JP5333953B2 - Nitrogen removal system and nitrogen removal method of dehydrated filtrate - Google Patents

Nitrogen removal system and nitrogen removal method of dehydrated filtrate Download PDF

Info

Publication number
JP5333953B2
JP5333953B2 JP2011020387A JP2011020387A JP5333953B2 JP 5333953 B2 JP5333953 B2 JP 5333953B2 JP 2011020387 A JP2011020387 A JP 2011020387A JP 2011020387 A JP2011020387 A JP 2011020387A JP 5333953 B2 JP5333953 B2 JP 5333953B2
Authority
JP
Japan
Prior art keywords
tank
nitrification
sludge
nitrogen
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011020387A
Other languages
Japanese (ja)
Other versions
JP2012157836A (en
Inventor
春樹 渡部
康昭 西原
将温 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2011020387A priority Critical patent/JP5333953B2/en
Publication of JP2012157836A publication Critical patent/JP2012157836A/en
Application granted granted Critical
Publication of JP5333953B2 publication Critical patent/JP5333953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

この発明は、嫌気性消化汚泥を脱水した場合にろ液に多く含まれるアンモニア性窒素の活性汚泥処理に関し、特に、脱水機の後段に硝化槽と無酸素槽を設置して水処理工程の窒素負荷を軽減させる脱水ろ液の窒素除去システム並びに窒素除去方法に関する。   The present invention relates to an activated sludge treatment of ammonia nitrogen, which is contained in a large amount of filtrate when anaerobic digested sludge is dehydrated, and in particular, a nitrification tank and an oxygen-free tank are installed at the subsequent stage of the dehydrator to form nitrogen in a water treatment process. The present invention relates to a nitrogen removal system and a nitrogen removal method for dehydrated filtrate that reduce a load.

従来、有機物を含有する汚泥と活性汚泥をエアレーションにより混合して亜硝酸性窒素と硝酸性窒素に酸化し、無酸素槽で亜硝酸性窒素或は硝酸性窒素を窒素ガスに還元させる処理方法は公知である。
そして、循環式硝化脱窒法により、脱窒菌が有機物を用いて酸化性窒素を窒素ガスに還元し、好気性反応槽で硝化細菌がアンモニア性窒素を亜硝酸性窒素と硝酸性窒素に酸化する活性汚泥処理も公知である。
また、嫌気―好気活性汚泥法により、有機物を含有する汚泥からリンを除去し、嫌気―無酸素―好気法の3槽からなる反応タンクで窒素とリンを同時に除去する活性汚泥の処理方法も良く知られている。
Conventionally, sludge containing organic matter and activated sludge are mixed by aeration to oxidize to nitrite nitrogen and nitrate nitrogen, and the treatment method to reduce nitrite nitrogen or nitrate nitrogen to nitrogen gas in an oxygen-free tank is It is known.
Then, by the circulatory nitrification and denitrification method, the denitrifying bacteria use organic matter to reduce oxidizing nitrogen to nitrogen gas, and the nitrifying bacteria in the aerobic reaction tank oxidize ammonia nitrogen to nitrite nitrogen and nitrate nitrogen Sludge treatment is also known.
Also, an anaerobic-aerobic activated sludge method removes phosphorus from sludge containing organic matter, and an activated sludge treatment method that simultaneously removes nitrogen and phosphorus in a three-tank anaerobic-anoxic-aerobic tank. Is well known.

そして、嫌気好気法又は嫌気―無酸素―好気法の活性汚泥処理装置で処理した活性汚泥を反応槽で酢酸を添加してリンを放出させ、濃縮汚泥を脱水機で固液分離を行う有機性汚泥の処理方法が特許文献1に開示されている。
また、嫌気―好気活性汚泥方法の嫌気性処理装置の汚水を好気性処理装置に供給して高濃度の有機性廃液を処理し、流出液を脱水機に供給してSS成分と分離液に分離し、分離液を亜硝酸化装置に流入させて曝気を行い、アルカリ成分または酸性成分を添加してpH調整を行なってアンモニア性窒素の一部を亜硝酸窒素に変換し、脱窒工程で脱窒反応を行って窒素ガスを放出し、脱リン工程でマグネシウムとアルカリ成分を添加してリンを除去する有機性排水の処理方法が特許文献2に開示されている。
Then, activated sludge treated with an anaerobic-aerobic or anaerobic-anoxic-aerobic activated sludge treatment apparatus is added with acetic acid in a reaction tank to release phosphorus, and the concentrated sludge is solid-liquid separated with a dehydrator. A method for treating organic sludge is disclosed in Patent Document 1.
In addition, the sewage from the anaerobic treatment device of the anaerobic-aerobic activated sludge method is supplied to the aerobic treatment device to treat high-concentration organic waste liquid, and the effluent is supplied to the dehydrator to form the SS component and the separated liquid. Separation, the separation liquid is allowed to flow into a nitritation apparatus, aeration is performed, pH is adjusted by adding an alkali component or acidic component, and a part of ammoniacal nitrogen is converted to nitrogen nitrite. Patent Document 2 discloses a method for treating organic waste water that performs a denitrification reaction to release nitrogen gas and adds magnesium and an alkaline component to remove phosphorus in a dephosphorization step.

特開2006−263515号公報(段落番号0013乃至段落番号0018、図1)JP 2006-263515 A (paragraph numbers 0013 to 0018, FIG. 1) 特開2007−117948号公報(段落番号0027乃至段落番号0030、図1)JP 2007-117948 A (paragraph numbers 0027 to 0030, FIG. 1)

特許文献1に記載の有機性汚泥の処理方法は、反応槽で処理された活性汚泥は窒素とリンが良好に除去されるものであるが、対象原液が生汚泥なので、アンモニア性窒素の含有量は多くはない。
特許文献2に記載の高濃度有機性排水の処理方法は、嫌気―好気活性汚泥方法で処理し、固液分離した流出液に多く含まれるアンモニア性窒素とリンを除去して高濃度有機性排水の処理が良好に行なわれるものであるが、マグネシウムやアルカリ成分の薬剤を多く必要としている。
嫌気性消化処理後の脱水ろ液は、多くのアンモニア性窒素が含まれており、水処理工程での窒素負荷が過剰となる場合がある。
この発明は従来の課題である脱水ろ液に含まれるアンモニア性窒素の除去を目的として、脱水機の後段に硝化槽と無酸素槽を併設して脱水ろ液の窒素除去システム並びに窒素除去方法を提供する。
In the method of treating organic sludge described in Patent Document 1, the activated sludge treated in the reaction tank is such that nitrogen and phosphorus are removed well, but since the target stock solution is raw sludge, the content of ammoniacal nitrogen There are not many.
The treatment method of high concentration organic waste water described in Patent Document 2 is treated by an anaerobic-aerobic activated sludge method, and ammonia nitrogen and phosphorus contained in a large amount of solid-liquid separated effluent are removed to remove high concentration organic wastewater. Although wastewater treatment is performed satisfactorily, many chemicals of magnesium and alkali components are required.
The dehydrated filtrate after the anaerobic digestion treatment contains a lot of ammonia nitrogen, and the nitrogen load in the water treatment process may be excessive.
For the purpose of removing ammonia nitrogen contained in a dehydrated filtrate, which is a conventional problem, the present invention provides a nitrogen removal system and a nitrogen removal method for a dehydrated filtrate by providing a nitrification tank and an oxygen-free tank at the subsequent stage of the dehydrator. provide.

