JP2011143363A - Method and apparatus for treating nitrogen in waste water - Google Patents

Method and apparatus for treating nitrogen in waste water Download PDF

Info

Publication number
JP2011143363A
JP2011143363A JP2010006805A JP2010006805A JP2011143363A JP 2011143363 A JP2011143363 A JP 2011143363A JP 2010006805 A JP2010006805 A JP 2010006805A JP 2010006805 A JP2010006805 A JP 2010006805A JP 2011143363 A JP2011143363 A JP 2011143363A
Authority
JP
Japan
Prior art keywords
activated sludge
denitrification
heat treatment
nitrogen
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010006805A
Other languages
Japanese (ja)
Other versions
JP5148642B2 (en
Inventor
Takayuki Suzuki
鈴木隆幸
Akira Watanabe
渡辺昭
Naoaki Kataoka
片岡直明
Kosei Ishikawa
石川康誠
Shinji Ueda
植田真司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2010006805A priority Critical patent/JP5148642B2/en
Publication of JP2011143363A publication Critical patent/JP2011143363A/en
Application granted granted Critical
Publication of JP5148642B2 publication Critical patent/JP5148642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economical method and apparatus for treating nitrogen in waste water which can reduce oxygen demand for nitrification and hydrogen donor demand for denitrification by carrying out nitrous acid type nitrification. <P>SOLUTION: In the method for treating nitrogen in waste water which includes a nitritation process 6 for oxidizing reduced nitrogen compounds in the waste water to nitrous acid by an activated sludge mixed liquor, and a denitrification process 5 for reducing and denitrifying the nitrous acid, a heat treatment process 7 for subjecting the activated sludge mixed liquor to heat treatment under an oxygen-free condition, and a solid-liquid separation process 8, the heat treatment of the activated sludge mixed liquor of the process 6 or 8 is carried out by alternately switching between a moderate temperature condition of 40-55°C for selectively inactivating nitrite-oxidizing bacteria and a high temperature condition of 60°C or higher for modifying the activated sludge mixed liquor to hydrogen donors for denitrification, or by alternately switching between a moderate temperature condition of 40-55°C for deactivating the activated sludge mixed liquor of the process 6 and a high temperature condition of 60°C or higher for modifying the activated sludge mixed liquor of the process 5, in the process 7 and then the activated sludge mixed liquor subjected to the heat treatment is introduced into the process 5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、廃水中の窒素を亜硝酸型硝化を行うことによって生物学的に脱窒素処理する方法と装置に関する。   The present invention relates to a method and apparatus for biologically denitrifying nitrogen in wastewater by performing nitrite-type nitrification.

生物学的脱窒素法は、硝化菌(亜硝酸菌、硝酸菌)の作用を利用して、窒素化合物を好気的条件下でNOx(NO2+NO3)に硝化(酸化)したのち、脱窒素菌の作用を利用して、NOxを嫌気的条件下でN2ガスにまで還元除去するものである。脱窒素が終了するまでの反応過程を、化学量論的に表わすと次式のようになる。
硝化反応(好気的条件)
NH4++1.5O2→NO2−+2H++H2O (亜硝酸菌) ……(1)
NO2−+0.5O2→NO3− (硝酸菌) ……(2)
脱窒素反応(嫌気的条件)
NO3−+H2→NO2−+H2O (脱窒素菌) ……(3)
NO2−+1.5H2→0.5N2↑+OH−+H2O (脱窒素菌)……(4)
The biological denitrification method uses the action of nitrifying bacteria (nitrite bacteria, nitrate bacteria) to nitrify (oxidize) nitrogen compounds to NOx (NO2 + NO3) under aerobic conditions. Using this action, NOx is reduced and removed to N2 gas under anaerobic conditions. The reaction process until the completion of denitrification is expressed stoichiometrically as follows.
Nitrification reaction (aerobic condition)
NH4 ++ 1.5O2 → NO2-++ 2H ++ H2O (Nitrite bacteria) (1)
NO2- + 0.5O2-> NO3- (nitric acid bacteria) (2)
Denitrification reaction (anaerobic condition)
NO3- + H2 → NO2 ++ H2O (denitrifying bacteria) (3)
NO2- + 1.5H2-> 0.5N2 ↑ + OH- + H2O (denitrifying bacteria) (4)

上記硝化反応の条件は、他の好気的微生物反応と同様に、溶存酸素、水温、pHが適当に維持されていることであるが、硝化反応は炭素性化合物を酸化する場合と異なり、(1)式に示されているように、アンモニア1当量に対して2当量のH+を発生する生酸反応なので、硝化が進行すれば、pHは低下する。ところが、硝化菌の至適pH範囲は7.8〜8.8にあり、pHが4程度まで低下すると硝化はほとんど停止する。このため、順調な硝化反応が行なわれるには、廃水のpHが中性付近に維持されなければならない。   The conditions of the nitrification reaction are that the dissolved oxygen, water temperature, and pH are appropriately maintained, as in other aerobic microbial reactions, but the nitrification reaction is different from the case of oxidizing a carbon compound ( As shown in the formula (1), since this is a bioacid reaction that generates 2 equivalents of H + with respect to 1 equivalent of ammonia, the pH decreases as nitrification proceeds. However, the optimum pH range of nitrifying bacteria is 7.8 to 8.8, and when the pH is lowered to about 4, nitrification is almost stopped. For this reason, in order for a smooth nitrification reaction to be performed, the pH of the wastewater must be maintained near neutrality.

上記(1)〜(4)式に示されるように、硝化には酸素、脱窒素には水素供与体の供給が必要であるが、廃水に含有される大量の窒素分を処理する場合には、酸素供給動力費、水素供与体として使用されているメタノール、pH制御用のアルカリ剤など有価の工業薬品が大量に消費され、脱窒素処理装置の運転経費のうえから大きな問題となっている。   As shown in the above formulas (1) to (4), oxygen is required for nitrification, and a hydrogen donor is required for denitrification. However, when a large amount of nitrogen contained in wastewater is treated, In addition, a large amount of valuable industrial chemicals such as oxygen supply power cost, methanol used as a hydrogen donor, and alkaline agent for pH control are consumed, which is a big problem in terms of operating cost of the denitrification apparatus.

脱窒素処理装置の硝化工程では、通常アンモニアをNO3にまで硝化しているが、上記(1)〜(4)式からわかるように、硝化をNO2でとどめて脱窒素処理する方が、硝化の酸素供給、脱窒素の水素供与体供給量が少なくて済み、運転経費の点で有利である。すなわち、NO2型硝化の酸素量はNO3型硝化の3/4(1.5O2/2O2)で済み、NOxの還元に消費される水素供与体量もNO2はNO3の3/5(1.5H2/2.5H2)で足りる。このように、NO2型硝化の脱窒素処理には自明の利点があるにもかかわらず、実際の脱窒素処理のほとんどがNO3型で行なわれている。これは、NO2型硝化を脱窒素処理装置内で維持することが極めて因難であるからに外ならない。しかしながら、pH及びアンモニア濃度が高い程NO2型硝化になりやすいという報告(下水道協会誌Vol.7、No.74、1970/7、遠矢泰典「生物学的脱窒素法に関する研究(1)」)がなされている。   In the nitrification process of the denitrification apparatus, ammonia is normally nitrified to NO3. However, as can be seen from the above formulas (1) to (4), it is more effective to perform nitrification by keeping nitrification at NO2. The oxygen supply and denitrification hydrogen donor supply amount is small, which is advantageous in terms of operating costs. That is, the oxygen amount of NO2 type nitrification is 3/4 of NO3 type nitrification (1.5O2 / 2O2), and the amount of hydrogen donor consumed for the reduction of NOx is 3/5 of NO3 (1.5H2 / 2). 2.5H2) is sufficient. Thus, despite the obvious advantages of the NO2 type nitrification denitrification treatment, most of the actual denitrification treatment is carried out in the NO3 type. This is because it is extremely difficult to maintain NO2 type nitrification in the denitrification apparatus. However, there is a report that the higher the pH and ammonia concentration, the more likely it becomes NO2 type nitrification (Sewerage Association Vol.7, No.74, 1970/7, Yasunori Toya “Study on Biological Denitrification Method (1)”). Has been made.

これは、次の化学平衡式から、遊離のNH3が、NO2をNO3に硝化する硝酸菌の活性を阻害するためであるということが容易に推定できる。
NH4++OH−←→NH3+H2O ……(5)
NH3:遊離アンモニア
この(5)式から、アンモニア濃度、pHの高いほど遊離NH3濃度が増加し、NO2型硝化の条件範囲となるが、硝化をこのような条件で行なうことは窒素除去率、アルカリ剤の供給経費のうえから困難である。
生物学的脱窒素法においては、上記の硝化用の酸素供給のための電力経費、脱窒素のためのアルコール費用のほかに、生物処理で発生する余剰汚泥(活性汚泥微生物、廃水に含有される難分解性浮遊物質などで構成される)の処理・処分費用大きな負担となっている。
From this chemical equilibrium equation, it can be easily estimated that free NH3 inhibits the activity of nitrate bacteria that nitrify NO2 to NO3.
NH4 ++ OH- ← → NH3 + H2O (5)
NH3: Free ammonia
From this equation (5), the higher the ammonia concentration and pH, the higher the free NH3 concentration and the range of conditions for NO2 type nitrification, but performing nitrification under such conditions is the nitrogen removal rate and the supply cost of the alkaline agent. It is difficult from the top.
In the biological denitrification method, in addition to the above-mentioned power costs for supplying oxygen for nitrification and alcohol costs for denitrification, excess sludge generated in biological treatment (activated sludge microorganisms, contained in wastewater) It is a heavy burden of processing and disposal costs (consisting of refractory suspended solids).

