JP2009214073A - Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor - Google Patents

Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor Download PDF

Info

Publication number
JP2009214073A
JP2009214073A JP2008062654A JP2008062654A JP2009214073A JP 2009214073 A JP2009214073 A JP 2009214073A JP 2008062654 A JP2008062654 A JP 2008062654A JP 2008062654 A JP2008062654 A JP 2008062654A JP 2009214073 A JP2009214073 A JP 2009214073A
Authority
JP
Japan
Prior art keywords
sludge
tank
treatment
nitrogen
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008062654A
Other languages
Japanese (ja)
Inventor
Yoshiharu Nawa
慶東 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2008062654A priority Critical patent/JP2009214073A/en
Publication of JP2009214073A publication Critical patent/JP2009214073A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cost-effective treatment method for nitrogen-containing organic wastewater capable of reducing the amount of excess sludge generated in performing activated sludge treatment for nitrogen-containing organic wastewater to be cleaned and of stably removing nitrogen, and a treatment apparatus employed for the method. <P>SOLUTION: In the treatment method for nitrogen-containing organic wastewater, solid-liquid separation for treated liquid is performed after nitrogen-containing organic wastewater is treated in an activated sludge treatment tank. The separated water is released as treated water to return the separated sludge to the activated sludge treatment tank. A portion or all of the sludge returned to the activated sludge treatment tank is concentrated in a membrane separation sludge concentration tank having a sludge densitometer. Thereafter, solubilization treatment is performed for a portion of the concentrated sludge to be returned to the activated sludge treatment tank, while the remaining of the concentrated sludge is extracted out of the sludge concentration tank to the outside as excess sludge. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、含窒素有機性廃水を活性汚泥処理して浄化する処理方法及び処理装置に関するものであり、さらに詳しくは活性汚泥処理槽で発生する余剰汚泥の発生量を減少させることができるとともに、安定して廃水中の窒素を除去することのできる含窒素有機性廃水の処理方法及び処理装置に関するものである。   The present invention relates to a treatment method and a treatment apparatus for treating and purifying nitrogen-containing organic wastewater by activated sludge, and more specifically, it is possible to reduce the amount of surplus sludge generated in the activated sludge treatment tank, The present invention relates to a method and apparatus for treating nitrogen-containing organic wastewater that can stably remove nitrogen in wastewater.

従来、硝化工程と脱窒工程からなる生物学的窒素除去法において、脱窒工程における脱窒細菌の水素供与体として破砕や可溶化した汚泥を用いることが行われており、例えば、余剰汚泥をアルカリ処理した後、遠心分離し、分離液を第2の脱窒素工程へ返送する方法が知られている(例えば、特許文献1参照)。   Conventionally, in biological nitrogen removal methods comprising a nitrification process and a denitrification process, sludge that has been crushed or solubilized has been used as a hydrogen donor for denitrifying bacteria in the denitrification process. A method is known in which the alkali treatment is followed by centrifugation, and the separated liquid is returned to the second denitrification step (see, for example, Patent Document 1).

しかしながら、硝化工程で重要な役割を果たす硝化細菌は、増殖速度が比較的遅く、硝化細菌を系内で安定的に保持しようとすれば、好気的固形物滞留時間を長くする必要があり、そのためには破砕や可溶化量を多くできないため、結果的に汚泥の減量効果が低くなる問題が生じていた。逆に硝化工程の汚泥量に対して破砕や可溶化の汚泥量の比率を大きくして好気的固形物滞留時間を短くすると、特に低水温期に硝化細菌を系内に保持することが困難となり、その結果処理水の窒素濃度が高くなるという問題が生じていた。   However, the nitrifying bacteria that play an important role in the nitrification process have a relatively slow growth rate, and if it is intended to stably hold the nitrifying bacteria in the system, it is necessary to increase the aerobic solid residence time, For this purpose, the amount of crushing and solubilization cannot be increased, resulting in a problem that the effect of reducing sludge is reduced. Conversely, increasing the ratio of sludge for crushing and solubilization to sludge in the nitrification process to shorten the aerobic solid residence time makes it difficult to keep nitrifying bacteria in the system, especially during low water temperatures. As a result, there has been a problem that the nitrogen concentration of the treated water becomes high.

また、系外への余剰汚泥の引き抜きは、通常、固液分離槽で分離された分離汚泥や活性汚泥処理槽の汚泥を、重力濃縮や機械濃縮することより行われている。しかしながら、重力濃縮では槽内の汚泥の滞留時間等によって引き抜かれる余剰汚泥濃度は大きく変化し、また機械濃縮の場合であっても安定して同じ濃度を継続することや、再現することは難しいため、正確な余剰汚泥引き抜き量を知ることはできなかった。   Moreover, extraction of excess sludge outside the system is usually performed by gravity concentration or mechanical concentration of the separated sludge separated in the solid-liquid separation tank or the sludge in the activated sludge treatment tank. However, in gravity concentration, the concentration of excess sludge drawn out by the sludge residence time in the tank changes greatly, and even in the case of mechanical concentration, it is difficult to maintain the same concentration stably or to reproduce it. The exact amount of excess sludge extraction could not be known.

そのため、窒素除去と汚泥の減量とを安定して最大限に行うための汚泥の破砕や可溶化処理量と余剰汚泥引き抜き量を制御することは困難な問題であった。
特公昭59−48677号公報
Therefore, it has been a difficult problem to control the sludge crushing and solubilization amount and the excess sludge extraction amount in order to stably and maximize nitrogen removal and sludge reduction.
Japanese Patent Publication No.59-48677

本発明は、このような課題を解決するもので、含窒素有機性廃水を活性汚泥処理して浄化する際に発生する余剰汚泥の量を減少させるとともに、安定した窒素の除去が可能な経済性に優れる有機性廃水の処理方法と、その方法に使用する装置を提供することを目的としている。   The present invention solves such a problem, and reduces the amount of excess sludge generated when treating and purifying nitrogen-containing organic wastewater by activated sludge and is economically capable of stably removing nitrogen. It is an object of the present invention to provide an organic wastewater treatment method that excels in quality and an apparatus used for the method.

本発明者は、このような課題を解決するために、鋭意検討した結果、膜分離方式の汚泥濃縮槽で汚泥を濃縮することにより経済的に汚泥の可溶化処理を行うとともに、その濃度を測定し、また、余剰汚泥を当該汚泥濃縮槽から系外へ引き抜くことにより、上記した課題を解決できることを見出し、本発明に到達した。   As a result of intensive investigations to solve such problems, the present inventor economically performs sludge solubilization treatment by concentrating sludge in a membrane separation type sludge concentration tank, and measures its concentration. In addition, the present inventors have found that the above-described problems can be solved by extracting excess sludge from the sludge concentration tank to the outside of the system, and have reached the present invention.

すなわち、本発明の第一は、含窒素有機性廃水を活性汚泥処理槽において処理した後、処理液を固液分離して分離水は処理水として放流させ、分離汚泥は前記活性汚泥処理槽に返送する含窒素有機性廃水の処理方法において、前記活性汚泥処理槽に返送する汚泥の一部又は全部を、汚泥濃度計を有する膜分離方式の汚泥濃縮槽にて汚泥を濃縮した後、濃縮した汚泥の一部を可溶化処理し前記活性汚泥処理槽へ返送するとともに、濃縮した汚泥の残りを前記汚泥濃縮槽から余剰汚泥として系外に引き抜くことを特徴とする含窒素有機性廃水の処理方法を要旨とするものであり、好ましくは、活性汚泥処理槽における硝化能力が低下した際に、汚泥濃縮槽内を曝気により好気状態にするとともに、汚泥濃縮槽の汚泥の一部又は全部を可溶化処理することなく活性汚泥処理槽へ返送する前記の含窒素有機性廃水の処理方法である。   That is, according to the first aspect of the present invention, after treating nitrogen-containing organic wastewater in an activated sludge treatment tank, the treatment liquid is subjected to solid-liquid separation, and the separated water is discharged as treated water. The separated sludge is fed to the activated sludge treatment tank. In the method of treating nitrogen-containing organic wastewater to be returned, a part or all of the sludge to be returned to the activated sludge treatment tank is concentrated after the sludge is concentrated in a membrane separation type sludge concentration tank having a sludge concentration meter. A method for treating nitrogen-containing organic wastewater, wherein a portion of sludge is solubilized and returned to the activated sludge treatment tank, and the remainder of the concentrated sludge is drawn out of the system as excess sludge from the sludge concentration tank. Preferably, when the nitrification capacity in the activated sludge treatment tank is reduced, the sludge concentration tank is aerobic by aeration and a part or all of the sludge in the sludge concentration tank is allowed. Solubilize It is a process method of the nitrogen-containing organic waste water to be returned to the no bioreactor tank.

