置の他、嫌気工程、脱窒工程(無酸素工程)および硝
化工程(好気工程)から成る廃水処理装置においても本
発明に基づく窒素除去方法を適用することが出来る。In addition to a wastewater treatment apparatus comprising a denitrification step and a nitrification step, a nitrogen removal method according to the present invention is also applied to a wastewater treatment apparatus comprising an anaerobic step, a denitrification step (anoxic step) and a nitrification step (aerobic step). Can be applied.
【0032】図3に本発明に基づく生物学的窒素除去処
理装置の別の一例を示す。図3に示した本発明に基づく
生物学的窒素除去処理装置は、図1に示した本発明に基
づく生物学的窒素除去処理装置に嫌気槽15を新たにつ
け加えたものであり、主として最初沈殿池2、嫌気槽1
5、脱窒槽3、硝化槽4および最終沈殿池7から構成さ
れる。FIG. 3 shows another example of the biological nitrogen removal treatment apparatus according to the present invention. The biological nitrogen removal treatment apparatus according to the present invention shown in FIG. 3 is obtained by adding a new anaerobic tank 15 to the biological nitrogen removal treatment apparatus according to the present invention shown in FIG. Pond 2, Anaerobic tank 1
5, a denitrification tank 3, a nitrification tank 4, and a final sedimentation basin 7.
【0033】図3に示した本発明に基づく生物学的窒素
除去処理装置において、嫌気槽15は攪拌のみが行われ
る槽であり、本槽には廃水1および返送汚泥8が送られ
る。嫌気槽15においては活性汚泥が廃水1中の溶解性
成分を主体とする有機物を利用して、廃水1および返送
汚泥8に含まれる硝酸性窒素または亜硝酸性窒素を窒素
ガスにまで還元(=脱窒反応)し、脱窒処理するととも
に、活性汚泥が細胞内に蓄積したリン酸イオンを廃水中
に放出する(=生物学的リン放出反応)。また、脱窒槽3
においても攪拌を行い、硝化循環液および嫌気槽15よ
り流入する汚泥混合液に含まれる硝酸性窒素または亜硝
酸性窒素を窒素ガスにまで還元(=脱窒反応)し、脱窒
処理する。さらに、脱窒槽3および硝化槽4において
は、活性汚泥が廃水中のリン酸イオンを細胞内に摂取す
る(生物学的リン摂取反応)。そして、硝化槽4におい
ては、有機性窒素やアンモニア性窒素を硝酸性窒素また
は亜硝酸性窒素へと酸化(=硝化反応)する。有機物
は、嫌気槽15、脱窒槽3および硝化槽4のそれぞれで
消費・処理される。In the biological nitrogen removal treatment apparatus according to the present invention shown in FIG. 3, the anaerobic tank 15 is a tank in which only stirring is performed, and the waste water 1 and the returned sludge 8 are sent to this tank. In the anaerobic tank 15, the activated sludge reduces the nitrate nitrogen or the nitrite nitrogen contained in the wastewater 1 and the return sludge 8 to nitrogen gas by using an organic matter mainly composed of a soluble component in the wastewater 1. A denitrification reaction) and a denitrification treatment are performed, and activated sludge releases phosphate ions accumulated in cells into wastewater (= biological phosphorus release reaction). In addition, denitrification tank 3
Is performed, nitrate nitrogen or nitrite nitrogen contained in the nitrification circulating liquid and the sludge mixture flowing from the anaerobic tank 15 is reduced to nitrogen gas (= denitrification reaction) and denitrification treatment is performed. Further, in the denitrification tank 3 and the nitrification tank 4, the activated sludge takes up phosphate ions in the wastewater into cells (biological phosphorus uptake reaction). Then, in the nitrification tank 4, organic nitrogen or ammonia nitrogen is oxidized to nitrate nitrogen or nitrite nitrogen (= nitrification reaction). The organic matter is consumed and processed in each of the anaerobic tank 15, the denitrification tank 3, and the nitrification tank 4.