この発明の脱水ろ液の窒素除去システムの要旨は、有機物を含有する汚泥を最初沈殿池に流入させ、好気性反応槽と嫌気性消化槽で処理した消化汚泥を脱水機で固液分離を行ない、脱水ろ液を調整槽に一時的に貯留する汚泥処理システムにおいて、調整槽の後段に硝化槽を配設し、硝化槽に間欠式エアレーションと撹拌機を設けると共に、硝化槽に併設した無酸素槽に撹拌機を設け、硝化槽の上澄液を無酸素槽に抜出す抜出しポンプと、硝化槽と無酸素槽の汚水を交互に交換させる交換ポンプを設置して、間欠曝気を行いながら、アンモニア性窒素が含まれる脱水ろ液を処理するもので、汚水を交互に交換して脱水ろ液を供給すれば、硝化槽に適度な有機物を供給してpHの低下を抑制し、汚泥の分解を防ぐことが出来る。
硝化槽の脱水ろ液に含まれるアンモニア性窒素は、撹拌と間欠曝気により硝酸性窒素及び亜硝酸窒素に酸化でき、硝化処理後の上澄液を無酸素槽に供給して脱窒菌により窒素ガスに還元できる。
過剰となる恐れの脱水ろ液に含まれる窒素除去が可能となり、水処理工程での窒素負荷を軽減できる。
The gist of the dewatered filtrate nitrogen removal system of the present invention is that the sludge containing organic matter is first flowed into the sedimentation basin, and the digested sludge treated in the aerobic reaction tank and the anaerobic digestion tank is subjected to solid-liquid separation with a dehydrator. In the sludge treatment system that temporarily stores the dehydrated filtrate in the adjustment tank, a nitrification tank is provided after the adjustment tank, an intermittent aeration and a stirrer are provided in the nitrification tank, and oxygen-free annexed to the nitrification tank While installing a stirrer in the tank and installing an extraction pump that draws the supernatant of the nitrification tank into the anoxic tank and an exchange pump that alternately replaces the sewage in the nitrification tank and the anoxic tank, Processes dehydrated filtrate containing ammonia nitrogen. If dewatered filtrate is supplied by alternating sewage, appropriate organic matter is supplied to the nitrification tank to suppress pH drop and sludge decomposition. Can be prevented.
Ammonia nitrogen contained in the dehydrated filtrate of the nitrification tank can be oxidized to nitrate nitrogen and nitrous nitrite by stirring and intermittent aeration. The supernatant after nitrification is supplied to the anoxic tank and nitrogen gas is removed by denitrifying bacteria. Can be reduced to
Nitrogen contained in the dehydrated filtrate that may become excessive can be removed, and the nitrogen load in the water treatment process can be reduced.

有機物の供給と処理水の排出手段は、無酸素槽の上澄液あるいは汚水を脱水機の前段の好気性反応槽に返送する返送ポンプと、無酸素槽に最初沈殿池の有機物を含む汚水を供給する送水ポンプを設置したもので、脱窒に必要な栄養源の有機物を最初沈殿池の汚水より供給できる。 The supply of organic matter and the drainage of treated water consist of a return pump that returns the supernatant or sewage from the anaerobic tank to the aerobic reaction tank before the dehydrator, and sewage containing organic matter from the first sedimentation basin in the anaerobic tank. It is equipped with a water pump to supply it, and can supply organic matter as nutrient source necessary for denitrification from the sewage in the first sedimentation basin.

この発明の活性汚泥処理における脱水ろ液の窒素除去方法の要旨は、有機物を含有する汚泥を最初沈殿池に流入させ、好気性反応槽と嫌気性消化槽で処理した消化汚泥を脱水機で固液分離を行ない、脱水ろ液を調整槽に一時的に貯留する汚泥処理システムにおいて、調整槽の後段に間欠曝気を行なう硝化槽と、硝化槽から上澄液を流入させて撹拌する無酸素槽を併設し、調整槽に貯留した脱水ろ液の一定量を硝化槽に送水して撹拌しながら間欠曝気を行い、脱水ろ液に含まれるアンモニア性窒素の硝化処理を行い、硝化処理に必要な時間経過後に、硝化槽の撹拌と曝気を停止して、硝化処理した硝酸性窒素及び亜硝酸性窒素を多く含む一定量の上澄液を無酸素槽に供給して窒素ガスに還元させると共に、硝化処理後に硝化槽と無酸素槽の汚水を交互に交換して、間欠曝気により増殖した脱窒菌を無酸素槽に供給し、硝化槽の適度な有機物濃度を保ち、硝化槽のpH低下と汚泥フロックの分解を防ぐもので、硝化槽に撹拌供給する酸素と硝化菌により、脱水ろ液に含まれるアンモニア性窒素を硝酸性窒素及び亜硝酸性窒素に酸化でき、運転の途中で無酸素条件を入れることで放線菌の発生を抑制し、汚泥沈降性の改善が図れる。
硝化槽と無酸素槽の撹拌混合汚泥を交互に交換して、均一なMLSS濃度に保ちながら硝化槽に有機物を供給し、汚泥フロックの分解を防ぐことができる。
硝化槽の硝酸性窒素及び亜硝酸性窒素を含む上澄液を無酸素槽に供給して脱窒菌により窒素ガスに還元できる。
The gist of the nitrogen removal method of dehydrated filtrate in the activated sludge treatment of the present invention is that sludge containing organic matter is first flowed into a settling basin, and digested sludge treated in an aerobic reaction tank and an anaerobic digester is solidified by a dehydrator. In the sludge treatment system that performs liquid separation and temporarily stores the dehydrated filtrate in the adjustment tank, a nitrification tank that performs intermittent aeration downstream of the adjustment tank, and an oxygen-free tank in which the supernatant is introduced from the nitrification tank and stirred In addition, a certain amount of dehydrated filtrate stored in the adjustment tank is sent to the nitrification tank and agitated while stirring, and the ammonia nitrogen contained in the dehydrated filtrate is nitrified, which is necessary for nitrification. After a lapse of time, the stirring and aeration of the nitrification tank are stopped, and a certain amount of supernatant containing a large amount of nitrate nitrogen and nitrite nitrogen that has been nitrified is supplied to the anoxic tank and reduced to nitrogen gas, Sewage in nitrification tank and anoxic tank after nitrification treatment The denitrifying bacteria grown by intermittent aeration are supplied alternately to the anoxic tank, maintaining an appropriate concentration of organic matter in the nitrification tank, and preventing the nitrification tank from lowering its pH and decomposing sludge flocs. By supplying oxygen and nitrifying bacteria, ammonia nitrogen contained in the dehydrated filtrate can be oxidized to nitrate nitrogen and nitrite nitrogen. Sedimentation can be improved.
The stirred and mixed sludge in the nitrification tank and the oxygen-free tank can be alternately exchanged to supply organic matter to the nitrification tank while maintaining a uniform MLSS concentration, and the sludge floc can be prevented from being decomposed.
The supernatant liquid containing nitrate nitrogen and nitrite nitrogen in the nitrification tank can be supplied to the anoxic tank and reduced to nitrogen gas by denitrifying bacteria.

間欠曝気の方法は、硝化槽に流入する脱水ろ液が過剰曝気とならないように、撹拌しながら60分サイクルで間欠曝気を行い、槽内の溶存酸素の上限を2mg/L以下に、水素イオン濃度をpH5以上に維持すると共に、硝化槽と無酸素槽の汚水を、一日1回の頻度で硝化槽の5分の1程度の容量を交換して、硝化槽と無酸素槽のMLSS濃度を6,000mg/L程度に保つもので、硝化菌と脱窒菌の培養の時間が得られ、硝化槽に流入する脱水ろ液が過剰曝気となることがなく、硝化槽の曝気の調整が容易となる。
硝化槽に無酸素条件を入れることにより、放線菌等の水処理に有害な微生物の発生もなく、汚泥沈降性の改善が図れる。低曝気の状態を維持しながら、硝化槽と無酸素槽のMLSS濃度が適正となる。
In the intermittent aeration method, intermittent aeration is performed in a 60-minute cycle with stirring so that the dehydrated filtrate flowing into the nitrification tank does not become excessive aeration, and the upper limit of dissolved oxygen in the tank is reduced to 2 mg / L or less. While maintaining the concentration at pH 5 or higher, replace the sewage in the nitrification tank and anoxic tank with a volume of about one-fifth of the nitrification tank once a day. Is maintained at about 6,000 mg / L, so that nitrifying bacteria and denitrifying bacteria can be cultured. The dehydrated filtrate flowing into the nitrification tank does not become excessively aerated, making it easy to adjust the nitrification tank aeration. It becomes.
By putting oxygen-free conditions in the nitrification tank, there is no generation of microorganisms harmful to water treatment such as actinomycetes, and sludge sedimentation can be improved. The MLSS concentration in the nitrification tank and the anoxic tank becomes appropriate while maintaining a low aeration state.

脱窒処理した処理水の排出は、無酸素槽の脱窒に必要な時間経過後に汚水の撹拌を停止して重力濃縮を行い、硝化槽から間欠的に流入してくる一定量の上澄液と同量の脱窒処理した上澄液を、事前に脱水機前段の好気性反応槽に返送するもので、増殖した硝化菌と脱窒菌を含む処理水を供給できる。 Discharge of treated water after denitrification treatment is performed after the time required for denitrification of the anaerobic tank has elapsed, stirring of sewage is stopped, gravity concentration is performed, and a certain amount of supernatant liquid intermittently flows from the nitrification tank The same amount of the denitrified supernatant is returned to the aerobic reaction tank in front of the dehydrator, and treated water containing the grown nitrifying bacteria and denitrifying bacteria can be supplied.