本発明の第二は、含窒素有機性廃水を処理する活性汚泥処理槽と、処理液を固液分離する固液分離装置と、汚泥濃度計を有する膜分離方式の汚泥濃縮槽と、汚泥可溶化装置からなることを特徴とする含窒素有機性廃水の処理装置を要旨とするものであり、好ましくは、汚泥可溶化装置が、湿式媒体攪拌式ミルである前記の含窒素有機性廃水の処理装置である。   The second aspect of the present invention is an activated sludge treatment tank for treating nitrogen-containing organic waste water, a solid-liquid separation apparatus for separating the treatment liquid into solid and liquid, a membrane separation type sludge concentration tank having a sludge concentration meter, and sludge A nitrogen-containing organic wastewater treatment apparatus characterized by comprising a solubilizer, preferably, the treatment of nitrogen-containing organic wastewater as described above, wherein the sludge solubilizer is a wet medium stirring mill Device.

本発明によれば、可溶化処理のための汚泥濃縮槽に膜分離装置を用い、また、当該汚泥濃縮槽より系外に余剰汚泥を引き抜くため、槽に設置した汚泥濃度計を用いて可溶化処理量と、余剰汚泥量を常時監視するとともに、可溶化処理量と余剰汚泥量を調整が可能であり、活性汚泥処理槽の好気的固形物滞留時間を所定の時間以上に容易に制御することが可能となるため、安定した窒素の除去が達成でき良質な処理水質を得ることができるとともに、汚泥可溶化処理量も管理しているため、余剰汚泥発生量を安定して減少させることができる。   According to the present invention, a membrane separation device is used in a sludge concentration tank for solubilization treatment, and solubilization is performed using a sludge concentration meter installed in the tank in order to draw excess sludge out of the system from the sludge concentration tank. The amount of solubilization and the amount of excess sludge can be adjusted at all times while the amount of treatment and the amount of excess sludge are constantly monitored, and the aerobic solid retention time in the activated sludge treatment tank is easily controlled to a predetermined time or more. Therefore, stable nitrogen removal can be achieved, high quality treated water quality can be obtained, and the amount of sludge solubilized treatment is managed, so the amount of excess sludge generated can be reduced stably. it can.

本発明において処理の対象となる含窒素有機性廃水としては、通常の活性汚泥法によって処理される有機物を含有する廃水であれば特に限定されるものではなく、下水、し尿、食料品製造業廃水などの産業廃水、汚泥などが挙げられる。   The nitrogen-containing organic wastewater to be treated in the present invention is not particularly limited as long as it contains organic matter treated by a normal activated sludge method. Sewage, human waste, food manufacturing industry wastewater Industrial wastewater, sludge, etc.

本発明において、含窒素有機性廃水を活性汚泥処理槽において処理する方法としては、硝化工程と脱窒工程を異なる槽で行う循環式硝化脱窒法やステップエアレーション法、硝化−内生脱窒法、同一の槽で行う間欠曝気法など任意の生物学的脱窒法があげられる。   In the present invention, as a method for treating nitrogen-containing organic wastewater in an activated sludge treatment tank, a circulation nitrification denitrification method, a step aeration method, a nitrification-endogenous denitrification method, wherein the nitrification step and the denitrification step are performed in different tanks, the same Arbitrary biological denitrification methods such as intermittent aeration performed in the tank are available.

以下、本発明の処理方法について図面を参照しながら説明する。   The processing method of the present invention will be described below with reference to the drawings.

図1において、含窒素有機性廃水1(以下、廃水という。)は硝化工程と脱窒工程からなる活性汚泥処理槽2において処理され、有機物の除去とともに窒素除去が行われる。なお、活性汚泥処理槽の各槽の汚泥濃度は、後述の好気的固形物滞留時間の計算のために必要であり、汚泥濃度計を設置して測定しておくことが望ましい。   In FIG. 1, nitrogen-containing organic waste water 1 (hereinafter referred to as waste water) is treated in an activated sludge treatment tank 2 comprising a nitrification step and a denitrification step, and nitrogen removal is performed along with removal of organic substances. In addition, the sludge density | concentration of each tank of an activated sludge process tank is required for calculation of the aerobic solid substance residence time mentioned later, and it is desirable to install and measure a sludge concentration meter.

次に処理液は固液分離槽3に送られ、処理水4と分離汚泥5に分離される。分離汚泥5の一部又は全部は汚泥濃度計を有する膜分離方式の汚泥濃縮槽7に送られ、残りの分離汚泥は前記活性汚泥処理槽2に返送汚泥6として返送される。分離汚泥5は汚泥濃縮槽7に設置された膜分離装置より、膜を透過した分離液8は前記活性汚泥処理槽2に返送される。また、処理水4のSS濃度は後述の好気的固形物滞留時間の計算のために適宜測定する必要があり、SS濃度計を設置して測定しておくことが望ましい。   Next, the treatment liquid is sent to the solid-liquid separation tank 3 and separated into treated water 4 and separated sludge 5. Part or all of the separated sludge 5 is sent to a membrane separation type sludge concentration tank 7 having a sludge densitometer, and the remaining separated sludge is returned to the activated sludge treatment tank 2 as return sludge 6. The separation sludge 5 is returned from the membrane separation device installed in the sludge concentration tank 7 to the activated sludge treatment tank 2 after the separation liquid 8 has passed through the membrane. Moreover, it is necessary to measure SS concentration of the treated water 4 suitably for calculation of the aerobic solid residence time mentioned later, and it is desirable to install and measure SS concentration meter.

本発明においては、さらに、膜分離装置で濃縮された汚泥濃縮槽7の濃縮汚泥9は汚泥濃度計により濃度を測定して、汚泥可溶化装置11へ導入され、可溶化した可溶化汚泥12は前記活性汚泥処理槽2へ戻される。また、余剰な濃縮された汚泥は系外へ余剰汚泥10として排出される。   In the present invention, the concentrated sludge 9 in the sludge concentration tank 7 concentrated by the membrane separator is measured with a sludge densitometer and introduced into the sludge solubilizer 11, solubilized solubilized sludge 12 is The activated sludge treatment tank 2 is returned to. Further, excess concentrated sludge is discharged out of the system as excess sludge 10.

汚泥可溶化装置11で破砕などの可溶化を施す汚泥の量としては、汚水のBODの同化により増殖する汚泥の固形物量と、可溶化処理した汚泥の一部は活性汚泥処理工程で再度汚泥になるため、その増殖量とを考慮して目標の減量化率になるように適宜設定すればよく、通常、汚泥可溶化しない場合の余剰汚泥発生量の1〜5倍量、好ましくは2〜4倍量、最も好ましくは3〜4倍量程度の汚泥を可溶化することが好ましい。   The amount of sludge to be solubilized such as crushing in the sludge solubilizer 11 includes the amount of solid matter of sludge proliferated by assimilation of the BOD of the sewage, and part of the sludge solubilized to sludge again in the activated sludge treatment process. Therefore, it may be set appropriately so as to achieve the target reduction rate in consideration of the amount of growth, and is usually 1 to 5 times the amount of excess sludge generated when sludge is not solubilized, preferably 2 to 4 It is preferable to solubilize sludge in a double amount, most preferably about 3 to 4 times.

また、可溶化された汚泥を戻す時間帯としては、廃水の流入量が少なく脱窒のための有機分が少なくなる、夜間などに行うことが好ましい。なお、可溶化した汚泥を戻す槽としては、循環脱窒素法やステップエアレーション法では脱窒槽に返送した場合には脱窒のための有機物として可溶化汚泥を有効に利用することができるため、脱窒槽の方が好ましい。また、間欠曝気法では脱窒工程時に返送することが好ましい。   Further, the time zone for returning the solubilized sludge is preferably performed at night when the amount of inflow of wastewater is small and the organic content for denitrification is small. As a tank for returning the solubilized sludge, the solubilized sludge can be effectively used as an organic substance for denitrification when it is returned to the denitrification tank by the circulation denitrification method or the step aeration method. Nitrogen tanks are preferred. In the intermittent aeration method, it is preferably returned during the denitrification step.