【0034】尚、図3に示した本発明に基づく生物学的
窒素除去処理装置においては、最初沈殿池沈殿物の破砕
物または磨砕物12を嫌気槽15へ流入させるというフ
ローになっているが、この破砕物または磨砕物12の一
部もしくは全部を脱窒槽3へ流入させても良い。In the biological nitrogen removal treatment apparatus shown in FIG. 3 according to the present invention, the flow is such that the crushed or ground material 12 of the sedimentation tank sediment first flows into the anaerobic tank 15. Alternatively, part or all of the crushed material or the crushed material 12 may flow into the denitrification tank 3.
【0035】[0035]
【実施例】本発明に基づく生物学的窒素除去方法の1実
施例を以下に示す。図4に実験装置を示す。本実施例で
は、図6に示すフローから成る廃水処理装置から採取し
た返送汚泥、硝化循環液、廃水および最初沈殿池沈殿物
の混合液を試料として図4に示す装置に投入し、脱窒槽
条件下における活性汚泥の脱窒反応の特性を調査した。
表1に試料の組成を示す。図6に示すフローから成る廃
水処理装置から採取した廃水のBOD濃度は44mg/
Lであり、返送汚泥および硝化循環液のMLSS濃度
は、それぞれ4300mg/Lおよび1800mg/L
であった。図1に示すフローが有効に機能するかどうか
を調べるために、図6に示すフローから成る廃水処理装
置の最初沈殿池から採取したMLSS濃度3400mg
/Lの最初沈殿池沈殿物に対して、容量10mlのポッ
ター型ガラスホモジナイザーで3分間磨砕処理を施した
ものが、有機物源として有効かどうかについて実験検討
を行った。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method for removing biological nitrogen according to the present invention will be described below. FIG. 4 shows an experimental apparatus. In the present embodiment, a mixture of returned sludge, nitrification circulating liquid, wastewater and first settling tank sediment collected from the wastewater treatment apparatus having the flow shown in FIG. 6 was put into the apparatus shown in FIG. The characteristics of denitrification reaction of activated sludge under were investigated.
Table 1 shows the composition of the sample. The BOD concentration of the wastewater collected from the wastewater treatment apparatus having the flow shown in FIG.
L, and the MLSS concentrations of the returned sludge and the nitrification circulating fluid were 4300 mg / L and 1800 mg / L, respectively.
Met. In order to check whether the flow shown in FIG. 1 works effectively, the MLSS concentration of 3400 mg collected from the first sedimentation basin of the wastewater treatment apparatus consisting of the flow shown in FIG.
An experimental study was conducted to determine whether a 1 / L primary sedimentation tank sediment was ground for 3 minutes with a potter-type glass homogenizer having a capacity of 10 ml as an organic matter source.
【0036】[0036]
【表1】 [Table 1]
【0037】図5に試料排水中の硝酸性窒素濃度の経時
変化を示す。この結果から、磨砕処理を施した最初沈殿
池沈殿物を加えた条件で脱窒処理を行った際の試料A
と、磨砕処理を施した最初沈殿池沈殿物を加えていない
条件で脱窒処理を行った際の試料Bとの比較からすれ
ば、最初沈殿池沈殿物に対して磨砕処理を施したものを
加えて脱窒処理を行った場合には、廃水中の硝酸性窒素
の減少速度が大であった。すなわち、最初沈殿池沈殿物
に対して磨砕処理を施して、固形物の粒子径の低減と、
一部の有機物の可溶化をはかった後、試料廃水に加える
ことにより、脱窒工程での脱窒反応速度が大となること
が判明した。FIG. 5 shows the change over time in the concentration of nitrate nitrogen in the sample wastewater. From these results, it was found that the sample A obtained when the denitrification treatment was performed under the condition that the sedimentation tank sediment subjected to the grinding treatment was added.