脱窒に必要な有機物の供給は、無酸素槽で撹拌しつつ一定量の汚水を脱水機前段の好気性反応槽に返送し、最初沈殿池の有機物を含有する一定量の汚水を無酸素槽に一日2〜4回流入させて脱窒に必要な30〜40mg/LのCOD濃度を確保するもので、最初沈殿池の汚水を投入することで、脱窒に必要な有機物を確保でき、脱窒菌が有機物を用いて硝酸性窒素を窒素ガスに還元できる。 To supply organic matter necessary for denitrification, a certain amount of sewage is returned to the aerobic reaction tank in front of the dehydrator while stirring in the anaerobic tank, and a certain amount of sewage containing the organic matter in the first sedimentation basin is returned to the anaerobic tank. 2 to 4 times a day to ensure a COD concentration of 30 to 40 mg / L necessary for denitrification, and by introducing the sewage water in the first sedimentation basin, organic substances necessary for denitrification can be secured, Denitrifying bacteria can reduce nitrate nitrogen to nitrogen gas using organic matter.

この発明に係る脱水ろ液の窒素除去システム並びに窒素除去方法は上記のように構成してあり、嫌気性消化汚泥を脱水する場合に、汚泥処理後の脱水ろ液に含まれる多くのアンモニア性窒素の除去装置を、間欠式エアレーションと撹拌機を設けた硝化槽と、撹拌機を設けた無酸素槽の二槽式としたので、間欠曝気を行なう硝化槽は運転の途中で無酸素条件を入れることで低曝気の状態となり、脱窒菌が増殖し、放線菌等の水処理に有害な微生物の発生を抑制でき、汚泥沈降性の改善が図れる。
無酸素槽の栄養源の有機物は最初沈殿池の汚水を投入することで確保できる。
硝化槽は無酸素槽との一定量の汚水交換により、均一なMLSS濃度に保ち、汚泥フロックの分解を防ぐことができ、硝化槽と無酸素槽は新たな汚泥の発生がなく、汚泥の引抜きを必要としない。
脱水ろ液に含まれる多くのアンモニア性窒素の除去が行なわれ、水処理への窒素負荷が軽減できる。
The denitrated filtrate nitrogen removal system and the nitrogen removal method according to the present invention are configured as described above, and when deaerating anaerobic digested sludge, a large amount of ammonia nitrogen contained in the dehydrated filtrate after sludge treatment. Since the nitrification tank with intermittent aeration and a stirrer and the oxygen-free tank with the stirrer was used as a two-tank removal system, the nitrification tank that performs intermittent aeration puts oxygen-free conditions during operation As a result, a low aeration state is achieved, denitrifying bacteria grow, and generation of microorganisms harmful to water treatment such as actinomycetes can be suppressed, and sludge sedimentation can be improved.
The organic matter that is the source of nutrients in the anaerobic tank can be secured by first putting the sewage in the sedimentation basin.
The nitrification tank can maintain a uniform MLSS concentration by exchanging a certain amount of sewage with the oxygen-free tank, and can prevent the sludge floc from being decomposed. The nitrification tank and the oxygen-free tank have no new sludge, and the sludge is extracted. Do not need.
A lot of ammonia nitrogen contained in the dehydrated filtrate is removed, and the nitrogen load on the water treatment can be reduced.

この発明に係る脱水ろ液の窒素除去システムのフローチャートである。It is a flowchart of the nitrogen removal system of the dehydrated filtrate which concerns on this invention. 高濃度の水処理槽と低濃度の汚泥処理槽を併設した脱水ろ液の窒素除去システムの実験装置である。This is an experimental device for a nitrogen removal system for dehydrated filtrate that is equipped with a high-concentration water treatment tank and a low-concentration sludge treatment tank.

この発明に係る脱水ろ液の窒素除去システム並びに窒素除去方法について、図面に基づき詳述すると、図1は窒素除去システムのフローチャートであって、最初沈殿池1で流入してくる有機物を含有する汚水の沈殿分離を行い、分離水と浮遊物を好気性反応槽2に移送して、槽底に沈殿した沈殿汚泥を調整槽3に抜出す。好気性反応槽2に流入した有機物を含有する分離水は、曝気により活性汚泥中の有機物を窒素成分に分解する。
好気処理された処理水は最終沈殿池4に移送して、上澄液は滅菌処理装置5で滅菌して放流する。沈殿濃縮した沈殿汚泥の一部は活性汚泥として好気性反応槽2に返送し、残りは余剰汚泥として調整槽3に抜出す。
調整槽3に集められた沈殿汚泥と余剰汚泥は嫌気性消化槽6に移送され、脱窒菌により汚泥中の有機物を分解して減量化される。
嫌気処理された消化汚泥はスクリュープレス等の脱水機7に供給し、脱水ろ液と脱水ケーキに固液分離される。
The nitrogen removal system and nitrogen removal method of the dehydrated filtrate according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a flowchart of the nitrogen removal system, and sewage containing organic matter that flows into the sedimentation tank 1 first. The separated water and the suspended matter are transferred to the aerobic reaction tank 2, and the precipitated sludge that has settled on the bottom of the tank is extracted into the adjustment tank 3. The separated water containing the organic matter flowing into the aerobic reaction tank 2 decomposes the organic matter in the activated sludge into nitrogen components by aeration.
The aerobically treated water is transferred to the final sedimentation basin 4 and the supernatant is sterilized by the sterilization apparatus 5 and discharged. A part of the sedimented and concentrated sedimentary sludge is returned to the aerobic reaction tank 2 as activated sludge, and the rest is extracted as excess sludge to the adjustment tank 3.
Precipitated sludge and excess sludge collected in the adjustment tank 3 are transferred to the anaerobic digestion tank 6, where organic matter in the sludge is decomposed by denitrifying bacteria to reduce the amount.
The digested sludge subjected to anaerobic treatment is supplied to a dehydrator 7 such as a screw press, and is solid-liquid separated into a dehydrated filtrate and a dehydrated cake.

図1に示すように、脱水機7で固液分離した脱水ろ液を一時的に貯留する調整槽8が設置してあり、調整槽8の後段に間欠式エアレーション9と撹拌機10を設けた硝化槽11と、撹拌機12を設けた無酸素槽13を併設してある。硝化槽11と無酸素槽13の間に硝化槽11の上澄液の一定量Bを無酸素槽13に抜出す抜出しポンプ14と、硝化槽11と無酸素槽13の各撹拌機10、12により槽内濃度を均一にした汚水を交互に交換させる交換ポンプ15が設置してある。
無酸素槽13には、上澄液の一定量Bを抜出し、好気性反応槽2の前段部へ返送する返送ポンプ16が設置してある。無酸素槽13のMLSS濃度(活性汚泥浮遊物質量)を保つために、撹拌機12を停止して重力濃縮を行い、上澄液の一定量Bを抜出して好気性反応槽2に返送する。
無酸素槽13の脱窒に必要な有機物を確保するため、無酸素槽13に供給する送水ポンプ17が最初沈殿池1に設置してあり、最初沈殿池1のSSが極力少なく、且つ有機物が多い箇所から汚水の一定量Aを無酸素槽13に供給する。
As shown in FIG. 1, the adjustment tank 8 which temporarily stores the dehydrated filtrate separated into solid and liquid by the dehydrator 7 is installed, and the intermittent aeration 9 and the stirrer 10 are provided in the subsequent stage of the adjustment tank 8. A nitrification tank 11 and an oxygen-free tank 13 provided with a stirrer 12 are provided side by side. An extraction pump 14 for extracting a certain amount B of the supernatant liquid of the nitrification tank 11 between the nitrification tank 11 and the anoxic tank 13 and the agitators 10 and 12 of the nitrification tank 11 and the anoxic tank 13. An exchange pump 15 for alternately replacing the sewage having a uniform concentration in the tank is installed.
The oxygen-free tank 13 is provided with a return pump 16 that extracts a certain amount B of the supernatant and returns it to the front part of the aerobic reaction tank 2. In order to maintain the MLSS concentration (the amount of activated sludge suspended solids) in the anaerobic tank 13, the agitator 12 is stopped and gravity concentration is performed, and a certain amount B of the supernatant is extracted and returned to the aerobic reaction tank 2.
In order to secure the organic matter necessary for denitrification of the anaerobic tank 13, a water supply pump 17 that supplies the anaerobic tank 13 is initially installed in the settling basin 1, the SS of the first settling basin 1 is as small as possible, and the organic matter is A certain amount A of sewage is supplied to the anoxic tank 13 from many locations.