本発明の処理方法においては、冬季など水温の低下により活性汚泥処理槽の硝化能力が低下した際に、汚泥濃縮槽内に設置した曝気装置により槽内を好気状態に維持し、硝化細菌の増殖に好適状態にし、また、濃縮汚泥の一部又は全部を可溶化処理することなく活性汚泥処理槽へ濃縮汚泥返送ライン13を通して返送することにより処理水質の向上を図ることが好ましい。なお、汚泥可溶化装置を一部又は全部を運転せずに汚泥可溶化のラインより返送してもよい。   In the treatment method of the present invention, when the nitrification capacity of the activated sludge treatment tank decreases due to a decrease in water temperature such as in winter, the aeration apparatus installed in the sludge concentration tank maintains the inside of the tank in an aerobic state, It is preferable to improve the quality of the treated water by making it suitable for growth and returning it through the concentrated sludge return line 13 to the activated sludge treatment tank without solubilizing part or all of the concentrated sludge. The sludge solubilizer may be returned from the sludge solubilization line without operating part or all of the sludge solubilizer.

このように、槽内を好気状態に維持することにより、硝化細菌の硝化能力の維持と硝化細菌の増加が期待でき、また、その硝化細菌を可溶化処理して死滅させることなく活性汚泥処理槽へ返送することにより、処理水質の向上が図れる。さらに、汚泥濃縮槽を経由せずに返送するよりも、汚泥濃縮槽にて高濃度の汚泥を好気状態に保持することにより、処理装置全体の硝化細菌の硝化能力の維持と硝化細菌の増加が期待できる。なお、好気状態とは溶存酸素が槽内で検出されることをいい、槽内を好気状態に維持する方法としては、膜分離装置の洗浄に用いる曝気装置を使用してもよいが、曝気装置には、槽内の溶存酸素濃度が好ましくは1mg/L以上、さらに好ましくは2mg/Lになるように曝気する能力が必要である。   In this way, maintaining the inside of the tank in an aerobic state can be expected to maintain the nitrification ability of nitrifying bacteria and increase the nitrifying bacteria, and the activated sludge treatment without solubilizing and killing the nitrifying bacteria The quality of the treated water can be improved by returning it to the tank. Furthermore, rather than returning without passing through the sludge concentration tank, maintaining the high concentration of sludge in the aerobic state in the sludge concentration tank maintains the nitrification capacity of the nitrifying bacteria in the entire treatment equipment and increases the number of nitrifying bacteria. Can be expected. The aerobic state means that dissolved oxygen is detected in the tank, and as a method for maintaining the inside of the tank in an aerobic state, an aeration apparatus used for cleaning the membrane separation apparatus may be used. The aeration apparatus needs to be capable of aeration so that the dissolved oxygen concentration in the tank is preferably 1 mg / L or more, more preferably 2 mg / L.

なお、汚泥濃縮槽の溶存酸素濃度の設定は活性汚泥処理槽への溶存酸素の持ち込みを考慮して決定することが好ましい。また、曝気による炭酸ガスの溶け込みや硝化反応により槽内のpHが4以下など極端に低下する場合は、活性汚泥処理槽への影響を考慮して適宜中和を行うことが好ましい。   In addition, it is preferable to determine the setting of the dissolved oxygen concentration of a sludge concentration tank in consideration of carrying in of dissolved oxygen to an activated sludge processing tank. Further, when the pH in the tank is extremely lowered, such as 4 or less, due to the dissolution of carbon dioxide gas or a nitrification reaction by aeration, it is preferable to neutralize appropriately considering the influence on the activated sludge treatment tank.

本発明の第二は、上記した処理方法を好適に実施し得る設備であって、主な構成としては、含窒素有機性廃水を処理する活性汚泥処理槽と、処理液を固液分離する固液分離装置と、汚泥濃度計を有する膜分離方式の汚泥濃縮槽と、汚泥可溶化装置などである。   The second aspect of the present invention is equipment that can suitably carry out the above-described treatment method. The main configuration is an activated sludge treatment tank for treating nitrogen-containing organic wastewater, and a solid solution for separating the treatment liquid into solid and liquid. A liquid separation device, a membrane separation type sludge concentration tank having a sludge concentration meter, a sludge solubilizer, and the like.

図2においては、活性汚泥処理法として循環式硝化脱窒法を例として示す。活性汚泥処理槽2は脱窒槽14と硝化槽15からなり、脱窒槽14は、廃水1が流入するとともに、硝化槽15から循環液16が流入し、循環液16に含まれる硝酸態窒素、亜硝酸態窒素が脱窒菌の働きにより窒素ガスとして系外に除去される槽である。脱窒槽14内には槽内の液を攪拌するために攪拌装置17が設置されているのが好ましい。ここで用いられる攪拌装置17としては、水中ミキサーや水中ポンプなどが挙げられる。   In FIG. 2, a circulating nitrification denitrification method is shown as an example of the activated sludge treatment method. The activated sludge treatment tank 2 includes a denitrification tank 14 and a nitrification tank 15, and the waste water 1 flows into the denitrification tank 14, and the circulating liquid 16 flows from the nitrification tank 15. A tank in which nitrate nitrogen is removed from the system as nitrogen gas by the action of denitrifying bacteria. In the denitrification tank 14, a stirrer 17 is preferably installed to stir the liquid in the tank. Examples of the stirring device 17 used here include an underwater mixer and an underwater pump.

硝化槽15は、脱窒槽14からの液が導入される槽であって、槽内では活性汚泥による生物反応によってアンモニア態窒素が硝酸態又は亜硝酸態窒素に硝化される。硝化槽15には、一部の槽内液を脱窒槽14へ返送するための返送流路16が備わっており、これにより脱窒槽14と硝化槽15との間で汚泥液が循環することになる。循環する液量としては、目的とする窒素除去率にもよるが、通常廃水の導入量(日平均汚水量Q)の数倍(1Q〜5Q程度)に設定することが好ましい。汚泥水を循環させる方法として、通常、硝化槽15に循環ポンプ装置20を配置し、脱窒槽14へ槽内水を送り、脱窒槽14の槽内水は自然流下にて硝化槽15へ送るようにするが、他の方法として、循環ポンプを脱窒槽14に配置して、硝化槽15へ脱窒槽14の槽内水を送り、硝化槽15の槽内水を自然流下にて脱窒槽14へ循環させてもよい。   The nitrification tank 15 is a tank into which the liquid from the denitrification tank 14 is introduced. In the tank, ammonia nitrogen is nitrified into nitrate or nitrite nitrogen by a biological reaction by activated sludge. The nitrification tank 15 is provided with a return flow path 16 for returning a part of the liquid in the tank to the denitrification tank 14, whereby the sludge liquid is circulated between the denitrification tank 14 and the nitrification tank 15. Become. The amount of liquid to be circulated is preferably set to be several times (about 1Q to 5Q) of the amount of normal wastewater introduced (daily average amount of sewage Q), depending on the target nitrogen removal rate. As a method of circulating the sludge water, a circulation pump device 20 is usually arranged in the nitrification tank 15, and the tank water is sent to the denitrification tank 14, and the tank water in the denitrification tank 14 is sent to the nitrification tank 15 under natural flow. However, as another method, a circulation pump is arranged in the denitrification tank 14, the tank water of the denitrification tank 14 is sent to the nitrification tank 15, and the tank water of the nitrification tank 15 is naturally flowed to the denitrification tank 14. It may be circulated.

固液分離槽3は、含窒素有機性廃水を処理した活性汚泥処理槽2の槽内水を処理水4と分離汚泥5に分離するための槽であって、汚泥の分離方法としては重力分離や膜分離法などによって行う。分離汚泥5は汚泥ポンプ21により一部または全部が汚泥濃縮槽7に送られ、残りの汚泥は活性汚泥処理槽2に返送汚泥として返送される。   The solid-liquid separation tank 3 is a tank for separating the water in the activated sludge treatment tank 2 treated with the nitrogen-containing organic waste water into the treated water 4 and the separated sludge 5. Gravity separation is used as a sludge separation method. Or by membrane separation. Part or all of the separated sludge 5 is sent to the sludge concentration tank 7 by the sludge pump 21, and the remaining sludge is returned to the activated sludge treatment tank 2 as return sludge.

