JP2004275820A - Wastewater treatment apparatus - Google Patents

Wastewater treatment apparatus Download PDF

Info

Publication number
JP2004275820A
JP2004275820A JP2003067665A JP2003067665A JP2004275820A JP 2004275820 A JP2004275820 A JP 2004275820A JP 2003067665 A JP2003067665 A JP 2003067665A JP 2003067665 A JP2003067665 A JP 2003067665A JP 2004275820 A JP2004275820 A JP 2004275820A
Authority
JP
Japan
Prior art keywords
sludge
treatment apparatus
wastewater treatment
sedimentation basin
settling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003067665A
Other languages
Japanese (ja)
Inventor
Masaaki Yoshino
正章 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2003067665A priority Critical patent/JP2004275820A/en
Publication of JP2004275820A publication Critical patent/JP2004275820A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus capable of efficiently performing dephosphorization or denitrification even at the time of rainy weather or the like by effectively putting an organic acid produced from sludge to practical use. <P>SOLUTION: The wastewater treatment apparatus includes a process for introducing the water flowing out of a first sedimentation basin 11 into an anaerobic tank 2 to anaerobically treat the same with microorganisms and a sludge circulating means for circulating a part of sludge first sedimented in the first sedimentation basin 11 to the water in the first sedimentation basin 11 is provided to the first sedimentation basin 11. As the sludge circulating means, a stirrer, a pressure water introducing route and a compressed air introducing route can be employed in a sludge pit other than a circulating sludge route 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、排水処理装置に関し、詳しくは、排水処理工程中に、最初沈殿池の流出水を嫌気槽(無酸素槽も含む)に導入して微生物による嫌気処理を行う工程を含む排水処理装置に関する。
【0002】
【従来の技術】
下排水の排水処理方法として、リンや窒素のような栄養塩類を除去するため、嫌気好気法のようなリン除去法、硝化脱窒法のような窒素除去法が広く知られており、さらに、生物学的脱リン法と硝化脱窒法とを組み合わせた嫌気無酸素好気法(A2O法)も知られている。このような各種排水処理方法において、嫌気処理を行う嫌気槽や無酸素処理を行う無酸素槽では、流入水中の溶解性有機物濃度が低下すると、リンや窒素の処理効率が低下してしまい、装置全体としてのリンや窒素の除去効率が低下してしまうことがある。
【0003】
このため、雨天時等の流入水中の溶解性有機物濃度が低下するとき、例えば、これによって脱リン機能が低下するようなときに、嫌気槽に溶解性の有機酸を投入することが提案されている(例えば、特許文献1参照。)。また、有機酸は、汚泥からメタンを得るメタン発酵の過程で酸発酵槽にて生成することが知られている(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開2002−286894号公報
【0005】
【特許文献2】
特開平8−238499号公報
【0006】
【発明が解決しようとする課題】
しかし、従来の装置では、嫌気槽等に有機酸を別途投入するための設備が必要となり、有機酸を系外から投入する際には、その分のコストも必要となる。また、メタン発酵を行う過程で得られた有機酸は、メタン発酵の過程でリンを溶出させるために用いられており、排水処理における脱リンや脱窒とは全く別の系で使用されている。
【0007】
そこで本発明は、汚泥から生成する有機酸を有効に活用することにより、雨天時等においても脱リンや脱窒を効率よく行うことができる排水処理装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の排水処理装置は、最初沈殿池の流出水を嫌気槽に導入して微生物による嫌気処理を行う工程を含む排水処理装置において、前記最初沈殿池に、該最初沈殿池で沈殿した初沈汚泥の一部を最初沈殿池内の水中に循環させる汚泥循環手段を設けたことを特徴としている。
【0009】
前記汚泥循環手段は、最初沈殿池から引き抜いた初沈汚泥の一部を最初沈殿池内に再導入する循環汚泥経路や、最初沈殿池の汚泥ピットに設けられた機械的撹拌手段、汚泥ピットに汚泥撹拌用の水又は空気を導入する経路等によって形成することができる。また、循環汚泥経路や最初沈殿池の適当な位置には、初沈汚泥の酸化還元電位を計測する計器(ORP計)を設けておくことが望ましい。
【0010】
【発明の実施の形態】
図1は本発明の一形態例を示す排水処理装置の系統図である。この排水処理装置は、流入水中のリンと窒素とを同時に除去する嫌気無酸素好気法(A2O)法に本発明を適用したものであって、上流側から、最初沈殿池11、嫌気槽12、無酸素槽13、好気槽14、最終沈殿池15の順に各処理槽を配置するとともに、好気槽14から無酸素槽13に硝化液を循環させる硝化液循環経路16と、最終沈殿池15から引き抜いた活性汚泥を嫌気槽12に返送する返送汚泥経路17と、前記活性汚泥の一部を余剰汚泥として取り出す余剰汚泥経路18と、最初沈殿池11から引き抜いた初沈汚泥を取り出す初沈汚泥経路19と、前記初沈汚泥を最初沈殿池11に循環させるための循環汚泥経路20とを設けている。
【0011】
このA2O法によるリンの除去は、嫌気槽12での嫌気状態で活性汚泥中のリン蓄積細菌がリンを吐き出し、好気槽14での好気状態で吐き出した量以上のリンを吸収することを利用したものであって、流入水中の溶解性有機物の濃度が低下すると、嫌気槽でのリンの吐き出しが不十分となって脱リン効率が低下する。
【0012】
また、窒素の除去は、好気槽14での好気状態でアンモニア性窒素が亜硝酸性又は硝酸性の窒素に酸化される硝化反応と、無酸素槽13での無酸素状態で活性汚泥中の脱窒細菌による亜硝酸性呼吸又は硝酸性呼吸により、亜硝酸性窒素や硝酸性窒素が窒素ガスに還元される脱窒反応とを利用したものであって、この場合も、流入水中の溶解性有機物の濃度が低下すると、脱窒反応が十分に進行せず、脱窒効率が低下する。
【0013】
一方、汚泥の嫌気性消化、すなわち、酸素の存在しない環境下で行われる有機物の生物分解は、嫌気性細菌の働きによる酸性発酵期(第一期)、酸性減退期(第二期)及びアルカリ性発酵期(第三期)を経て行われる。第一期及び第二期は、主として酸生成菌と呼ばれる通性嫌気性菌群の作用で汚泥中のセルロースを含む炭水化物、蛋白質、脂肪等の高分子有機物を、酢酸、プロピオン酸、酪酸等の揮発性有機物と低級アルコールとに加水分解する。
【0014】
これを利用して最初沈殿池11から引き抜いた初沈汚泥から有機酸を生成する研究が行われており、その結果、初沈汚泥に対してpHや汚泥滞留時間等の条件を制御するのみで容易に有機酸が生成することがわかっている。この有機酸の生成に関する条件として、pH及び原汚泥濃度があり、pHが5.5程度で有機酸生成率が高くなること、pH6以上ではメタン発酵が進行すること、1日程度の比較的短い滞留時間でも有機酸が生成すること、低水温では有機酸生成率が低くなること、原汚泥濃度が20000mg/L程度であれば、生成する有機酸によってpH調整剤を使用しなくてもpHが5.5程度に保たれることなどの知見が得られている。これらのことから、最初沈殿池11において、初沈汚泥の少なくとも一部の滞留時間を一定時間以上とすることにより、最初沈殿池11内で前述の酢酸、プロピオン酸、酪酸等の有機酸を生成することが可能となる。
【0015】
したがって、最初沈殿池11から引き抜いた初沈汚泥の一部を最初沈殿池11に循環させる汚泥循環手段として循環汚泥経路20を設けることにより、初沈汚泥を最初沈殿池11に一定時間滞留させることが可能となり、前記汚泥の嫌気性消化の第一期、第二期による有機酸の生成を期待することができる。
【0016】
生成した有機酸は、溶解性であるから固形物から分離して流入水中に溶解し、最初沈殿池11の上澄み液とともに嫌気槽12に流入する。これにより、嫌気槽12における溶解性有機物濃度を十分な状態とすることができるので、脱リン効率の低下を抑えることができる。さらに、この有機酸を含む液は、嫌気槽12から無酸素槽13に流入するので、無酸素槽13における溶解性有機物濃度も十分な状態とすることができ、脱窒効率の低下も抑えることができる。すなわち、嫌気槽12及び無酸素槽13における嫌気処理の効率を高めることが可能となる。
【0017】
したがって、有機酸が生成してメタン発酵が生じる前に最初沈殿池11に循環させることにより、有機酸を嫌気槽12に送り出すことができるので、メタン発酵によって有機酸が消費されてしまうことも抑えることができる。これにより、生成した有機酸の利用効率を向上させることができ、最初沈殿池11でメタン発酵が進行することも抑えることができる。
【0018】
さらに、最初沈殿池11における水温は、流入する下水の温度が比較的高温であることを考慮すれば、有機酸の生成を支障を来すことはほとんどない。また、最初沈殿池11内に初沈汚泥を長時間滞留させると、酸化還元電位が低くなりすぎて硫化水素等の有毒ガスが発生するおそれがあるので、循環汚泥経路20や最初沈殿池11の適当な位置に、初沈汚泥の酸化還元電位を計測する計器としてORP計21を設けて酸化還元電位を計測し、酸化還元電位が一定値以下になったときに、例えば曝気等によって最初沈殿池11内に酸素を供給し、最初沈殿池11内の酸化還元電位を適当な範囲に維持することが好ましい。
【0019】
なお、最初沈殿池11における初沈汚泥の循環量は、流入水の水質や水量、雨量等の条件によって異なるので、現地において実験を行い、適当な循環量を選択すべきである。また、流入水中に十分な溶解性有機物が含まれている場合は初沈汚泥の循環を止めてもよく、溶解性有機物濃度に応じて初沈汚泥の循環量を変化させるようにしてもよい。さらに、ORP計21を設置した場合は、測定値に応じて循環量を変化させることもできる。