脱水ろ液の窒素除去システムの硝化槽11と無酸素槽13の立ち上げ時は、最終沈殿池4から発生する余剰汚泥を脱水ろ液で希釈し、硝化槽11と無酸素槽13に供給してMLSS濃度(活性汚泥浮遊物質量)を3,000mg/L程度に調整する。
なお、栄養源の有機物採取先は、生汚泥の最初沈殿池1あるいは最終沈殿池4の上澄液でも良い。
硝化槽11では撹拌機10で撹拌しながら間欠式エアレーション9で間欠曝気を行ない、無酸素槽13では無酸素状態の脱水ろ液を撹拌機12で撹拌して、脱水ろ液に含まれるアンモニア性窒素(NH−N)の除去を開始する。
When the nitrification tank 11 and the oxygen-free tank 13 of the dewatered filtrate nitrogen removal system are started up, the excess sludge generated from the final sedimentation tank 4 is diluted with the dehydrated filtrate and supplied to the nitrification tank 11 and the oxygen-free tank 13. The MLSS concentration (the activated sludge suspended solid content) is adjusted to about 3,000 mg / L.
In addition, the organic matter collection destination of the nutrient source may be the supernatant of the first sedimentation basin 1 or the final sedimentation basin 4 of raw sludge.
In the nitrification tank 11, intermittent aeration is performed with intermittent aeration 9 while stirring with the stirrer 10, and in the anoxic tank 13, the oxygen-free dehydrated filtrate is stirred with the stirrer 12, and the ammoniac contained in the dehydrated filtrate. to start the removal of nitrogen (NH 4 -N).

a.無酸素槽13では汚水を無酸素状態で撹拌し、脱窒に必要な時間経過後に、撹拌機12を停止して重力濃縮を行い、一定量Bの上澄液を抜き出して返送ポンプ16で脱水機7の前段の好気性反応槽2に返送する。
脱水ろ液中のアンモニア性窒素(NH−N)を除去した処理水を返送できる。
b.硝化槽11では脱水ろ液の間欠曝気を行ない、硝化処理に必要な時間経過後に、硝化槽11の間欠式エアレーション9と撹拌機10を停止して、硝化処理した汚水を重力濃縮させ、分離した上澄液の一定量Bを無酸素槽13に供給する。
硝化槽11の汚水は所定のMLSS濃度(活性汚泥浮遊物質量)を維持するため、上澄液を抜出す。
c.調整槽8に貯留した脱水ろ液の一定量Bを硝化槽11に送水する。
a. In the oxygen-free tank 13, the sewage is stirred in an oxygen-free state, and after the time necessary for denitrification has elapsed, the agitator 12 is stopped and gravity concentration is performed, and a certain amount of B supernatant is extracted and dehydrated by the return pump 16. It returns to the aerobic reaction tank 2 of the front | former stage of the machine 7.
Treated water from which ammoniacal nitrogen (NH 4 -N) in the dehydrated filtrate has been removed can be returned.
b. In the nitrification tank 11, intermittent aeration of the dehydrated filtrate is performed, and after the time necessary for the nitrification treatment, the intermittent aeration 9 and the agitator 10 in the nitrification tank 11 are stopped, and the sewage treated with nitrification is concentrated by gravity and separated. A certain amount B of the supernatant is supplied to the anoxic tank 13.
The sewage in the nitrification tank 11 is withdrawn from the supernatant in order to maintain a predetermined MLSS concentration (amount of activated sludge suspended solids).
c. A certain amount B of the dehydrated filtrate stored in the adjustment tank 8 is sent to the nitrification tank 11.

d.硝化槽11はアンモニア性窒素(NH−N)を含む脱水ろ液が過剰曝気とならないように、撹拌機10で撹拌しながら間欠式エアレーション9で60分程度の間隔で曝気と停止の間欠曝気を行ない、硝化菌でアンモニア性窒素(NH−N)を硝酸性窒素(NO−N)又は亜硝酸性窒素(NO−N)に酸化する。
e.硝化槽11の溶存酸素(MLDO)は0.2〜0.5mg/L程度になるのが理想であるが、調整が困難である。
エアレーションは60分程度の間欠曝気とすれば、溶存酸素(MLDO)の最高値でも2mg/L程度に、水素イオン濃度をpH5以上に維持することで調整が容易となり、低曝気と似た状態となる。
硝化菌と脱窒菌の培養の時間が得られ、硝化槽11の曝気の調整が容易となり、流入する脱水ろ液が過剰曝気となることがない。運転の途中で無酸素条件を入れることで放線菌等の水処理に有害な微生物の発生を抑制し、汚泥沈降性の改善も図れる。
d. The nitrification tank 11 is intermittently aerated and stopped at intervals of about 60 minutes by intermittent aeration 9 while stirring with a stirrer 10 so that dehydrated filtrate containing ammonia nitrogen (NH 4 -N) does not become excessively aerated. And ammonia nitrogen (NH 4 -N) is oxidized to nitrate nitrogen (NO 3 -N) or nitrite nitrogen (NO 2 -N) by nitrifying bacteria.
e. Ideally, the dissolved oxygen (MLDO) in the nitrification tank 11 is about 0.2 to 0.5 mg / L, but is difficult to adjust.
If the aeration is intermittent aeration for about 60 minutes, the maximum value of dissolved oxygen (MLDO) can be adjusted to about 2 mg / L, and the hydrogen ion concentration can be easily adjusted by maintaining the pH at 5 or more. Become.
The culture time of nitrifying bacteria and denitrifying bacteria can be obtained, the adjustment of aeration in the nitrification tank 11 is facilitated, and the inflowing dehydrated filtrate does not become excessively aerated. By putting oxygen-free conditions in the middle of operation, generation of microorganisms harmful to water treatment such as actinomycetes can be suppressed, and sludge sedimentation can be improved.

f.硝化槽11は脱水ろ液の流入後、硝化処理に必要な滞留時間を1日程度とし、硝化槽11の撹拌機10と無酸素槽13の撹拌機12を作動しながら、硝化槽11の5分の1程度の汚水を、交換ポンプ15で交互に交換する。交換する汚水は、撹拌機10、12により槽内濃度が一定になっており、交換ポンプ15による排出で、槽内濃度が変化することはない。
g.汚水の交換で無酸素槽13から硝化槽11に有機物を供給して、硝化槽11と無酸素槽13のMLSS濃度(活性汚泥浮遊物質量)を6,000mg/L程度に均一に保つ。
低曝気の状態を維持しながら硝化槽11と無酸素槽13の汚水を交互に交換することにより、硝化槽11と無酸素槽13のMLSS濃度(活性汚泥浮遊物質量)が適正となる。
均一なMLSS濃度に保ちながら硝化槽11に適度な有機物を供給してpHの低下を抑制して汚泥フロックの分解を防ぐ。
h.硝化槽11での脱水ろ液の滞留時間は、硝化菌、脱窒菌を培養するため、1日程度滞留させる。
硝化槽11は硝化反応によりpHが低下するが、脱水ろ液の供給と、無酸素槽13との汚水交換でpHの低下を抑制でき、間欠曝気でpHが5以下となることがない。
硝化槽11の脱水ろ液に含まれるアンモニア性窒素を硝酸性窒素及び亜硝酸性窒素に酸化して、増殖した硝化菌と脱窒菌を含む処理水を無酸素槽13に供給できる。
f. The nitrification tank 11 has a residence time required for nitrification after the dehydrated filtrate has flowed in, about one day, and while the agitator 10 in the nitrification tank 11 and the agitator 12 in the oxygen-free tank 13 are operated, About one-fifths of sewage is alternately exchanged by the exchange pump 15. The sewage to be replaced has a constant concentration in the tank by the stirrers 10 and 12, and the concentration in the tank does not change when discharged by the replacement pump 15.
g. Organic matter is supplied from the oxygen-free tank 13 to the nitrification tank 11 by exchanging sewage, and the MLSS concentration (active sludge suspended solids amount) in the nitrification tank 11 and the oxygen-free tank 13 is kept uniform at about 6,000 mg / L.
By alternately exchanging sewage in the nitrification tank 11 and the anoxic tank 13 while maintaining a low aeration state, the MLSS concentration (active sludge suspended solids amount) in the nitrification tank 11 and the anoxic tank 13 becomes appropriate.
While maintaining a uniform MLSS concentration, an appropriate organic substance is supplied to the nitrification tank 11 to suppress the pH drop and prevent the sludge floc from decomposing.
h. The residence time of the dehydrated filtrate in the nitrification tank 11 is retained for about one day in order to culture nitrifying bacteria and denitrifying bacteria.
The pH of the nitrification tank 11 decreases due to the nitrification reaction, but the decrease in pH can be suppressed by supplying dehydrated filtrate and exchanging sewage with the anoxic tank 13, and the pH does not become 5 or less by intermittent aeration.
By treating ammonia nitrogen contained in the dehydrated filtrate of the nitrification tank 11 to nitrate nitrogen and nitrite nitrogen, treated water containing the grown nitrifying bacteria and denitrifying bacteria can be supplied to the anoxic tank 13.