Compared with Sample B when denitrification treatment was performed under the condition that the first sedimentation basin sediment subjected to the grinding treatment was not added, the first sedimentation basin sediment was subjected to the grinding treatment. When the denitrification treatment was performed by adding the wastewater, the rate of reduction of nitrate nitrogen in the wastewater was large. That is, the first settling tank sediment is subjected to a grinding treatment to reduce the particle size of the solid,
It was found that the rate of denitrification in the denitrification step was increased by adding some organic substances to the sample wastewater after solubilization.
【0038】破砕処理も磨砕処理に近いものであり、最
初沈殿池沈殿物中の固形物の粒子径の低減と、一部の有
機物の可溶化をはかるのに有効であると見られる。The crushing treatment is also similar to the crushing treatment, and is considered to be effective in reducing the particle diameter of solids in the sedimentation tank sediment and solubilizing some organic substances.
【0039】[0039]
【発明の効果】本発明においては、脱窒工程と場合によ
っては嫌気工程および硝化工程を有する生物学的窒素除
去装置の脱窒工程もしくは嫌気工程へ破砕処理後もしく
は磨砕処理後の最初沈殿池沈殿物を流入させ、脱窒工程
での脱窒反応に必要な有機物濃度を確保する構成とし
た。According to the present invention, the first sedimentation basin after crushing or grinding to the denitrification step or anaerobic step of the biological nitrogen removal apparatus having a denitrification step and an anaerobic step and a nitrification step as the case may be. The structure was such that the sediment flowed in and the concentration of organic substances required for the denitrification reaction in the denitrification step was ensured.
【0040】これにより、雨水の流入等の場合の如く、
脱窒工程へ供給される有機物濃度が窒素濃度の低下する
程度以上に低下することによって脱窒工程での脱窒反応
速度が低くなり処理水の水質が悪化する場合において
も、また、最初沈殿池で固液分離処理を受けた後脱窒工
程へ流入する排水中の溶解性汚濁物質の有機物濃度/窒
素濃度比が低いため脱窒工程での脱窒反応速度が低くな
り処理水の水質が悪化する場合においても、脱窒反応を
行うに必要な有機物の供給が確保されるため、脱窒工程
での脱窒反応速度が低くなることを防止することが可能
となる。Thus, as in the case of inflow of rainwater,
Also, when the concentration of organic substances supplied to the denitrification step falls below the level at which the nitrogen concentration decreases, the rate of the denitrification reaction in the denitrification step decreases, and the quality of the treated water deteriorates. The ratio of organic matter / nitrogen concentration of the soluble pollutants in the wastewater that flows into the denitrification process after undergoing solid-liquid separation treatment at a low rate reduces the denitrification reaction rate in the denitrification process and deteriorates the quality of treated water. Even in this case, the supply of organic substances necessary for performing the denitrification reaction is ensured, so that it is possible to prevent the rate of the denitrification reaction in the denitrification step from being lowered.
【0041】また、脱窒工程のORPを測定し、ORP
が0mV以上の場合のみに脱窒工程もしくは嫌気工程へ
破砕処理後もしくは磨砕処理後の最初沈殿池沈殿物の少
なくとも一部を流入させる構成とすることによって、廃
水の有機物濃度が低下し、脱窒工程で脱窒反応を行うに
必要な有機物濃度が確保されていないときにのみ有機物
を補給することが可能である。こうした制御により、最
初沈殿池沈殿物に対して破砕処理もしくは磨砕処理を施
すために必要な動力費および破砕処理後もしくは磨砕処
理後の最初沈殿池沈殿物を脱窒工程もしくは嫌気工程へ
移送するために必要な動力費を最小とすることが出来、
また、脱窒工程、嫌気工程及び硝化工程への有機物負荷
を最小とすることが出来る。The ORP in the denitrification step was measured, and the ORP was measured.