【0020】
図2は、本発明を嫌気好気法によってリンを除去する排水処理装置に適用した例を示している。なお、以下の説明において、前記形態例に示した構成要素と同一又は同様の構成要素には、それぞれ同一符号を付してこれらの詳細な説明は省略する。図2に示す嫌気好気法による排水処理装置は、上流側から、最初沈殿池11、嫌気槽12、好気槽14、最終沈殿池15の順に各処理槽を配置するとともに、最終沈殿池15から引き抜いた活性汚泥を嫌気槽12に返送する返送汚泥経路17と、前記活性汚泥の一部を余剰汚泥として取り出す余剰汚泥経路18と、最初沈殿池11から引き抜いた初沈汚泥を取り出す初沈汚泥経路19と、前記初沈汚泥を最初沈殿池11に循環させるための循環汚泥経路20とを設けている。
【0021】
この排水処理装置においても、循環汚泥経路20により初沈汚泥を循環させ、最初沈殿池11で汚泥を一定時間滞留させることにより、汚泥から有機酸を生成させて嫌気槽12に送り出すことができるので、流入水中の溶解性有機物濃度が低下した場合でも、嫌気槽12においてリン蓄積細菌からリンを十分に吐き出させることができる。これにより、脱リン効率の低下を抑えることができる。
【0022】
図3は、本発明を硝化脱窒法によって窒素を除去する排水処理装置に適用した例を示している。この排水処理装置は、上流側から、最初沈殿池11、無酸素槽13、好気槽14、最終沈殿池15の順に各処理槽を配置するとともに、好気槽14から無酸素槽13に硝化液を循環させる硝化液循環経路16と、最終沈殿池15から引き抜いた活性汚泥を嫌気槽12に返送する返送汚泥経路17と、前記活性汚泥の一部を余剰汚泥として取り出す余剰汚泥経路18と、最初沈殿池11から引き抜いた初沈汚泥を取り出す初沈汚泥経路19と、前記初沈汚泥を最初沈殿池11に循環させるための循環汚泥経路20とを設けている。
【0023】
この排水処理装置においても、前記同様に、最初沈殿池11で有機酸を生成させて無酸素槽13に送り出すことができるので、流入水中の溶解性有機物濃度が低下した場合でも、無酸素槽13における脱窒反応を十分に進めることができ、脱窒効率の低下を抑えることができる。
【0024】
図4乃至図9は、最初沈殿池に前記循環汚泥経路を設けず、最初沈殿池内に汚泥循環手段を設置した例を示すもので、図4乃至図6は最初沈殿池が矩形池の場合、図7乃至図9は最初沈殿池が円形池の場合を示している。
【0025】
まず、図4乃至図6に示す矩形池からなる最初沈殿池31は、流入経路32の対向面上部に流出経路33を設けるとともに、池底部の流入経路側に汚泥ピット34を設け、この汚泥ピット34に向けて池底に沈殿した汚泥を掻き寄せるスラッジ掻寄機35を設けたものであって、汚泥ピット34の底部には、初沈汚泥を池内から引き抜くための前記初沈汚泥経路19が接続されている。
【0026】
このような最初沈殿池31において、図4に示す形態例では、汚泥ピット34に汚泥撹拌用の撹拌機36を設け、モーター37により撹拌翼38を回転させることにより、汚泥ピット34内の初沈汚泥を撹拌できるようにしている。すなわち、初沈汚泥経路19からの汚泥引き抜き頻度を通常より少なくすることによって汚泥ピット34内に初沈汚泥を滞留させて有機酸を生成させた後、撹拌機36を作動させて初沈汚泥を撹拌して水中を循環させることにより、生成した有機酸を水中に溶解させることができるとともに、汚泥ピット34内に水流を発生させて汚泥ピット34内が極端な嫌気状態になることを防止できる。したがって、汚泥ピット34内での初沈汚泥の滞留時間を適当に設定し、適当な時期に撹拌機36を作動させることにより、初沈汚泥から生成した有機酸を水中に溶解することができ、硫化水素等の有毒ガスの発生も防止できる。
【0027】
図5に示す形態例は、汚泥ピット34に汚泥撹拌用の圧力水導入経路39を設けている。本形態例においても、汚泥ピット34内での初沈汚泥の滞留時間を適当に設定し、適当な時期に圧力水導入経路39から適当な圧力を有する水、例えば二次処理水や沈砂池流出水等の水をポンプで供給し、先端のノズル40から汚泥ピット34内に噴出させて初沈汚泥を撹拌することにより、初沈汚泥から生成した有機酸を水中に溶解するとともに、硫化水素等の有毒ガスの発生を防止できる。
【0028】
図6に示す形態例は、汚泥ピット34に汚泥撹拌用の圧縮空気導入経路41を設けている。本形態例においても、汚泥ピット34内での初沈汚泥の滞留時間を適当に設定し、適当な時期に圧縮空気導入経路41から圧縮空気を供給し、先端のノズル42から汚泥ピット34内に噴出させて初沈汚泥を撹拌することにより、初沈汚泥から生成した有機酸を水中に溶解するとともに、硫化水素等の有毒ガスの発生を防止できる。
【0029】
図7乃至図9に示す円形池からなる最初沈殿池51は、外周に流出トラフ52を設けた円形池の底部中心に汚泥ピット53を設け、その外周に汚泥ピット53に向けて池底に沈殿した汚泥を掻き寄せるスラッジ掻寄機54を設けるとともに、汚泥ピット53の底部に初沈汚泥経路19を接続したものである。
【0030】
このような円形池からなる最初沈殿池51においても、汚泥ピット53内の初沈汚泥を撹拌するために、図7に示すような機械的な撹拌機55を設けたり、図8に示すような圧力水導入経路56を設けたり、図9に示すような圧縮空気導入経路57を設けたりすることにより、前記同様に、初沈汚泥から生成した有機酸を水中に溶解するとともに、硫化水素等の有毒ガスの発生を防止できる。
【0031】
また、図4乃至図9に示すように、最初沈殿池内に汚泥循環手段を設置した場合でも、適当な位置にORP計を設置して酸化還元電位を計測し、極端な嫌気状態にならないように監視することが望ましい。さらに、これらに示したような汚泥循環手段を設けて汚泥を撹拌することにより、汚泥ピット内に水道が形成されて初沈汚泥の引き抜きが阻害されることもなくなる。なお、前記各汚泥循環手段は、適宜組み合わせて用いることも可能である。
【0032】
【発明の効果】
以上説明したように、本発明の排水処理装置によれば、流入水中の溶解性有機物濃度が低いときでも、脱リン効率や脱窒効率が低下することがなくなるので、リンや窒素の除去を確実に行うことができる。また、従来の排水処理装置に比べて、汚泥循環経路や撹拌機、圧力水導入経路、圧縮空気導入経路等の簡単な設備を追加するだけでよいため、既存の設備にも対応可能であり、新たな薬剤や処理槽を必要とせず、設備に要するコストや運営に要するコストの上昇も極めて僅かである。
【0033】
さらに、初沈汚泥が十分に流動するため、部分的に極度な嫌気状態になることがなく、特別な脱臭設備を必要とせず、硫化水素等の有毒ガスの発生も抑えることができる。また、汚泥ピット内の初沈汚泥濃度を安定して高めることもできるので、引き抜いた初沈汚泥の処理処分も容易となる。
【図面の簡単な説明】
【図1】本発明を嫌気無酸素好気法(A2O)法に適用した一形態例を示す排水処理装置の系統図である。
【図2】本発明を嫌気好気法に適用した一形態例を示す排水処理装置の系統図である。
【図3】本発明を硝化脱窒法に適用した一形態例を示す排水処理装置の系統図である。
【図4】矩形池からなる最初沈殿池に汚泥撹拌用の撹拌機を設置した例を示す概略図である。
【図5】矩形池からなる最初沈殿池に汚泥撹拌用の圧力水導入経路を設置した例を示す概略図である。
【図6】矩形池からなる最初沈殿池に汚泥撹拌用の圧縮空気導入経路を設置した例を示す概略図である。
【図7】円形池からなる最初沈殿池に汚泥撹拌用の撹拌機を設置した例を示す概略図である。
【図8】円形池からなる最初沈殿池に汚泥撹拌用の圧力水導入経路を設置した例を示す概略図である。
【図9】円形池からなる最初沈殿池に汚泥撹拌用の圧縮空気導入経路を設置した例を示す概略図である。
【符号の説明】
11…最初沈殿池、12…嫌気槽、13…無酸素槽、14…好気槽、15…最終沈殿池、16…硝化液循環経路、17…返送汚泥経路、18…余剰汚泥経路、19…初沈汚泥経路、20…循環汚泥経路、21…ORP計、31…最初沈殿池、32…流入経路、33…流出経路、34…汚泥ピット、35…スラッジ掻寄機、36…撹拌機、37…モーター、38…撹拌翼、39…圧力水導入経路、40…ノズル、41…圧縮空気導入経路、42…ノズル、51…最初沈殿池、52…流出トラフ、53…汚泥ピット、54…スラッジ掻寄機、55…撹拌機、56…圧力水導入経路、57…圧縮空気導入経路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wastewater treatment apparatus, and more specifically, a wastewater treatment apparatus including a step of performing anaerobic treatment with microorganisms by introducing effluent from an initial sedimentation basin into an anaerobic tank (including an oxygen-free tank) during the wastewater treatment process. About.
[0002]
[Prior art]
As wastewater treatment methods for sewage, phosphorus removal methods such as anaerobic aerobic method and nitrogen removal methods such as nitrification denitrification method are widely known to remove nutrients such as phosphorus and nitrogen. An anaerobic anaerobic aerobic method (A2O method) that combines a biological dephosphorization method and a nitrification denitrification method is also known. In such various wastewater treatment methods, in an anaerobic tank that performs anaerobic treatment and an anaerobic tank that performs anoxic treatment, if the concentration of soluble organic matter in the inflowing water decreases, the processing efficiency of phosphorus and nitrogen will decrease, and the device The overall phosphorus and nitrogen removal efficiency may be reduced.
[0003]
For this reason, when the concentration of soluble organic matter in the inflowing water during rainy weather or the like is lowered, for example, when the dephosphorization function is lowered by this, it is proposed to introduce a soluble organic acid into the anaerobic tank. (For example, refer to Patent Document 1). Moreover, it is known that an organic acid is produced in an acid fermenter in the process of methane fermentation for obtaining methane from sludge (see, for example, Patent Document 2).