i.無酸素槽13では撹拌機12で撹拌しながら脱窒菌により汚水中に含まれる硝酸性窒素(NO−N)又は亜硝酸性窒素(NO−N)を窒素ガス(N)に還元させる。
脱窒に必要な時間経過後に無酸素槽13の汚水を撹拌機12で撹拌しつつ、返送ポンプ16で一定量Aの汚水を脱水機7前段の好気性反応槽2の前段部分に返送する。撹拌機12により槽内温度が一定になっており、返送ポンプ16による排出で、槽内濃度が変化することはない。
j.最初沈殿池1のSSが極力少なく有機物が多い箇所の汚水の一定量Aを送水ポンプ17で一日2〜4回流入させる。無酸素槽13の汚泥に必要な栄養源の有機物は、最初沈殿池1の汚水より供給して、脱窒に必要な有機物濃度(COD)を30〜40mg/Lに確保する。
k.無酸素槽13の脱窒工程を経た一定量Bの上澄液は好気性反応槽2に返送する。
l.この脱水ろ液の窒素除去システムによる汚泥の増加はなく、汚泥の引抜きは行なわない。
上記のa〜jの操作を繰り返し、硝化槽の脱水ろ液に含まれるアンモニア性窒素は、撹拌と間欠曝気により硝酸性窒素及び亜硝酸窒素に酸化でき、硝化処理後の上澄液を無酸素槽に供給して、脱窒菌により窒素ガスに還元できる。脱水ろ液に過剰に含まれる窒素の除去が可能となり、水処理工程での窒素負荷を軽減できる。
i. In the anoxic tank 13, nitrate nitrogen (NO 3 —N) or nitrite nitrogen (NO 2 —N) contained in the sewage is reduced to nitrogen gas (N 2 ) by denitrifying bacteria while stirring with the stirrer 12. .
After a lapse of time necessary for denitrification, the sewage in the anaerobic tank 13 is stirred by the stirrer 12, and a fixed amount A of sewage is returned to the front part of the aerobic reaction tank 2 by the return pump 16. The temperature inside the tank is kept constant by the agitator 12, and the concentration in the tank is not changed by the discharge by the return pump 16.
j. First, a fixed amount A of sewage in a place where the SS in the first sedimentation basin 1 is as small as possible and contains a large amount of organic matter is caused to flow 2 to 4 times a day by the water pump 17. The organic matter as a nutrient source necessary for the sludge in the anaerobic tank 13 is first supplied from the sewage in the settling basin 1 to ensure an organic matter concentration (COD) required for denitrification of 30 to 40 mg / L.
k. A certain amount of B supernatant liquid that has undergone the denitrification process in the anaerobic tank 13 is returned to the aerobic reaction tank 2.
l. There is no increase in sludge due to the nitrogen removal system of the dehydrated filtrate, and no sludge is extracted.
By repeating the above operations a to j, the ammoniacal nitrogen contained in the dehydrated filtrate of the nitrification tank can be oxidized to nitrate nitrogen and nitrite by stirring and intermittent aeration, and the supernatant after nitrification is oxygen-free. It can be supplied to a tank and reduced to nitrogen gas by denitrifying bacteria. Nitrogen excessively contained in the dehydrated filtrate can be removed, and the nitrogen load in the water treatment process can be reduced.

嫌気性消化汚泥を脱水機で固液分離をした脱水ろ液には、アンモニア性窒素が多く含まれており、汚泥処理後の水処理工程で窒素負荷が過剰となっている。そこで、水処理工程の負荷を低減するため、アンモニア性窒素を除去する装置を検討した。
実験装置として図2に示す高濃度の水処理槽18と低濃度の汚泥処理槽19の20L槽を併設して実験を行った。
(1)実験装置
a:高濃度の水処理槽18に連続式エアレーション20と撹拌機21を設置し、低濃度の汚泥処理槽19に間欠式エアレーション22と撹拌機23を設置した。
The dehydrated filtrate obtained by solid-liquid separation of anaerobic digested sludge contains a large amount of ammonia nitrogen, and the nitrogen load is excessive in the water treatment step after the sludge treatment. Therefore, in order to reduce the load of the water treatment process, an apparatus for removing ammonia nitrogen was examined.
An experiment was conducted by using a 20 L tank of a high concentration water treatment tank 18 and a low concentration sludge treatment tank 19 shown in FIG.
(1) Experimental apparatus a: A continuous aeration 20 and an agitator 21 were installed in a high-concentration water treatment tank 18, and an intermittent aeration 22 and an agitator 23 were installed in a low-concentration sludge treatment tank 19.

(2)実験条件
a:基質として、
BOD源は、最初沈殿池の初沈流出水に含まれる有機物に相当する成分として、無調整牛乳(BOD約78000mg/L)の40mLを水処理槽18に1日2回供給する。
窒素成分は、消化汚泥の脱水ろ液(NH−N約500mg/L)を汚泥処理槽19に20L供給する。
b:高濃度の水処理槽18の連続式エアレーション20は連続曝気とし、反応液の重力濃縮のための曝気停止を2h/dayとする。
c:低濃度の汚泥処理槽19の間欠式エアレーション22は曝気と停止を60分間隔で実施する。
d:MLDO(溶存酸素)は1mg/L以下となるように、連続式エアレーション20と間欠式エアレーション22の風量を調整する。
e:水処理系の水処理槽18と汚泥処理系の汚泥処理槽19のMLSS濃度(活性汚泥浮遊物質量)を保つため、適宜汚泥4Lを交換する。
f:水質測定:MLDO、MLSS、MLVSS、BOD,COD、色度等の水質測定をする。
(2) Experimental condition a: As a substrate,
The BOD source supplies 40 mL of unadjusted milk (BOD about 78000 mg / L) to the water treatment tank 18 twice a day as a component corresponding to the organic matter contained in the initial sedimentation effluent of the initial sedimentation basin.
As for the nitrogen component, 20 L of dehydrated filtrate of digested sludge (NH 4 —N of about 500 mg / L) is supplied to the sludge treatment tank 19.
b: The continuous aeration 20 of the high-concentration water treatment tank 18 is set to continuous aeration, and the aeration stop for gravity concentration of the reaction solution is set to 2 h / day.
c: The intermittent aeration 22 of the low-concentration sludge treatment tank 19 performs aeration and stop at 60 minute intervals.
d: The air volume of the continuous aeration 20 and the intermittent aeration 22 is adjusted so that MLDO (dissolved oxygen) is 1 mg / L or less.
e: In order to maintain the MLSS concentration (the amount of activated sludge suspended matter) in the water treatment tank 18 of the water treatment system and the sludge treatment tank 19 of the sludge treatment system, the sludge 4L is appropriately replaced.
f: Water quality measurement: Water quality measurement such as MLDO, MLSS, MLVSS, BOD, COD, chromaticity, etc. is performed.

