JP2010063987A - Waste water treatment device and treatment method - Google Patents

Waste water treatment device and treatment method Download PDF

Info

Publication number
JP2010063987A
JP2010063987A JP2008231698A JP2008231698A JP2010063987A JP 2010063987 A JP2010063987 A JP 2010063987A JP 2008231698 A JP2008231698 A JP 2008231698A JP 2008231698 A JP2008231698 A JP 2008231698A JP 2010063987 A JP2010063987 A JP 2010063987A
Authority
JP
Japan
Prior art keywords
treatment tank
nitrogen
concentration
ammonia
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008231698A
Other languages
Japanese (ja)
Other versions
JP5115908B2 (en
Inventor
Hiroya Kimura
裕哉 木村
Kazuichi Isaka
和一 井坂
Tatsuo Sumino
立夫 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2008231698A priority Critical patent/JP5115908B2/en
Publication of JP2010063987A publication Critical patent/JP2010063987A/en
Application granted granted Critical
Publication of JP5115908B2 publication Critical patent/JP5115908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment device and a method therefor which can perform a nitrite type nitrification stage and an anaerobic ammonium oxidation stage in a single treatment tank. <P>SOLUTION: The waste water treatment device 20 is provided with a treatment tank 3, to which nitrogen-containing waste water containing ammonia is fed through a raw water line 2. The treatment tank 3 includes nitrification bacteria 4 and anaerobic ammonia oxidation bacteria 5, and the concentration of dissolved oxygen is controlled to 1.5 to 5.0 mg/L. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は廃水処理装置及び処理方法に関し、特に少なくともアンモニアを含有する窒素含有廃水の窒素除去に使用され、アンモニアと亜硝酸を基質とする嫌気性アンモニア酸化細菌を用いた廃水処理装置及び処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a treatment method, and more particularly, to a wastewater treatment apparatus and treatment method using anaerobic ammonia-oxidizing bacteria which are used for nitrogen removal of nitrogen-containing wastewater containing at least ammonia and which use ammonia and nitrous acid as substrates. .

閉鎖系水域における富栄養化の原因となる廃水中の窒素を除去することが求められている。この窒素は、下水や各種産業廃水中にアンモニア性窒素の形態で含まれていることが多い。   There is a need to remove nitrogen in wastewater that causes eutrophication in closed waters. This nitrogen is often contained in the form of ammoniacal nitrogen in sewage and various industrial wastewaters.

廃水中のアンモニア性窒素を除去する方法として、一般的に硝化細菌及び脱窒細菌を用いてアンモニア性窒素を窒素ガスに変換し除去する方法が知られている。その中で、最近、嫌気性アンモニア酸化法による窒素除去が注目されている。   As a method for removing ammonia nitrogen from wastewater, a method is generally known in which ammonia nitrogen is converted to nitrogen gas using nitrifying bacteria and denitrifying bacteria. Among them, recently, nitrogen removal by an anaerobic ammonia oxidation method has attracted attention.

この嫌気性アンモニア酸化法は、独立栄養細菌である嫌気性アンモニア酸化細菌群により、処理する窒素含有水中のアンモニアを電子供与体とし、亜硝酸を電子受容体として、アンモニアと亜硝酸とを以下に示した化1の式(特許文献1)に従って同時脱窒する方法である。   In this anaerobic ammonia oxidation method, anaerobic ammonia-oxidizing bacteria, which are autotrophic bacteria, use ammonia in nitrogen-containing water to be treated as an electron donor, nitrous acid as an electron acceptor, and ammonia and nitrous acid as follows. This is a method of simultaneous denitrification according to the formula (1) shown in Chemical formula 1.

(化1)
NH +1.32NO+0.066HCO +0.13H
→1.02N+0.26NO +0.066CH0.50.15+2.03H
これにより、従来の硝化・脱窒細菌による処理より、メタノール等の使用量を大幅に削減できることや、汚泥の発生量を削減できる等のメリットがあり、今後の窒素除去方法として省スペース・省エネルギー型の有効な方法であると考えられている。
(Chemical formula 1)
NH 4 + +1.32 NO 2 +0.066 HCO 3 + 0.13H +
→ 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
This has the advantage that the amount of methanol used can be significantly reduced compared to conventional nitrification / denitrification bacteria treatment, and the amount of sludge generated can be reduced. It is considered to be an effective method.

この方法では、アンモニアと亜硝酸の比を1:1.32の割合に近づけることが求められる。しかしながら、廃水中の窒素の形態として主にアンモニアの形で含まれていることから、現実の廃水中の窒素の形態としてアンモニアと亜硝酸が1:1.32の割合で含まれることは少ない。したがって、嫌気性アンモニア酸化法を適用した窒素除去システムを構築するためには、アンモニアの約半分の量を亜硝酸に変換させる、亜硝酸型硝化工程が必要となる。   This method requires that the ratio of ammonia and nitrous acid be close to the ratio of 1: 1.32. However, since it is mainly contained in the form of ammonia as the form of nitrogen in the wastewater, ammonia and nitrous acid are rarely contained in a ratio of 1: 1.32 as the form of nitrogen in the actual wastewater. Therefore, in order to construct a nitrogen removal system to which the anaerobic ammonia oxidation method is applied, a nitrite type nitrification step is required in which about half of the ammonia is converted into nitrous acid.

また、亜硝酸型硝化も過度に亜硝酸を生成してしまうと、嫌気性アンモニア酸化細菌が亜硝酸阻害を受け、その活性を失うと報告されている。そのため、亜硝酸型硝化を保ち、さらに亜硝酸濃度を一定の濃度で保つための研究がなされている。   In addition, it has been reported that anaerobic ammonia-oxidizing bacteria suffer from nitrite inhibition and lose their activity if nitrite-type nitrification produces excessive nitrite. Therefore, studies have been made to maintain nitrite-type nitrification and to maintain a constant nitrite concentration.

特許文献2では、アンモニア酸化細菌を維持するため、加熱処理を行い、亜硝酸を硝酸に硝化(酸化)する亜硝酸酸化細菌を抑制して、亜硝酸型硝化を保持している。   In Patent Document 2, heat treatment is performed to maintain ammonia-oxidizing bacteria, and nitrite-oxidizing bacteria that nitrify (oxidize) nitrite to nitric acid are suppressed to maintain nitrite-type nitrification.

また、特許文献3では、亜硝酸型硝化後のアンモニアと亜硝酸を1:1.3付近に保つため、常時窒素濃度をモニタリングし、曝気風量で制御を行い、嫌気性アンモニア酸化工程に送水している。
特許2005−324133号公報 特許2005−319430号公報 特開2005−246136号公報
Further, in Patent Document 3, in order to keep ammonia and nitrous acid after nitrite type nitrification at around 1: 1.3, the nitrogen concentration is constantly monitored, the aeration air volume is controlled, and water is sent to the anaerobic ammonia oxidation process. ing.
Japanese Patent No. 2005-324133 Japanese Patent No. 2005-319430 JP 2005-246136 A

上述したとおり、嫌気性アンモニア酸化法を用いるためには、嫌気性アンモニア酸化細菌による嫌気性アンモニア酸化工程の前段に、亜硝酸型硝化工程を設ける必要がある。この亜硝酸型硝化工程は硝化細菌を用いて酸化反応を起こすため槽内に空気を曝気させ、溶存酸素濃度を2〜5mg/Lの好気にする必要がある。   As described above, in order to use the anaerobic ammonia oxidation method, it is necessary to provide a nitrite type nitrification step before the anaerobic ammonia oxidation step by the anaerobic ammonia oxidizing bacteria. In this nitrite type nitrification step, an oxidative reaction is caused using nitrifying bacteria, so it is necessary to aerate the air in the tank and make the dissolved oxygen concentration aerobic at 2 to 5 mg / L.

一方、後段の嫌気性アンモニア酸化工程において、嫌気性アンモニア酸化細菌が嫌気性であり、過剰の溶存酸素は嫌気性アンモニア酸化細菌の活性を低下させるため、槽内を嫌気にして反応を進める必要がある。   On the other hand, in the latter anaerobic ammonia oxidation process, anaerobic ammonia oxidizing bacteria are anaerobic, and excessive dissolved oxygen reduces the activity of the anaerobic ammonia oxidizing bacteria. is there.

そのため、嫌気性アンモニア酸化法を用いた窒素除去方法では、亜硝酸型硝化工程と嫌気性アンモニア酸化工程が別槽で行なわれている。しかしながら、嫌気性アンモニア酸化法を用いた窒素除去方法は省スペース・省エネルギー型の有効な方法であると考えられており、更なる省スペース化が望まれている。   Therefore, in the nitrogen removal method using the anaerobic ammonia oxidation method, the nitrite type nitrification step and the anaerobic ammonia oxidation step are performed in separate tanks. However, the nitrogen removal method using the anaerobic ammonia oxidation method is considered to be a space-saving and energy-saving effective method, and further space saving is desired.