[0004]
[Patent Document 1]
JP-A-2002-286894 gazette
[Patent Document 2]
JP-A-8-238499 [0006]
[Problems to be solved by the invention]
However, in the conventional apparatus, a facility for separately introducing an organic acid into an anaerobic tank or the like is required, and when the organic acid is charged from outside the system, the cost is also required. The organic acid obtained in the process of methane fermentation is used to elute phosphorus in the process of methane fermentation, and is used in a system completely different from dephosphorization and denitrification in wastewater treatment. .
[0007]
Therefore, an object of the present invention is to provide a wastewater treatment apparatus that can efficiently perform dephosphorization and denitrification even in rainy weather by effectively utilizing an organic acid generated from sludge.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the wastewater treatment apparatus of the present invention is a wastewater treatment apparatus including a step of introducing an effluent from an initial sedimentation basin into an anaerobic tank and performing anaerobic treatment with microorganisms. It is characterized by providing a sludge circulation means for circulating a part of the initial sedimentation sludge precipitated in the sedimentation basin into the water in the initial sedimentation basin.
[0009]
The sludge circulation means includes a circulation sludge route for reintroducing a part of the initial settling sludge extracted from the first settling basin into the first settling basin, a mechanical stirring means provided in the sludge pit of the first settling pond, and sludge in the sludge pit. It can be formed by a route for introducing water or air for stirring. In addition, it is desirable to provide an instrument (ORP meter) for measuring the oxidation-reduction potential of the initial sludge at an appropriate position in the circulating sludge route and the initial sedimentation basin.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram of a wastewater treatment apparatus showing an embodiment of the present invention. This waste water treatment apparatus is the one in which the present invention is applied to an anaerobic anaerobic anaerobic method (A2O) method for simultaneously removing phosphorus and nitrogen in inflow water. , An anaerobic tank 13, an aerobic tank 14, and a final sedimentation tank 15, and a nitrification liquid circulation path 16 for circulating the nitrating liquid from the aerobic tank 14 to the anoxic tank 13, and the final sedimentation tank 15 for returning the activated sludge extracted from 15 to the anaerobic tank 12, the excess sludge path 18 for extracting a part of the activated sludge as excess sludge, and the first settling for removing the first settling sludge extracted from the first settling tank 11. A sludge path 19 and a circulating sludge path 20 for circulating the first settling sludge to the first settling basin 11 are provided.
[0011]
The removal of phosphorus by this A2O method means that phosphorus accumulating bacteria in activated sludge exhale phosphorus in an anaerobic state in the anaerobic tank 12, and absorb more phosphorus than the amount exhaled in the aerobic state in the aerobic tank 14. When the concentration of the soluble organic substance in the inflow water decreases, the discharge of phosphorus in the anaerobic tank becomes insufficient and the dephosphorization efficiency decreases.
[0012]
The removal of nitrogen is performed in a nitrification reaction in which ammonia nitrogen is oxidized to nitrite or nitrate nitrogen in an aerobic state in an aerobic tank 14 and in activated sludge in an oxygen-free state in an anaerobic tank 13. Nitrite respiration or nitrate respiration by a denitrifying bacterium using a denitrification reaction in which nitrite nitrogen or nitrate nitrogen is reduced to nitrogen gas. When the concentration of the organic substance decreases, the denitrification reaction does not proceed sufficiently and the denitrification efficiency decreases.
[0013]
On the other hand, the anaerobic digestion of sludge, that is, the biodegradation of organic matter performed in the absence of oxygen, is the acidic fermentation period (first stage), acidic decline period (second stage) and alkaline due to the action of anaerobic bacteria. It goes through the fermentation period (third period). In the first and second phases, carbohydrates, proteins, fats, and other high-molecular organic substances containing cellulose in sludge, mainly acetic acid, propionic acid, butyric acid, etc. Hydrolyzes to volatile organics and lower alcohols.
[0014]