Is only 0 mV or more, by flowing at least part of the sedimentation basin sediment after crushing or grinding into the denitrification step or anaerobic step, the organic matter concentration in the wastewater is reduced, Organic substances can be replenished only when the concentration of the organic substances required for performing the denitrification reaction in the nitriding step is not ensured. By such control, the power cost required to perform the crushing or grinding treatment on the first sedimentation tank sediment and the first sedimentation tank sediment after the crushing treatment or the grinding treatment are transferred to the denitrification process or the anaerobic process. To minimize the power costs required to
Further, the load of organic substances on the denitrification step, anaerobic step and nitrification step can be minimized.
【0042】最初沈殿池沈殿物に対して破砕処理もしく
は磨砕処理を施して、最初沈殿池沈殿物に含まれる有機
性固形物の粒子径を小さくすると共に、一部可溶化をは
かり、その後脱窒槽または嫌気槽などの脱窒工程へ導入
することによって、窒素反応を主体とする微生物反応に
おいて迅速かつ効果的に利用することができる。The sedimentation basin sediment is subjected to crushing or grinding treatment to reduce the particle size of the organic solids contained in the sedimentation basin sediment and to partially solubilize it. By being introduced into a denitrification step such as a nitrification tank or an anaerobic tank, it can be used quickly and effectively in a microbial reaction mainly comprising a nitrogen reaction.
【0043】また、この破砕処理もしくは磨砕処理に用
いる装置として汎用品が適用できるため設備費は経済的
であり、モーターの動力費を主体とする該装置の運転費
も比較的経済的で、大型固形物の破壊効果も大きい。Also, since a general-purpose product can be used as an apparatus used for the crushing or grinding treatment, the equipment cost is economical, and the operation cost of the apparatus mainly including the power cost of the motor is relatively economical. The effect of breaking large solids is also great.
【図1】 図1は本発明の1実施例による生物学的窒素
除去処理装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a biological nitrogen removal treatment apparatus according to one embodiment of the present invention.
【図2】 図2は本発明の別の実施例による生物学的窒
素除去処理装置の構成を示す図である。FIG. 2 is a diagram showing a configuration of a biological nitrogen removal treatment apparatus according to another embodiment of the present invention.
【図3】 図3は本発明のさらに別の実施例による生物
学的窒素除去処理装置の構成を示す図である。FIG. 3 is a view showing a configuration of a biological nitrogen removal treatment apparatus according to still another embodiment of the present invention.
【図4】 図4は本発明の1つの実施例で使用された脱
窒反応実験装置の側面図である。FIG. 4 is a side view of a denitrification reaction experiment apparatus used in one embodiment of the present invention.
【図5】 図4の装置を用い、最初沈殿池の沈殿物の磨
砕物を添加した場合としなかった場合の硝酸性窒素濃度
の経時変化を示すグラフである。FIG. 5 is a graph showing the change over time in the nitrate nitrogen concentration with and without the addition of the ground material of the sediment in the first sedimentation basin using the apparatus of FIG.
【図6】 図6は従来の生物学的窒素除去処理装置の構
成を示す図である。FIG. 6 is a diagram showing a configuration of a conventional biological nitrogen removal treatment apparatus.