硝化液循環法等公知の廃水の生物学的脱窒素法において、硝化によって生成した酸化態窒素は、廃水のBOD成分を水素供与体として脱窒に利用できるが、廃水のBOD濃度が、硝酸性窒素に対して約2.86倍以上(2.86>=BOD/NO3−N、菌体増殖を含まない化学量論値)であることが望ましい。BOD/Nが小さい廃水では、BODの不足分を補うために、工業用アルコール等有価の工業薬品が必要となる。一方、亜硝酸性窒素に対する脱窒のBOD濃度の化学量論値は、硝酸性窒素の60%であり、約1.71である。
さらに、亜硝酸は、硝酸に比較して結合酸素量が60%であるため、脱窒素速度が高い。また、硝化液循環法では、処理装置の活性汚泥を構成する脱窒素菌の大部分は、廃水のBOD資化性脱窒素菌であり、一部はアルコール(メタノール)資化性脱窒素菌である。菌体構成比及び代謝速度から、活性汚泥の脱窒素反応速度を向上するためには、アルコール以外のBOD成分を供給したほうがはるかに効果的である。活性汚泥の一部を可溶化してBOD物質に転換することは、単に水素供与体を供給するだけでなく、脱窒素速度を大幅に向上し、脱窒素槽容積を大幅に縮減できるという、相乗的効果を得ることができる。
Oxidized nitrogen generated by nitrification in known wastewater biological denitrification methods such as nitrification liquid circulation can be used for denitrification using the BOD component of the wastewater as a hydrogen donor. It is desirable that it is about 2.86 times or more (2.86> = BOD / NO3-N, stoichiometric value not including cell growth) with respect to nitrogen. Wastewater with a small BOD / N requires valuable industrial chemicals such as industrial alcohol to make up for the shortage of BOD. On the other hand, the stoichiometric value of the BOD concentration of denitrification relative to nitrite nitrogen is 60% of nitrate nitrogen, which is about 1.71.
Furthermore, nitrous acid has a high denitrification rate because the amount of bound oxygen is 60% compared to nitric acid. In the nitrification liquid circulation method, most of the denitrifying bacteria constituting the activated sludge of the treatment apparatus are BOD-utilizing denitrifying bacteria in waste water, and some are alcohol (methanol) -utilizing denitrifying bacteria. is there. In order to improve the denitrification reaction rate of activated sludge from the bacterial cell composition ratio and the metabolic rate, it is much more effective to supply BOD components other than alcohol. Solubilization of a part of activated sludge and conversion to BOD material not only provides a hydrogen donor, but also greatly improves the denitrification rate and greatly reduces the denitrification tank volume. Effects can be obtained.

亜硝酸型硝化に関しては、例えば、特開昭62−286598号公報では、好気的条件下にある硝化工程を2分割し、前段部を間欠的あるいは連続的に40から45℃に調整することによって、亜硝酸型硝化に制御する方法が開示されている。しかしながら、該公報では、水温調整部分の硝化工程の好気的条件を維持するための、曝気の蒸発潜熱による熱損失量が著しく大きく、廃水自体が十分に高温でなければ実施が難しいという問題があった。また、廃水自体のBOD濃度が低い場合には、硝酸型硝化に比較して注入量は少ないが、外部からアルコールなどの工業薬品の注入が必要となる。   Regarding nitrite-type nitrification, for example, in Japanese Patent Laid-Open No. 62-286598, the nitrification step under aerobic conditions is divided into two, and the former stage is adjusted intermittently or continuously to 40 to 45 ° C. Discloses a method for controlling nitrite type nitrification. However, in this publication, there is a problem that the heat loss due to the latent heat of evaporation of aeration is extremely large in order to maintain the aerobic conditions of the nitrification process of the water temperature adjustment part, and it is difficult to implement unless the wastewater itself is sufficiently hot. there were. In addition, when the BOD concentration of the wastewater itself is low, the injection amount is small compared to nitric acid nitrification, but it is necessary to inject industrial chemicals such as alcohol from the outside.

外部からの脱窒素用薬品の削減方法としては、例えば、特開2007−222830号公報では、脱窒工程及び/又は硝化工程から汚泥を一部引出し、可溶化処理を施した後に脱窒工程及び/又は硝化工程に戻すことが記載されている。これは、可溶化汚泥を脱窒素の水素供与体とすることにより、増加したBOD成分を脱窒に利用している。また、効果として、余剰汚泥発生量減量が開示されている。しかしながら、該公報では、硝化反応を亜硝酸型に制御することは開示されていない。このため、硝化工程が硝酸型で運転されている場合は、脱窒処理におけるBOD/N比は亜硝酸型に比べて高くなり、メタノ−ルなどの外部有機物の添加が必要となることにより、薬品コストがかかるという問題が残されている。
特開昭62−286598号公報 特開2007−222830号公報 下水道協会誌 Vol.7、No.74、1970/7
As a method for reducing chemicals for denitrification from the outside, for example, in Japanese Patent Application Laid-Open No. 2007-222830, a part of sludge is extracted from a denitrification step and / or a nitrification step, and after a solubilization treatment, And / or return to the nitrification process. This uses the increased BOD component for denitrification by using solubilized sludge as a hydrogen donor for denitrification. In addition, as an effect, reduction of excess sludge generation amount is disclosed. However, this publication does not disclose controlling the nitrification reaction to the nitrite type. For this reason, when the nitrification process is operated in the nitric acid type, the BOD / N ratio in the denitrification process is higher than that in the nitrous acid type, and the addition of an external organic substance such as methanol is necessary. The problem of high chemical costs remains.
JP-A-62-286598 JP 2007-222830 A Journal of Sewerage Association Vol. 7, no. 74, 1970/7

本発明では、前記背景技術に鑑み、亜硝酸型硝化、汚泥改質に共通の制御因子として熱に着目し、亜硝酸型硝化を行うことによって、硝化のための酸素要求量、脱窒のための水素供与体要求量を削減できる経済的な廃水の窒素処理方法と装置を提供することを課題とする。   In the present invention, in view of the background art, focusing on heat as a control factor common to nitrite type nitrification and sludge reforming, by performing nitrite type nitrification, oxygen demand for nitrification, for denitrification It is an object of the present invention to provide an economical wastewater nitrogen treatment method and apparatus that can reduce the amount of hydrogen donor required.

上記課題を解決するために、本発明では、廃水の還元態窒素化合物を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化工程、該亜硝酸を還元脱窒素する脱窒素工程、及び、活性汚泥混合液を無酸素条件下で熱処理する熱処理工程の各工程を有する廃水の窒素除去方法において、前記熱処理工程では、前記亜硝酸化工程の活性汚泥混合液を亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件で加熱処理した後、該熱処理した混合液を前記脱窒工程に導入する操作と、前記亜硝酸化工程の活性汚泥混合液を脱窒素の水素供与体に改質するための60℃以上で加熱処理した後、高温条件該熱処理した混合液を前記脱窒工程に導入する操作とを、交互に切り替えて行うことを特徴とする廃水の窒素処理方法としたものである。
また、本発明では、廃水の還元態窒素化合物を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化工程、該亜硝酸を還元脱窒素する脱窒素工程、及び、活性汚泥混合液を無酸素条件下で熱処理する熱処理工程の各工程を有する廃水の窒素除去方法において、前記熱処理工程では、前記亜硝酸化工程の活性汚泥混合液を亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件で加熱処理した後、該熱処理した混合液を前記脱窒工程に導入する操作と、前記脱窒素工程の活性汚泥混合液を脱窒素の水素供与体に改質するための60℃以上の高温条件で加熱処理した後、高温条件該熱処理した混合液を前記脱窒工程に導入する操作とを、交互に切り替えて行うことを特徴とする廃水の窒素処理方法としたものである。
In order to solve the above problems, in the present invention, a nitritation step of oxidizing a reduced nitrogen compound of wastewater into nitrous acid by an activated sludge mixed solution, a denitrification step of reducing and denitrifying the nitrous acid, and activated sludge In the method for removing nitrogen from wastewater having heat treatment steps in which the mixed solution is heat-treated under oxygen-free conditions, the activated sludge mixed solution in the nitritation step is selectively deactivated in the heat treatment step. After heat treatment at an intermediate temperature of 40 to 55 ° C. for causing the mixture to be introduced, the heat-treated mixture is introduced into the denitrification step, and the activated sludge mixture in the nitritation step is used as a hydrogen donor for denitrification. After the heat treatment at 60 ° C. or higher for reforming, the operation of introducing the heat-treated mixed liquid into the denitrification step is performed by alternately switching the wastewater nitrogen treatment method. Is.
Further, in the present invention, a nitritation step of oxidizing the reduced nitrogen compound of wastewater into nitrous acid with an activated sludge mixed solution, a denitrification step of reducing and denitrifying the nitrous acid, and an activated sludge mixed solution with oxygen-free conditions In the nitrogen removal method of wastewater having each step of the heat treatment step that is heat-treated below, in the heat treatment step, 40 to 55 for selectively deactivating the nitrite oxidizing bacteria in the activated sludge mixed solution of the nitritation step An operation for introducing the heat-treated mixed liquid into the denitrification step after heat treatment at a medium temperature condition of 60 ° C., and 60 ° C. for reforming the activated sludge mixed liquid in the denitrogenation step to a denitrification hydrogen donor. After the heat treatment under the above high temperature conditions, the operation for introducing the mixed liquid subjected to the high temperature conditions into the denitrification step is performed by alternately switching the waste water nitrogen treatment method.

さらに、本発明では、廃水の還元態窒素化合物を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化工程、該亜硝酸を還元脱窒素する脱窒素工程、活性汚泥混合液を無酸素条件下で熱処理する熱処理工程、及び、固液分離工程の各工程を有する廃水の窒素除去方法において、前記熱処理工程では、前記固液分離工程で分離した活性汚泥混合液の一部あるいは全てを、亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件で加熱処理した後、該熱処理した混合液を前記脱窒工程に導入する操作と、前記固液分離工程で分離した活性汚泥混合液の一部あるいは全てを脱窒素の水素供与体に改質するための60℃以上の高温条件で加熱処理した後、高温条件該熱処理した混合液を前記脱窒工程に導入する操作とを、交互に切り替えて行うことを特徴とする廃水の窒素処理方法としたものである。   Furthermore, in the present invention, a nitrification step of oxidizing the reduced nitrogen compound of wastewater into nitrous acid by the activated sludge mixed solution, a denitrification step of reducing and denitrifying the nitrous acid, and the activated sludge mixed solution under anoxic conditions In the method for removing nitrogen of wastewater having a heat treatment step for heat treatment and a solid-liquid separation step, in the heat treatment step, part or all of the activated sludge mixed liquid separated in the solid-liquid separation step is oxidized with nitrous acid. An operation for introducing the heat-treated mixed liquid into the denitrification step after heat treatment at a medium temperature of 40 to 55 ° C. for selectively inactivating the bacteria, and the activated sludge mixing separated in the solid-liquid separation step An operation of heat-treating a part or all of the liquid under a high temperature condition of 60 ° C. or higher for reforming into a denitrification hydrogen donor, and then introducing the heat-treated mixed liquid into the denitrification step. Switch alternately Ukoto is obtained by the nitrogen treatment method of the waste water, characterized in.