本発明においては、汚泥濃縮槽7は膜分離型の汚泥濃縮装置19を有しており、膜分離型の汚泥濃縮装置19としては、その形式は特に限定されないが、浸漬型膜分離装置が好適である。汚泥濃縮槽7には汚泥濃度計18と散気装置26を配しており、浸漬型膜分離装置19の場合では槽内の好気状態(溶存酸素の存在する状況)の確保と膜の洗浄用に下方に散気装置26を配置する。浸漬型膜分離装置19は、その形式は特に限定されないが、例えば、複数のろ過膜カートリッジを所定間隔で平行に配置したものが挙げられ、散気装置26から噴出する曝気空気が気液混相流で膜面に沿ってクロスフローで流れて膜面を洗浄するようなものが好ましい。   In the present invention, the sludge concentrating tank 7 has a membrane separation type sludge concentrating device 19, and the form of the membrane separation type sludge concentrating device 19 is not particularly limited, but a submerged membrane separation device is suitable. It is. The sludge concentration tank 7 is provided with a sludge concentration meter 18 and an air diffuser 26. In the case of the submerged membrane separator 19, the aerobic state (the situation in which dissolved oxygen exists) in the tank is secured and the membrane is washed. For this purpose, an air diffuser 26 is disposed below. The type of the submerged membrane separation device 19 is not particularly limited. For example, the submerged membrane separation device 19 includes a plurality of filtration membrane cartridges arranged in parallel at predetermined intervals, and the aerated air ejected from the diffuser 26 is a gas-liquid mixed phase flow. It is preferable that the film surface is washed by crossflow along the film surface.

余剰汚泥の濃縮と汚泥可溶化のための濃縮は通常、余剰汚泥の濃縮は重力濃縮、汚泥可溶化のための濃縮は機械濃縮など別の装置が用いられているが、本発明においては単一の槽で行うため経済的に優れている。   Concentration of excess sludge and concentration for sludge solubilization are usually performed by other devices such as gravity concentration for concentration of excess sludge, and mechanical concentration for concentration of sludge solubilization. This is economical because it is carried out in a tank.

この浸漬型膜分離装置19により、ろ過膜を透過した分離液8は、重力又は吸引ポンプ装置24により活性汚泥処理槽2に返送されるが、処理状況に応じては系外に取り出されることとなる。   With this submerged membrane separator 19, the separation liquid 8 that has passed through the filtration membrane is returned to the activated sludge treatment tank 2 by gravity or a suction pump device 24, but is taken out of the system depending on the processing situation. Become.

また、本発明においては、汚泥濃縮槽7内に汚泥濃度を測定するための汚泥濃度計18が備えられている。汚泥濃度計18としては、透過光式、散乱光式、マイクロ波式、超音波式など各種方式が挙げられる。また、場合によっては粘度計など汚泥濃度と相関関係にある計器を用いてもよい。なお、汚泥濃度計18は、活性汚泥処理槽2にも設置することが望ましく、ステップエアレーション法など各槽の汚泥濃度が異なる場合では特に望ましいが、汚泥濃縮槽7の汚泥濃度と濃縮汚泥9、余剰汚泥10の汚泥量、処理水4の水量、処理水のSS濃度、分離汚泥5の汚泥量、分離液8のSS濃度と、水量などから活性汚泥処理槽2の汚泥濃度を推定することが可能であるため、活性汚泥処理槽2の汚泥濃度計は、上記の水量や汚泥量などを測定する計器を備えた場合には、経済性を考慮して省いても構わない。   In the present invention, a sludge concentration meter 18 for measuring the sludge concentration is provided in the sludge concentration tank 7. Examples of the sludge concentration meter 18 include various methods such as a transmitted light method, a scattered light method, a microwave method, and an ultrasonic method. Moreover, you may use the instrument which has correlation with sludge density | concentrations, such as a viscometer depending on the case. In addition, it is desirable to install the sludge concentration meter 18 in the activated sludge treatment tank 2, and it is particularly desirable when the sludge concentration in each tank is different, such as the step aeration method, but the sludge concentration in the sludge concentration tank 7 and the concentrated sludge 9, It is possible to estimate the sludge concentration in the activated sludge treatment tank 2 from the sludge amount of the excess sludge 10, the water amount of the treated water 4, the SS concentration of the treated water, the sludge amount of the separated sludge 5, the SS concentration of the separation liquid 8, and the water amount. Since it is possible, the sludge concentration meter of the activated sludge treatment tank 2 may be omitted in consideration of economy when it is provided with the above-described measuring instrument for measuring the amount of water and sludge.

本発明の処理装置においては、汚泥可溶化装置11が汚泥濃縮槽7の汚泥の一部を可溶化するために設置されている。槽内の濃縮汚泥を汚泥可溶化手段に送るために、汚泥供給ポンプ23が汚泥濃縮槽7に浸漬されていることが好ましい。破砕などの可溶化処理を施された汚泥は活性汚泥処理槽2へ返送されることとなる。この際、可溶化した汚泥を戻す槽としては、脱窒槽14又は硝化槽15のどちらでもよいが、脱窒槽14に返送した場合には脱窒のための有機物として可溶化汚泥12を有効に利用することができるため、脱窒槽14の方が好ましい。   In the processing apparatus of this invention, the sludge solubilization apparatus 11 is installed in order to solubilize a part of sludge of the sludge concentration tank 7. FIG. In order to send the concentrated sludge in the tank to the sludge solubilizing means, the sludge supply pump 23 is preferably immersed in the sludge concentration tank 7. Sludge that has undergone solubilization treatment such as crushing is returned to the activated sludge treatment tank 2. At this time, as the tank for returning the solubilized sludge, either the denitrification tank 14 or the nitrification tank 15 may be used, but when returned to the denitrification tank 14, the solubilized sludge 12 is effectively used as an organic substance for denitrification. Therefore, the denitrification tank 14 is preferable.

本発明の処理装置において用いられる汚泥可溶化装置11としては、汚泥を可溶化できるものであれば特にその方式に限定されるものではないが、例えば、湿式媒体攪拌式ミル、超音波、ホモジナイザー、ミキサー等による機械破砕処理装置の他、酸化剤やアルカリ処理等の化学的可溶化処理装置、熱処理装置などによって汚泥を破砕や可溶化する方法を用いた装置を挙げることができ、これらを単独で、あるいは組み合わせて用いることができる。これらの装置のうち、湿式媒体攪拌式ミルは、取り扱いが容易である他、難分解性の有機物の発生が少ないなどの点で優れているため、汚泥の破砕、可溶化装置として好ましい。   The sludge solubilizer 11 used in the treatment apparatus of the present invention is not particularly limited as long as it can solubilize sludge. For example, a wet medium agitating mill, an ultrasonic wave, a homogenizer, In addition to mechanical crushing treatment equipment such as mixers, chemical solubilization treatment equipment such as oxidant and alkali treatment, equipment using a method of crushing and solubilizing sludge with heat treatment equipment, etc. can be mentioned alone. Or can be used in combination. Among these apparatuses, the wet-medium agitating mill is preferable as a sludge crushing and solubilizing apparatus because it is easy to handle and is excellent in that it hardly generates difficult-to-decompose organic substances.

以下、湿式媒体攪拌式ミルについて詳しく説明する。   Hereinafter, the wet medium stirring mill will be described in detail.

使用される破砕媒体(ビーズ)としては、ガラス、アルミナ、ジルコニアなどのビーズが挙げられ、真比重2.0〜7.0のビーズであることが好ましい。真比重が2.0より小さいと微生物の破砕が十分にできにくくなり、また真比重を7.0より大きくしても汚泥の破砕効果の向上がほとんどなく、攪拌に必要な動力が大きくなるので好ましくない。   Examples of the crushing medium (beads) used include beads such as glass, alumina, and zirconia, and beads having a true specific gravity of 2.0 to 7.0 are preferable. If the true specific gravity is less than 2.0, it will be difficult to crush microorganisms, and even if the true specific gravity is greater than 7.0, the sludge crushing effect will hardly be improved, and the power required for stirring will increase. It is not preferable.

また、破砕媒体の粒径としては、0.05〜2.0mmφが好ましく、特に0.25〜1.0mmφが好ましい。ビーズの粒径が2.0mmφより大きいと、ビーズ間の空隙が大きくなるため汚泥を構成する数μm〜数十μmのバクテリアなどの微生物を破砕しにくくなるために好ましくない。また、ビーズの粒径が0.05mmφより小さいと、スクリーンなどのビーズ分離部で分離することが困難となるため好ましくない。   The particle size of the crushing medium is preferably 0.05 to 2.0 mmφ, particularly preferably 0.25 to 1.0 mmφ. If the particle size of the beads is larger than 2.0 mmφ, it is not preferable because the gap between the beads becomes large and it becomes difficult to crush microorganisms such as bacteria of several μm to several tens μm constituting the sludge. Further, if the particle size of the beads is smaller than 0.05 mmφ, it is difficult to separate the beads at a bead separating portion such as a screen.