1.廃水 2.最初沈殿池 3.脱窒槽 4.硝化槽 5.散気装置 6.硝化循環液 7.最終沈殿池 8.返送汚泥 9.処理水 10.最初沈殿池沈殿物 11.破砕処理装置または磨砕処理装置 12.最初沈殿池沈殿物の破砕物または磨砕物 13.ORP計 14.制御装置 15.嫌気槽 16.攪拌装置 17.ビーカー 18.試料 1. Wastewater 2. First sedimentation basin 3. Denitrification tank 4. Nitrification tank 5. Air diffuser 6. 6. Nitrifying circulating fluid Final settling basin 8. Return sludge 9. Treated water 10. First sedimentation tank sediment 11. 11. Crushing device or grinding device 12. Crushed or ground material of first sedimentation tank sediment ORP meter 14. Control device 15. Anaerobic tank 16. Stirrer 17. Beaker 18. sample
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮田 純 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 馬場 圭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 沢田 豊志 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 宇田川 悟 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 遠藤 伸一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4D040 BB02 BB52 BB91 BB92 BB93 DD01 DD14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jun Miyata 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Inside the Kokan Kogyo Co., Ltd. (72) Inventor Kei Kei Bamba 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor: Toshishi Sawada 1-1-2, Marunouchi, Chiyoda-ku, Tokyo Japan Nippon Steel Pipe Co., Ltd. (72) Satoru Udagawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Inside (72) Inventor Shinichi Endo 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Tube Co., Ltd. F-term (reference) 4D040 BB02 BB52 BB91 BB92 BB93 DD01 DD14
Claims (2)
窒槽または嫌気槽および硝化槽よりなる装置を用いて廃
水の窒素を除去する際に、該処理される廃水の沈殿池の
沈殿物の少なくとも一部を破砕または磨砕して脱窒槽ま
たは嫌気槽へ供給することを特徴とする廃水の窒素除去
方法When removing nitrogen from wastewater using a device consisting of a sedimentation basin, a denitrification tank or an anaerobic tank and a nitrification tank for at least the wastewater to be treated, at least the sediment of the sedimentation basin of the wastewater to be treated is removed. A method for removing nitrogen from wastewater, which comprises crushing or grinding a part of the wastewater and feeding it to a denitrification tank or an anaerobic tank.
窒槽または嫌気槽よりなる装置において、該沈殿池の沈
殿物を抜き出すラインと、この抜き出された沈殿物を破
砕または磨砕する装置と、該破砕物または磨砕物を脱窒
槽または嫌気槽に供給するラインを設けたことを特徴と
する廃水の窒素除去装置2. An apparatus comprising at least a sedimentation basin, a denitrification tank or an anaerobic tank for wastewater to be treated, a line for extracting sediment from the sedimentation basin, and an apparatus for crushing or grinding the extracted sediment. And a line for supplying the crushed or crushed material to a denitrification tank or an anaerobic tank.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10249320A JP2000070989A (en) | 1998-09-03 | 1998-09-03 | Method and apparatus removing nitrogen in waste water |
US09/383,314 US6387254B1 (en) | 1998-09-03 | 1999-08-25 | Apparatus for wastewater treatment |
CA 2281338 CA2281338A1 (en) | 1998-09-03 | 1999-09-02 | Method and apparatus for wastewater treatment |
EP19990116858 EP0987224A3 (en) | 1998-09-03 | 1999-09-03 | Method and apparatus for removing phosphorus and nitrogen from wastewater |
US10/073,467 US20020104798A1 (en) | 1998-09-03 | 2002-02-11 | Method and apparatus for wastewater treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10249320A JP2000070989A (en) | 1998-09-03 | 1998-09-03 | Method and apparatus removing nitrogen in waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000070989A true JP2000070989A (en) | 2000-03-07 |
Family
ID=17191255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10249320A Pending JP2000070989A (en) | 1998-09-03 | 1998-09-03 | Method and apparatus removing nitrogen in waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000070989A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001029993A (en) * | 1999-07-23 | 2001-02-06 | Mitsui Mining Co Ltd | Method and apparatus for treating waste water |
JP2006272177A (en) * | 2005-03-29 | 2006-10-12 | Mitsubishi Heavy Ind Ltd | Method and system for removing biological nitrogen |
JP2006305536A (en) * | 2005-03-29 | 2006-11-09 | Maezawa Ind Inc | Waste water treatment apparatus |