本発明はこのような事情に鑑みてなされたもので、亜硝酸型硝化工程と嫌気性アンモニア酸化工程を単一の処理槽で行なうことができる廃水処理装置及び処理方法を提供することを目的とする。   This invention was made in view of such a situation, and it aims at providing the waste-water-treatment apparatus and processing method which can perform a nitrite type nitrification process and an anaerobic ammonia oxidation process with a single processing tank. To do.

前記目的を達成するため、本発明の廃水処理装置は、原水ラインを介してアンモニアを含有する窒素含有廃水が送水される処理槽を備え、前記処理槽が硝化細菌と嫌気性アンモニア酸化細菌を有し、かつ溶存酸素濃度が1.5〜5.0mg/Lに制御されたことを特徴とする。   In order to achieve the above object, the wastewater treatment apparatus of the present invention includes a treatment tank to which nitrogen-containing wastewater containing ammonia is fed via a raw water line, and the treatment tank has nitrifying bacteria and anaerobic ammonia oxidizing bacteria. And the dissolved oxygen concentration is controlled to 1.5 to 5.0 mg / L.

本発明によれば、少なくともアンモニアを含有する窒素含有廃水が送水され、硝化細菌と嫌気性アンモニア酸化細菌を含む単一の処理槽を、1.5〜5.0mg/Lで制御しているので、窒素含有廃水中に含まれるアンモニアを単一の処理槽内で同時に硝化反応と脱窒反応を起こさせることができる。   According to the present invention, a nitrogen-containing wastewater containing at least ammonia is fed, and a single treatment tank containing nitrifying bacteria and anaerobic ammonia oxidizing bacteria is controlled at 1.5 to 5.0 mg / L. Ammonia contained in the nitrogen-containing wastewater can cause a nitrification reaction and a denitrification reaction simultaneously in a single treatment tank.

本発明の廃水処理装置は、前記発明において、前記処理槽は、該処理槽内の溶存酸素濃度を測定する溶存酸素計、空気散気装置および窒素ガス発生装置を備えていることが好ましい。   In the wastewater treatment apparatus of the present invention, in the above invention, the treatment tank preferably includes a dissolved oxygen meter for measuring a dissolved oxygen concentration in the treatment tank, an air diffuser, and a nitrogen gas generator.

処理槽内の溶存酸素濃度を溶存酸素計で測定し、硝化細菌に必要な酸素を空気散気装置により供給し、硝化細菌に必要な溶存酸素濃度を制御することができ、また、設定値以上の溶存酸素が含まれた場合、窒素ガス発生装置により窒素ガスを散気させ、処理槽内の溶存酸素濃度を低減し、嫌気性アンモニア酸化細菌の活性阻害を回避させることができる。   The dissolved oxygen concentration in the treatment tank can be measured with a dissolved oxygen meter, the oxygen required for nitrifying bacteria can be supplied by an air diffuser, and the dissolved oxygen concentration required for nitrifying bacteria can be controlled. When dissolved oxygen is contained, nitrogen gas is diffused by the nitrogen gas generator, the dissolved oxygen concentration in the treatment tank can be reduced, and the inhibition of the activity of the anaerobic ammonia oxidizing bacteria can be avoided.

本発明の廃水処理装置は、前記発明において、前記硝化細菌の立上げをする第1の槽と、前記嫌気性アンモニア酸化細菌の立上げをする第2の槽とが、それぞれ前記処理槽に接続されることが好ましい。   In the wastewater treatment apparatus of the present invention, the first tank for starting up the nitrifying bacteria and the second tank for starting up the anaerobic ammonia-oxidizing bacteria are connected to the processing tank in the invention. It is preferred that

第1の槽において、処理槽に含まれる硝化細菌を、亜硝酸型硝化を十分に反応できる状態にさせておくことができるので、処理槽内の溶存酸素濃度に対応できる硝化活性を得ることができる。   In the first tank, the nitrifying bacteria contained in the processing tank can be kept in a state in which the nitrite type nitrification can sufficiently react, so that a nitrification activity corresponding to the dissolved oxygen concentration in the processing tank can be obtained. it can.

また、第1の槽とは別の、第2の槽において、処理槽に含まれる嫌気性アンモニア酸化細菌を、嫌気性アンモニア酸化反応を十分にできる状態にさせておくことができるので、硝化細菌によって変換された亜硝酸と原水中のアンモニアを即座に脱窒反応させることができる。   Further, in the second tank, which is different from the first tank, the anaerobic ammonia oxidizing bacteria contained in the treatment tank can be kept in a state capable of sufficiently performing the anaerobic ammonia oxidizing reaction. The nitrous acid converted by this and the ammonia in the raw water can be immediately denitrified.

本発明の廃水処理装置は、前記発明において、前記処理槽は、該処理槽内の各態窒素濃を測定する各態窒素濃度計と、該処理槽の処理水を該処理槽に戻す循環ラインを備え、前記各態窒素濃度計の測定値に応じて、前記処理槽内の亜硝酸性窒素濃度が高まった場合、前記空気散気装置の散気量を下げ、前記原水ラインの流量を上げ、前記処理槽内のアンモニア濃度が高まった場合、前記空気散気装置の散気量を上げ、前記原水ラインの流量を下げ、前記循環ラインの循環量を上げるよう制御されていることが好ましい。   The waste water treatment apparatus of the present invention is the waste water treatment apparatus according to the present invention, wherein the treatment tank is a nitrogen concentration meter for measuring the concentration of nitrogen in the treatment tank, and a circulation line for returning the treatment water of the treatment tank to the treatment tank. When the concentration of nitrite nitrogen in the treatment tank increases according to the measured value of each nitrogen concentration meter, the amount of air diffused in the air diffuser is decreased and the flow rate of the raw water line is increased. When the ammonia concentration in the treatment tank is increased, it is preferable that the amount of air diffused in the air diffuser is increased, the flow rate of the raw water line is decreased, and the amount of circulation in the circulation line is increased.

本発明によれば、処理槽に少なくともアンモニアと亜硝酸の計測値が確認できる窒素濃度分析計を設置し、常時計測できる状態としている。処理槽内の亜硝酸濃度が一時的に高まった場合、空気散気装置の散気量を下げ、硝化細菌が利用する酸素の供給を下げることにより、亜硝酸の生成を抑制させることができる。同時に、原水ラインの流量を上げる制御を行い、アンモニア性窒素の負荷を与えることで過剰の亜硝酸濃度と流入量を上げた過剰のアンモニアにより、嫌気性アンモニア酸化細菌の脱窒反応を促進できる。これにより、槽内亜硝酸の濃度を低濃度に移行させることができる。   According to this invention, the nitrogen concentration analyzer which can confirm the measured value of at least ammonia and nitrous acid is installed in the processing tank, and it is in the state which can always measure. When the concentration of nitrous acid in the treatment tank is temporarily increased, production of nitrous acid can be suppressed by lowering the amount of air diffused by the air diffuser and lowering the supply of oxygen used by nitrifying bacteria. At the same time, the control of increasing the flow rate of the raw water line is performed, and the denitrification reaction of anaerobic ammonia-oxidizing bacteria can be promoted by applying the ammonia nitrogen load to increase the excess nitrous acid concentration and the excess ammonia. Thereby, the concentration of nitrous acid in the tank can be shifted to a low concentration.

また処理槽内のアンモニア濃度が一時的に高まった場合、空気散気装置の散気量を上げ、硝化細菌が利用する酸素の供給を上げることにより、亜硝酸の生成量を増加させることができる。同時に処理槽の処理水ラインから循環ラインを介して原水槽に戻すことができる。そして、循環量を上げ、同時に原水量を下げることにより、排出される過剰のアンモニアの量を軽減させることができ、
上記のコントロールにより各態窒素濃度の阻害を受けることなく、処理槽内の硝化細菌および嫌気性アンモニア酸化細菌の活性を維持させることができ、定常的に廃水中の窒素成分を単一の処理槽で除去することができる。
In addition, when the ammonia concentration in the treatment tank temporarily increases, the amount of nitrous acid produced can be increased by increasing the amount of air diffused by the air diffuser and increasing the supply of oxygen used by nitrifying bacteria. . At the same time, it can be returned from the treated water line of the treatment tank to the raw water tank via the circulation line. And by increasing the amount of circulation and simultaneously reducing the amount of raw water, the amount of excess ammonia discharged can be reduced,
The above control can maintain the activity of nitrifying bacteria and anaerobic ammonia-oxidizing bacteria in the treatment tank without being disturbed by the concentration of nitrogen in each state. Can be removed.