ビーズ充填率としては、破砕効果および消費電力から50〜100%、特に70〜90%が好ましく、ディスク(ピン)先端周速としては、3〜30m/秒、特に5〜20m/秒が好ましい。また、ミル室の向きとしては、縦型、横型のいずれでもよく、破砕媒体を攪拌するための攪拌装置としてはディスク型、ピン型、ピンディスク型などが挙げられる。   The bead filling rate is preferably 50 to 100%, particularly 70 to 90% from the crushing effect and power consumption, and the disk (pin) tip peripheral speed is preferably 3 to 30 m / second, particularly 5 to 20 m / second. The direction of the mill chamber may be either a vertical type or a horizontal type, and examples of the stirring device for stirring the crushing medium include a disk type, a pin type, and a pin disk type.

湿式媒体攪拌式ミル処理における汚泥の滞留時間としては、導入する汚泥濃度や用いる破砕媒体などによって適宜設定するものであり、特に限定されるものではないが、通常20秒〜20分が好ましく、特に30秒〜10分が好ましい。滞留時間が20秒よりも短いと汚泥が十分に破砕されていない可能性があり、また、20分より長くしても消費電力が増大するだけで、破砕効果はさほど向上しない。   The sludge residence time in the wet medium agitation mill treatment is appropriately set according to the sludge concentration to be introduced and the crushing medium to be used, and is not particularly limited, but is usually preferably 20 seconds to 20 minutes, particularly 30 seconds to 10 minutes are preferred. If the residence time is shorter than 20 seconds, there is a possibility that the sludge is not sufficiently crushed, and even if it is longer than 20 minutes, only the power consumption increases and the crushing effect is not improved so much.

また、処理温度としては、60℃以下が好ましく、特に4〜40℃が好ましい。処理温度が60℃より高いと、汚泥成分の一部が熱変性して難分解性物質となり、処理水の水質が悪化する可能性があるために好ましくない。通常、ミル処理により破砕した汚泥の温度は、処理前の汚泥に比べて10〜30℃程度上昇するため、夏場のように温度が高く処理温度が60℃以上になる場合では、冷却水を用いて冷却することが好ましい。但し、通常冷却水は必要ない。   Moreover, as processing temperature, 60 degrees C or less is preferable, and 4-40 degreeC is especially preferable. When the treatment temperature is higher than 60 ° C., a part of the sludge component is thermally denatured to become a hardly decomposable substance, which is not preferable because the quality of the treated water may be deteriorated. Usually, the temperature of sludge crushed by mill treatment rises by about 10-30 ° C compared to the sludge before treatment. Therefore, when the temperature is high and the treatment temperature is 60 ° C or higher as in summer, cooling water is used. It is preferable to cool it. However, cooling water is usually not necessary.

また、ミル処理終了後は、次の運転立ち上げを容易に行うために、ミル室内を水により洗浄することが望ましい。洗浄する水としては、水道水、処理水、汚水などを用いて行えばよい。洗浄する水の量および時間は適宜設定すればよいが、洗浄水の汚泥濃度が1重量%以下になるまで洗浄することが好ましい。   In addition, after the mill treatment is completed, it is desirable to wash the mill chamber with water in order to easily start the next operation. As water to be washed, tap water, treated water, sewage, or the like may be used. The amount and time of water to be washed may be set as appropriate, but it is preferable to wash until the sludge concentration in the washing water is 1% by weight or less.

湿式媒体攪拌式ミル処理においては、汚泥が流動する状態であれば汚泥の破砕効果は汚泥濃度にあまり左右されない。従って、破砕処理する汚泥の濃度は汚泥が流動する状態であれば汚泥濃度が高い方が好ましい。従って、固液分離に沈殿槽を用いる場合では、固液分離後の分離汚泥の汚泥濃度は通常0.2〜1質量%程度と低いため、処理液を直接処理した場合、湿式媒体攪拌式ミルが大きくなるとともに処理量が多いため、本法では経済的に汚泥を破砕するために分離汚泥を膜分離式の汚泥濃縮槽を用いて濃縮する。濃縮汚泥濃度としては、高い程処理量が少なくなるため経済的には好ましいが、汚泥濃度が高くなると粘度も高くなり、膜分離により分離液を得ることが難しくなるため、1質量%〜4質量%が好ましく、さらには1.5質量%〜3質量%が好ましい。   In the wet medium agitation mill treatment, the sludge crushing effect is not greatly affected by the sludge concentration as long as the sludge flows. Therefore, the concentration of sludge to be crushed is preferably higher if the sludge flows. Therefore, when a precipitation tank is used for solid-liquid separation, the sludge concentration of the separated sludge after solid-liquid separation is usually as low as about 0.2 to 1% by mass. In this method, the separated sludge is concentrated using a membrane separation type sludge concentration tank in order to smash sludge economically. As the concentrated sludge concentration, the higher the amount, the lower the treatment amount, which is economically preferable. However, the higher the sludge concentration, the higher the viscosity, and it becomes difficult to obtain a separation liquid by membrane separation. % Is preferable, and 1.5% by mass to 3% by mass is more preferable.

以上、説明してきたように、第二の本発明である処理装置を用いることにより、第一の本発明の処理方法の使用をすることができるが、この際、増殖速度の遅い硝化細菌を系内に安定的に保持し、窒素を十分に除去するためには、活性汚泥処理槽での好気的固形物滞留時間を所定の時間以上になるように系内の各条件を制御することが好ましい。   As described above, by using the processing apparatus according to the second invention, the processing method of the first invention can be used. At this time, nitrifying bacteria having a slow growth rate can be used. In order to keep it stably in the interior and to sufficiently remove nitrogen, it is necessary to control each condition in the system so that the aerobic solid residence time in the activated sludge treatment tank is not less than a predetermined time. preferable.

ところで、高度処理施設設計マニュアル(案)(社団法人 日本下水道協会 平成6年)からは、例えば循環式硝化脱窒法では好気的固形物滞留時間(θXA)は以下の式(1)で示されることとなるが、硝化細菌を系内に保持するためには、好気的固形物滞留時間(θXA)が以下の式(2)を満たしている必要があり、また、循環式硝化脱窒法では好気的固形物滞留時間(θXA)は水温と関係式(3)の式が成立することが示されている。   By the way, from the advanced treatment facility design manual (draft) (Japan Sewerage Association 1994), for example, in the circulatory nitrification denitrification method, the aerobic solid residence time (θXA) is expressed by the following equation (1). However, in order to retain nitrifying bacteria in the system, the aerobic solid residence time (θXA) needs to satisfy the following formula (2). In the circulation nitrification denitrification method, It is shown that the aerobic solid residence time (θXA) satisfies the relationship between the water temperature and the relational expression (3).

θXA=θX・tA/t ……式(1)
θXA:好気的固形物滞留時間(日)
θX:固形物滞留時間(日)
tA:好気タンク[硝化槽]滞留時間(時間)
t:生物反応タンク[活性汚泥処理槽]滞留時間(時間)
θXA=1/μ ……式(2)
μ:硝化細菌の比増殖速度(水温T(℃)の関数)(1/日)
θXA=δ・20.6e(−0.0627T)……式(3)
δ:流入水T−Nの変動に対する補正係数 1.2〜1.5
T:水温T(℃)
ここで、本発明においては、通常の活性汚泥法と比較して汚泥発生量を減少させるために、通常、汚泥可溶化しない場合の余剰汚泥発生量の2〜4倍量程度の汚泥を可溶化することとなり、その可溶化された汚泥のほとんどは死滅するため、実際上の好気的固形物滞留時間が短くなる。
θXA = θX · tA / t (1)
θXA: Aerobic solids residence time (days)
θX: Solid residence time (days)
tA: Aerobic tank [nitrification tank] Residence time (hours)
t: Biological reaction tank [activated sludge treatment tank] Residence time (hours)
θXA = 1 / μ (2)
μ: Specific growth rate of nitrifying bacteria (function of water temperature T (° C)) (1 / day)
θXA = δ · 20.6e (−0.0627T) Equation (3)
δ: Correction coefficient for fluctuation of influent TN 1.2-1.5
T: Water temperature T (° C)
Here, in the present invention, in order to reduce the amount of sludge generation as compared with the normal activated sludge method, normally, about 2 to 4 times the amount of excess sludge generation when not sludge solubilization is solubilized. As a result, most of the solubilized sludge is killed, and the actual aerobic solid residence time is shortened.

従って、水温と汚泥濃度計の数値に基づいて、汚泥濃度、汚泥可溶化量、余剰汚泥量、曝気時間を十分注意して設定し、系内に硝化細菌を保持する必要がある。   Therefore, it is necessary to set the sludge concentration, sludge solubilization amount, surplus sludge amount and aeration time with great care based on the water temperature and the sludge densitometer value, and to retain nitrifying bacteria in the system.