前記廃水の窒素処理方法において、前記熱処理工程では、熱処理する時間の長さが、高温条件時間>中温条件時間であり、かつ中温条件時間帯の水温が40〜55℃になるように加熱時間が設定され、高温条件時間帯の熱処理温度60℃以上になるように加熱時間が設定され、中温条件時間帯の活性汚泥混合液の流入量が、高温条件時間帯の活性汚泥混合液の流入量に比べて多くするのがよく、前記脱窒素工程には、前記熱処理工程からの高温加熱混合液を前記亜硝酸化工程の流出混合液と混合したのちに導入するのがよく、また、前記廃水が、メタンを含有するバイオガスを発生する嫌気性消化工程から流出する消化液であり、前記熱処理工程の熱源として前記嫌気性消化工程からのバイオガスの燃焼装置から発生するものを用いることができる。   In the nitrogen treatment method of wastewater, in the heat treatment step, the heat treatment time is such that the length of the heat treatment is high temperature condition time> medium temperature condition time, and the water temperature in the medium temperature condition time zone is 40 to 55 ° C. The heating time is set so that the heat treatment temperature is 60 ° C. or higher in the high temperature condition time zone, and the inflow amount of the activated sludge mixture liquid in the medium temperature condition time zone is the inflow amount of the activated sludge mixture liquid in the high temperature condition time zone. The denitrification step is preferably introduced after mixing the high temperature heating mixture from the heat treatment step with the effluent mixture of the nitritation step, and the waste water , A digestion liquid that flows out from the anaerobic digestion process that generates methane-containing biogas, and uses a heat generated from the biogas combustion device from the anaerobic digestion process as a heat source for the heat treatment process Kill.

また、本発明では、廃水の還元態窒素化合物を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化手段、該亜硝酸を還元脱窒素する脱窒素手段、及び、前記活性汚泥混合液を無酸素条件下で熱処理する熱処理手段の各手段を有する廃水の窒素除去装置において、前記熱処理手段には、前記亜硝酸化手段からの活性汚泥混合液を流入するための流入経路と、流入した活性汚泥混合液の熱処理条件を、亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件と、脱窒素の水素供与体に改質するための60℃以上の高温条件とに、交互に切り替えて熱処理するための加熱手段と、該熱処理された混合液を前記脱窒素手段に流出するための流出経路とを有することを特徴とする廃水の窒素処理装置としたものである。   Further, in the present invention, nitritation means for oxidizing the reduced nitrogen compound of waste water to nitrous acid with an activated sludge mixed solution, denitrifying means for reducing and denitrifying the nitrous acid, and the activated sludge mixed solution with oxygen-free In the nitrogen removal apparatus of wastewater having each means of heat treatment means for heat treatment under conditions, the heat treatment means has an inflow path for flowing in the activated sludge mixed liquid from the nitritation means, and the activated sludge mixed in The heat treatment conditions of the liquid are alternately changed to a medium temperature condition of 40 to 55 ° C. for selectively deactivating nitrite oxidizing bacteria and a high temperature condition of 60 ° C. or more for reforming to a denitrification hydrogen donor. The wastewater nitrogen treatment apparatus is characterized by having a heating means for performing heat treatment by switching to a heat treatment, and an outflow path for allowing the heat-treated mixed liquid to flow out to the denitrification means.

また、本発明では、廃水の還元態窒素化合物を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化手段、該亜硝酸を還元脱窒素する脱窒素手段、及び、前記活性汚泥混合液を無酸素条件下で熱処理する熱処理手段の各手段を有する廃水の窒素除去装置において、前記熱処理手段には、前記亜硝酸化手段からの活性汚泥混合液を流入するための流入経路と、前記脱窒素手段からの活性汚泥混合液を流入するための流入経路と、前記亜硝酸化手段から流入する活性汚泥混合液を、亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件と、前記脱窒素手段から流入する活性汚泥混合液を脱窒素の水素供与体に改質するための60℃以上の高温条件とに、交互に切り替えて熱処理するための加熱手段と、該熱処理された混合液を前記脱窒素手段に流出するための流出経路とを有することを特徴とする廃水の窒素処理装置としたものである。   Further, in the present invention, nitritation means for oxidizing the reduced nitrogen compound of waste water to nitrous acid with an activated sludge mixed solution, denitrifying means for reducing and denitrifying the nitrous acid, and the activated sludge mixed solution with oxygen-free In a nitrogen removal apparatus for wastewater having each means of heat treatment means for heat treatment under conditions, the heat treatment means includes an inflow path for flowing the activated sludge mixed solution from the nitritation means, and the denitrification means. An inflow path for injecting the activated sludge mixed liquid, and an intermediate temperature condition of 40 to 55 ° C. for selectively deactivating the activated sludge mixed liquid flowing in from the nitritation means, Heating means for alternately heat-treating the activated sludge mixed liquid flowing in from the denitrification means to a high temperature condition of 60 ° C. or higher for reforming to a hydrogen donor for denitrification, and the heat-treated mixture Remove the liquid It is obtained by a nitrogen treatment apparatus wastewater and having an outflow path for flowing the element unit.

さらに、本発明では、廃水の還元態窒素化合物の大部分を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化手段、該亜硝酸を還元脱窒素する脱窒素手段、前記活性汚泥混合液を無酸素条件下で熱処理する熱処理手段、及び、固液分離手段の各手段を有する廃水の窒素除去装置において、前記熱処理手段には、前記固液分離手段で分離した活性汚泥混合液の一部あるいは全てを流入するための流入経路と、該流入した活性汚泥混合液の熱処理条件を、亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件と、脱窒素の水素供与体に改質するための60℃以上の高温条件とに、交互に切り替えて熱処理するための加熱手段と、該熱処理された混合液を前記脱窒素手段に流出するための流出経路とを有することを特徴とする廃水の窒素処理装置としたものである。   Furthermore, in the present invention, nitritation means for oxidizing most of the reduced nitrogen compounds of wastewater to nitrous acid by the activated sludge mixed solution, denitrification means for reducing and denitrifying the nitrous acid, and the activated sludge mixed solution are not used. In a nitrogen removal apparatus for wastewater having heat treatment means for heat treatment under oxygen conditions and solid-liquid separation means, the heat treatment means includes a part or all of the activated sludge mixed liquid separated by the solid-liquid separation means. The inflow route for injecting the activated sludge and the heat treatment conditions of the activated sludge mixed solution into the intermediate temperature conditions of 40 to 55 ° C. for selectively deactivating the nitrite oxidizing bacteria and the hydrogen donor for denitrification A heating means for alternately heat-treating to a high temperature condition of 60 ° C. or higher for reforming, and an outflow path for flowing out the heat-treated mixed liquid to the denitrification means Waste water It is obtained by the hydrogen processing unit.

本発明によれば、亜硝酸型硝化を行うことによって、硝化のための酸素要求量、脱窒のための水素供与体要求量を削減できるので、経済的な脱窒素処理ができる。
また、本発明では、活性汚泥混合液を脱窒の水素供与体に加熱改質することによって、脱窒のための水素供与体を工程内で補給し、かつ水素供与体に利用することによって余剰汚泥発生量を減少することができるので、相乗的な経済効果を達成することができるし、亜硝酸化、汚泥改質の制御因子を熱に統一し、間欠運転により中水温、高水温の両水温域の処理を単一工程で行うことができるので、処理装置の構成を簡単にできる。
さらに、本発明によれば、水素供与体の補給が経済的に容易になったので、脱窒素工程の亜硝酸残存による亜酸化窒素(N2O:一酸化二窒素)発生の恐れが回避され、地球温暖化防止への貢献が可能になる。この亜酸化窒素は、温室効果ガスのひとつであり、温暖化への影響度を示す温暖化係数は、二酸化炭素(CO2)の310倍にもなり、発生の抑制が地球温暖化防止の重要な課題になっている。
According to the present invention, by performing nitrite-type nitrification, the oxygen demand for nitrification and the hydrogen donor demand for denitrification can be reduced, so that economical denitrification treatment can be performed.
Further, in the present invention, the activated sludge mixed solution is heated and reformed to a denitrification hydrogen donor, so that the hydrogen donor for denitrification is replenished in the process and used as a hydrogen donor. Since the amount of sludge generated can be reduced, a synergistic economic effect can be achieved, and the control factors for nitritation and sludge reforming are unified to heat, and both intermediate and high water temperatures are achieved by intermittent operation. Since the treatment in the water temperature region can be performed in a single process, the configuration of the treatment apparatus can be simplified.
Furthermore, according to the present invention, since the supply of the hydrogen donor has become economically easy, the risk of nitrous oxide (N2O: dinitrogen monoxide) generation due to residual nitrous acid in the denitrification step is avoided, and the earth Contributes to the prevention of global warming. This nitrous oxide is one of the greenhouse gases, and the global warming coefficient indicating the degree of impact on global warming is 310 times that of carbon dioxide (CO2). It has become an issue.

次に、本発明の一実施態様について図面を参照しながら説明する。図1は、本発明の一例の工程の概要を示すフローシートである。
図1において、アンモニアを含有する原水1は、返送汚泥2、循環水3,加熱循環水4−2と共に、嫌気的条件下にある脱窒素工程5に導入され、流入する亜硝酸性窒素は、同じく脱窒素工程5に流入する原水に含まれるBOD物質等の水素供与体によって還元脱窒される。アンモニアは、嫌気的条件下ではほとんど変化しない。次に、脱窒素工程5流出液は、亜硝酸化工程6に流入し,アンモニアが亜硝酸に酸化されたのちに、亜硝酸化工程6の流出液の大部分は、脱窒素工程5の循環水3と熱処理工程7の加熱循環水4−1として循環される。残部は、固液分離工程8に導入され、分離水9とMLSS分に分離され、一部は、返送汚泥2として脱窒素工程5に返送され,残部は、余剰汚泥10として処理系外に排出される。固液分離は、重力式自然沈降、遠心濃縮、膜分離等公知の固液分離方法を利用することができる。固液分離法として、分離に膜分離を採用し、膜を亜硝酸化工程6に設置する場合には、返送汚泥ラインを省略することができる。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flow sheet showing an outline of the steps of an example of the present invention.
In FIG. 1, the raw water 1 containing ammonia is introduced into the denitrification step 5 under anaerobic conditions together with the return sludge 2, the circulating water 3, and the heated circulating water 4-2. Similarly, reductive denitrification is performed by a hydrogen donor such as a BOD substance contained in the raw water flowing into the denitrification step 5. Ammonia hardly changes under anaerobic conditions. Next, the effluent from the denitrification process 5 flows into the nitritation process 6, and after ammonia is oxidized to nitrous acid, most of the effluent from the nitritation process 6 is circulated in the denitrification process 5. It is circulated as water 3 and heat circulating water 4-1 in the heat treatment step 7. The remaining portion is introduced into the solid-liquid separation step 8 and separated into the separated water 9 and MLSS, a part is returned to the denitrification step 5 as the return sludge 2, and the remaining portion is discharged outside the treatment system as the excess sludge 10. Is done. For solid-liquid separation, known solid-liquid separation methods such as gravity natural sedimentation, centrifugal concentration, and membrane separation can be used. When membrane separation is adopted as the solid-liquid separation method and the membrane is installed in the nitritation step 6, the return sludge line can be omitted.