前記目的を達成するため、本発明の廃水処理方法は、原水ラインを介してアンモニアを含有する窒素含有廃水を、硝化細菌と嫌気性アンモニア酸化細菌を有し、かつ溶存酸素濃度が1.5〜5.0mg/Lに制御された処理槽に送水し、前記処理槽内で硝化・脱窒することを特徴とする。   In order to achieve the above object, the wastewater treatment method of the present invention comprises a nitrogen-containing wastewater containing ammonia via a raw water line, having nitrifying bacteria and anaerobic ammonia-oxidizing bacteria, and having a dissolved oxygen concentration of 1.5 to Water is fed to a treatment tank controlled to 5.0 mg / L, and nitrification / denitrification is performed in the treatment tank.

本発明によれば、少なくともアンモニアを含有する窒素含有廃水が送水され、硝化細菌と嫌気性アンモニア酸化細菌を有する単一の処理槽を、1.5〜5.0mg/Lで制御しているので、窒素含有廃水中に含まれるアンモニアを、単一の処理槽において同時に硝化反応と脱窒反応を起こさせることができる。   According to the present invention, a nitrogen-containing wastewater containing at least ammonia is fed, and a single treatment tank having nitrifying bacteria and anaerobic ammonia oxidizing bacteria is controlled at 1.5 to 5.0 mg / L. Ammonia contained in the nitrogen-containing wastewater can cause a nitrification reaction and a denitrification reaction simultaneously in a single treatment tank.

本発明の廃水処理方法は、前記発明において、前記処理槽は、該処理槽の溶存酸素濃度を測定する溶存酸素計、空気散気装置および窒素ガス発生装置を備え、該溶存酸素計の測定値に応じて前記空気散気装置及び前記窒素ガス発生装置を制御することが好ましい。   In the wastewater treatment method of the present invention, in the above invention, the treatment tank includes a dissolved oxygen meter for measuring the dissolved oxygen concentration of the treatment tank, an air diffuser, and a nitrogen gas generator, and the measured value of the dissolved oxygen meter. It is preferable to control the air diffuser and the nitrogen gas generator according to the above.

本発明の廃水処理方法は、前記発明において、前記処理槽内の前記硝化細菌及び前記嫌気性アンモニア酸化細菌は、それぞれ別の槽で立上げられた後、前記処理槽に添加されることが好ましい。   In the wastewater treatment method of the present invention, in the above invention, the nitrifying bacteria and the anaerobic ammonia oxidizing bacteria in the treatment tank are preferably added to the treatment tank after being started up in separate tanks. .

本発明の廃水処理方法は、前記発明において、前記処理槽は、該処理槽内の各態窒素濃を測定する各態窒素濃度計と、該処理槽の処理水を該処理槽に戻す循環ラインを備え、前記各態窒素濃度計の測定値に応じて、前記処理槽内の亜硝酸性窒素濃度が高まった場合、前記空気散気装置の散気量を下げ、前記原水ラインの流量を上げ、前記処理槽内のアンモニア濃度が高まった場合、前記空気散気装置の散気量を上げ、前記原水ラインの流量を下げ、前記循環ラインの循環量を上げるよう制御することが好ましい。   The wastewater treatment method of the present invention is the waste water treatment method according to the present invention, wherein the treatment tank comprises a nitrogen concentration meter for measuring the concentration of nitrogen in the treatment tank, and a circulation line for returning the treatment water in the treatment tank to the treatment tank. When the concentration of nitrite nitrogen in the treatment tank increases according to the measured value of each nitrogen concentration meter, the amount of air diffused in the air diffuser is decreased and the flow rate of the raw water line is increased. When the ammonia concentration in the treatment tank is increased, it is preferable to control to increase the amount of air diffused in the air diffuser, decrease the flow rate of the raw water line, and increase the amount of circulation in the circulation line.

本発明によれば、アンモニアを含有する窒素含有廃水を硝化細菌と嫌気性アンモニア酸化細菌が含まれる処理槽内に送水し、処理槽内の溶存酸素濃度を1.5〜5.0mg/Lで制御することで、単一の処理槽で同時に硝化・脱窒を行なうことができる。   According to the present invention, nitrogen-containing wastewater containing ammonia is fed into a treatment tank containing nitrifying bacteria and anaerobic ammonia oxidizing bacteria, and the dissolved oxygen concentration in the treatment tank is 1.5 to 5.0 mg / L. By controlling, nitrification and denitrification can be performed simultaneously in a single treatment tank.

以下添付図面に従って本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明されるが、本発明の範囲を逸脱すること無く、多くの手法により変更を行なうことができ、本実施の形態以外の他の実施の形態を利用することができる。従って、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。また、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を含む範囲を意味する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The present invention will be described with reference to the following preferred embodiments, but can be modified in many ways without departing from the scope of the present invention, and other embodiments than the present embodiment can be utilized. be able to. Accordingly, all modifications within the scope of the present invention are included in the claims. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to”.

図1は、本発明の廃水処理装置の全体構成の一例を示す概念図である。廃水処理装置20は、原水槽1と、流量計12を介して原水ライン2により原水槽1と接続された処理槽3と、処理槽3に設けられた溶存酸素計7、空気散気装置8、窒素ガス発生装置9及び窒素濃度分析計10、処理槽3に設けられた処理水ライン6、処理水ライン6と原水ライン2を接続する循環ライン11を備えている。   FIG. 1 is a conceptual diagram showing an example of the overall configuration of the wastewater treatment apparatus of the present invention. The wastewater treatment apparatus 20 includes a raw water tank 1, a treatment tank 3 connected to the raw water tank 1 by a raw water line 2 via a flow meter 12, a dissolved oxygen meter 7 provided in the treatment tank 3, and an air diffuser 8. , A nitrogen gas generator 9, a nitrogen concentration analyzer 10, a treated water line 6 provided in the treatment tank 3, and a circulation line 11 connecting the treated water line 6 and the raw water line 2.

さらに、廃水処理装置20は、硝化細菌4を亜硝酸型硝化が十分に行なえる状態にする第1の槽13と、嫌気性アンモニア酸化細菌5を嫌気性アンモニア酸化反応が十分におこなえる状態にする第2の槽14と、を備えている。第1の槽13は第1のライン15により処理槽3と接続されている。また、第2の槽は第2のライン16により処理槽3と接続されている。   Further, the wastewater treatment apparatus 20 makes the nitrifying bacteria 4 in a state where the nitrite type nitrification can be sufficiently performed, and the anaerobic ammonia oxidizing bacteria 5 in a state where the anaerobic ammonia oxidation reaction can be sufficiently performed. A second tank 14. The first tank 13 is connected to the processing tank 3 by a first line 15. The second tank is connected to the processing tank 3 by a second line 16.

次に、本発明の廃水処理装置20を利用したアンモニアを含有する窒素含有廃水の処理方法について図1を参照して説明する。   Next, a method for treating nitrogen-containing wastewater containing ammonia using the wastewater treatment apparatus 20 of the present invention will be described with reference to FIG.

図1において、少なくともアンモニアを含む原水が原水槽1から図示しない原水ポンプにて原水ライン2を介し、硝化細菌4と嫌気性アンモニア酸化細菌5が含まれる単一の処理槽3に送水される。処理槽3は、第1の槽13で立上げを行った硝化細菌4と、第2の槽で立上げを行った嫌気性アンモニア酸化細菌5をそれぞれ保持している。   In FIG. 1, raw water containing at least ammonia is fed from a raw water tank 1 to a single treatment tank 3 containing nitrifying bacteria 4 and anaerobic ammonia oxidizing bacteria 5 through a raw water line 2 by a raw water pump (not shown). The treatment tank 3 holds the nitrifying bacteria 4 raised in the first tank 13 and the anaerobic ammonia oxidizing bacteria 5 raised in the second tank.

処理槽3は、微好気状態である溶存酸素濃度が1.5〜5.0mg/Lとなるよう制御されている。微好気の溶存酸素により処理槽3内の硝化細菌4が硝化反応を起こし、原水中に含まれるアンモニアの一部を亜硝酸の形態に変換する。原水中のアンモニアと、硝化細菌4により変換された亜硝酸を基質として、嫌気性アンモニア酸化細菌5の脱窒反応により窒素ガスに変換される。アンモニアおよび亜硝酸性窒素が除去された状態で、原水が処理水ライン6を介して系外に排出される。これにより原水中に含まれるアンモニアを単一の処理槽3において相異なる硝化と脱窒反応を同時にさせることができる。   The treatment tank 3 is controlled so that the dissolved oxygen concentration in a microaerobic state is 1.5 to 5.0 mg / L. The nitrifying bacteria 4 in the treatment tank 3 cause a nitrification reaction by the slightly aerobic dissolved oxygen, and a part of the ammonia contained in the raw water is converted into a form of nitrous acid. Ammonia in raw water and nitrous acid converted by nitrifying bacteria 4 are used as substrates for conversion to nitrogen gas by the denitrification reaction of anaerobic ammonia oxidizing bacteria 5. The raw water is discharged out of the system via the treated water line 6 in a state where ammonia and nitrite nitrogen are removed. Accordingly, different nitrification and denitrification reactions can be simultaneously performed in the single treatment tank 3 for ammonia contained in the raw water.