Research has been conducted to produce organic acid from the initial sedimentation sludge extracted from the first sedimentation basin 11 using this, and as a result, only conditions such as pH and sludge residence time are controlled for the primary sedimentation sludge. It has been found that organic acids are readily formed. Conditions regarding the production of this organic acid include pH and raw sludge concentration. When the pH is about 5.5, the organic acid production rate becomes high. At pH 6 or more, methane fermentation proceeds. The organic acid is generated even at the residence time, the organic acid generation rate is low at low water temperature, and the raw sludge concentration is about 20000 mg / L, the pH can be adjusted without using a pH adjuster depending on the generated organic acid. Knowledge such as being maintained at about 5.5 has been obtained. From these facts, in the first settling basin 11, the above-mentioned organic acids such as acetic acid, propionic acid and butyric acid are generated in the first settling basin 11 by setting the residence time of at least a part of the initial settling sludge to a certain time or more. It becomes possible to do.
[0015]
Therefore, by providing a circulating sludge path 20 as a sludge circulation means for circulating a part of the initial settling sludge extracted from the first settling basin 11 to the first settling basin 11, the initial settling sludge is retained in the first settling basin 11 for a certain period of time. Therefore, it can be expected that organic acids are produced in the first and second stages of the anaerobic digestion of the sludge.
[0016]
Since the produced organic acid is soluble, it is separated from the solid and dissolved in the inflowing water, and flows into the anaerobic tank 12 together with the supernatant of the settling tank 11 first. Thereby, since the soluble organic substance density | concentration in the anaerobic tank 12 can be made into a sufficient state, the fall of dephosphorization efficiency can be suppressed. Furthermore, since the liquid containing the organic acid flows from the anaerobic tank 12 to the oxygen-free tank 13, the concentration of soluble organic matter in the oxygen-free tank 13 can be made sufficient, and the decrease in denitrification efficiency can be suppressed. Can do. That is, the efficiency of the anaerobic treatment in the anaerobic tank 12 and the anaerobic tank 13 can be increased.
[0017]
Therefore, since the organic acid can be sent to the anaerobic tank 12 by first circulating it to the settling basin 11 before the organic acid is generated and methane fermentation occurs, the organic acid is also prevented from being consumed by the methane fermentation. be able to. Thereby, the utilization efficiency of the produced | generated organic acid can be improved, and it can also suppress that methane fermentation advances in the first sedimentation tank 11. FIG.
[0018]
Furthermore, considering that the temperature of the sewage flowing into the first settling basin 11 is relatively high, the generation of the organic acid is hardly hindered. In addition, if the initial sedimentation sludge is retained in the first sedimentation basin 11 for a long time, the oxidation-reduction potential becomes too low and a toxic gas such as hydrogen sulfide may be generated. An ORP meter 21 is provided as an instrument for measuring the oxidation-reduction potential of the first settling sludge at an appropriate position, and the oxidation-reduction potential is measured. When the oxidation-reduction potential falls below a certain value, the first precipitation basin is formed by aeration, for example. It is preferable to supply oxygen into 11 and maintain the oxidation-reduction potential in the sedimentation tank 11 in an appropriate range first.
[0019]
In addition, since the circulation amount of the initial sedimentation sludge in the first sedimentation basin 11 varies depending on conditions such as the quality of the influent water, the amount of water, and the amount of rain, an appropriate circulation amount should be selected by performing experiments on site. Moreover, when sufficient dissolved organic matter is contained in the inflowing water, the circulation of the initial settling sludge may be stopped, and the circulation amount of the initial settling sludge may be changed according to the concentration of the soluble organic matter. Furthermore, when the ORP meter 21 is installed, the circulation rate can be changed according to the measured value.
[0020]
FIG. 2 shows an example in which the present invention is applied to a wastewater treatment apparatus for removing phosphorus by an anaerobic aerobic method. In the following description, components that are the same as or similar to the components shown in the above-described embodiment are given the same reference numerals, and detailed descriptions thereof are omitted. The waste water treatment apparatus using the anaerobic aerobic method shown in FIG. 2 arranges the treatment tanks in the order of the first sedimentation tank 11, the anaerobic tank 12, the aerobic tank 14, and the final sedimentation tank 15 from the upstream side. The return sludge path 17 for returning the activated sludge extracted from the anaerobic tank 12, the excess sludge path 18 for extracting a part of the activated sludge as excess sludge, and the first settling sludge for extracting the first settling sludge extracted from the first settling tank 11 A path 19 and a circulating sludge path 20 for circulating the primary sedimentation sludge to the primary sedimentation basin 11 are provided.
[0021]