可溶化処理を行った場合の好気的固形物滞留時間(θXA)の計算は破砕や可溶化処理する汚泥のうち、硝化細菌が死滅した汚泥については系外へ流出する汚泥として算出すると、式(4)で示される。
θXA=tB/24・(VA・XA)/((QW+α・QM)・XW+(Q−QW)・XE)
……式(4)
VA:好気タンク[硝化槽]の容量(m3)
XA:好気タンク[硝化槽]の汚泥濃度(kg/m3)
XW:余剰汚泥濃度,汚泥可溶化する汚泥の汚泥濃度(kg/m3)
XE:処理水中のSS濃度(kg/m3)
Q:流入汚水量(m3/日)
QW:余剰汚泥量(m3/日)
QM:汚泥可溶化量(m3/日)
tB:曝気時間(時間)
α:汚泥可溶化による硝化細菌の死滅割合(−)
The calculation of the aerobic solid retention time (θXA) when solubilization is performed is calculated by calculating the sludge from which nitrifying bacteria have been killed as sludge flowing out of the system among sludge to be crushed and solubilized. It is shown by (4).
θXA = tB / 24 · (VA · XA) / ((QW + α · QM) · XW + (Q−QW) · XE)
...... Formula (4)
VA: Capacity of aerobic tank [nitrification tank] (m3)
XA: Sludge concentration in aerobic tank [nitrification tank] (kg / m3)
XW: Surplus sludge concentration, sludge concentration of sludge solubilized (kg / m3)
XE: SS concentration in treated water (kg / m3)
Q: Amount of inflow sewage (m3 / day)
QW: Excess sludge volume (m3 / day)
QM: Sludge solubilization amount (m3 / day)
tB: Aeration time (hours)
α: Rate of death of nitrifying bacteria by sludge solubilization (-)

従って、本発明では式(3)よりT(℃)における必要好気的固形物滞留時間(日)を求め、式(4)の計算値がそれ以上となるように、汚泥重量(VA・XA)、汚泥可溶化重量(QM・XW)、余剰汚泥重量(QW・XW)、曝気時間(tB)の各値を設定して運転することが好ましい。なお、通常は式(4)の計算値が式(3)の計算値よりも2日以上長い様に設定するのが好ましく、さらには5日以上長いように設定することがより好ましい。   Therefore, in the present invention, the required aerobic solid residence time (day) at T (° C.) is obtained from the formula (3), and the sludge weight (VA · XA) is set so that the calculated value of the formula (4) becomes longer. ), Sludge solubilized weight (QM · XW), surplus sludge weight (QW · XW), and aeration time (tB) are preferably set and operated. In general, it is preferable to set the calculated value of the formula (4) to be longer than the calculated value of the formula (3) by 2 days or more, and more preferable to set it to be longer than 5 days.

式(4)において、好気タンク[硝化槽]の汚泥濃度は適宜測定することが望ましいが、活性汚泥処理槽から流出する汚泥濃度は以下の式(5)で示される。
XA‘=((QR+QX)・XR+(Q−QW)・XE)/(Q−QW+QR+QX)
……式(5)
また、返送汚泥濃度および汚泥濃縮槽流入の汚泥濃度は、汚泥濃縮槽の汚泥濃度と分離液の汚泥濃度などから以下の式(6)で示される。
XR=((QM+QW)・XW+QF・XF)/QX ……式(6)
ここで、
XF=0kg/m3とすると
活性汚泥処理槽から流出する汚泥濃度は式(5)と式(6)より以下の式(7)で表され、つまり、各流量と汚泥濃縮槽の汚泥濃度および処理水のSS濃度より計算でき、この値から好気タンク[硝化槽]内の汚泥濃度を推定することが可能である。
XA‘=((QR+QX)・(QM+QW)・XW/QX+(Q−QW)・XE)/(Q−QW+QR+QX)……式(7)
XA‘:活性汚泥処理槽から流出する汚泥濃度(kg/m3)
XE:処理水中のSS濃度(kg/m3)
XR:返送汚泥濃度,汚泥濃縮槽流入の汚泥濃度(kg/m3)
XW:余剰汚泥濃度,汚泥可溶化する汚泥の汚泥濃度(kg/m3)
XF:分離液の汚泥濃度(kg/m3)
Q:流入汚水量(m3/日)
QR:返送汚泥量(m3/日)
QX:汚泥濃縮槽流入量(m3/日)
QW:余剰汚泥量(m3/日)
QM:汚泥可溶化量(m3/日)
QF:分離液の水量(m3/日)
なお、通常処理水中のSS量は余剰汚泥量や可溶化汚泥量と比較して少なく、比較的安定しており、また固液分離槽の固液分離法として膜分離法を用いた場合では、処理水のSS濃度は無視できる。
以上のとおり、本発明の処理装置において、余剰汚泥の引き抜きと、汚泥破砕する汚泥の引き抜きを汚泥濃度計を有した汚泥濃縮槽から行うことから、汚泥濃縮槽内の汚泥濃度を測定することにより、上記の算出が容易にできる。
In equation (4), it is desirable to measure the sludge concentration in the aerobic tank [nitrification tank] as appropriate, but the sludge concentration flowing out from the activated sludge treatment tank is expressed by the following equation (5).
XA '= ((QR + QX) .XR + (Q-QW) .XE) / (Q-QW + QR + QX)
...... Formula (5)
Further, the return sludge concentration and the sludge concentration entering the sludge concentration tank are expressed by the following equation (6) from the sludge concentration in the sludge concentration tank and the sludge concentration in the separated liquid.
XR = ((QM + QW) · XW + QF · XF) / QX (6)
here,
When XF = 0 kg / m3, the sludge concentration flowing out from the activated sludge treatment tank is expressed by the following expression (7) from the expressions (5) and (6). That is, each flow rate and sludge concentration and treatment in the sludge concentration tank It can be calculated from the SS concentration of water, and the sludge concentration in the aerobic tank [nitrification tank] can be estimated from this value.
XA ′ = ((QR + QX) · (QM + QW) · XW / QX + (Q−QW) · XE) / (Q−QW + QR + QX) (7)
XA ': Concentration of sludge flowing out from activated sludge treatment tank (kg / m3)
XE: SS concentration in treated water (kg / m3)
XR: Return sludge concentration, sludge concentration in the sludge concentration tank (kg / m3)
XW: Surplus sludge concentration, sludge concentration of sludge solubilized (kg / m3)
XF: Sludge concentration in the separation liquid (kg / m3)
Q: Amount of inflow sewage (m3 / day)
QR: Return sludge volume (m3 / day)
QX: Sludge concentration tank inflow (m3 / day)
QW: Excess sludge volume (m3 / day)
QM: Sludge solubilization amount (m3 / day)
QF: Water volume of separation liquid (m3 / day)
In addition, the amount of SS in normal treated water is relatively small compared to the amount of excess sludge and solubilized sludge, and when the membrane separation method is used as the solid-liquid separation method of the solid-liquid separation tank, The SS concentration of treated water is negligible.
As described above, in the treatment apparatus of the present invention, since the excess sludge is extracted and the sludge to be crushed is extracted from the sludge concentration tank having the sludge concentration meter, the sludge concentration in the sludge concentration tank is measured. The above calculation can be easily performed.

次に、本設備の運転条件における各設定値の決め方の一例を以下に示す。   Next, an example of how to determine each set value in the operating conditions of this equipment is shown below.

(1)汚泥可溶化量を設定する。汚泥可溶化量は固定値とするか、あるいは流入水量および流入水質によって変化させる。変化させる場合は流入水量と比例して増減させることが好ましい。通常、汚泥可溶化量は、汚泥可溶化しない場合に発生する余剰汚泥量の1〜5倍量程度とすればよい。   (1) Set the amount of sludge solubilization. The sludge solubilization amount is set to a fixed value or is changed according to the influent water amount and the influent water quality. When changing, it is preferable to increase / decrease in proportion to the amount of inflow water. Usually, the sludge solubilization amount may be about 1 to 5 times the amount of excess sludge generated when the sludge is not solubilized.

(2)硝化槽の1日あたりの最低曝気時間を設定する。最低曝気時間としては特に制限されないが、1日当たり6時間以上が好ましく、さらには8時間以上が好ましい。   (2) Set the minimum aeration time per day for the nitrification tank. The minimum aeration time is not particularly limited, but is preferably 6 hours or more per day, and more preferably 8 hours or more.