処理槽3に流入する原水のアンモニア性窒素濃度は50〜2000mg/Lが好ましく、特に、200〜1000mg/Lが望ましい。窒素含有廃水の容積負荷は窒素量として0.1〜10kg−N/m/dayが最も好ましく、培養槽のHRTは2〜48hほどが望ましい。 The concentration of ammoniacal nitrogen in the raw water flowing into the treatment tank 3 is preferably 50 to 2000 mg / L, and particularly preferably 200 to 1000 mg / L. The volume load of nitrogen-containing wastewater is most preferably 0.1 to 10 kg-N / m 3 / day as the amount of nitrogen, and the HRT of the culture tank is preferably about 2 to 48 hours.

処理槽3に含まれる硝化細菌4の立上げ状態としては、亜硝酸生成速度として0.05〜5kgN/m/dayがよいと考えられる。また、嫌気性アンモニア酸化細菌5の立上げ状態としても0.1〜10kg−N/m/dayが好ましい。 The start-up state of nitrifying bacteria 4 included in the processing vessel 3, 0.05~5kgN / m 3 / day is considered good as nitrous acid production rate. Moreover, 0.1-10 kg-N / m < 3 > / day is preferable also as a starting state of the anaerobic ammonia oxidizing bacterium 5. FIG.

硝化細菌4および嫌気性アンモニア酸化細菌5ともに、原水を使用することができる。また、活性に応じた通常の亜硝酸型硝化の立上げ、および嫌気性アンモニア酸化細菌の立上げ方法により立上げることができる。さらに嫌気性アンモニア酸化細菌の立上げに使用する原水は立上げ中もしくは立上げ終了後の亜硝酸型硝化処理水を使用してもよい。   Raw water can be used for both the nitrifying bacteria 4 and the anaerobic ammonia oxidizing bacteria 5. Moreover, it can be started by the normal nitrite type nitrification start-up according to the activity and the start-up method of the anaerobic ammonia oxidizing bacteria. Furthermore, the raw water used for the start-up of the anaerobic ammonia-oxidizing bacteria may be nitrite-type nitrification water during or after the start-up.

処理槽3に含まれる硝化細菌4と嫌気性アンモニア酸化細菌5は固定床、流動床の何れかの菌体固定化材に固定化されていることが好ましく、特に系外に排出されにくいものが望ましい。   The nitrifying bacteria 4 and the anaerobic ammonia-oxidizing bacteria 5 contained in the treatment tank 3 are preferably immobilized on either a fixed bed or a fluidized bed cell-fixing material, particularly those that are difficult to be discharged out of the system. desirable.

固定化材料における担体の材質としては、特に限定はしないが、塩化ビニル、セルロース、ポリエステル、ポリプロピレンなどのプラスチック担体、ポリビニルアルコール、アルギン酸、ポリエチレングリコール系のゲルによる包括固定化担体、樹脂性、スポンジ性の担体やアクリル製の繊維不織布、活性炭ファイバーなどを用いることができる。
形状としては、特に限定はしないが、球状体、円筒形状態、多孔質体、立方体、直方体、スポンジ状体、繊維状や、菊花状に整形したものや、ハニカム状体などを使用することが好ましい。流動床の場合、直径はラインを塞がない程度にする必要があり、1〜10mm程度が好ましい。
The material of the carrier in the immobilization material is not particularly limited, but is a plastic carrier such as vinyl chloride, cellulose, polyester, polypropylene, etc., a comprehensive immobilization carrier with a gel of polyvinyl alcohol, alginic acid, polyethylene glycol, resin property, sponge property A carrier, acrylic fiber nonwoven fabric, activated carbon fiber, or the like can be used.
The shape is not particularly limited, but it is possible to use a spherical body, a cylindrical state, a porous body, a cube, a rectangular parallelepiped, a sponge-like body, a fiber shape, a shape shaped like a chrysanthemum, a honeycomb-like body, or the like. preferable. In the case of a fluidized bed, the diameter needs to be such that the line is not blocked, and is preferably about 1 to 10 mm.

また、嫌気性アンモニア酸化細菌については特に自己造粒したグラニュールを使用できる。それらの充填率は、20〜50容積%が好ましい。   For anaerobic ammonia oxidizing bacteria, self-granulated granules can be used. Their filling rate is preferably 20 to 50% by volume.

硝化細菌4は好気性細菌であるので、硝化反応をさせるためには処理槽3内に溶存酸素を保持しなければならない。一方、嫌気性アンモニア酸化細菌5は嫌気性細菌のため、過度の酸素により、嫌気性アンモニア酸化細菌5が活性を失うおそれがある。   Since the nitrifying bacteria 4 are aerobic bacteria, dissolved oxygen must be retained in the treatment tank 3 in order to cause a nitrifying reaction. On the other hand, since the anaerobic ammonia oxidizing bacteria 5 are anaerobic bacteria, there is a possibility that the anaerobic ammonia oxidizing bacteria 5 lose activity due to excessive oxygen.

硝化細菌4と嫌気性アンモニア酸化細菌5の両細菌の活性を維持するために、処理槽3の溶存酸素濃度を制御する必要がある。   In order to maintain the activity of both the nitrifying bacteria 4 and the anaerobic ammonia oxidizing bacteria 5, it is necessary to control the dissolved oxygen concentration in the treatment tank 3.

処理槽3には、処理槽3内の溶存酸素濃度を測定する溶存酸素計7、空気散気装置8および窒素ガス発生装置9が設けられている。溶存酸素計7により、常時溶存酸素濃度をモニタリングできる。溶存酸素計7の酸素濃度の値に基づいて空気散気装置8を制御し、処理槽3内に空気を散気することで処理槽3内の溶存酸素濃度をコントロールすることができる。処理槽3内の溶存酸素濃度は1.5mg/L〜5.0mg/Lの範囲が好ましく、3mg/L付近がもっとも望ましい。   The treatment tank 3 is provided with a dissolved oxygen meter 7 for measuring the dissolved oxygen concentration in the treatment tank 3, an air diffuser 8, and a nitrogen gas generator 9. The dissolved oxygen meter 7 can constantly monitor the dissolved oxygen concentration. The dissolved oxygen concentration in the treatment tank 3 can be controlled by controlling the air diffuser 8 based on the value of the oxygen concentration of the dissolved oxygen meter 7 to diffuse the air into the treatment tank 3. The dissolved oxygen concentration in the treatment tank 3 is preferably in the range of 1.5 mg / L to 5.0 mg / L, and most preferably around 3 mg / L.

また、一時的に過剰に溶存酸素濃度が増加した場合は、空気散気装置8を停止する。窒素ガス発生装置9を制御により始動させ、処理槽3内下部より窒素ガスを散気させる。これにより、溶存酸素濃度を低減することができる。溶存酸素濃度が設定値まで一定時間戻ることができた場合、制御を空気散気装置8に切り替え、定常運転を開始する。   If the dissolved oxygen concentration temporarily increases excessively, the air diffuser 8 is stopped. The nitrogen gas generator 9 is started by control, and nitrogen gas is diffused from the lower part in the processing tank 3. Thereby, a dissolved oxygen concentration can be reduced. When the dissolved oxygen concentration can return to the set value for a certain time, the control is switched to the air diffuser 8 and the steady operation is started.

硝化細菌4に必要な酸素を空気散気装置8により供給し、溶存酸素濃度を一定に保つための溶存酸素計7を設け、両組合せにより処理槽3内の溶存酸素濃度を制御する。これにより、硝化細菌4の活性にあわせた、必要溶存酸素量を与えることが可能となり、過剰な溶存酸素による嫌気性アンモニア酸化細菌5の活性阻害を低減することが可能となる。また、設定値以上の溶存酸素が含まれた場合、窒素ガス発生装置9により窒素ガスを散気させ、溶存酸素濃度を低減し、嫌気性アンモニア酸化細菌5の活性阻害を回避させることが可能となる。   Oxygen necessary for the nitrifying bacteria 4 is supplied by the air diffuser 8 and a dissolved oxygen meter 7 is provided to keep the dissolved oxygen concentration constant, and the dissolved oxygen concentration in the treatment tank 3 is controlled by a combination of both. Thereby, it becomes possible to give the required dissolved oxygen amount according to the activity of the nitrifying bacteria 4, and it becomes possible to reduce the inhibition of the activity of the anaerobic ammonia oxidizing bacteria 5 due to the excessive dissolved oxygen. Moreover, when dissolved oxygen exceeding the set value is included, the nitrogen gas is diffused by the nitrogen gas generator 9 to reduce the dissolved oxygen concentration and to prevent the activity inhibition of the anaerobic ammonia-oxidizing bacteria 5. Become.