Also in this waste water treatment device, the initial settling sludge is circulated through the circulating sludge route 20 and the sludge is retained in the first settling basin 11 for a certain period of time, so that organic acid can be generated from the sludge and sent to the anaerobic tank 12. Even when the concentration of the soluble organic substance in the inflow water is lowered, the phosphorus can be sufficiently discharged from the phosphorus accumulating bacteria in the anaerobic tank 12. Thereby, the fall of dephosphorization efficiency can be suppressed.
[0022]
FIG. 3 shows an example in which the present invention is applied to a wastewater treatment apparatus that removes nitrogen by a nitrification denitrification method. This waste water treatment apparatus arranges each treatment tank in the order of the first sedimentation tank 11, the anaerobic tank 13, the aerobic tank 14, and the final sedimentation tank 15 from the upstream side, and nitrifies from the aerobic tank 14 to the anaerobic tank 13. A nitrification liquid circulation path 16 for circulating the liquid, a return sludge path 17 for returning the activated sludge extracted from the final sedimentation basin 15 to the anaerobic tank 12, an excess sludge path 18 for taking a part of the activated sludge as excess sludge, An initial sedimentation sludge path 19 for taking out the initial sedimentation sludge extracted from the first sedimentation tank 11 and a circulating sludge path 20 for circulating the primary sedimentation sludge to the first sedimentation tank 11 are provided.
[0023]
Also in this waste water treatment apparatus, since the organic acid can be first generated in the settling basin 11 and sent to the anoxic tank 13 in the same manner as described above, even if the concentration of soluble organic matter in the inflowing water is reduced, the anoxic tank 13 The denitrification reaction in can be sufficiently advanced, and a decrease in denitrification efficiency can be suppressed.
[0024]
4 to 9 show an example in which the sludge circulation means is not provided in the first settling basin, and the sludge circulation means is installed in the first settling basin. FIGS. 4 to 6 show that the first settling basin is a rectangular pond. 7 to 9 show the case where the initial settling basin is a circular pond.
[0025]
First, the first sedimentation basin 31 composed of a rectangular pond shown in FIGS. 4 to 6 is provided with an outflow path 33 at the upper part of the opposite surface of the inflow path 32 and a sludge pit 34 on the inflow path side at the bottom of the pond. The sludge scraper 35 for scraping the sludge deposited on the pond bottom toward the pond 34 is provided. At the bottom of the sludge pit 34, the first settling sludge path 19 for extracting the first settling sludge from the pond is provided. It is connected.
[0026]
In such a first sedimentation basin 31, in the embodiment shown in FIG. 4, a sludge agitator 36 is provided in the sludge pit 34, and the agitator blade 38 is rotated by a motor 37, whereby the initial sedimentation in the sludge pit 34 is performed. The sludge can be stirred. That is, by reducing the sludge extraction frequency from the first settling sludge passage 19 less than usual, the first settling sludge is retained in the sludge pit 34 to generate organic acid, and then the agitator 36 is operated to remove the first settling sludge. By stirring and circulating in water, the generated organic acid can be dissolved in water, and a water flow can be generated in the sludge pit 34 to prevent the inside of the sludge pit 34 from becoming an anaerobic state. Therefore, by appropriately setting the residence time of the first settling sludge in the sludge pit 34 and operating the stirrer 36 at an appropriate time, the organic acid generated from the first settling sludge can be dissolved in water, Generation of toxic gases such as hydrogen sulfide can also be prevented.
[0027]
In the embodiment shown in FIG. 5, a pressure water introduction path 39 for sludge stirring is provided in the sludge pit 34. Also in this embodiment, the residence time of the first settling sludge in the sludge pit 34 is set appropriately, and water having an appropriate pressure from the pressure water introduction path 39 at an appropriate time, for example, secondary treated water or sedimentation basin outflow Water such as water is supplied by a pump and ejected into the sludge pit 34 from the nozzle 40 at the tip to stir the first settling sludge, thereby dissolving the organic acid generated from the first settling sludge in water, hydrogen sulfide, etc. The generation of toxic gases can be prevented.
[0028]
In the embodiment shown in FIG. 6, the sludge pit 34 is provided with a compressed air introduction path 41 for stirring sludge. Also in this embodiment, the residence time of the first settling sludge in the sludge pit 34 is set appropriately, compressed air is supplied from the compressed air introduction path 41 at an appropriate time, and the nozzle 42 at the tip enters the sludge pit 34. By ejecting and stirring the primary sedimentation sludge, the organic acid generated from the primary sedimentation sludge can be dissolved in water and the generation of toxic gases such as hydrogen sulfide can be prevented.