(3)設定硝化槽汚泥濃度を設定する。設定硝化槽汚泥濃度としては固液分槽が沈殿槽の場合では1,000mg/L〜4,000mg/Lが好ましく、膜分離方式の場合では10,000mg/L〜30,000mg/Lが好ましく、さらには15,000mg/L〜30,000mg/Lがより好ましい。   (3) Set nitrification tank sludge concentration. The set nitrification tank sludge concentration is preferably 1,000 mg / L to 4,000 mg / L when the solid-liquid separation tank is a precipitation tank, preferably 10,000 mg / L to 30,000 mg / L, more preferably 15,000 when the membrane separation method is used. More preferred is mg / L to 30,000 mg / L.

(4)水温(固定値、あるいは実測値)から式(3)により必要好気的固形物滞留時間(日)を求める。水温を固定値とする場合では、当該処理場の最低水温を用いることが好ましく、通常は12℃程度である。また、δの値は1.2〜1.5とするが、安全側を見て1.5に設定する方が好ましい。   (4) The required aerobic solid residence time (days) is obtained from the water temperature (fixed value or actual measured value) according to the equation (3). In the case where the water temperature is a fixed value, it is preferable to use the lowest water temperature of the treatment plant, usually about 12 ° C. Further, the value of δ is set to 1.2 to 1.5, but it is preferable to set it to 1.5 in view of the safety side.

(5)汚泥濃縮槽の運転を開始する。設定汚泥濃縮槽汚泥濃度としては10,000mg/L〜40,000mg/Lが好ましく、さらには15,000mg/L〜30,000mg/Lがより好ましい。   (5) Start operation of the sludge concentration tank. The set sludge concentration tank sludge concentration is preferably 10,000 mg / L to 40,000 mg / L, and more preferably 15,000 mg / L to 30,000 mg / L.

汚泥可溶化手段4の運転を開始する。但し、式(5)の計算値が必要好気的固形物滞留時間(日)以下になる場合は、硝化槽汚泥濃度を上昇させてから汚泥可溶化手段の運転を開始する。なお、式(5)のαは汚泥の種類や汚泥の可溶化方法により異なるため、あらかじめ、当該処理場の汚泥を用いて実験により求めておくことが好ましく、実験できない場合では安全側を見てα=1と設定することが好ましい。   The operation of the sludge solubilizing means 4 is started. However, when the calculated value of the formula (5) is equal to or shorter than the required aerobic solid residence time (days), the sludge solubilization means starts operating after increasing the nitrification tank sludge concentration. Since α in equation (5) varies depending on the type of sludge and the sludge solubilization method, it is preferable to obtain beforehand by experiment using sludge from the treatment plant. It is preferable to set α = 1.

(6)設定硝化槽汚泥濃度に達した段階で、汚泥濃度がほぼ一定になる様に、余剰汚泥の引き抜きを開始する。通常、汚泥可溶化しない場合の余剰汚泥発生量の0〜0.5倍量程度である。   (6) When the set nitrification tank sludge concentration is reached, the extraction of excess sludge is started so that the sludge concentration becomes substantially constant. Usually, it is about 0 to 0.5 times the amount of surplus sludge generated when sludge is not solubilized.

(7)式(5)の計算値が必要好気的固形物滞留時間(日)以下になった場合は、硝化槽の曝気時間を延長する。   (7) When the calculated value of the formula (5) is less than the required aerobic solid residence time (days), the aeration time of the nitrification tank is extended.

(8)水温低下などにより、硝化槽の1日あたりの曝気時間を24時間とした場合でも、式(5)の計算値が必要好気的固形物滞留時間(日)以下になった場合は、汚泥濃縮槽の曝気時間を延長することにより、汚泥濃縮槽内の汚泥の好気状態を保持し、硝化細菌の維持と増加を図る。   (8) Even if the aeration time per day in the nitrification tank is set to 24 hours due to a decrease in water temperature, etc., if the calculated value of formula (5) is less than the required aerobic solid residence time (days) By extending the aeration time of the sludge concentration tank, the aerobic state of the sludge in the sludge concentration tank is maintained and the nitrifying bacteria are maintained and increased.

(9)窒素除去が悪化する場合では、さらに必要好気的固形物滞留時間(日)になるように汚泥可溶化量を減少させ、汚泥濃縮槽の汚泥を活性汚泥処理槽に一部又は全部を返送する。   (9) In the case where nitrogen removal deteriorates, the sludge solubilization amount is further reduced so that the required aerobic solid residence time (days) is reached, and the sludge in the sludge concentration tank is partly or entirely contained in the activated sludge treatment tank. Will be returned.

(10)再度、式(5)の計算値が必要好気的固形物滞留時間(日)以上になれば、設定汚泥可溶化量まで汚泥可溶化量を増加させる。また、汚泥濃縮槽の曝気時間を元の時間に戻す。   (10) When the calculated value of the formula (5) is equal to or longer than the required aerobic solid residence time (days), the sludge solubilization amount is increased to the set sludge solubilization amount. Moreover, the aeration time of the sludge concentration tank is returned to the original time.

(11)設定汚泥可溶化量とした場合でも、必要好気的固形物滞留時間(日)以上になれば、1日あたりの硝化槽の曝気時間を減少させる。
曝気時間を減少させることにより曝気装置などのランニングコストを低減できる。
(11) Even when the set sludge solubilization amount is reached, the aeration time of the nitrification tank per day is reduced if the required aerobic solid retention time (days) or more is reached.
By reducing the aeration time, the running cost of the aeration apparatus can be reduced.

なお、以上の制御については、プログラムを組むにより自動的に制御することができる。また、式(5)の計算値が必要好気的固形物滞留時間(日)よりも2日以上長い様に制御するのが好ましく、さらには5日以上となるよう制御する方がより好ましい。   The above control can be automatically controlled by creating a program. Moreover, it is preferable to control so that the calculated value of Formula (5) is 2 days or more longer than the required aerobic solid residence time (days), and it is more preferable to control to be 5 days or more.

なお、本制御方法では硝化槽や汚泥濃縮槽の容積を一定のものとして計算しているが、場合によっては、水面高さを変化させることなどにより、その容積を変化させても当然かまわない。本法では、余剰汚泥および汚泥可溶化するための汚泥を同一の汚泥濃縮槽から引き抜いており、好気的固形物滞留時間の計算は容易である。   In this control method, the volume of the nitrification tank or sludge concentration tank is calculated to be constant. However, in some cases, the volume may be changed by changing the water surface height. In this method, surplus sludge and sludge for sludge solubilization are extracted from the same sludge concentration tank, and aerobic solids residence time can be easily calculated.

また、汚泥可溶化量を変更する方法としては、汚泥可溶化手段4への汚泥供給速度を変更してもよいが、汚泥可溶化手段4内での滞留時間が変化するため、汚泥供給速度を一定にして1日当たりに処理する時間を変更する方がよい。   Further, as a method of changing the sludge solubilization amount, the sludge supply speed to the sludge solubilization means 4 may be changed, but since the residence time in the sludge solubilization means 4 changes, the sludge supply speed is changed. It is better to change the processing time per day while keeping it constant.

このようにして硝化細菌を保持するように、好気的固形物滞留時間を設定すれば、汚泥発生量を減少させると共に、安定して汚水中の窒素を除去することができる。なお、硝化細菌を系内に保持する様に好気的固形物滞留時間を設定すれば、通常は汚水中の有機物および破砕や可溶化処理した汚泥は槽内において十分に分解処理ができる。   If the aerobic solid retention time is set so as to retain nitrifying bacteria in this manner, the amount of sludge generated can be reduced and nitrogen in the sewage can be removed stably. If the aerobic solid residence time is set so as to retain nitrifying bacteria in the system, usually organic matter in sewage and sludge sludged or solubilized can be sufficiently decomposed in the tank.

また、汚泥発生量が減少することにより、通常、処理水のリン濃度が上昇するため、活性汚泥処理槽に塩化第2鉄などの凝集剤添加をしてリンを除去する方法や、処理水に凝集剤等を添加して除去する方法を行うことが好ましい。   Moreover, since the concentration of phosphorus in the treated water usually increases as the amount of sludge generated decreases, a method of removing phosphorus by adding a flocculant such as ferric chloride to the activated sludge treatment tank, or in the treated water A method of adding and removing a flocculant or the like is preferable.

以上のとおり、本発明の処理装置を用いて、活性汚泥処理槽の汚泥量、余剰汚泥量、汚泥可溶化量、曝気時間を適切に制御することにより汚泥発生量を減少させることができるとともに、安定して汚水中の窒素等を除去することができる。   As described above, using the treatment apparatus of the present invention, it is possible to reduce the amount of sludge generated by appropriately controlling the amount of sludge in the activated sludge treatment tank, the amount of excess sludge, the amount of sludge solubilized, and the aeration time, Nitrogen and the like in sewage can be removed stably.