廃水処理装置20において、処理槽3に含まれる硝化細菌4を、第1の槽13にて、亜硝酸型硝化を十分に反応できる状態にさせておくことが好ましい。これにより溶存酸素制御に対応できる硝化活性を得ることが可能となる。   In the wastewater treatment apparatus 20, it is preferable that the nitrifying bacteria 4 contained in the treatment tank 3 be in a state where the nitrite type nitrification can be sufficiently reacted in the first tank 13. This makes it possible to obtain nitrification activity that can cope with dissolved oxygen control.

処理槽3に含まれる嫌気性アンモニア酸化細菌5を、第1の槽13とは別の第2の槽にて嫌気性アンモニア酸化反応を十分にできる状態にさせておくことが好ましい。これにより、立上げ終えた硝化細菌4によって変換された亜硝酸と原水中のアンモニアを即座に脱窒反応させることが可能となる。   It is preferable to keep the anaerobic ammonia oxidizing bacteria 5 contained in the treatment tank 3 in a state where the anaerobic ammonia oxidation reaction can be sufficiently performed in a second tank different from the first tank 13. This makes it possible to immediately denitrify nitrous acid converted by the nitrifying bacteria 4 that have been started up and ammonia in the raw water.

さらに、立上げ終えた嫌気性アンモニア酸化細菌5は自ら発生させる多量の窒素ガスにより同細菌周辺が嫌気状態になりやすくなることや、速やかな反応が可能となることとにより、処理槽3内が微好気の状態においても、十分な嫌気性アンモニア酸化反応を維持することが可能となる。このため硝化反応が進められる硝化細菌4とともに嫌気性アンモニア酸化細菌5の活性を維持することが可能となる。   Furthermore, the anaerobic ammonia-oxidizing bacterium 5 that has been started up is likely to become anaerobic around the bacterium due to a large amount of nitrogen gas generated by itself, and a rapid reaction is possible. Even in a slightly aerobic state, a sufficient anaerobic ammonia oxidation reaction can be maintained. For this reason, it becomes possible to maintain the activity of the anaerobic ammonia-oxidizing bacteria 5 together with the nitrifying bacteria 4 in which the nitrification reaction proceeds.

このため硝化反応が進められる硝化細菌4とともに嫌気性アンモニア酸化細菌5の活性を維持することが可能となり単一の処理槽3で硝化・脱窒反応をすることが可能となる。   For this reason, it is possible to maintain the activity of the anaerobic ammonia-oxidizing bacteria 5 together with the nitrifying bacteria 4 in which the nitrification reaction proceeds, and it is possible to perform the nitrification / denitrification reaction in the single treatment tank 3.

嫌気性アンモニア酸化細菌5はアンモニアと亜硝酸の濃度比率で窒素除去率が大きく変化する。特に処理槽3内の亜硝酸濃度が過剰に高まると嫌気性アンモニア酸化細菌5の活性を低下させてしまう恐れがある。そのため処理槽3内の、窒素濃度比率を制御する必要がある。   In the anaerobic ammonia oxidizing bacteria 5, the nitrogen removal rate varies greatly depending on the concentration ratio of ammonia and nitrous acid. In particular, if the concentration of nitrous acid in the treatment tank 3 is excessively increased, the activity of the anaerobic ammonia oxidizing bacteria 5 may be reduced. Therefore, it is necessary to control the nitrogen concentration ratio in the treatment tank 3.

処理槽3には少なくともアンモニアと亜硝酸の濃度が計測できる窒素濃度分析計10が設けられている。窒素濃度分析計10により、常時処理槽3内の窒素濃度がモニタリングされる。   The treatment tank 3 is provided with a nitrogen concentration analyzer 10 that can measure at least the concentrations of ammonia and nitrous acid. The nitrogen concentration analyzer 10 constantly monitors the nitrogen concentration in the treatment tank 3.

処理槽3の亜硝酸濃度が一時的に高まった場合、窒素濃度分析計10を介して、空気散気装置8を制御し、その散気量を下げる。これにより、硝化細菌4は酸素律速により、原水中のアンモニアを亜硝酸に硝化する反応を遅らせることができる。   When the concentration of nitrous acid in the treatment tank 3 temporarily increases, the air diffuser 8 is controlled via the nitrogen concentration analyzer 10 to reduce the amount of diffused air. Thereby, the nitrifying bacteria 4 can delay the reaction of nitrifying ammonia in the raw water to nitrite by oxygen-limiting.

それと同時に、原水ライン2の流量を設定流速より上昇させる。これにより残留亜硝酸は、原水ライン2からのアンモニアとともに嫌気性アンモニア酸化細菌5により脱窒される。したがって、処理槽3内の亜硝酸濃度を低減させることができる。   At the same time, the flow rate of the raw water line 2 is increased from the set flow rate. Thereby, the residual nitrous acid is denitrified by the anaerobic ammonia oxidizing bacteria 5 together with the ammonia from the raw water line 2. Therefore, the nitrous acid concentration in the treatment tank 3 can be reduced.

一方、処理槽3のアンモニア濃度が一時的に高まった場合、窒素濃度分析計10を介して、空気散気装置8を制御し、その散気量を上げる。これにより、酸素の供給に伴い、硝化細菌4はアンモニアを亜硝酸に変換する活性を高める。   On the other hand, when the ammonia concentration in the processing tank 3 temporarily increases, the air diffuser 8 is controlled via the nitrogen concentration analyzer 10 to increase the amount of air diffused. Thereby, with the supply of oxygen, the nitrifying bacteria 4 increase the activity of converting ammonia into nitrous acid.

さらに、処理槽3内のアンモニア濃度が高まった場合、処理水ライン6から循環ライン11を介して処理水を原水ライン2に、図示しない循環ポンプにて戻すことができる。   Furthermore, when the ammonia concentration in the treatment tank 3 increases, the treated water can be returned from the treated water line 6 to the raw water line 2 via the circulation line 11 by a circulation pump (not shown).

この場合、原水の流入量を下げる必要がある。原水と処理水のアンモニア濃度から循環可能な量だけ原水ライン2に戻し、そのアンモニア量から、原水の流量を設定し、必要量以下の量を流入させる制御を行う。これにより、随時アンモニア負荷を一定、もしくは下げることが可能となる。流量制御は流量計12により行われる。   In this case, it is necessary to reduce the inflow of raw water. An amount that can be circulated is returned to the raw water line 2 from the ammonia concentration of the raw water and the treated water, and the flow rate of the raw water is set from the ammonia amount, and the control is performed so that the amount less than the necessary amount is introduced. As a result, the ammonia load can be kept constant or lowered at any time. The flow rate control is performed by the flow meter 12.

これにより過剰に処理水に含まれるアンモニアを再度処理槽3に流入させることにより、処理水中の窒素濃度を低減させることができる。また、処理槽3内アンモニア濃度を低減させることができる。処理槽3内に含まれる両菌体の活性を維持することができる。   Thereby, the nitrogen concentration in the treated water can be reduced by causing the ammonia contained in the treated water to flow again into the treatment tank 3 again. Moreover, the ammonia concentration in the processing tank 3 can be reduced. The activity of both cells contained in the treatment tank 3 can be maintained.

原水中のアンモニア濃度1に対し、亜硝酸濃度は1.1〜1.5が望ましく、その範囲を超えると上記制御を行なうことが好ましい。   The nitrous acid concentration is desirably 1.1 to 1.5 with respect to the ammonia concentration 1 in the raw water, and if the range is exceeded, the above control is preferably performed.

上記に述べたように構成を備えることで、アンモニアを含有する窒素含有廃水を硝化細菌と嫌気性アンモニア酸化細菌が含まれる処理槽内に通水し、同処理槽内を微好気に保つことにより、単一の処理槽で同時に硝化・脱窒を行なうことができる。   By having the configuration as described above, nitrogen-containing wastewater containing ammonia is passed through a treatment tank containing nitrifying bacteria and anaerobic ammonia oxidizing bacteria, and the inside of the treatment tank is kept slightly aerobic. Thus, nitrification and denitrification can be performed simultaneously in a single treatment tank.

また、処理槽内に溶存酸素計と空気散気装置および窒素ガス発生装置を設けることで溶存酸素濃度を1.5〜5.0mg/Lの範囲内の一定の設定値に制御することができ、硝化細菌と嫌気性アンモニア酸化細菌の活性を落とすことなく、安定した硝化・脱窒を単一の処理槽で行なうことができる。   Also, by providing a dissolved oxygen meter, an air diffuser and a nitrogen gas generator in the treatment tank, the dissolved oxygen concentration can be controlled to a constant set value within the range of 1.5 to 5.0 mg / L. Stable nitrification and denitrification can be performed in a single treatment tank without reducing the activity of nitrifying bacteria and anaerobic ammonia oxidizing bacteria.