(3)操作手順
a:水処理槽18の連続式エアレーション20と撹拌機21、汚泥処理槽19の間欠式エアレーション22と撹拌機23を作動開始する。
b:水処理槽18と汚泥処理槽19の曝気と撹拌を1時間行なった後、上澄液を作るために停止する。
c:水処理槽18の上澄液4Lを除去する。
d:汚泥処理槽19の上澄液4Lを水処理槽18へ投入する。
e:水処理槽18に牛乳40mLと、汚泥処理槽19に消化汚泥脱水ろ液を4L投入する。
f:水処理槽18と汚泥処理槽19は無酸素条件を確保するため、1時間のみ撹拌を実施する。
g:水処理槽18と汚泥処理槽19の撹拌と曝気再開する。
h:4時間後に水処理槽18と汚泥処理槽19の汚泥を4L交換する。
i:水処理槽18の曝気を停止して牛乳40mLを投入し、1時間のみ撹拌を実施した後曝気再開する。
j:夜間は風量を削減して曝気する。
(3) Operation procedure a: The continuous aeration 20 and the agitator 21 in the water treatment tank 18 and the intermittent aeration 22 and the agitator 23 in the sludge treatment tank 19 are started.
b: After aeration and agitation of the water treatment tank 18 and the sludge treatment tank 19 for 1 hour, the process is stopped to make a supernatant.
c: 4 L of the supernatant liquid of the water treatment tank 18 is removed.
d: 4 L of the supernatant liquid 19 is introduced into the water treatment tank 18.
e: 40 mL of milk is put into the water treatment tank 18 and 4 L of the digested sludge dehydrated filtrate is put into the sludge treatment tank 19.
f: The water treatment tank 18 and the sludge treatment tank 19 are stirred for only one hour in order to ensure oxygen-free conditions.
g: Stirring and aeration of the water treatment tank 18 and the sludge treatment tank 19 are restarted.
h: 4L of the sludge in the water treatment tank 18 and the sludge treatment tank 19 is exchanged after 4 hours.
i: Aeration in the water treatment tank 18 is stopped, 40 mL of milk is added, and aeration is resumed after stirring for 1 hour.
j: Aeration is performed by reducing the air volume at night.

(4)低曝気条件の確立
A.曝気風量の設定
水処理槽18と汚泥処理槽19の風量は0.1〜1.6L/分
曝気方式は連続曝気と間欠曝気を10分、或は1時間と様々な条件を検討した。
流入水質や水量の変動を想定すると、低曝気条件であるMLDO(溶存酸素)を0.5mg/L程度に確保するためには、1時間曝気、1時間停止の間欠曝気が最も近い条件となることが分かった。
a:有機物の酸化(酸素呼吸、グルコースの例)
12+6O→6CO+6H
b:硝化(酸素呼吸)の進行
NH +2O→NO +HO+2H
c:脱窒(酸素呼吸)の進行、(グルコースの例)
5C12+24NO →30CO+18HO+24OH+12N
(4) Establishment of low aeration conditions Setting the Aeration Air Volume The air volume of the water treatment tank 18 and the sludge treatment tank 19 was 0.1 to 1.6 L / min. The aeration system was examined for various conditions such as continuous aeration and intermittent aeration for 10 minutes or 1 hour.
Assuming fluctuations in the quality of inflow water and the amount of water, in order to secure MLDO (dissolved oxygen), which is a low aeration condition, to about 0.5 mg / L, 1 hour aeration and 1 hour stop intermittent aeration are the closest conditions. I understood that.
a: Oxidation of organic matter (oxygen respiration, example of glucose)
C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O
b: Progress of nitrification (oxygen breathing) NH 4 + + 2O 2 → NO 3 + H 2 O + 2H +
c: Progress of denitrification (oxygen breathing), (example of glucose)
5C 6 H 12 O 6 + 24NO 3 → 30CO 2 + 18H 2 O + 24OH + 12N 2

B.検討結果
間欠、低曝気では系内で上記の酸素abcの酸素呼吸と硝酸呼吸が同時に進行し、有機物除去と窒素除去が行なわれ、pH低下は起こらないと考えられる。
この時のMLDO(溶存酸素)は0.5mg/L程度であった。
硝化の進行が進むとpHは低下するが、同時に脱窒が進行するとpHは回復している。
しかし、流量変動、水質変動、系内での反応の進行等がある中で、MLDO(溶存酸素)を常時0.5mg/L程度に保持する条件を設定するのが困難であった。
B. As a result of the examination, in intermittent and low aeration, oxygen respiration and nitric acid respiration of the oxygen abc proceed in the system at the same time, organic matter removal and nitrogen removal are performed, and it is considered that pH reduction does not occur.
At this time, MLDO (dissolved oxygen) was about 0.5 mg / L.
The pH decreases as the progress of nitrification proceeds, but at the same time the pH recovers as denitrification proceeds.
However, it has been difficult to set conditions for constantly maintaining MLDO (dissolved oxygen) at about 0.5 mg / L in the presence of fluctuations in flow rate, fluctuations in water quality, progress of reaction in the system, and the like.

C.硝化によるpHの低下と脱窒によるpHの回復
従来の標準活性汚泥法及びOD法は、硝化の進行が進むとpHが低下するが、同時に脱窒が進行するとpHは回復する。
処理水のpHが低下しないのは処理系において硝化と脱窒が同時に起こっているためと考えられる。
間欠低曝気の汚泥処理方法では、標準活性汚泥法より窒素除去率が高くなるのは、脱窒(硝化呼吸)が進行しやすいためと考えられる。
実験結果から、基質(牛乳、グルコース、余剰汚泥等)がない場合に硝化が進行すると、pHが5以下に低下して硝化が停止する。
更に、硝化を進行させるためには炭酸水素ナトリウム等の緩衝剤を投入しなければならない。
NaHCO+H→Na+CO+H
pH低下を防止するため、粉砕した牡蠣殻(CaCO)を投入してみたが、効果は見られなかった。
pHが5以下に低下すると汚泥が解体し、上澄液は懸濁するという発泡現象がみられた。
その解決策として、基質添加後に無酸素条件を作るため、曝気を止め、撹拌のみとした。これはAO法と呼ばれる運転条件であり、この手法を利用した実験により発泡現象は収まった。発泡現象は放線菌の発生が原因と思われる。
基質が不足して硝酸呼吸が困難である汚泥処理槽ではpHの低下と硝酸の蓄積が発生することが予測できる。
流入下水等の基質を汚泥好気性硝化槽へ添加するか、或は最初沈殿池の汚泥を添加することで硝酸呼吸が促進され、アルカリ分の補給と窒素除去が行なわれるものと推測され、余剰汚泥発生量の削減につながる可能性がある。
C. PH reduction by nitrification and pH recovery by denitrification Conventional standard activated sludge method and OD method lower the pH as nitrification progresses, but at the same time the pH recovers when denitrification proceeds.
The reason why the pH of the treated water does not decrease is considered that nitrification and denitrification occur simultaneously in the treatment system.
The reason why the nitrogen removal rate is higher in the intermittent low-aeration sludge treatment method than in the standard activated sludge method is that denitrification (nitrification respiration) is likely to proceed.
From the experimental results, when nitrification proceeds in the absence of a substrate (milk, glucose, excess sludge, etc.), the pH drops to 5 or less and nitrification stops.
Furthermore, in order to advance nitrification, a buffering agent such as sodium bicarbonate must be added.
NaHCO 3 + H + → Na + + CO 2 + H 2 O
In order to prevent the pH from decreasing, crushed oyster shells (CaCO 3 ) were tried, but no effect was seen.
When the pH was lowered to 5 or less, the sludge was disassembled and the supernatant was suspended.
As a solution, in order to create an oxygen-free condition after adding the substrate, aeration was stopped and only agitation was performed. This is an operating condition called the AO method, and the foaming phenomenon was settled by an experiment using this method. The foaming phenomenon seems to be caused by the outbreak of actinomycetes.
It can be predicted that a decrease in pH and accumulation of nitric acid will occur in a sludge treatment tank in which nitrate respiration is difficult due to a shortage of substrates.
Addition of a substrate such as influent sewage to the sludge aerobic nitrification tank, or the addition of sludge from the sedimentation basin first, it is assumed that nitric acid respiration is promoted, so that alkali supplementation and nitrogen removal are performed. There is a possibility of reducing sludge generation.