JP2007000859A (en) * | 2005-05-24 | 2007-01-11 | Toshiba Corp | Phosphorous removal device in sewage disposal plant |
JP2014046257A (en) * | 2012-08-31 | 2014-03-17 | Jfe Steel Corp | Biological treatment method of nitrogen-containing waste water |
KR102020743B1 (en) * | 2019-03-08 | 2019-11-04 | 서울특별시 | Apparatus for treating waste water using recycling of primary sludge |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02211299A (en) * | 1988-09-16 | 1990-08-22 | Fujita Corp | Anaerobic digestion of sludge |
JPH09122682A (en) * | 1995-10-30 | 1997-05-13 | Ebara Corp | Method for treating waste water |
-
1998
- 1998-09-03 JP JP10249320A patent/JP2000070989A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02211299A (en) * | 1988-09-16 | 1990-08-22 | Fujita Corp | Anaerobic digestion of sludge |
JPH09122682A (en) * | 1995-10-30 | 1997-05-13 | Ebara Corp | Method for treating waste water |
Non-Patent Citations (1)
Title |
---|
第33回下水道研究発表会講演集平成8年度, JPNX006045771, 14 June 1996 (1996-06-14), pages 495 - 497, ISSN: 0000777796 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001029993A (en) * | 1999-07-23 | 2001-02-06 | Mitsui Mining Co Ltd | Method and apparatus for treating waste water |
JP2006272177A (en) * | 2005-03-29 | 2006-10-12 | Mitsubishi Heavy Ind Ltd | Method and system for removing biological nitrogen |
JP2006305536A (en) * | 2005-03-29 | 2006-11-09 | Maezawa Ind Inc | Waste water treatment apparatus |
JP4632356B2 (en) * | 2005-03-29 | 2011-02-16 | 三菱重工環境・化学エンジニアリング株式会社 | Biological nitrogen removal method and system |
JP2007000859A (en) * | 2005-05-24 | 2007-01-11 | Toshiba Corp | Phosphorous removal device in sewage disposal plant |
JP2014046257A (en) * | 2012-08-31 | 2014-03-17 | Jfe Steel Corp | Biological treatment method of nitrogen-containing waste water |
KR102020743B1 (en) * | 2019-03-08 | 2019-11-04 | 서울특별시 | Apparatus for treating waste water using recycling of primary sludge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7147778B1 (en) | Method and system for nitrifying and denitrifying wastewater | |
US6863818B2 (en) | Method and apparatus for treating wastewater using membrane filters | |
US6387254B1 (en) | Apparatus for wastewater treatment | |
US20070119763A1 (en) | Floating sequencing batch reactor and method for wastewater treatment | |
CN101723552B (en) | Treatment method of garbage leachate | |
JP3729332B2 (en) | Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same | |
US4159945A (en) | Method for denitrification of treated sewage | |
JP3483917B2 (en) | Sewage treatment method | |
CN201908019U (en) | Coking wastewater treatment system | |
US8696892B2 (en) | Apparatus for treating radioactive nitrate waste liquid | |
JP4409532B2 (en) | Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method | |
EP2049443B1 (en) | A method and apparatus for simultaneous clarification and endogenous post denitrification | |
JP2006289153A (en) | Method of cleaning sewage and apparatus thereof | |
KR101278475B1 (en) | Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor | |
JP2000070989A (en) | Method and apparatus removing nitrogen in waste water | |
JP2001009498A (en) | Treatment of waste water and treating device therefor | |
KR100457698B1 (en) | Livestock wastewater treatment method and equipment using STP waste excess sludge | |
JP2004275820A (en) | Wastewater treatment apparatus | |
JP2000024687A (en) | Treatment of waste nitric acid | |
KR20020075046A (en) | The treating method of high concentration organic waste water | |
JP2000070987A (en) | Method and apparatus for removing phosphorus in waste water | |
JP2007222830A (en) | Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it | |
CN214457492U (en) | Demulsification technical system for treating wastewater containing emulsified oil agent | |
JPWO2018021169A1 (en) | Method and apparatus for treating organic wastewater | |
JP2003225693A (en) | Method for drainage treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20031211 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061002 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070207 |