また、硝化細菌は別槽の硝化槽にて立上げ工程を経ていることと、嫌気性アンモニア酸化細菌も別槽で立上げ工程を経ていることで、両細菌を処理槽に投入と同時に、処理水を通水することができ、さらに酸素濃度の上下による活性低下を最小限にとどめることが可能となる。   In addition, the nitrifying bacteria are processed in a separate tank, and the anaerobic ammonia-oxidizing bacteria are also started in a separate tank. Water can be passed through, and further, the decrease in activity due to the increase and decrease of the oxygen concentration can be minimized.

処理槽内は常時各態窒素濃度を計測するとともに、処理槽内の亜硝酸性窒素濃度が高まった場合、空気散気装置の散気量を下げるとともに原水ラインの流量を上げ、アンモニアの負荷を過剰に与えることで、槽内の菌体の活性低下を軽減することができ、さらに廃水中の残留窒素濃度を最小限に留めることが可能となる。   The nitrogen concentration in the treatment tank is constantly measured, and when the nitrite nitrogen concentration in the treatment tank increases, the air diffuser is reduced and the flow rate of the raw water line is increased to reduce the load of ammonia. By giving an excess, it is possible to reduce a decrease in the activity of the bacterial cells in the tank, and it is possible to minimize the residual nitrogen concentration in the wastewater.

処理槽内は常時各態窒素濃度を計測するとともに、処理槽内のアンモニア濃度が高まった場合、空気散気装置の散気量を上げるともに原水ラインの流量を、循環ラインを設けることで、窒素負荷を制御でき、廃水中の残留窒素濃度を最小限に留めることが可能となる。   The nitrogen concentration in the treatment tank is constantly measured, and if the ammonia concentration in the treatment tank increases, the amount of air diffuser in the air diffuser is increased and the flow rate of the raw water line is increased by providing a circulation line. The load can be controlled and the residual nitrogen concentration in the wastewater can be kept to a minimum.

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す条件等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。   The present invention will be described more specifically with reference to the following examples. Conditions and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following specific examples.

アンモニアを含む廃水が貯留されている原水槽より、硝化細菌が含まれる硝化槽に原水ポンプにて連続通水し、水温30℃、pH7.5のもと亜硝酸への硝化反応を進めた。硝化槽に添加した硝化細菌は、原水DO=4mg/Lのもと、水温30℃、pH7.5で馴養し、硝化率約55%を定常状態としているものを使用した。硝化槽内のDO濃度はブロアにて散気を行い、各設定DOに合わせた。硝化槽内の設定DOと各々のアンモニア負荷及び亜硝酸の生成速度を表1に示す。   From the raw water tank in which the waste water containing ammonia was stored, water was continuously passed to the nitrification tank containing nitrifying bacteria with a raw water pump, and the nitrification reaction to nitrous acid was advanced at a water temperature of 30 ° C. and pH 7.5. The nitrifying bacteria added to the nitrification tank was conditioned at a water temperature of 30 ° C. and a pH of 7.5 under raw water DO = 4 mg / L, and a nitrification rate of about 55% was used in a steady state. The DO concentration in the nitrification tank was aerated with a blower and adjusted to each set DO. Table 1 shows the DO set in the nitrification tank, the respective ammonia loads, and the production rate of nitrous acid.

Figure 2010063987
Figure 2010063987

DO=1.5〜4の間でも亜硝酸への硝化率が60%以上得られ、嫌気性アンモニア酸化細菌が、使用するための亜硝酸を十分量存在させられることが確認できる。   A nitrification rate to nitrite of 60% or more is obtained even between DO = 1.5 and 4, and it can be confirmed that anaerobic ammonia oxidizing bacteria can contain a sufficient amount of nitrous acid for use.

原水槽2に窒素負荷が約4.3kgN/m3/dとなるようアンモニアとアンモニアに対して約1.3倍量の亜硝酸を含む廃水が貯留され、原水槽2より嫌気性アンモニア酸化細菌が含まれる脱窒槽に原水ポンプ2にて連続通水し、水温30℃、pH7.6のもと嫌気性アンモニア酸化反応を進めた。原水槽内は、ブロアによる散気によりDOを設定値に合わせた。脱窒槽に添加した嫌気性アンモニア酸化細菌は、原水DO=0mg/Lのもと、水温30℃、pH7.6で馴養し、窒素除去速度4.0kgN/m3/dを定常状態としているものを使用した。脱窒槽内に通水した、原水のDO濃度とアンモニア除去率を表2に示す。   Wastewater containing about 1.3 times the amount of nitrous acid with respect to ammonia and ammonia is stored in the raw water tank 2 so that the nitrogen load is about 4.3 kgN / m 3 / d, and anaerobic ammonia oxidizing bacteria are stored in the raw water tank 2. Water was continuously passed through the denitrification tank contained by the raw water pump 2 to proceed an anaerobic ammonia oxidation reaction at a water temperature of 30 ° C. and a pH of 7.6. In the raw water tank, DO was adjusted to the set value by aeration with a blower. Anaerobic ammonia-oxidizing bacteria added to the denitrification tank are conditioned at a water temperature of 30 ° C. and a pH of 7.6 under raw water DO = 0 mg / L, and a nitrogen removal rate of 4.0 kg N / m 3 / d is in a steady state. used. Table 2 shows the DO concentration and ammonia removal rate of the raw water passed through the denitrification tank.

Figure 2010063987
Figure 2010063987

DO=0〜5.0mg/Lでもアンモニア除去率は80%以上を示し、特にDO=4.8mg/Lまででは95%を示し、DO濃度が高い場合でも、馴養し立上げ終えた嫌気性アンモニア酸化細菌においては、十分活性が得られることが確認できた。   Even when DO = 0 to 5.0 mg / L, the ammonia removal rate is 80% or more, particularly 95% until DO = 4.8 mg / L, and even when the DO concentration is high, the anaerobic condition has been adapted and finished. It was confirmed that sufficient activity was obtained in the ammonia-oxidizing bacteria.

硝化細菌、および嫌気性アンモニア酸化細菌においても、DO=1.5〜5.0mg/Lの範囲で活性が得られ、同一槽内で硝化と脱窒を行なうことが可能であることが理解できる。   In nitrifying bacteria and anaerobic ammonia oxidizing bacteria, it is understood that activity is obtained in the range of DO = 1.5 to 5.0 mg / L, and nitrification and denitrification can be performed in the same tank. .

次に、嫌気性アンモニア酸化細菌の活性を用いてここでいう立上げ状態の例を以下に示す。アンモニアとアンモニアに対して約1.3倍量の亜硝酸を含む廃水が貯留される原水槽より嫌気性アンモニア酸化細菌が含まれる脱窒槽に原水ポンプにて連続通水し、水温30℃、pH7.6のもと嫌気性アンモニア酸化反応を進めた。   Next, an example of the startup state referred to here using the activity of anaerobic ammonia oxidizing bacteria is shown below. A raw water pump continuously passes through a denitrification tank containing anaerobic ammonia-oxidizing bacteria from a raw water tank in which wastewater containing about 1.3 times the amount of nitrous acid relative to ammonia and ammonia is stored, and a water temperature of 30 ° C., pH 7 The anaerobic ammonia oxidation reaction was advanced under .6.

図2は、経過日数、窒素除去速度、アンモニア除去量に対する亜硝酸または硝酸除去量をプロットしたグラフである。   FIG. 2 is a graph in which the amount of nitrous acid or nitric acid removed is plotted against the number of days elapsed, the nitrogen removal rate, and the amount of ammonia removed.

図2の通り、経過日数30日付近まで窒素除去速度は窒素容積負荷に対して差があり、ほとんどあがらない状態であり、この場合、立上げ終了の状態とは言えない。   As shown in FIG. 2, the nitrogen removal rate has a difference with respect to the nitrogen volume load until approximately 30 days have elapsed, and is in a state that hardly rises. In this case, it cannot be said that the start-up has been completed.

しかしながら、経過日数45日付近より窒素除去速度は増加し安定した値を示しており、この場合、立上げが終了しているといえる。   However, the nitrogen removal rate increases from around 45 days and shows a stable value. In this case, it can be said that the startup has been completed.