D.発泡現象の抑制
実験開始当初から水処理槽18と汚泥処理槽19の槽内に放線菌によると思われる発泡現象が発生し、汚泥フロックの解体が見られた。発泡現象が発生すると汚泥流出等による汚泥収支が取れなくなる。その解決策として牛乳添加後に無酸素条件を作るため、曝気を止め、撹拌だけとした。これはAO法と呼ばれる運転条件であり、この手法を利用した実験により、発泡現象は収まった。低曝気の後に無酸素条件を組み込むことで発泡現象が抑制でき、汚泥の沈降性改善した。
間欠、低曝気は運転の途中で無酸素条件を入れることにより、放線菌の発生を抑えるとともに、汚泥沈降性の改善が図れるものと考えられる。
上記の実験結果から、消化汚泥の脱水ろ液を水処理施設の初段に返送せずに、硝化槽に供給し、同時にBOD源として余剰汚泥、流入下水、初沈汚泥等を若干投入して窒素除去した後、水処理系へ返送すれば余剰汚泥発生量が少なくなることが考察できる。
D. From the beginning of the experiment to suppress the foaming phenomenon, a foaming phenomenon thought to be caused by actinomycetes occurred in the water treatment tank 18 and the sludge treatment tank 19, and the sludge floc was disassembled. When the foaming phenomenon occurs, the sludge balance due to sludge outflow or the like cannot be obtained. As a solution, aerobic conditions were created after the addition of milk, so aeration was stopped and only stirring was used. This is an operating condition called the AO method, and the foaming phenomenon has subsided through experiments using this method. Incorporation of oxygen-free conditions after low aeration can suppress foaming and improve sedimentation of sludge.
It is considered that intermittent and low aeration can suppress the generation of actinomycetes and improve the sludge sedimentation by putting oxygen-free conditions in the middle of operation.
Based on the above experimental results, the dehydrated filtrate of digested sludge is not returned to the first stage of the water treatment facility, but supplied to the nitrification tank. At the same time, surplus sludge, inflow sewage, initial settling sludge, etc. are slightly added as nitrogen sources. After removal, it can be considered that the excess sludge generation amount decreases if it is returned to the water treatment system.

この発明に係る脱水ろ液の窒素除去システム並びに窒素除去方法は、汚泥処理後の脱水ろ液に含まれる多くのアンモニア性窒素の除去装置を、間欠式エアレーションと撹拌機を設けた硝化槽と、撹拌機を設けた無酸素槽の二槽式としたので、間欠曝気を行なう硝化槽が低曝気と似た状態となり、硝化菌と脱窒菌の培養の時間が得られ、運転の途中で無酸素条件を入れることで水処理に有害な微生物の発生を抑制し、汚泥沈降性の改善も図れる。
無酸素槽の栄養源の有機物は最初沈殿池の汚水を投入することで確保でき、硝化槽は無酸素槽との汚水交換により、均一なMLSS濃度に保ち、汚泥フロックの分解を防ぐことができる。硝化槽と無酸素槽は新たな汚泥の発生がなく、汚泥の引抜きを必要としない。
脱水ろ液に含まれる多くのアンモニア性窒素の除去が行なわれ、水処理への窒素負荷が軽減できる。
従って、下水処理場、し尿処理場、或は有機物を多く含む生産プロセスや産業排水処理場等の汚泥処理工程に脱水ろ液を一時的に貯留する調整槽の後段に二槽式の硝化槽と無酸素槽を設置すれば脱水ろ液に含まれる多くのアンモニア性窒素の除去が行なわれ、水処理工程の負担を軽減できる。
The nitrogen removal system and the nitrogen removal method of the dehydrated filtrate according to the present invention include a nitrification tank provided with intermittent aeration and a stirrer for removing a lot of ammonia nitrogen contained in the dehydrated filtrate after sludge treatment, Since the anaerobic tank is equipped with two aerobic tanks equipped with a stirrer, the nitrification tank that performs intermittent aeration is in a state similar to low aeration, and the time for nitrifying bacteria and denitrifying bacteria is obtained. By adding conditions, the generation of microorganisms harmful to water treatment can be suppressed, and sludge settling can be improved.
The organic matter of nutrient source in the oxygen-free tank can be secured by first putting sewage in the sedimentation basin, and the nitrification tank can be kept at a uniform MLSS concentration by replacing the sewage with the oxygen-free tank to prevent the sludge floc from decomposing. . Nitrification tanks and oxygen-free tanks do not generate new sludge and do not require sludge extraction.
A lot of ammonia nitrogen contained in the dehydrated filtrate is removed, and the nitrogen load on the water treatment can be reduced.
Therefore, a two-tank nitrification tank is installed after the adjustment tank that temporarily stores dehydrated filtrate in a sludge treatment process such as a sewage treatment plant, a human waste treatment plant, or an industrial wastewater treatment plant. If an oxygen-free tank is installed, a lot of ammonia nitrogen contained in the dehydrated filtrate is removed, and the burden on the water treatment process can be reduced.

1 最初沈殿池
2 好気性反応槽
6 嫌気性消化槽
7 脱水機
8 調整槽
9 間欠式エアレーション
10 撹拌機
11 硝化槽
12 撹拌機
13 無酸素槽
14 抜出しポンプ
15 交換ポンプ
16 返送ポンプ
17 送水ポンプ
A 一定量
B 一定量
DESCRIPTION OF SYMBOLS 1 First sedimentation tank 2 Aerobic reaction tank 6 Anaerobic digestion tank 7 Dehydrator 8 Adjustment tank 9 Intermittent aeration 10 Stirrer 11 Nitrification tank 12 Stirrer 13 Anoxic tank 14 Extraction pump 15 Replacement pump 16 Return pump 17 Water feed pump A Fixed amount B Fixed amount

Claims (6)