本発明の処理方法の概略フロー図を示す図である。It is a figure which shows the schematic flowchart of the processing method of this invention. 本発明の処理装置の構成を示す概略図である。It is the schematic which shows the structure of the processing apparatus of this invention.

符号の説明Explanation of symbols

1 含窒素有機性廃水
2 活性汚泥処理槽
3 固液分離槽
4 処理水
5 分離汚泥
6 返送汚泥
7 汚泥濃縮槽
8 分離液
9 濃縮汚泥
10 余剰汚泥
11 汚泥可溶化手段
12 可溶化汚泥
13 濃縮汚泥返送ライン
14 脱窒槽
15 硝化槽
16 循環液
17 攪拌装置
18 汚泥濃度計
19 汚泥濃縮装置
20 循環ポンプ装置
21 汚泥ポンプ
22 汚泥濃度計
23 汚泥供給ポンプ
24 吸引ポンプ装置
25 活性汚泥処理槽散気装置
26 散気装置
DESCRIPTION OF SYMBOLS 1 Nitrogen-containing organic waste water 2 Activated sludge treatment tank 3 Solid-liquid separation tank 4 Treated water 5 Separation sludge 6 Return sludge 7 Sludge concentration tank 8 Separation liquid 9 Concentrated sludge 10 Surplus sludge 11 Sludge solubilization means 12 Solubilized sludge 13 Concentrated sludge Return line 14 Denitrification tank 15 Nitrification tank 16 Circulating fluid 17 Stirrer 18 Sludge concentration meter 19 Sludge concentration device 20 Circulation pump device 21 Sludge pump 22 Sludge concentration meter 23 Sludge supply pump 24 Suction pump device 25 Active sludge treatment tank diffuser 26 Air diffuser

Claims (4)

含窒素有機性廃水を活性汚泥処理槽において処理した後、処理液を固液分離して分離水は処理水として放流させ、分離汚泥は前記活性汚泥処理槽に返送する含窒素有機性廃水の処理方法において、前記活性汚泥処理槽に返送する汚泥の一部又は全部を、汚泥濃度計を有する膜分離方式の汚泥濃縮槽にて汚泥を濃縮した後、濃縮した汚泥の一部を可溶化処理し前記活性汚泥処理槽へ返送するとともに、濃縮した汚泥の残りを前記汚泥濃縮槽から余剰汚泥として系外に引き抜くことを特徴とする含窒素有機性廃水の処理方法。   After treating the nitrogen-containing organic wastewater in the activated sludge treatment tank, the treatment liquid is solid-liquid separated, the separated water is discharged as treated water, and the separated sludge is returned to the activated sludge treatment tank. In the method, a part or all of the sludge to be returned to the activated sludge treatment tank is concentrated in a membrane separation type sludge concentration tank having a sludge concentration meter, and then part of the concentrated sludge is solubilized. A method for treating nitrogen-containing organic wastewater, wherein the waste sludge is returned to the activated sludge treatment tank, and the remainder of the concentrated sludge is drawn out of the system as excess sludge from the sludge concentration tank. 活性汚泥処理槽における硝化能力が低下した際に、汚泥濃縮槽内を曝気により好気状態にするとともに、汚泥濃縮槽の汚泥の一部又は全部を可溶化処理することなく活性汚泥処理槽へ返送する請求項1記載の含窒素有機性廃水の処理方法。   When the nitrification capacity in the activated sludge treatment tank decreases, the sludge concentration tank is aerobic by aeration and returned to the activated sludge treatment tank without solubilizing part or all of the sludge in the sludge concentration tank The method for treating nitrogen-containing organic wastewater according to claim 1. 含窒素有機性廃水を処理する活性汚泥処理槽と、処理液を固液分離する固液分離装置と、汚泥濃度計を有する膜分離方式の汚泥濃縮槽と、汚泥可溶化装置からなることを特徴とする含窒素有機性廃水の処理装置。   It consists of an activated sludge treatment tank for treating nitrogen-containing organic wastewater, a solid-liquid separation device for solid-liquid separation of the treatment liquid, a membrane separation-type sludge concentration tank having a sludge densitometer, and a sludge solubilizer. Nitrogen-containing organic wastewater treatment equipment. 汚泥可溶化装置が、湿式媒体攪拌式ミルである請求項3記載の含窒素有機性廃水の処理装置。
The treatment apparatus for nitrogen-containing organic wastewater according to claim 3, wherein the sludge solubilization apparatus is a wet medium stirring mill.
JP2008062654A 2008-03-12 2008-03-12 Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor Pending JP2009214073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062654A JP2009214073A (en) 2008-03-12 2008-03-12 Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062654A JP2009214073A (en) 2008-03-12 2008-03-12 Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor

Publications (1)

Publication Number Publication Date
JP2009214073A true JP2009214073A (en) 2009-09-24

Family

ID=41186522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062654A Pending JP2009214073A (en) 2008-03-12 2008-03-12 Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor

Country Status (1)

Country Link
JP (1) JP2009214073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143363A (en) * 2010-01-15 2011-07-28 Swing Corp Method and apparatus for treating nitrogen in waste water
JP2013512098A (en) * 2009-12-01 2013-04-11 リ、ジンミン Wastewater pretreatment method and wastewater treatment method using this pretreatment method
JP2014000538A (en) * 2012-06-20 2014-01-09 Meidensha Corp Method for controlling active sludge concentration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300393A (en) * 1998-04-17 1999-11-02 Unitika Ltd Method for aerobically digesting excess sludge
JP2000325982A (en) * 1999-05-18 2000-11-28 Shinko Pantec Co Ltd Treatment method and apparatus of organic waste water
JP2002233887A (en) * 2001-02-09 2002-08-20 Shinko Pantec Co Ltd Method for treating organic waste water and facilities therefor
JP2006026524A (en) * 2004-07-15 2006-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for volume-reducing surplus sludge
JP2007098279A (en) * 2005-10-04 2007-04-19 Mitsubishi Heavy Ind Ltd Apparatus and method for treating waste water by using microbe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300393A (en) * 1998-04-17 1999-11-02 Unitika Ltd Method for aerobically digesting excess sludge
JP2000325982A (en) * 1999-05-18 2000-11-28 Shinko Pantec Co Ltd Treatment method and apparatus of organic waste water
JP2002233887A (en) * 2001-02-09 2002-08-20 Shinko Pantec Co Ltd Method for treating organic waste water and facilities therefor
JP2006026524A (en) * 2004-07-15 2006-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for volume-reducing surplus sludge
JP2007098279A (en) * 2005-10-04 2007-04-19 Mitsubishi Heavy Ind Ltd Apparatus and method for treating waste water by using microbe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512098A (en) * 2009-12-01 2013-04-11 リ、ジンミン Wastewater pretreatment method and wastewater treatment method using this pretreatment method
JP2011143363A (en) * 2010-01-15 2011-07-28 Swing Corp Method and apparatus for treating nitrogen in waste water
JP2014000538A (en) * 2012-06-20 2014-01-09 Meidensha Corp Method for controlling active sludge concentration

Similar Documents

Publication Publication Date Title
US7314563B2 (en) Membrane coupled activated sludge method and apparatus operating anoxic/anaerobic process alternately for removal of nitrogen and phosphorous
JP2008284427A (en) Apparatus and method for treating waste water
JP6497871B2 (en) Method and apparatus for treating oil-containing wastewater
JPH1190483A (en) Method and apparatus for treating waste water
JP2007038107A (en) Method for treating organic drainage
JPH0751686A (en) Treatment of sewage
JP5037479B2 (en) Purification processing apparatus and purification processing method
JP5148460B2 (en) Purification processing apparatus and purification processing method
JP2008114215A (en) Method and apparatus for treating sludge
JP5981096B2 (en) Wastewater treatment method and apparatus
JP5333953B2 (en) Nitrogen removal system and nitrogen removal method of dehydrated filtrate
JP2009214073A (en) Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JP2009186437A (en) Radioactive nitrate waste liquid treating apparatus
JP2007275846A (en) Wastewater treatment system and wastewater treatment method
JP2007196207A (en) Wastewater treatment apparatus and wastewater treatment method
JP2007222830A (en) Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
JP2012228645A (en) Water treatment apparatus, water treating method, and program for the method
JP2023001308A (en) Treatment method and apparatus for organic waste water
JP4101539B2 (en) Wastewater treatment equipment
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
JP2004275820A (en) Wastewater treatment apparatus
JP4034074B2 (en) Wastewater treatment equipment
JP2006075779A (en) Sludge volume reduction device and method, and organic waste water treatment system
JP4019277B2 (en) Method and apparatus for treating organic wastewater generated from fishing ports and fish markets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515