また、立上げの判断として、嫌気性アンモニア酸化細菌の反応では、反応式より、アンモニアの除去量1に対する、亜硝酸または硝酸の除去量はそれぞれ1.32、−0.26(硝酸生成)となっており、これらを利用することで判断できる。図2より、経過日数30日付近までではこの反応比率にバラツキがあり、嫌気性アンモニア酸化反応が十分進んでおらず立上げ終了状態とはいえない。一方で、経過日数45日付近からは安定して反応比が1.32、−0.26を推移している。このことからも嫌気性アンモニア酸化細菌の立上げが終了したといえる。   Moreover, as a judgment of start-up, in the reaction of anaerobic ammonia-oxidizing bacteria, the removal amount of nitrous acid or nitric acid with respect to the removal amount of ammonia of 1 is 1.32 and −0.26 (nitric acid production), respectively, from the reaction formula. It can be judged by using these. From FIG. 2, the reaction ratio varies until about 30 days have passed, and the anaerobic ammonia oxidation reaction has not sufficiently progressed, and it cannot be said that the start-up has been completed. On the other hand, the reaction ratio has stably changed from 1.32 to -0.26 from around 45 days elapsed. From this, it can be said that the start-up of the anaerobic ammonia oxidizing bacteria has been completed.

安定して反応比が1:1.32、−0.26に近い値を示していれば、嫌気性アンモニア酸化反応ができると考えられるため窒素除去速度が低い(1kgN/m3/d)以下などからといって立ち上がり状態でないといえない。   If the reaction ratio stably shows values close to 1: 1.32 and −0.26, an anaerobic ammonia oxidation reaction is considered to be possible, so the nitrogen removal rate is low (1 kg N / m 3 / d) or less. It cannot be said that it is not in a standing state.

さらに、嫌気性アンモニア酸化細菌の立上状態の判断としては、反応することで、アンモニア1に対して0.13の水素イオンが利用され、槽内のpHが上昇する特徴がある。これを利用して、判断することも可能である。   Furthermore, as a judgment of the standing state of anaerobic ammonia-oxidizing bacteria, there is a feature that, by reacting, 0.13 hydrogen ions are used for ammonia 1 and the pH in the tank is increased. It is also possible to make a judgment using this.

次に、亜硝酸型硝化の立上げ状態の例を以下に示す。アンモニアを約700mgN/Lを含む廃水が貯留されている原水槽より、硝化細菌が含まれる硝化槽に原水ポンプにて連続通水し、水温20℃でブロアにて空気曝気を行い、亜硝酸への硝化反応を進めた。   Next, an example of the start-up state of nitrite type nitrification is shown below. From the raw water tank in which wastewater containing about 700 mg N / L of ammonia is stored, water is continuously passed through the nitrification tank containing nitrifying bacteria with a raw water pump, and air is aerated with a blower at a water temperature of 20 ° C. to nitrous acid. The nitrification reaction was advanced.

図3の通り、経過日数15日付近まで槽内の亜硝酸の濃度は上がらず、またアンモニア濃度は原水と処理水の間でほとんど差がない状態を推移している。このため、この時点では、立上げ状態とはいえない。   As shown in FIG. 3, the concentration of nitrous acid in the tank does not increase until around 15 days elapsed, and the ammonia concentration is in a state where there is almost no difference between the raw water and the treated water. For this reason, at this time, it cannot be said that it is in a startup state.

経過日数20日付近より槽内の亜硝酸濃度は増加傾向となり、同時にアンモニア濃度も減少傾向となる。この場合亜硝酸型硝化の立上げ状態といえる。   The concentration of nitrous acid in the tank tends to increase and the concentration of ammonia also tends to decrease from around 20 days elapsed. In this case, it can be said that the nitrite type nitrification is started up.

しかしながら、嫌気性アンモニア酸化反応をより効率的に進める、また窒素除去という廃水処理の面から窒素除去率を上げるために、硝化反応をさらに進め、槽内に含まれるアンモニアと亜硝酸の比をより1:1.32(硝化率56.9%)に近づける必要がある。   However, in order to advance the anaerobic ammonia oxidation reaction more efficiently and to raise the nitrogen removal rate from the viewpoint of wastewater treatment called nitrogen removal, the nitrification reaction is further advanced, and the ratio of ammonia and nitrous acid contained in the tank is further increased. It is necessary to approach 1: 1.32 (nitrification rate: 56.9%).

図3の場合、経過日数30日付近でアンモニア濃度約300mgN/L、亜硝酸濃度約400mgN/Lとなっており、この時点で硝化細菌は十分に嫌気性アンモニア酸化反応に効率的なアンモニアと亜硝酸を供給することができる状態となり、嫌気性アンモニア酸化反応に対する亜硝酸型硝化の最適な立上げ状態といえる。   In the case of FIG. 3, the ammonia concentration is about 300 mgN / L and the nitrite concentration is about 400 mgN / L around the lapse of 30 days. At this time, the nitrifying bacteria are sufficiently efficient for anaerobic ammonia oxidation reaction with ammonia and Nitric acid can be supplied, and it can be said that this is the optimum startup state of nitrite type nitrification for anaerobic ammonia oxidation reaction.

本発明の実施形態に係る廃水処理装置の概略構成図Schematic configuration diagram of a wastewater treatment apparatus according to an embodiment of the present invention 経過日数、窒素除去速度、アンモニア除去量に対する亜硝酸または硝酸除去量の関係を示すグラフA graph showing the relationship of the amount of nitrous acid or nitric acid to the elapsed days, nitrogen removal rate, and ammonia removal 経過日数と各態窒素濃度の関係を示すグラフGraph showing the relationship between elapsed days and nitrogen concentration

符号の説明Explanation of symbols

1…原水槽、2…原水ライン、3…処理槽、4…硝化細菌、5…嫌気性アンモニア酸化細菌、6…処理水ライン、7…溶存酸素計、8…空気散気装置、9…窒素ガス発生装置、10…窒素濃度分析計、11…循環ライン、12…流量計、13…第1の槽、14…第2の槽、15…第1のライン、16…第2のライン、20…廃水処理装置   DESCRIPTION OF SYMBOLS 1 ... Raw water tank, 2 ... Raw water line, 3 ... Treatment tank, 4 ... Nitrification bacteria, 5 ... Anaerobic ammonia oxidation bacteria, 6 ... Treated water line, 7 ... Dissolved oxygen meter, 8 ... Air diffuser, 9 ... Nitrogen Gas generator, 10 ... nitrogen concentration analyzer, 11 ... circulation line, 12 ... flow meter, 13 ... first tank, 14 ... second tank, 15 ... first line, 16 ... second line, 20 ... Waste water treatment equipment

Claims (8)