生物学的硝化脱窒は、通常硝酸型で行われているので、これを亜硝酸型に切り替えるためには、亜硝酸を硝酸に酸化する硝酸菌を選択的に失活せしめればよい。硝酸菌は、亜硝酸菌よりも高温水に対する抵抗力が弱く、40〜55℃の温度範囲及びそれらの水温における接触時間により選択的に失活する。しかしながら、厳密な温度範囲で再現されるわけではなく、選択のための水温はかなり変動し一律ではない。これは、活性汚泥中の硝酸菌が微妙に特性の異なる複数の属種で構成され、また、活性汚泥混合液の水質(pH、水温、塩類濃度等)によって、硝酸菌、亜硝酸菌の水温耐性が異なってくるからであると思われる。水温40数度以上で長時間放置すると、亜硝酸化活性も失活して硝化菌が全滅することがあるので注意を要する。目安は40〜55℃前後であるが、高水温になるほど失活速度が大きくなるので、経時的に窒素(NH3−N、NO2−N、NO3−N)濃度の分析を行って硝化菌の活性を確認しつつ、水温、接触時間を調整していけばよい。   Biological nitrification denitrification is usually performed in the nitric acid type, and in order to switch to the nitrite type, it is only necessary to selectively deactivate nitric acid bacteria that oxidize nitrous acid to nitric acid. Nitric acid bacteria are less resistant to high temperature water than nitrite bacteria, and are selectively deactivated depending on the temperature range of 40 to 55 ° C. and the contact time at the water temperature. However, it is not reproduced in a strict temperature range, and the water temperature for selection varies considerably and is not uniform. This is due to the fact that nitrate bacteria in activated sludge are composed of multiple genera with slightly different characteristics, and the water temperature of nitrate bacteria and nitrite bacteria depends on the water quality (pH, water temperature, salt concentration, etc.) of the activated sludge mixture. This seems to be because resistance is different. If left at a water temperature of 40 degrees or more for a long time, nitrification activity may be inactivated and nitrifying bacteria may be destroyed. The standard is around 40-55 ° C, but the higher the water temperature, the greater the deactivation rate, so the nitrogen (NH3-N, NO2-N, NO3-N) concentration is analyzed over time and the activity of nitrifying bacteria The water temperature and contact time can be adjusted while confirming the above.

硝酸菌が失活して亜硝酸型になると、水温を30℃前後に低下しても数ヶ月間は亜硝酸型が維持されるが、その後、次第に硝酸菌は増殖して硝酸型になるので、再び亜硝酸型になるように、熱処理工程7の活性汚泥混合液水温を中温(40〜55℃)に調整して、硝酸菌を選択的に失活せしめればよい。中温に加熱した加熱循環水4−2は、脱窒素工程5に循環される。高温条件(60℃以上)から中温条件(40〜55℃)への切り替えは、NO2−N/NOx−N=0.9程度になったときに実施するとよい(NOx−N=NO2−N+NO3−N)。すなわち、熱処理工程における(1)中温条件から高温条件への切り替え、(2)高温条件から中温条件への切り替えについては、(1)の場合の切り替えは亜硝酸化工程が硝酸型から亜硝酸型に変わり亜硝酸で安定した場合(NO2−N/NOx−N=0.9以上になった時)に行い、(2)の場合の切り替えは亜硝酸化工程が亜硝酸型から硝酸型に変わりはじめた場合(NO2−N/NOx−N=0.9以下になった時)に行う。   When nitrate bacteria are inactivated and become nitrite type, even if the water temperature is lowered to around 30 ° C, the nitrite type is maintained for several months, but after that, nitrate bacteria gradually grow and become nitrate type. The activated sludge mixed liquid water temperature in the heat treatment step 7 may be adjusted to an intermediate temperature (40 to 55 ° C.) to selectively deactivate nitric acid bacteria so that the nitrite type is obtained again. Heated circulating water 4-2 heated to an intermediate temperature is circulated to the denitrification step 5. Switching from the high temperature condition (60 ° C. or higher) to the medium temperature condition (40 to 55 ° C.) may be performed when NO 2 −N / NO x −N = 0.9 (NO x −N = NO 2 −N + NO 3 −). N). That is, (1) switching from the medium temperature condition to the high temperature condition in the heat treatment process, and (2) switching from the high temperature condition to the medium temperature condition, the switching in the case of (1) is performed by changing the nitritation process from the nitrate type to the nitrite type. If it is stable with nitrous acid (NO2-N / NOx-N = 0.9 or more), switching to the case of (2) changes the nitritation process from nitrite type to nitric acid type This is performed in the first case (when NO2-N / NOx-N = 0.9 or less).

たとえば、硝酸型で馴致されている活性汚泥を種汚泥として、プラントの立ち上げ運転を行う場合は、熱処理工程は中温条件で開始し、亜硝酸化工程が亜硝酸型に変わり、亜硝酸型が安定した段階で、次に熱処理工程を高温条件に切り替えて運転することになる。また、熱処理工程を高温条件で数ヶ月運転を行い、亜硝酸化工程が亜硝酸型から硝酸型に変わりはじめた場合、熱処理工程を高温条件から中温条件に切り替えることになる。
切り替え時期を把握するため、亜硝酸化工程6のNH3−N、NO2−N、NO3−Nの濃度を、週に数回分析して硝酸型への移行状況を確認すると良い。亜硝酸化への切り替えに要する日数は、4日〜7日を目安にすると良い。また、硝化工程における硝酸型と亜硝酸型の状態は、活性汚泥処理水のNOx−N中のNO3−NとNO2−Nに比率により評価できる。すなわち、NO2−N/NOx−N比が0.9以上、好ましくは0.98以上の場合は亜硝酸型、NO3−N/NOx−N比が0.9以上、好ましくは0.98以上の場合は硝酸型といえる。
For example, when starting up a plant using activated sludge accustomed to the nitric acid type as seed sludge, the heat treatment process starts at medium temperature, the nitritation process changes to the nitrite type, At a stable stage, the heat treatment process is then switched to a high temperature condition for operation. In addition, when the heat treatment process is operated for several months under a high temperature condition and the nitritation process starts to change from the nitrite type to the nitric acid type, the heat treatment process is switched from the high temperature condition to the medium temperature condition.
In order to grasp the switching time, it is preferable to analyze the concentration of NH3-N, NO2-N, NO3-N in the nitritation step 6 several times a week to confirm the transition state to the nitric acid type. The number of days required for switching to nitritation is preferably 4 to 7 days. Moreover, the state of the nitric acid type and the nitrous acid type in the nitrification step can be evaluated by the ratio of NO3-N and NO2-N in NOx-N of the activated sludge treated water. That is, when the NO2-N / NOx-N ratio is 0.9 or more, preferably 0.98 or more, nitrite type, and the NO3-N / NOx-N ratio is 0.9 or more, preferably 0.98 or more. In the case, it can be said to be a nitric acid type.

熱処理工程7の流出水は、中温条件による処理を実施する場合のみ亜硝酸化工程6に流入せしめても同等の効果を得ることができるが、亜硝酸化への切り替え終了後は、熱処理工程7の加熱温度を高水温域(60℃〜)に設定する。活性汚泥混合液を60℃で加熱することによって、活性汚泥が改質される際に、脱窒の水素供与体として有効なBOD成分を溶出することが確認された。
表1に、嫌気条件下における熱処理による溶解性BOD(S−BOD)の溶出濃度を示す。対象汚泥は、硝化槽の活性汚泥(MLSS濃度14000mg/L)で、熱処理時間は8時間である。

Figure 2011143363
Even if the effluent from the heat treatment step 7 is allowed to flow into the nitritation step 6 only when the treatment is performed under a medium temperature condition, the same effect can be obtained. Is set to a high water temperature range (60 ° C.). It was confirmed that when the activated sludge was reformed by heating the activated sludge mixed liquid at 60 ° C., the BOD component effective as a denitrification hydrogen donor was eluted.
Table 1 shows the elution concentration of soluble BOD (S-BOD) by heat treatment under anaerobic conditions. The target sludge is activated sludge in a nitrification tank (MLSS concentration 14000 mg / L), and the heat treatment time is 8 hours.
Figure 2011143363

高温になるほど改質速度が向上し、溶出BOD濃度も上昇するが、160℃近傍になると、活性汚泥混合液が著しく茶褐色を呈し、さらに難生物分解性のCOD濃度も上昇して処理水質が悪化する。また、100℃以上の高温処理は、燃料が高額な場合には不経済になり、取り扱いに圧力容器に関する国家資格者が必要となるので、高温条件として60℃〜100℃に調整することが望ましい。活性汚泥は、微生物の集合体であるが、処理対象廃水に高濃度の生物不活性浮遊物が含有されている場合は、活性汚泥中の生物不活性物質の含有率が高くなる。生物不活性物質は、微生物に比較して改質温度が高くなるので、生物不活性物質含有率の高い活性汚泥に対しては、80〜100℃の比較的高温域、微生物集合体含有率の高い活性汚泥に対しては60℃〜80℃の比較的低温域で改質すればよい。   The higher the temperature, the higher the reforming speed and the higher the elution BOD concentration. However, when the temperature reaches around 160 ° C, the activated sludge mixture becomes extremely brown and the biodegradable COD concentration also increases and the quality of the treated water deteriorates. To do. In addition, high temperature treatment at 100 ° C. or higher is uneconomical when the fuel is expensive and requires a national qualified person for the pressure vessel for handling, so it is desirable to adjust the temperature to 60 ° C. to 100 ° C. . The activated sludge is an aggregate of microorganisms, but when the treatment target wastewater contains a high concentration of bioinert suspended matter, the content of the bioinert substance in the activated sludge increases. Since the bioinert substance has a higher reforming temperature than microorganisms, the activated sludge having a high bioinert substance content has a relatively high temperature range of 80 to 100 ° C. and a microbial aggregate content. What is necessary is just to modify | reform in a comparatively low temperature range of 60 to 80 degreeC with respect to high activated sludge.