[0029]
The first sedimentation basin 51 composed of a circular pond shown in FIGS. 7 to 9 is provided with a sludge pit 53 at the center of the bottom of the circular pond having an outflow trough 52 on the outer periphery, and settles on the pond bottom toward the sludge pit 53 on the outer periphery. The sludge scraping machine 54 for scraping the sludge is provided, and the first settling sludge path 19 is connected to the bottom of the sludge pit 53.
[0030]
In the first sedimentation basin 51 composed of such a circular pond, in order to stir the initial sedimentation sludge in the sludge pit 53, a mechanical stirrer 55 as shown in FIG. By providing the pressure water introduction path 56 or by providing the compressed air introduction path 57 as shown in FIG. 9, the organic acid generated from the first settling sludge is dissolved in water, and hydrogen sulfide or the like is provided. Generation of toxic gas can be prevented.
[0031]
Moreover, as shown in FIGS. 4 to 9, even when the sludge circulation means is first installed in the settling basin, an ORP meter is installed at an appropriate position to measure the oxidation-reduction potential so as not to be in an extreme anaerobic state. It is desirable to monitor. Furthermore, by providing the sludge circulation means as shown above and stirring the sludge, water is not formed in the sludge pit, and the removal of the first settling sludge is not hindered. The sludge circulation means can be used in appropriate combination.
[0032]
【The invention's effect】
As described above, according to the wastewater treatment apparatus of the present invention, even when the concentration of soluble organic matter in the inflowing water is low, the dephosphorization efficiency and the denitrification efficiency are not reduced, so that the removal of phosphorus and nitrogen is ensured. Can be done. In addition, compared to conventional wastewater treatment equipment, it is only necessary to add simple equipment such as a sludge circulation path, a stirrer, a pressure water introduction path, and a compressed air introduction path, so it can be used with existing equipment. There is no need for new chemicals or treatment tanks, and the cost required for facilities and the cost required for operation are extremely small.
[0033]
Furthermore, since the initial settling sludge flows sufficiently, it does not partially become extremely anaerobic, does not require special deodorizing equipment, and can suppress generation of toxic gases such as hydrogen sulfide. In addition, since the initial sedimentation sludge concentration in the sludge pit can be stably increased, it becomes easy to dispose of the extracted primary sedimentation sludge.
[Brief description of the drawings]
FIG. 1 is a system diagram of a wastewater treatment apparatus showing an embodiment in which the present invention is applied to an anaerobic anaerobic and aerobic (A2O) method.
FIG. 2 is a system diagram of a waste water treatment apparatus showing an embodiment in which the present invention is applied to an anaerobic aerobic method.
FIG. 3 is a system diagram of a wastewater treatment apparatus showing an embodiment in which the present invention is applied to a nitrification denitrification method.
FIG. 4 is a schematic diagram showing an example in which a stirrer for stirring sludge is installed in a first sedimentation basin composed of rectangular ponds.
FIG. 5 is a schematic view showing an example in which a pressure water introduction path for agitation of sludge is installed in a first settling basin composed of rectangular ponds.
FIG. 6 is a schematic view showing an example in which a compressed air introduction path for sludge agitation is installed in a first settling basin composed of rectangular ponds.
FIG. 7 is a schematic view showing an example in which an agitator for agitation of sludge is installed in an initial sedimentation basin composed of a circular pond.
FIG. 8 is a schematic view showing an example in which a pressure water introduction path for agitation of sludge is installed in a first sedimentation basin composed of a circular pond.
FIG. 9 is a schematic view showing an example in which a compressed air introduction path for agitation of sludge is installed in a first sedimentation basin composed of a circular pond.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... First sedimentation tank, 12 ... Anaerobic tank, 13 ... Anaerobic tank, 14 ... Aerobic tank, 15 ... Final sedimentation tank, 16 ... Nitrification liquid circulation path, 17 ... Return sludge path, 18 ... Excess sludge path, 19 ... Initial sedimentation sludge route, 20 ... circulating sludge route, 21 ... ORP meter, 31 ... first sedimentation basin, 32 ... inflow route, 33 ... outflow route, 34 ... sludge pit, 35 ... sludge scraper, 36 ... agitator, 37 ... motor, 38 ... stirring blade, 39 ... pressure water introduction path, 40 ... nozzle, 41 ... compressed air introduction path, 42 ... nozzle, 51 ... first sedimentation basin, 52 ... outflow trough, 53 ... sludge pit, 54 ... sludge scraping Machine: 55 ... Agitator, 56 ... Pressure water introduction path, 57 ... Compressed air introduction path