有機物を含有する汚泥を最初沈殿池(1)に流入させ、好気性反応槽(2)と嫌気性消化槽(6)で処理した消化汚泥を脱水機(7)で固液分離を行ない、脱水ろ液を調整槽(8)に一時的に貯留する汚泥処理システムにおいて、調整槽(8)の後段に硝化槽(11)を配設し、硝化槽(11)に間欠式エアレーション(9)と撹拌機(10)を設けると共に、硝化槽(11)に併設した無酸素槽(13)に撹拌機(12)を設け、硝化槽(11)の上澄液を無酸素槽(13)に抜出す抜出しポンプ(14)と、硝化槽(11)と無酸素槽(13)の汚水を交互に交換させる交換ポンプ(15)を設置して、間欠曝気を行いながら、アンモニア性窒素が含まれる脱水ろ液を処理することを特徴とする脱水ろ液の窒素除去システム。 Sludge containing organic matter is first allowed to flow into the settling basin (1), and the digested sludge treated in the aerobic reaction tank (2) and anaerobic digestion tank (6) is separated into solid and liquid using a dehydrator (7). In the sludge treatment system for temporarily storing the filtrate in the adjustment tank (8), a nitrification tank (11) is disposed after the adjustment tank (8), and intermittent aeration (9) is provided in the nitrification tank (11). In addition to providing a stirrer (10), a stirrer (12) is provided in the anoxic tank (13) attached to the nitrification tank (11), and the supernatant of the nitrification tank (11) is drawn into the anoxic tank (13). An extraction pump (14) to be discharged and an exchange pump (15) for alternately exchanging sewage in the nitrification tank (11) and the anoxic tank (13) are installed, and dehydration containing ammonia nitrogen is performed while intermittent aeration is performed. A nitrogen removal system for dehydrated filtrate, characterized by treating the filtrate. 上記無酸素槽(13)の上澄液あるいは汚水を脱水機(7)の前段の好気性反応槽(2)に返送する返送ポンプ(16)と、無酸素槽(13)に最初沈殿池(1)の有機物を含む汚水を供給する送水ポンプ(17)を設置したことを特徴とする請求項1に記載の脱水ろ液の窒素除去システム。 A return pump (16) for returning the supernatant or sewage from the anaerobic tank (13) to the aerobic reaction tank (2) upstream of the dehydrator (7); The nitrogen removal system for dehydrated filtrate according to claim 1, further comprising a water pump (17) for supplying sewage containing organic matter of 1). 有機物を含有する汚泥を最初沈殿池(1)に流入させ、好気性反応槽(2)と嫌気性消化槽(6)で処理した消化汚泥を脱水機(7)で固液分離を行ない、脱水ろ液を調整槽(8)に一時的に貯留する汚泥処理システムにおいて、調整槽(8)の後段に間欠曝気を行なう硝化槽(11)と、硝化槽(11)から上澄液を流入させて撹拌する無酸素槽(13)を併設し、調整槽(8)に貯留した脱水ろ液の一定量(B)を硝化槽(11)に送水して撹拌しながら間欠曝気を行い、脱水ろ液に含まれるアンモニア性窒素の硝化処理を行い、硝化処理に必要な時間経過後に、硝化槽(11)の撹拌と曝気を停止して、硝化処理した硝酸性窒素及び亜硝酸性窒素を多く含む一定量(B)の上澄液を無酸素槽(13)に供給して窒素ガスに還元させると共に、硝化処理後に硝化槽(11)と無酸素槽(13)の汚水を交互に交換して、間欠曝気により増殖した脱窒菌を無酸素槽(13)に供給し、硝化槽(11)の適度な有機物濃度を保ち、硝化槽(11)のpH低下と汚泥フロックの分解を防ぐことを特徴とする脱水ろ液の窒素除去方法。 Sludge containing organic matter is first allowed to flow into the settling basin (1), and the digested sludge treated in the aerobic reaction tank (2) and anaerobic digestion tank (6) is separated into solid and liquid using a dehydrator (7). In the sludge treatment system that temporarily stores the filtrate in the adjustment tank (8), the supernatant is introduced from the nitrification tank (11) that performs intermittent aeration downstream of the adjustment tank (8), and the nitrification tank (11). An anaerobic tank (13) that stirs and stirs in water, and a fixed amount (B) of the dehydrated filtrate stored in the adjustment tank (8) is fed to the nitrification tank (11) and subjected to intermittent aeration while stirring. Nitrification of ammonia nitrogen contained in the liquid is performed, and after the time necessary for nitrification treatment, stirring and aeration of the nitrification tank (11) are stopped, and a large amount of nitrate nitrogen and nitrite nitrogen that have been nitrified is contained. When a certain amount (B) of the supernatant is supplied to the oxygen-free tank (13) and reduced to nitrogen gas, In addition, the sewage in the nitrification tank (11) and the anoxic tank (13) is alternately exchanged after the nitrification treatment, and denitrifying bacteria grown by intermittent aeration are supplied to the anoxic tank (13). A method for removing nitrogen from a dehydrated filtrate, characterized by maintaining an appropriate organic substance concentration and preventing pH reduction of a nitrification tank (11) and decomposition of sludge flocs. 上記硝化槽(11)に流入する脱水ろ液が過剰曝気とならないように、撹拌しながら60分サイクルで間欠曝気を行い、槽内の溶存酸素の上限を2mg/L以下に、水素イオン濃度をpH5以上に維持すると共に、硝化槽(11)と無酸素槽(13)の汚水を、一日1回の頻度で硝化槽(11)の5分の1程度の容量を交換して、硝化槽(11)と無酸素槽(13)のMLSS濃度を6,000mg/L程度に保つことを特徴とする請求項3に記載の脱水ろ液の窒素除去方法。 In order to prevent the dehydrated filtrate flowing into the nitrification tank (11) from being excessively aerated, intermittent aeration is performed with a 60-minute cycle while stirring, the upper limit of dissolved oxygen in the tank is set to 2 mg / L or less, and the hydrogen ion concentration is reduced. While maintaining the pH at 5 or more, the sewage in the nitrification tank (11) and the anoxic tank (13) is replaced once a day with the capacity of about one fifth of the nitrification tank (11), and the nitrification tank The method of removing nitrogen from the dehydrated filtrate according to claim 3, wherein the MLSS concentrations in (11) and the oxygen-free tank (13) are maintained at about 6,000 mg / L. 上記無酸素槽(13)の脱窒に必要な時間経過後に汚水の撹拌を停止して重力濃縮を行い、硝化槽(11)から間欠的に流入してくる一定量(B)の上澄液と同量の脱窒処理した上澄液を、事前に脱水機(7)前段の好気性反応槽(2)に返送することを特徴とする請求項3又は請求項4に記載の脱水ろ液の窒素除去方法。 After the time necessary for denitrification of the anaerobic tank (13), the stirring of sewage is stopped, gravity concentration is performed, and a certain amount (B) of supernatant liquid intermittently flows from the nitrification tank (11) The dehydrated filtrate according to claim 3 or 4, wherein the same amount of the denitrified supernatant is returned to the aerobic reaction tank (2) upstream of the dehydrator (7) in advance. Nitrogen removal method. 上記無酸素槽(13)で撹拌しつつ一定量(A)の汚水を脱水機(7)前段の好気性反応槽(2)に返送し、最初沈殿池(1)の有機物を含有する一定量(A)の汚水を無酸素槽(13)に一日2〜4回流入させて脱窒に必要な30〜40mg/LのCOD濃度を確保することを特徴とする請求項3乃至請求項5のいずれか1項に記載の脱水ろ液の窒素除去方法。 While stirring in the oxygen-free tank (13), a fixed amount (A) of sewage is returned to the aerobic reaction tank (2) in front of the dehydrator (7), and a fixed amount containing the organic matter in the first sedimentation tank (1) The sewage of (A) is allowed to flow into the anoxic tank (13) 2 to 4 times a day to ensure a COD concentration of 30 to 40 mg / L necessary for denitrification. The method for removing nitrogen from the dehydrated filtrate according to any one of the above.
JP2011020387A 2011-02-02 2011-02-02 Nitrogen removal system and nitrogen removal method of dehydrated filtrate Active JP5333953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020387A JP5333953B2 (en) 2011-02-02 2011-02-02 Nitrogen removal system and nitrogen removal method of dehydrated filtrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020387A JP5333953B2 (en) 2011-02-02 2011-02-02 Nitrogen removal system and nitrogen removal method of dehydrated filtrate

Publications (2)

Publication Number Publication Date
JP2012157836A JP2012157836A (en) 2012-08-23
JP5333953B2 true JP5333953B2 (en) 2013-11-06

Family

ID=46838829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020387A Active JP5333953B2 (en) 2011-02-02 2011-02-02 Nitrogen removal system and nitrogen removal method of dehydrated filtrate

Country Status (1)

Country Link
JP (1) JP5333953B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830726B (en) * 2012-08-31 2014-11-26 中联重科股份有限公司 Blending pool and material liquid blending method, device and system
JP6445855B2 (en) * 2014-12-08 2018-12-26 株式会社日立製作所 Nitrogen treatment method and nitrogen treatment apparatus
CN106746383A (en) * 2017-03-30 2017-05-31 长春工程学院 Municipal sewage treatment reinforcing operation method and device that a kind of biochemistry pool stops between being aerated
CN110386738A (en) * 2019-08-13 2019-10-29 青岛思普润水处理股份有限公司 A kind of long runner stripping reflux MBBR integral system and operation method
CN111137977A (en) * 2020-01-16 2020-05-12 南环(宁夏)环境科技有限公司 High-nitrogen wastewater treatment device and treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296978A (en) * 1993-04-20 1994-10-25 Meidensha Corp Device for removing phosphorus from digested sludge dehydration filtrate
JP4302341B2 (en) * 2001-10-26 2009-07-22 株式会社荏原製作所 Biological nitrogen removal method and apparatus
JP2006305488A (en) * 2005-04-28 2006-11-09 Kobe Steel Ltd Method of treating organic sludge

Also Published As

Publication number Publication date
JP2012157836A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5333954B2 (en) Nitrogen removal system and nitrogen removal method of dehydrated filtrate
JP2008246386A (en) Organic wastewater treatment apparatus
JP2014036959A (en) Biological nitrogen removing device, water treatment system and carrier therefor
TWI403467B (en) Treatment device for drainage containing organic sulfur compounds
JP5333953B2 (en) Nitrogen removal system and nitrogen removal method of dehydrated filtrate
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
CN1907883B (en) Method for treatment of organic drainage
KR20120112142A (en) Method for treatment of organic substance-containing wastewater and device for treatment of organic substance-containing wastewater
JP4774120B2 (en) Apparatus and method for treating radioactive nitrate waste liquid
JP2008114215A (en) Method and apparatus for treating sludge
JP2010253428A (en) Wastewater treatment apparatus and wastewater treatment method
KR20150144682A (en) Apparatus for wastewater treatment with submerged membrane
JP4774065B2 (en) Radionitrate waste liquid treatment equipment
JP5981096B2 (en) Wastewater treatment method and apparatus
KR100769997B1 (en) Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
TWI633067B (en) Method and device for treating organic drainage
KR101135011B1 (en) A sewage and wastewater treatment and an apparatus for thereof
KR20100102818A (en) Advanced wastewater treatment apparatus for water reuse with sludge reduction in the process and wastewater treatment method using the same
KR100710488B1 (en) Apparatus and method for water and wastewater treatment using dissolved ozone flotation and pressurized ozone oxidation
JP3600220B2 (en) Wastewater treatment method
JP2006305555A (en) Apparatus and method for treating waste water
JP2004275820A (en) Wastewater treatment apparatus
JP4547799B2 (en) Biological phosphorus removal equipment
KR200283062Y1 (en) Advanced Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Ref document number: 5333953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250