循環水量と加熱循環水量の返送汚泥量の合計量は、亜硝酸化工程pHが中性に保たれるように、原水アンモニア性窒素が100mg/L程度に希釈される量が好ましい。
Z0・Q/(Q+R+NC+HC)=100 mg/L
原水量Q(m3/日)、返送汚泥量R(m3/日)、循環水量NC(m3/日)、加熱循環水量HC(m3/日)、原水窒素濃度Z0(mg/L)
高水温(60℃以上)時には亜硝酸菌も失活するので、高水温時の加熱循環水量は、亜硝酸菌を工程から洗出させないため、活性汚泥の亜硝酸化工程6における汚泥令を3〜3.5日(亜硝酸菌の比増殖率の逆数)以上にすることが必要であり、式(6)を目安に決定すればよい。汚泥令が確保できる条件では、固液分離工程8、返送汚泥2を省略し、亜硝酸化工程6の活性汚泥混合液をそのまま処理水として流出させる処理、いわゆる一過性(One Through)の処理を行うこともできる。
HC(m3/日)<0.3Vn・1/日・・・・・・・・・・・(6)
加熱循環水量HC(m3/日)、亜硝酸化工程容積Vn(m3)
The total amount of the return water sludge of the circulating water amount and the heated circulating water amount is preferably an amount in which the raw water ammoniacal nitrogen is diluted to about 100 mg / L so that the pH of the nitritation step is kept neutral.
Z0 · Q / (Q + R + NC + HC) = 100 mg / L
Raw water volume Q (m3 / day), return sludge volume R (m3 / day), circulating water volume NC (m3 / day), heated circulating water volume HC (m3 / day), raw water nitrogen concentration Z0 (mg / L)
Since nitrite bacteria are also deactivated at high water temperatures (over 60 ° C), the amount of heated circulating water at high water temperatures does not cause nitrite bacteria to be washed out of the process. It is necessary to set it to ˜3.5 days (the reciprocal of the specific growth rate of nitrite bacteria) or more, and it may be determined using Equation (6) as a guide. In conditions where sludge age can be secured, the solid-liquid separation process 8 and the return sludge 2 are omitted, and the activated sludge mixed liquid in the nitritation process 6 is discharged as treated water as it is, so-called transient (One Through) process. Can also be done.
HC (m3 / day) <0.3Vn / 1 / day (6)
Heated circulating water volume HC (m3 / day), nitritation process volume Vn (m3)

高温時の熱処理工程7における流入液滞留時間は、水温、活性汚泥の性状にもよるが1時間以上あればよい。高温時の熱処理工程7において、混合のため空気攪拌を検討したが、加熱改質混合液の脱窒の水素供与体としての効果が減少した。これは、水素供与体の一部が、60〜80℃では生物学的酸化分解され、また一部が放散したからであると考えられる。従って、空気との接触は好ましくない。
熱処理工程7の加熱方法として、高温蒸気、電気ヒータ(投入式、リボンヒータ等)、水中ガスバーナー、ヒートポンプなど公知の加熱法を利用することができる。水温制御は自動制御が安全である。
高温条件で加熱改質された加熱循環水4−2は、循環水3と配管内等で混合後、脱窒素工程5に導入すると、脱窒素工程内での局所的な水温上昇、それに伴う菌の失活を防止することができる。
亜硝酸化工程6から流出した活性汚泥混合液の一部は、固液分離工程8で分離水9、返送汚泥2、余剰汚泥10に分離される。固液分離は、従来の重力沈降分離、膜分離等公知の分離技術を利用することができる。
The inflowing liquid residence time in the heat treatment step 7 at a high temperature may be 1 hour or longer although it depends on the water temperature and the properties of the activated sludge. In the heat treatment step 7 at high temperature, air agitation was studied for mixing, but the effect of denitrification of the heat reforming mixture as a hydrogen donor decreased. This is considered to be because a part of the hydrogen donor was biologically oxidatively decomposed at 60 to 80 ° C. and a part was released. Therefore, contact with air is not preferable.
As a heating method of the heat treatment step 7, a known heating method such as high-temperature steam, an electric heater (such as a charging type, a ribbon heater), an underwater gas burner, or a heat pump can be used. Automatic control is safe for water temperature control.
When heated circulating water 4-2 that has been heat-reformed under high temperature conditions is mixed with circulating water 3 in a pipe or the like and then introduced into the denitrification step 5, the local water temperature rises in the denitrification step and the accompanying bacteria Can be prevented from being deactivated.
Part of the activated sludge mixed liquid flowing out from the nitritation step 6 is separated into separated water 9, return sludge 2, and excess sludge 10 in the solid-liquid separation step 8. For solid-liquid separation, known separation techniques such as conventional gravity sedimentation separation and membrane separation can be used.

次に、本発明の他の実施態様について、図2に基づいて説明する。図2では、中温条件時間帯では、亜硝酸化工程6から熱処理工程7に活性汚泥混合液を循環水4−1として循環させ、高温条件時間帯では、循環水4−1を停止し、脱窒素工程5から活性汚泥混合液を循環水4−3として循環させる方法である。図2では、無酸素の活性汚泥混合液〔溶存酸素濃度=零〕を、高温条件時間帯の熱処理工程に導入できるので、前記した図1の発明に比較して、熱処理工程7の無酸素条件の維持に有利となる。   Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 2, the activated sludge mixed liquid is circulated as circulating water 4-1 from the nitritation step 6 to the heat treatment step 7 in the intermediate temperature condition time zone, and the circulating water 4-1 is stopped and removed in the high temperature condition time zone. This is a method of circulating the activated sludge mixed liquid from the nitrogen step 5 as the circulating water 4-3. In FIG. 2, since the oxygen-free activated sludge mixed solution [dissolved oxygen concentration = 0] can be introduced into the heat treatment process in the high temperature condition time zone, the oxygen-free condition of the heat treatment process 7 is compared with the above-described invention of FIG. It is advantageous to maintain.

次に、本発明のもう一つの実施態様について、図3に基づいて説明する。図3では、固液分離工程8からの返送汚泥2の一部あるいは全てを、該熱処理工程7に導入して、返送汚泥を中温条件(40〜55℃)と、活性汚泥混合液を脱窒素の水素供与体に改質するための高温条件(60℃以上)とに、間欠的に熱処理する方法である。加熱したのち、該熱処理工程7の流出混合液を該脱窒素工程5に返送する。高温条件時間帯では、返送汚泥2中の亜硝酸菌を死滅させないため,返送汚泥の一部を、中温時間帯では返送汚泥2全量を熱処理工程7に導入した後に、脱窒素工程5に返送すると良い。
図4は、処理水の窒素除去率を向上させるための、本発明の他の実施態様である。
図4において、亜硝酸化工程6からの流出液は、亜硝酸を含有しているので、窒素除去率の向上、沈降分離における汚泥浮上の防止のためには、亜硝酸化工程6と固液分離工程8の間にも脱窒素工程20を介在させ、アルコール22等の水素供与体を添加すればよい。脱窒素工程の活性汚泥混合液は、公知の攪拌機構で混合可能である。
Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 3, a part or all of the returned sludge 2 from the solid-liquid separation step 8 is introduced into the heat treatment step 7, and the returned sludge is subjected to intermediate temperature conditions (40 to 55 ° C.) and the activated sludge mixed solution is denitrogenated. This is a method of intermittent heat treatment under high temperature conditions (60 ° C. or higher) for reforming to a hydrogen donor. After heating, the effluent mixed solution from the heat treatment step 7 is returned to the denitrification step 5. In order to prevent the nitrite bacteria in the return sludge 2 from being killed in the high temperature condition time zone, if a part of the return sludge is introduced into the heat treatment step 7 and then returned to the denitrification step 5 in the intermediate temperature time zone good.
FIG. 4 is another embodiment of the present invention for improving the nitrogen removal rate of treated water.
In FIG. 4, since the effluent from the nitritation step 6 contains nitrous acid, in order to improve the nitrogen removal rate and prevent sludge from rising during sedimentation separation, the nitritation step 6 and the solid liquid A hydrogen donor such as alcohol 22 may be added by interposing a denitrification step 20 between the separation steps 8. The activated sludge mixed solution in the denitrification process can be mixed by a known stirring mechanism.

次に、高水温の加熱改質の熱源を確保する方法について説明する。高濃度廃水の方法として利用されていた好気性消化法は、し尿を長時間空気曝気する方式であるが、微生物による酸化熱により水温が60℃まで達する。しかしながら、60℃でも好気的条件にあるため、BOD成分が遊離酸素によって酸化分解するので、活性汚泥を脱窒のための水素供与体に改質することができない。このように、微生物の酸化熱により水温が高温に達するが、蒸発潜熱、微生物の高水温による失活により水温の上昇には限界があり、また酸化反応は、反応槽全体で発生するので、活性汚泥混合液を局所的に高温にすることができない。このような廃水、例えば有機性廃棄物に対して、局所的に高温に加熱することが可能な本発明の他の実施態様について図5を参照しつつ説明する。   Next, a method for securing a heat source for heat reforming at a high water temperature will be described. The aerobic digestion method used as a method for high-concentration wastewater is a method in which human waste is aerated for a long time, but the water temperature reaches 60 ° C. due to the heat of oxidation by microorganisms. However, since the BOD component is oxidatively decomposed by free oxygen even at 60 ° C., the activated sludge cannot be reformed into a hydrogen donor for denitrification. Thus, although the water temperature reaches a high temperature due to the oxidation heat of microorganisms, there is a limit to the rise in water temperature due to latent heat of vaporization and inactivation due to the high water temperature of microorganisms, and the oxidation reaction occurs in the entire reaction tank. The sludge mixture cannot be locally heated. Another embodiment of the present invention capable of locally heating such waste water, for example, organic waste, to a high temperature will be described with reference to FIG.

図5において、有機性廃棄物11は、嫌気的条件下にあるメタン発酵工程12に導入され、有機物がメタン、二酸化炭素等を含有したバイオガス13に分解されたのち、該ガスは、脱硫工程14で硫化水素が除去されたのち、ガスホルダー15で一旦貯留されたのち、熱処理工程7の燃料として利用される。水中ガスバーナーを用いて、活性汚泥混合液を直接加熱する方法がもっとも簡便で、装置構成も簡単である。メタン発酵の脱離液の硝化脱窒素処理では、メタン発酵で発生したメタンを利用して活性汚泥を局所的に高水温にできるので、活性汚泥混合液の改質を容易に行うことができ、改質汚泥による円滑な脱窒素、余剰汚泥発生量の抑制が可能になる。したがって、メタン発酵消化脱離液を原水とした脱窒素処理は、本発明の好ましい適用対象の一つとなる。
熱処理工程7から脱窒素工程5に、BOD濃度が上昇した混合液が流入してBOD/N比が上昇するため、脱窒が促進される。
In FIG. 5, the organic waste 11 is introduced into a methane fermentation process 12 under anaerobic conditions, and after the organic matter is decomposed into a biogas 13 containing methane, carbon dioxide, etc., the gas is desulfurized. After the hydrogen sulfide is removed at 14, the hydrogen sulfide is once stored in the gas holder 15 and then used as a fuel for the heat treatment step 7. The method of directly heating the activated sludge mixture using an underwater gas burner is the simplest and the apparatus configuration is simple. In the nitrification and denitrification treatment of the effluent of methane fermentation, activated sludge can be locally heated to high water temperature using methane generated in methane fermentation, so that the activated sludge mixture can be easily modified. Smooth denitrification by the modified sludge and suppression of excess sludge generation amount are possible. Therefore, the denitrification treatment using the methane fermentation digestion desorption solution as raw water is one of the preferred applications of the present invention.
Since the mixed liquid having an increased BOD concentration flows from the heat treatment process 7 to the denitrification process 5 and the BOD / N ratio is increased, denitrification is promoted.