Claims (7)

最初沈殿池の流出水を嫌気槽に導入して微生物による嫌気処理を行う工程を含む排水処理装置において、前記最初沈殿池に、該最初沈殿池で沈殿した初沈汚泥の一部を最初沈殿池内の水中に循環させる汚泥循環手段を設けたことを特徴とする排水処理装置。In the wastewater treatment apparatus including the step of introducing anaerobic water from the first sedimentation basin into the anaerobic tank and performing anaerobic treatment with microorganisms, a part of the initial sedimentation sludge precipitated in the first sedimentation basin is placed in the first sedimentation basin. A wastewater treatment apparatus provided with a sludge circulation means for circulating in water. 前記最初沈殿池に酸化還元電位を計測する計器が設けられていることを特徴とする請求項1記載の排水処理装置。The wastewater treatment apparatus according to claim 1, wherein a meter for measuring an oxidation-reduction potential is provided in the first settling basin. 前記汚泥循環手段は、最初沈殿池から引き抜いた初沈汚泥の一部を最初沈殿池内に再導入する循環汚泥経路であることを特徴とする請求項1記載の排水処理装置。2. The wastewater treatment apparatus according to claim 1, wherein the sludge circulation means is a circulation sludge route for reintroducing a part of the initial sedimentation sludge extracted from the initial sedimentation basin into the initial sedimentation basin. 前記循環汚泥経路に、循環する初沈汚泥の酸化還元電位を計測する計器が設けられていることを特徴とする請求項3記載の排水処理装置。The waste water treatment apparatus according to claim 3, wherein an instrument for measuring the oxidation-reduction potential of the circulating primary sludge is provided in the circulating sludge path. 前記汚泥循環手段は、最初沈殿池の汚泥ピットに設けられた機械的撹拌手段であることを特徴とする請求項1記載の排水処理装置。The wastewater treatment apparatus according to claim 1, wherein the sludge circulation means is a mechanical stirring means provided in a sludge pit of an initial settling basin. 前記汚泥循環手段は、最初沈殿池の汚泥ピットに汚泥撹拌用の水を導入する経路であることを特徴とする請求項1記載の排水処理装置。The wastewater treatment apparatus according to claim 1, wherein the sludge circulation means is a path for introducing water for agitation of sludge into a sludge pit of an initial sedimentation basin. 前記汚泥循環手段は、最初沈殿池の汚泥ピットに汚泥撹拌用の空気を導入する経路であることを特徴とする請求項1記載の排水処理装置。The wastewater treatment apparatus according to claim 1, wherein the sludge circulation means is a path for introducing air for agitation of sludge into a sludge pit of an initial settling basin.
JP2003067665A 2003-03-13 2003-03-13 Wastewater treatment apparatus Pending JP2004275820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067665A JP2004275820A (en) 2003-03-13 2003-03-13 Wastewater treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067665A JP2004275820A (en) 2003-03-13 2003-03-13 Wastewater treatment apparatus

Publications (1)

Publication Number Publication Date
JP2004275820A true JP2004275820A (en) 2004-10-07

Family

ID=33285210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067665A Pending JP2004275820A (en) 2003-03-13 2003-03-13 Wastewater treatment apparatus

Country Status (1)

Country Link
JP (1) JP2004275820A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043511A (en) * 2004-07-30 2006-02-16 Sumitomo Heavy Ind Ltd Organic acid producing method, organic acid producing device and wastewater treatment apparatus
JP2006305536A (en) * 2005-03-29 2006-11-09 Maezawa Ind Inc Waste water treatment apparatus
JP2007260602A (en) * 2006-03-29 2007-10-11 Sumitomo Heavy Industries Environment Co Ltd Organic acid production method, organic acid production device and waste water treatment apparatus
JP2009131854A (en) * 2009-03-23 2009-06-18 Maezawa Ind Inc Sewage treatment apparatus
EP2078703A1 (en) * 2007-11-14 2009-07-15 Sued-Chemie AG Method for denitrification of wastewater in a sewage treatment plant
CN105060622A (en) * 2015-07-29 2015-11-18 吉林建筑大学 Method for simultaneous removal of carbon, nitrogen and phosphorus in tri-sludge sewage and stabilization treatment of sludge
JP2020099873A (en) * 2018-12-21 2020-07-02 水ing株式会社 Water treatment method and water treatment apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043511A (en) * 2004-07-30 2006-02-16 Sumitomo Heavy Ind Ltd Organic acid producing method, organic acid producing device and wastewater treatment apparatus
JP2006305536A (en) * 2005-03-29 2006-11-09 Maezawa Ind Inc Waste water treatment apparatus
JP2007260602A (en) * 2006-03-29 2007-10-11 Sumitomo Heavy Industries Environment Co Ltd Organic acid production method, organic acid production device and waste water treatment apparatus
JP4688714B2 (en) * 2006-03-29 2011-05-25 住友重機械エンバイロメント株式会社 Organic acid generation method
EP2078703A1 (en) * 2007-11-14 2009-07-15 Sued-Chemie AG Method for denitrification of wastewater in a sewage treatment plant
JP2009131854A (en) * 2009-03-23 2009-06-18 Maezawa Ind Inc Sewage treatment apparatus
CN105060622A (en) * 2015-07-29 2015-11-18 吉林建筑大学 Method for simultaneous removal of carbon, nitrogen and phosphorus in tri-sludge sewage and stabilization treatment of sludge
JP2020099873A (en) * 2018-12-21 2020-07-02 水ing株式会社 Water treatment method and water treatment apparatus
JP7181078B2 (en) 2018-12-21 2022-11-30 水ing株式会社 Water treatment method and water treatment equipment

Similar Documents

Publication Publication Date Title
JP6448382B2 (en) Nitrogen-containing wastewater denitrification method and denitrification apparatus
KR101080635B1 (en) Advanced sewage wastewater treatment system combined with SBR and chemical sedimentation
JP2008284427A (en) Apparatus and method for treating waste water
EP2239742B1 (en) Method and apparatus for treating nitrate waste liquid
JP5001587B2 (en) Waste water treatment method and waste water treatment equipment
KR20170101664A (en) Advanced treatment Apparatus effectively removes the nutrients in sewage/waste water
EP2242061B1 (en) Apparatus and method for treatment of radioactive nitrate salt liquid waste
JPH0751686A (en) Treatment of sewage
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
JP2004275820A (en) Wastewater treatment apparatus
CN110902967A (en) Wastewater treatment method and wastewater treatment system based on sequencing batch membrane biological reaction
CN107055963A (en) The efficient advanced treatment apparatus of percolate and processing method
JP2001009498A (en) Treatment of waste water and treating device therefor
JP2008031744A (en) Circulating toilet system
JP5186626B2 (en) Biological purification method of sewage from livestock barn using shochu liquor wastewater
JP2000093992A (en) Wastewater treatment system
JP6875059B2 (en) Wastewater treatment method and wastewater treatment equipment
JPH09150181A (en) Sewage purifying device
JP2006075779A (en) Sludge volume reduction device and method, and organic waste water treatment system
JP2004105872A (en) Method of treating waste water
JP2003205297A (en) Waste water treating system
JP2009214073A (en) Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor
JP2007222830A (en) Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
JP2000325986A (en) Waste water treatment apparatus having phosphorus removing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A977 Report on retrieval

Effective date: 20071203

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519