以下、本発明を実施例により具体的に説明する。なお、本発明はこの実施例の限定されるものではない。ここでは、熱処理工程を高温条件で運転を行い、亜硝酸化工程が亜硝酸型から硝酸型に変わりはじめ、熱処理工程を高温条件から中温条件に切り替えた場合の実施例を記述する。
実施例1
本発明の図1〜図3に従った運転方法の実施経緯を説明する。
表2と図6に、本実施例の運転の実施経緯を示す。なお、図6に示すように、表2の運転方法で、図1の運転方法、図2の運転方法、図3の運転方法共に同様な方式にてデ−タの採取を行った。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to this embodiment. Here, an embodiment will be described in which the heat treatment process is operated under a high temperature condition, the nitritation process starts to change from the nitrite type to the nitric acid type, and the heat treatment process is switched from the high temperature condition to the medium temperature condition.
Example 1
An implementation process of the operation method according to FIGS. 1 to 3 of the present invention will be described.
Table 2 and FIG. 6 show the operation history of this example. As shown in FIG. 6, data was collected in the same manner as in the operation method of FIG. 1, the operation method of FIG. 2, and the operation method of FIG.

Figure 2011143363
Figure 2011143363

本実施例では、熱処理工程へ導入する活性汚泥混合液を、亜硝酸化工程から脱窒素工程に戻す方法の高水温条件で3ヶ月間運転した後、亜硝酸化工程の酸化態窒素中の亜硝酸性窒素の割合が90%以下になったため、熱処理工程を中水温運転に切り替えた。
中水温運転に切り替えてから、6日目に亜硝酸化工程における酸化態窒素中の亜硝酸性窒素の割合が90%以上になったので,熱処理工程を高水温運転(図1のフローシートによる方法。以下「図1の方法」という。以下同じ。)に切り替えた。高水温運転(図1の方法)を6日間行い、窒素水質(NH4−N、NOx−N)が安定することを確認した。引き続き高水温運転(図1の方法)を2週間行い、この期間のうち計6回分の測定又は分析(測定等の実施は月曜日、水曜日及び金曜日の各曜日ごとに1回ずつ行った。以下同じ)を行った。実験結果データはその平均値である。
In this example, the activated sludge mixed liquid introduced into the heat treatment process was operated for 3 months under the high water temperature condition of the method of returning from the nitritation process to the denitrification process, and then the sublimation in the oxidized nitrogen of the nitritation process. Since the ratio of nitrate nitrogen became 90% or less, the heat treatment process was switched to a medium water temperature operation.
Since the ratio of nitrite nitrogen in the oxidized nitrogen in the nitritation process reached 90% or more on the sixth day after switching to medium water temperature operation, the heat treatment process was performed at high water temperature operation (according to the flow sheet in FIG. 1). (Hereinafter referred to as “method of FIG. 1”, the same shall apply hereinafter). High water temperature operation (method of FIG. 1) was performed for 6 days, and it was confirmed that the nitrogen water quality (NH4-N, NOx-N) was stabilized. Subsequently, high water temperature operation (method shown in FIG. 1) was conducted for 2 weeks, and measurement or analysis for a total of 6 times during this period (measurement etc. were carried out once every Monday, Wednesday and Friday. The same applies hereinafter. ) The experimental result data is the average value.

同様に図2の方法についても、脱窒素工程の活性汚泥混合液を高水温条件の熱処理後、脱窒素工程に戻す方法で3ヶ月間運転した後、亜硝酸化工程の酸化態窒素中の亜硝酸性窒素の割合が90%以下になったため、熱処理工程を中水温運転に切り替えた。中水温運転に切り替えてから、6日目に酸化態窒素中の亜硝酸性窒素の割合が90%以上になったので,高水温運転に切り替え、この運転を6日間行い、処理が安定したことを確認した後、引き続き高水温運転を2週間行い、6回分の測定又は分析(前述と同様)を行い、平均値を実験デ−タとして採用した。
同様に図3の方法についても、固液分離工程で分離した活性汚泥混合液の一部あるいは全てを高水温条件の熱処理後、脱窒素工程に戻す方法で3ヶ月間運転した後、酸化態窒素中の亜硝酸性窒素の割合が90%以下になったため、熱処理工程を中水温運転に切り替えた。中水温運転に切り替えてから、6日目に酸化態窒素中の亜硝酸性窒素の割合が90%以上になったので,その後、高水温運転に切り替え、6日間行い、処理が安定したことを確認した後、引き続き高水温運転を2週間行い、6回分の測定又は分析(前述と同様)を行い、平均値を実験デ−タとして採用した。
ここで、熱処理に用いた熱源はメタン発酵で得られたメタンガスをボイラ−で蒸気に変換したものを用いた。なお、前記高水温とは60℃以上、中水温とは40〜55℃の温度条件である。
Similarly, in the method of FIG. 2, the activated sludge mixed liquid in the denitrification process is operated for 3 months after the heat treatment under the high water temperature condition and then returned to the denitrification process. Since the ratio of nitrate nitrogen became 90% or less, the heat treatment process was switched to a medium water temperature operation. Since the ratio of nitrite nitrogen in the oxidized nitrogen reached 90% or more on the 6th day after switching to medium water temperature operation, switching to high water temperature operation, this operation was performed for 6 days, and the treatment was stable After confirming the above, high water temperature operation was continued for 2 weeks, 6 measurements or analyzes (similar to the above) were performed, and the average value was adopted as experimental data.
Similarly, in the method of FIG. 3, after a part or all of the activated sludge mixed liquid separated in the solid-liquid separation process is heat treated under a high water temperature condition and returned to the denitrification process for 3 months, the oxidized nitrogen is then used. Since the ratio of the nitrite nitrogen in the inside became 90% or less, the heat treatment process was switched to a medium water temperature operation. On the 6th day after switching to medium water temperature operation, the ratio of nitrite nitrogen in the oxidized nitrogen reached 90% or more, and then switched to high water temperature operation for 6 days. After confirmation, the high water temperature operation was continued for 2 weeks, 6 measurements or analysis (similar to the above) were performed, and the average value was adopted as experimental data.
Here, the heat source used for the heat treatment was obtained by converting methane gas obtained by methane fermentation into steam with a boiler. In addition, the said high water temperature is 60 degreeC or more, and medium water temperature is 40-55 degreeC temperature conditions.

表3−1、表3−2に、実施結果1として、硝化形式を硝酸型で行った硝化脱窒(硝酸型処理:従来方法)の実験条件,実験結果をそれぞれ示す。表4−1、表4−2に、実施結果2として、硝化形式を亜硝酸型で行った硝化脱窒(亜硝酸型処理:従来方法)の実験条件、実験結果をそれぞれ示す。表5−1、表5−2に、実施結果3として本発明の図1(亜硝酸型―高水温・中水温間欠処理、硝化形式を亜硝酸型、高水温加熱で行った硝化脱窒)の実験条件、実験結果をそれぞれ示す。表6−1、表6−2に、実施結果4として本発明の図2(亜硝酸型―高水温・中水温間欠処理、硝化形式を亜硝酸型、高水温加熱で行った硝化脱窒)の実験条件、実験結果をそれぞれ示す。また、表7−1、表7−2に、実施結果5として本発明の図3(亜硝酸型―高水温・中水温間欠処理、硝化形式を亜硝酸型、返送汚泥の一部を高水温加熱で行った硝化脱窒)の実施条件、窒素除去結果をそれぞれ示す。   Table 3-1 and Table 3-2 show the experimental conditions and experimental results of nitrification denitrification (nitric acid type treatment: conventional method) in which the nitrification type is nitric acid type, as the implementation result 1. Table 4-1 and Table 4-2 show the experimental conditions and experimental results of nitrification denitrification (nitrite type treatment: conventional method) in which the nitrification type is nitrite type as the implementation result 2. Table 5-1 and Table 5-2 show FIG. 1 of the present invention as execution results 3 (nitrification type-high water temperature / intermediate water temperature intermittent treatment, nitrification denitrification performed by nitrite type, high water temperature heating) The experimental conditions and experimental results are shown respectively. In Table 6-1 and Table 6-2, FIG. 2 of the present invention is shown as an implementation result 4 (nitrite type—intermittent treatment of high water temperature / medium water temperature, nitrification denitrification carried out by nitrite type, high water temperature heating) The experimental conditions and experimental results are shown respectively. In addition, Table 7-1 and Table 7-2 show FIG. 3 of the present invention as an execution result 5 (nitrite type-high water temperature / intermediate water temperature intermittent treatment, nitrification type is nitrite type, and part of the returned sludge is high water temperature. The execution conditions of nitrification denitrification performed by heating and the results of nitrogen removal are shown respectively.

Figure 2011143363
Figure 2011143363

Figure 2011143363
Figure 2011143363

Figure 2011143363
Figure 2011143363

Figure 2011143363
Figure 2011143363

Figure 2011143363
Figure 2011143363

実施結果から明らかにされた本発明の具体的効果を、従来方法と対比して表8、9にまとめる。
表8では、活性汚泥の高温条件による改質により、酢酸添加量が著しく減少し、また余剰汚泥発生量も大幅に減少していることがわかる。余剰汚泥は、脱水時に高額な有機性高分子凝集剤〔ポリマー〕が必要であり、また脱水汚泥の処分にも高額である。このような高額な費用は、余剰汚泥発生量の減少に比例して削減されるので、その経済効果は大きい。この効果は、硝化形式を亜硝酸型にしていることによって相乗的にさらに高められている。また、脱水機の規模も縮小できるので、脱水機購入費用も節減することができる。
表9には、強烈な地球温暖化ガスである亜酸化窒素(N2O:一酸化二窒素)の脱窒素工程5気相部における濃度の相対比を示したものである。本発明〔図1、2〕ではN2O濃度が低くなっており、地球温暖化防止にも効果があることが判明した。この理由については、脱窒素工程5において十分な水素供与体が存在し、かつ酸化還元電位(ORP)が安定して低位で維持されているからであると推定される。
The specific effects of the present invention clarified from the implementation results are summarized in Tables 8 and 9 in comparison with the conventional method.
In Table 8, it can be seen that the amount of acetic acid added is remarkably reduced and the amount of surplus sludge generated is greatly reduced by the modification of activated sludge under high temperature conditions. Excess sludge requires an expensive organic polymer flocculant (polymer) at the time of dehydration, and is expensive for disposal of the dehydrated sludge. Such an expensive cost is reduced in proportion to a decrease in the amount of surplus sludge generated, so the economic effect is great. This effect is further enhanced synergistically by making the nitrification form the nitrite type. Moreover, since the scale of the dehydrator can be reduced, the purchase cost of the dehydrator can also be reduced.
Table 9 shows the relative ratio of the concentration of nitrous oxide (N2O: dinitrogen monoxide), which is an intense global warming gas, in the denitrification step 5 gas phase. In the present invention [FIGS. 1 and 2], the N2O concentration is low, and it has been found that it is effective in preventing global warming. This is presumed to be because there is a sufficient hydrogen donor in the denitrification step 5 and the oxidation-reduction potential (ORP) is stably maintained at a low level.

Figure 2011143363
Figure 2011143363

Figure 2011143363
Figure 2011143363

本発明の処理方法の一例の工程を示すフローシート。The flow sheet which shows the process of an example of the processing method of this invention. 本発明の処理方法の他の例の工程を示すフローシート。The flow sheet which shows the process of the other example of the processing method of this invention. 本発明の処理方法の他の例の工程を示すフローシート。The flow sheet which shows the process of the other example of the processing method of this invention. 本発明の処理方法の他の例の工程を示すフローシート。The flow sheet which shows the process of the other example of the processing method of this invention. 本発明の処理方法のメタン発酵工程と組合わせた工程の一例を示すフローシート。The flow sheet which shows an example of the process combined with the methane fermentation process of the processing method of this invention. 本発明の運転方法の実施経緯を示す説明図。Explanatory drawing which shows the implementation background of the driving | running method of this invention.

1:原水、2:返送汚泥、3:循環水、4:加熱循環水、5:脱窒素工程、6:亜硝酸化工程、7:熱処理工程、8:固液分離工程、9:分離水、10:余剰汚泥、11:有機性廃棄物、12:メタン発酵工程、13:バイオガス、14:脱硫工程、15:ガスホルダー、20:第2脱窒素工程、21:再曝気工程、22:アルコール
1: raw water, 2: return sludge, 3: circulating water, 4: heated circulating water, 5: denitrification step, 6: nitritation step, 7: heat treatment step, 8: solid-liquid separation step, 9: separated water, 10: surplus sludge, 11: organic waste, 12: methane fermentation process, 13: biogas, 14: desulfurization process, 15: gas holder, 20: second denitrification process, 21: re-aeration process, 22: alcohol

Claims (10)

廃水の還元態窒素化合物を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化工程、該亜硝酸を還元脱窒素する脱窒素工程、及び、前記活性汚泥混合液を無酸素条件下で熱処理する熱処理工程の各工程を有する廃水の窒素除去方法において、前記熱処理工程では、前記亜硝酸化工程の活性汚泥混合液を、亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件で加熱処理して中温加熱混合液を得て、得られた該中温加熱混合液を前記脱窒工程に導入する操作と、前記亜硝酸化工程の活性汚泥混合液を脱窒素の水素供与体に改質するための60℃以上の高温条件で加熱処理して高温加熱混合液を得て、得られた該高温加熱混合液を前記脱窒工程に導入する操作とを、交互に切り替えて行うことを特徴とする廃水の窒素処理方法。   A nitritation step in which reduced nitrogen compounds of wastewater are oxidized into nitrous acid by an activated sludge mixture, a denitrification step in which the nitrous acid is reduced and denitrified, and a heat treatment in which the activated sludge mixture is heat-treated under anoxic conditions In the nitrogen removal method of wastewater having each step, in the heat treatment step, an intermediate temperature condition of 40 to 55 ° C. for selectively deactivating the activated sludge mixed solution of the nitritation step in the nitrite oxidizing bacteria An intermediate temperature heated mixed liquid is obtained by heat treatment in the operation of introducing the obtained intermediate temperature heated mixed liquid into the denitrification step, and the activated sludge mixed liquid in the nitritation step is used as a hydrogen donor for denitrification. The heat treatment is performed under a high temperature condition of 60 ° C. or higher for reforming to obtain a high temperature heated mixed solution, and the operation of introducing the obtained high temperature heated mixed solution into the denitrification step is alternately performed. A method for nitrogen treatment of wastewater. 廃水の還元態窒素化合物を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化工程、該亜硝酸を還元脱窒素する脱窒素工程、及び、前記活性汚泥混合液を無酸素条件下で熱処理する熱処理工程の各工程を有する廃水の窒素除去方法において、前記熱処理工程では、前記亜硝酸化工程の活性汚泥混合液を、亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件で加熱処理して中温加熱混合液を得て、得られた該中温加熱混合液を前記脱窒工程に導入する操作と、前記脱窒素工程の活性汚泥混合液を脱窒素の水素供与体に改質するための60℃以上の高温条件で加熱処理して高温加熱混合液を得て、得られた該高温加熱混合液を前記脱窒工程に導入する操作とを、交互に切り替えて行うことを特徴とする廃水の窒素処理方法。   A nitritation step in which reduced nitrogen compounds of wastewater are oxidized into nitrous acid by an activated sludge mixture, a denitrification step in which the nitrous acid is reduced and denitrified, and a heat treatment in which the activated sludge mixture is heat-treated under anoxic conditions In the nitrogen removal method of wastewater having each step, in the heat treatment step, an intermediate temperature condition of 40 to 55 ° C. for selectively deactivating the activated sludge mixed solution of the nitritation step in the nitrite oxidizing bacteria An intermediate temperature heated mixed solution is obtained by heat treatment with the operation of introducing the obtained intermediate temperature heated mixed solution into the denitrification step, and the activated sludge mixed solution in the denitrification step is changed to a denitrification hydrogen donor. Heat treatment under a high temperature condition of 60 ° C. or higher to obtain a high temperature heated mixed liquid, and alternately performing the operation of introducing the obtained high temperature heated mixed liquid into the denitrification step. Nitrogen treatment method for wastewater. 廃水の還元態窒素化合物を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化工程、該亜硝酸を還元脱窒素する脱窒素工程、前記活性汚泥混合液を無酸素条件下で熱処理する熱処理工程、及び、固液分離工程の各工程を有する廃水の窒素除去方法において、前記熱処理工程では、前記固液分離工程で分離した活性汚泥混合液の一部あるいは全てを、亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件で加熱処理して中温加熱混合液を得て、得られた該中温加熱混合液を前記脱窒工程に導入する操作と、前記固液分離工程で分離した活性汚泥混合液の一部あるいは全てを脱窒素の水素供与体に改質するための60℃以上の高温条件で加熱処理して高温加熱混合液を得て、得られた該高温加熱混合液を前記脱窒工程に導入する操作とを、交互に切り替えて行うことを特徴とする廃水の窒素処理方法。   A nitritation step of oxidizing the reduced nitrogen compound of waste water into nitrous acid by an activated sludge mixture, a denitrification step of reducing and denitrifying the nitrous acid, a heat treatment step of heat-treating the activated sludge mixture under anoxic conditions, And in the nitrogen removal method of wastewater having each step of the solid-liquid separation step, in the heat treatment step, a part or all of the activated sludge mixed liquid separated in the solid-liquid separation step is selectively used for nitrite oxidizing bacteria. In the operation of introducing an intermediate temperature heating mixed liquid into the denitrification step by heating at an intermediate temperature of 40 to 55 ° C. for inactivation to obtain the intermediate temperature heating mixed solution, and the solid-liquid separation step A part of or all of the separated activated sludge mixed solution is heat-treated at a high temperature condition of 60 ° C. or higher for reforming to a denitrifying hydrogen donor to obtain a high temperature heated mixed solution, and the obtained high temperature heated mixing The operation of introducing the liquid into the denitrification step Preparative, nitrogen treatment method of the waste water, which comprises carrying out alternately switched. 前記熱処理工程では、熱処理する時間の長さが、高温条件時間>中温条件時間であり、かつ中温条件時間帯の水温が40〜55℃になるように加熱時間が設定され、高温条件時間帯の熱処理温度60℃以上になるように加熱時間が設定されることを特徴とする請求項1、2又は3に記載の廃水の窒素処理方法。   In the heat treatment step, the length of time for heat treatment is high temperature condition time> medium temperature condition time, and the heating time is set so that the water temperature in the intermediate temperature condition time zone is 40 to 55 ° C. The method for nitrogen treatment of wastewater according to claim 1, 2, or 3, wherein the heating time is set so that the heat treatment temperature is 60 ° C or higher. 前記熱処理工程では、中温条件時間帯の活性汚泥混合液の流入量が、高温条件時間帯の活性汚泥混合液の流入量に比べて多くすることを特徴とする請求項1〜4のいずれか1項に記載の廃水の窒素処理方法。   5. The inflow amount of the activated sludge mixed liquid in the medium temperature condition time zone is larger than the inflow amount of the activated sludge mixed liquid in the high temperature condition time zone in the heat treatment step. The nitrogen treatment method of waste water as described in the item. 前記脱窒素工程には、前記熱処理工程からの前記高温加熱混合液を前記亜硝酸化工程の流出混合液と混合したのちに導入することを特徴とする請求項1〜5のいずれか1項に記載の廃水の窒素処理方法。   6. The denitrification step, wherein the high temperature heated mixed solution from the heat treatment step is introduced after being mixed with the effluent mixed solution of the nitritation step. The nitrogen treatment method of the wastewater as described. 前記廃水が、メタンを含有するバイオガスを発生する嫌気性消化工程から流出する消化液であり、前記熱処理工程の熱源が前記嫌気性消化工程からのバイオガスの燃焼装置から発生するものであることを特徴とする請求項1〜6のいずれか1項に記載の廃水の窒素処理方法。   The waste water is a digestion liquid that flows out from an anaerobic digestion process that generates methane-containing biogas, and a heat source of the heat treatment process is generated from a biogas combustion apparatus from the anaerobic digestion process. The nitrogen treatment method for wastewater according to any one of claims 1 to 6. 廃水の還元態窒素化合物を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化手段、該亜硝酸を還元脱窒素する脱窒素手段、及び、前記活性汚泥混合液を無酸素条件下で熱処理する熱処理手段の各手段を有する廃水の窒素除去装置において、前記熱処理手段には、前記亜硝酸化手段からの活性汚泥混合液を流入するための流入経路と、流入した活性汚泥混合液の熱処理条件を、亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件と、脱窒素の水素供与体に改質するための60℃以上の高温条件とに、交互に切り替えて熱処理するための加熱手段と、該熱処理された混合液を前記脱窒素手段に流出するための流出経路とを有することを特徴とする廃水の窒素処理装置。   Nitriding means for oxidizing the reduced nitrogen compound of waste water to nitrous acid with an activated sludge mixture, denitrification means for reducing and denitrifying the nitrous acid, and heat treatment for heat-treating the activated sludge mixture under oxygen-free conditions In the nitrogen removal apparatus for wastewater having each means, the heat treatment means has an inflow path for flowing in the activated sludge mixed liquid from the nitritation means, and a heat treatment condition of the activated activated sludge mixed liquid, For heat treatment by alternately switching between a medium temperature condition of 40 to 55 ° C. for selectively deactivating nitrite oxidizing bacteria and a high temperature condition of 60 ° C. or more for reforming to a denitrification hydrogen donor. A wastewater nitrogen treatment apparatus, comprising: a heating means; and an outflow path for allowing the heat-treated mixed liquid to flow out to the denitrification means. 廃水の還元態窒素化合物を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化手段、該亜硝酸を還元脱窒素する脱窒素手段、及び、前記活性汚泥混合液を無酸素条件下で熱処理する熱処理手段の各手段を有する廃水の窒素除去装置において、前記熱処理手段には、前記亜硝酸化手段からの活性汚泥混合液を流入するための流入経路と、前記脱窒素手段からの活性汚泥混合液を流入するための流入経路と、前記亜硝酸化手段から流入する活性汚泥混合液を、亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件と、前記脱窒素手段から流入する活性汚泥混合液を脱窒素の水素供与体に改質するための60℃以上の高温条件とに、交互に切り替えて熱処理するための加熱手段と、該熱処理された混合液を前記脱窒素手段に流出するための流出経路とを有することを特徴とする廃水の窒素処理装置。   Nitriding means for oxidizing the reduced nitrogen compound of waste water to nitrous acid with an activated sludge mixture, denitrification means for reducing and denitrifying the nitrous acid, and heat treatment for heat-treating the activated sludge mixture under oxygen-free conditions In the nitrogen removal apparatus of waste water having each means, the heat treatment means includes an inflow path for flowing in the activated sludge mixed liquid from the nitritation means, and an activated sludge mixed liquid from the denitrification means. An inflow path for inflow, an activated sludge mixed solution flowing in from the nitritation means, an intermediate temperature condition of 40 to 55 ° C. for selectively deactivating nitrite oxidizing bacteria, and an inflow from the denitrification means And a heating means for alternately heat-treating the activated sludge mixed liquid to a high-temperature condition of 60 ° C. or higher for reforming the activated sludge mixed liquid to a denitrifying hydrogen donor; Leaked into Nitrogen treatment apparatus of the wastewater, characterized in that it comprises a fit of outflow pathways. 廃水の還元態窒素化合物の大部分を活性汚泥混合液によって亜硝酸に酸化する亜硝酸化手段、該亜硝酸を還元脱窒素する脱窒素手段、前記活性汚泥混合液を無酸素条件下で熱処理する熱処理手段、及び、固液分離手段の各手段を有する廃水の窒素除去装置において、前記熱処理手段には、前記固液分離手段で分離した活性汚泥混合液の一部あるいは全てを流入するための流入経路と、該流入した活性汚泥混合液の熱処理条件を、亜硝酸酸化菌を選択的に失活せしめるための40〜55℃の中温条件と、脱窒素の水素供与体に改質するための60℃以上の高温条件とに、交互に切り替えて熱処理するための加熱手段と、該熱処理された混合液を前記脱窒素手段に流出するための流出経路とを有することを特徴とする廃水の窒素処理装置。
A nitritation means for oxidizing most of the reduced nitrogen compounds of wastewater to nitrous acid by an activated sludge mixture, a denitrification means for reducing and denitrifying the nitrous acid, and heat treating the activated sludge mixture under oxygen-free conditions In the nitrogen removal apparatus for wastewater having each means of heat treatment means and solid-liquid separation means, the heat treatment means has an inflow for flowing a part or all of the activated sludge mixed liquid separated by the solid-liquid separation means. The route and the heat treatment conditions of the activated sludge mixture that has flowed in are modified to a medium temperature condition of 40 to 55 ° C. for selectively deactivating nitrite-oxidizing bacteria, and 60 for reforming into a denitrification hydrogen donor. Nitrogen treatment of wastewater characterized by having heating means for alternately heat-treating under high-temperature conditions of at least ° C. and an outflow path for flowing out the heat-treated mixed liquid to the denitrification means apparatus.
JP2010006805A 2010-01-15 2010-01-15 Wastewater nitrogen treatment method and equipment Active JP5148642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006805A JP5148642B2 (en) 2010-01-15 2010-01-15 Wastewater nitrogen treatment method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006805A JP5148642B2 (en) 2010-01-15 2010-01-15 Wastewater nitrogen treatment method and equipment

Publications (2)

Publication Number Publication Date
JP2011143363A true JP2011143363A (en) 2011-07-28
JP5148642B2 JP5148642B2 (en) 2013-02-20

Family

ID=44458696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006805A Active JP5148642B2 (en) 2010-01-15 2010-01-15 Wastewater nitrogen treatment method and equipment

Country Status (1)

Country Link
JP (1) JP5148642B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192965A (en) * 2012-03-15 2013-09-30 Swing Corp Treatment method and treatment apparatus of organic wastewater and organic waste
CN103922466A (en) * 2014-03-29 2014-07-16 北京工业大学 Culture method of granular nitrosation sludge for treating urban domestic sewage at normal temperature
WO2014112765A1 (en) * 2013-01-15 2014-07-24 (주)티에스케이워터 Sewage and wastewater treatment device having activated-sludge holding unit, and nitrogen content reducing method for sewage and wastewater using same
JP2018103080A (en) * 2016-12-22 2018-07-05 株式会社日立製作所 Wastewater treatment apparatus and wastewater treatment method
CN112321132A (en) * 2020-12-04 2021-02-05 河南工程学院 Municipal sludge treatment and utilization method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286598A (en) * 1986-06-04 1987-12-12 Ebara Infilco Co Ltd Biological nitration and denitrification of high temperature ammonia-containing waste water
JP2000051884A (en) * 1998-08-12 2000-02-22 Shinko Pantec Co Ltd Method and apparatus for biological treatment of organic waste water
JP2004275997A (en) * 2003-03-19 2004-10-07 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2005074410A (en) * 2003-09-04 2005-03-24 Hitachi Plant Eng & Constr Co Ltd Wastewater treatment equipment
JP2005144308A (en) * 2003-11-14 2005-06-09 Hitachi Plant Eng & Constr Co Ltd Method for manufacturing nitrous acid type nitrification carrier and waste water treatment method
JP2005270898A (en) * 2004-03-26 2005-10-06 Osaka Gas Co Ltd Method for treating organic waste sludge
JP2005319430A (en) * 2004-05-11 2005-11-17 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for nitrous acid type nitrification treatment and waste water treating apparatus
JP2005319359A (en) * 2004-05-06 2005-11-17 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for nitrous acid type nitrification treatment and waste water treating apparatus
JP2007222830A (en) * 2006-02-27 2007-09-06 Kubota Corp Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
JP2008018357A (en) * 2006-07-13 2008-01-31 Sumiju Kankyo Engineering Kk Waste water treatment apparatus and waste water treatment method
JP2009214073A (en) * 2008-03-12 2009-09-24 Unitika Ltd Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286598A (en) * 1986-06-04 1987-12-12 Ebara Infilco Co Ltd Biological nitration and denitrification of high temperature ammonia-containing waste water
JP2000051884A (en) * 1998-08-12 2000-02-22 Shinko Pantec Co Ltd Method and apparatus for biological treatment of organic waste water
JP2004275997A (en) * 2003-03-19 2004-10-07 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2005074410A (en) * 2003-09-04 2005-03-24 Hitachi Plant Eng & Constr Co Ltd Wastewater treatment equipment
JP2005144308A (en) * 2003-11-14 2005-06-09 Hitachi Plant Eng & Constr Co Ltd Method for manufacturing nitrous acid type nitrification carrier and waste water treatment method
JP2005270898A (en) * 2004-03-26 2005-10-06 Osaka Gas Co Ltd Method for treating organic waste sludge
JP2005319359A (en) * 2004-05-06 2005-11-17 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for nitrous acid type nitrification treatment and waste water treating apparatus
JP2005319430A (en) * 2004-05-11 2005-11-17 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for nitrous acid type nitrification treatment and waste water treating apparatus
JP2007222830A (en) * 2006-02-27 2007-09-06 Kubota Corp Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
JP2008018357A (en) * 2006-07-13 2008-01-31 Sumiju Kankyo Engineering Kk Waste water treatment apparatus and waste water treatment method
JP2009214073A (en) * 2008-03-12 2009-09-24 Unitika Ltd Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192965A (en) * 2012-03-15 2013-09-30 Swing Corp Treatment method and treatment apparatus of organic wastewater and organic waste
WO2014112765A1 (en) * 2013-01-15 2014-07-24 (주)티에스케이워터 Sewage and wastewater treatment device having activated-sludge holding unit, and nitrogen content reducing method for sewage and wastewater using same
CN103922466A (en) * 2014-03-29 2014-07-16 北京工业大学 Culture method of granular nitrosation sludge for treating urban domestic sewage at normal temperature
CN103922466B (en) * 2014-03-29 2015-09-02 北京工业大学 A kind of nitrosated granular sludge cultural method of normal temperature process city domestic sewage
JP2018103080A (en) * 2016-12-22 2018-07-05 株式会社日立製作所 Wastewater treatment apparatus and wastewater treatment method
CN112321132A (en) * 2020-12-04 2021-02-05 河南工程学院 Municipal sludge treatment and utilization method

Also Published As

Publication number Publication date
JP5148642B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
Al-Hazmi et al. Combined partial denitrification/anammox process for nitrogen removal in wastewater treatment
Peng et al. Achieving nitrite accumulation in a continuous system treating low-strength domestic wastewater: switchover from batch start-up to continuous operation with process control
Wang et al. In-situ restoration of one-stage partial nitritation-anammox process deteriorated by nitrate build-up via elevated substrate levels
Xu et al. The development of a reverse anammox sequencing partial nitrification process for simultaneous nitrogen and COD removal from wastewater
JP5100091B2 (en) Water treatment method
JP5148642B2 (en) Wastewater nitrogen treatment method and equipment
JP3460745B2 (en) Biological nitrification denitrification method and apparatus
JP2010063987A (en) Waste water treatment device and treatment method
US10556816B2 (en) Wastewater treatment apparatus
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP4106203B2 (en) How to remove nitrogen from water
JP4302341B2 (en) Biological nitrogen removal method and apparatus
Statiris et al. Investigating the long and short-term effect of free ammonia and free nitrous acid levels on nitritation biomass of a sequencing batch reactor treating thermally pre-treated sludge reject water
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP2005211832A (en) Method for removing ammonia nitrogen from waste water
Bernat et al. The treatment of anaerobic digester supernatant by combined partial ammonium oxidation and denitrification
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP2000308900A (en) Treatment of ammonia-containing waste water
KR20110059692A (en) Apparatus for removing nitrogen from anaerobic digested waste water
KR101345642B1 (en) Method for removing nitrogen in waste water
KR101045975B1 (en) Method for removing nitrogen from anaerobic digested waste water
JPH05228493A (en) Method for treating waste water using sulfur bacterium and apparatus therefor
JP2014208322A (en) Operation method and operation control device of sewage treatment plant, and sewage treatment plant
JP2006314903A (en) Method and apparatus for treating ammonia anaerobically
Zhu et al. Effect of influent C/N ratio on nitrogen removal using PHB as electron donor in a post‐denitritation SBR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Ref document number: 5148642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250