原水ラインを介してアンモニアを含有する窒素含有廃水が送水される処理槽を備え、前記処理槽が硝化細菌と嫌気性アンモニア酸化細菌を有し、かつ溶存酸素濃度が1.5〜5.0mg/Lに制御されたことを特徴とする廃水処理装置。   A treatment tank in which nitrogen-containing wastewater containing ammonia is fed through a raw water line, the treatment tank has nitrifying bacteria and anaerobic ammonia oxidizing bacteria, and a dissolved oxygen concentration of 1.5 to 5.0 mg / A wastewater treatment apparatus characterized by being controlled to L. 前記処理槽は、該処理槽内の溶存酸素濃度を測定する溶存酸素計、空気散気装置および窒素ガス発生装置を備えている請求項1記載の廃水処理装置。   The wastewater treatment apparatus according to claim 1, wherein the treatment tank includes a dissolved oxygen meter that measures a dissolved oxygen concentration in the treatment tank, an air diffuser, and a nitrogen gas generator. 前記硝化細菌の立上げをする第1の槽と、前記嫌気性アンモニア酸化細菌の立上げをする第2の槽とが、それぞれ前記処理槽に接続される請求項1又は2記載の廃水処理装置。   The wastewater treatment apparatus according to claim 1 or 2, wherein a first tank for starting up the nitrifying bacteria and a second tank for starting up the anaerobic ammonia-oxidizing bacteria are connected to the treatment tank, respectively. . 前記処理槽は、該処理槽内の各態窒素濃を測定する各態窒素濃度計と、該処理槽の処理水を該処理槽に戻す循環ラインを備え、
前記各態窒素濃度計の測定値に応じて、
前記処理槽内の亜硝酸性窒素濃度が高まった場合、前記空気散気装置の散気量を下げ、前記原水ラインの流量を上げ、
前記処理槽内のアンモニア濃度が高まった場合、前記空気散気装置の散気量を上げ、前記原水ラインの流量を下げ、前記循環ラインの循環量を上げるよう制御された請求項2又は3記載の廃水処理装置。
The treatment tank comprises a nitrogen concentration meter for measuring the concentration of nitrogen in the treatment tank, and a circulation line for returning treated water from the treatment tank to the treatment tank.
According to the measured value of each nitrogen concentration meter,
When the concentration of nitrous acid nitrogen in the treatment tank is increased, the amount of air diffused by the air diffuser is decreased, and the flow rate of the raw water line is increased,
4. The control according to claim 2 or 3, wherein when the ammonia concentration in the treatment tank is increased, the amount of air diffused in the air diffuser is increased, the flow rate of the raw water line is decreased, and the amount of circulation in the circulation line is increased. Wastewater treatment equipment.
原水ラインを介してアンモニアを含有する窒素含有廃水を、硝化細菌と嫌気性アンモニア酸化細菌を有し、かつ溶存酸素濃度が1.5〜5.0mg/Lに制御された処理槽に送水し、前記処理槽内で硝化・脱窒することを特徴とする廃水処理方法。   Nitrogen-containing wastewater containing ammonia is fed through a raw water line to a treatment tank having nitrifying bacteria and anaerobic ammonia-oxidizing bacteria and having a dissolved oxygen concentration controlled to 1.5 to 5.0 mg / L. A wastewater treatment method comprising nitrification and denitrification in the treatment tank. 前記処理槽は、該処理槽の溶存酸素濃度を測定する溶存酸素計、空気散気装置および窒素ガス発生装置を備え、該溶存酸素計の測定値に応じて前記空気散気装置及び前記窒素ガス発生装置を制御する請求項5記載の廃水処理方法。   The treatment tank includes a dissolved oxygen meter, an air diffuser, and a nitrogen gas generator that measure the dissolved oxygen concentration of the treatment tank, and the air diffuser and the nitrogen gas according to the measured value of the dissolved oxygen meter. The wastewater treatment method according to claim 5, wherein the generator is controlled. 前記処理槽内の前記硝化細菌及び前記嫌気性アンモニア酸化細菌は、それぞれ別の槽で立上げられた後、前記処理槽に添加される請求項5又は6記載の廃水処理方法。   The waste water treatment method according to claim 5 or 6, wherein the nitrifying bacteria and the anaerobic ammonia-oxidizing bacteria in the treatment tank are added to the treatment tank after being started up in separate tanks. 前記処理槽は、該処理槽内の各態窒素濃を測定する各態窒素濃度計と、該処理槽の処理水を該処理槽に戻す循環ラインを備え、
前記各態窒素濃度計の測定値に応じて、
前記処理槽内の亜硝酸性窒素濃度が高まった場合、前記空気散気装置の散気量を下げ、前記原水ラインの流量を上げ、
前記処理槽内のアンモニア濃度が高まった場合、前記空気散気装置の散気量を上げ、前記原水ラインの流量を下げ、前記循環ラインの循環量を上げるよう制御する請求項6又は7記載の廃水処理方法。
The treatment tank comprises a nitrogen concentration meter for measuring the concentration of nitrogen in the treatment tank, and a circulation line for returning treated water from the treatment tank to the treatment tank.
According to the measured value of each nitrogen concentration meter,
When the concentration of nitrous acid nitrogen in the treatment tank is increased, the amount of air diffused by the air diffuser is decreased, and the flow rate of the raw water line is increased,
The control according to claim 6 or 7, wherein when the ammonia concentration in the treatment tank is increased, the amount of air diffused in the air diffuser is increased, the flow rate of the raw water line is decreased, and the amount of circulation in the circulation line is increased. Wastewater treatment method.
JP2008231698A 2008-09-10 2008-09-10 Waste water treatment apparatus and treatment method Active JP5115908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231698A JP5115908B2 (en) 2008-09-10 2008-09-10 Waste water treatment apparatus and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231698A JP5115908B2 (en) 2008-09-10 2008-09-10 Waste water treatment apparatus and treatment method

Publications (2)

Publication Number Publication Date
JP2010063987A true JP2010063987A (en) 2010-03-25
JP5115908B2 JP5115908B2 (en) 2013-01-09

Family

ID=42190051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231698A Active JP5115908B2 (en) 2008-09-10 2008-09-10 Waste water treatment apparatus and treatment method

Country Status (1)

Country Link
JP (1) JP5115908B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035215A (en) * 2010-08-09 2012-02-23 Hitachi Plant Technologies Ltd Wastewater treatment apparatus and waste water treatment method
CN103043791A (en) * 2013-01-19 2013-04-17 桂林理工大学 Method for lowering occurrence amount of nitrous oxide in anaerobic ammonia oxidization reactor
JP2013230413A (en) * 2012-04-27 2013-11-14 Japan Organo Co Ltd Method and apparatus for treating nitrogen-containing waste water
JP2014104416A (en) * 2012-11-27 2014-06-09 Hitachi Ltd Water treatment apparatus and water treatment method
JP2015016410A (en) * 2013-07-10 2015-01-29 メタウォーター株式会社 Wastewater treatment method and apparatus, and control method, control device, and program
JPWO2013133443A1 (en) * 2012-03-09 2015-07-30 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JPWO2013133445A1 (en) * 2012-03-09 2015-07-30 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JP2015208708A (en) * 2014-04-25 2015-11-24 株式会社日立製作所 Water treatment monitor system, water treatment system having the same and water treatment method
JP2016131928A (en) * 2015-01-19 2016-07-25 水ing株式会社 Method and apparatus for denitrifying nitrogen-containing waste water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289717B1 (en) * 2019-05-13 2021-08-13 주식회사 포스코건설 Organic nitrogen wastewater treating system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293494A (en) * 2000-04-11 2001-10-23 Kurita Water Ind Ltd Biological nitrogen removing method
JP2003094091A (en) * 2001-09-21 2003-04-02 Hitachi Plant Eng & Constr Co Ltd Apparatus for removing nitrate nitrogen
JP2006055739A (en) * 2004-08-19 2006-03-02 Kurita Water Ind Ltd Treating method of organic matter- and nitrogen-containing wastewater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293494A (en) * 2000-04-11 2001-10-23 Kurita Water Ind Ltd Biological nitrogen removing method
JP2003094091A (en) * 2001-09-21 2003-04-02 Hitachi Plant Eng & Constr Co Ltd Apparatus for removing nitrate nitrogen
JP2006055739A (en) * 2004-08-19 2006-03-02 Kurita Water Ind Ltd Treating method of organic matter- and nitrogen-containing wastewater

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035215A (en) * 2010-08-09 2012-02-23 Hitachi Plant Technologies Ltd Wastewater treatment apparatus and waste water treatment method
JPWO2013133443A1 (en) * 2012-03-09 2015-07-30 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JPWO2013133445A1 (en) * 2012-03-09 2015-07-30 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JP2013230413A (en) * 2012-04-27 2013-11-14 Japan Organo Co Ltd Method and apparatus for treating nitrogen-containing waste water
JP2014104416A (en) * 2012-11-27 2014-06-09 Hitachi Ltd Water treatment apparatus and water treatment method
CN103043791A (en) * 2013-01-19 2013-04-17 桂林理工大学 Method for lowering occurrence amount of nitrous oxide in anaerobic ammonia oxidization reactor
JP2015016410A (en) * 2013-07-10 2015-01-29 メタウォーター株式会社 Wastewater treatment method and apparatus, and control method, control device, and program
JP2015208708A (en) * 2014-04-25 2015-11-24 株式会社日立製作所 Water treatment monitor system, water treatment system having the same and water treatment method
JP2016131928A (en) * 2015-01-19 2016-07-25 水ing株式会社 Method and apparatus for denitrifying nitrogen-containing waste water
WO2016117210A1 (en) * 2015-01-19 2016-07-28 水ing株式会社 Denitrification method and denitrification apparatus for nitrogen-containing waste water
CN107108293A (en) * 2015-01-19 2017-08-29 水翼株式会社 The denitrogenation method and nitrogen rejection facility of nitrogenous effluent
CN107108293B (en) * 2015-01-19 2021-05-14 水翼株式会社 Method and apparatus for removing nitrogen from nitrogen-containing wastewater

Also Published As

Publication number Publication date
JP5115908B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5115908B2 (en) Waste water treatment apparatus and treatment method
EP2377819B1 (en) Method for removing biological nitrogen
JP4284700B2 (en) Nitrogen removal method and apparatus
JP6720100B2 (en) Water treatment method and water treatment device
JP4644107B2 (en) Method for treating wastewater containing ammonia
JP4882175B2 (en) Nitrification method
JP2006281003A (en) Biological waste water treatment method
US8323487B2 (en) Waste water treatment apparatus
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP2010000480A (en) Effective denitrification method for organic raw water
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP5984137B2 (en) Water treatment apparatus and water treatment method
JP2003047990A (en) Biological denitrifier
JP4671178B2 (en) Nitrogen removal method and apparatus
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2006082053A (en) Method and apparatus for treating nitrogen-containing drainage
JP2003154394A (en) Biological denitrification method and apparatus
JP4848144B2 (en) Waste water treatment equipment
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
JP2012024707A (en) Denitrification method and denitrification device for ammoniacal nitrogen waste liquid
JP4386054B2 (en) Intermittent biological treatment method
JP2008023485A (en) Biological denitrification method and apparatus therefor
JP2006289277A (en) Nitrate forming nitrification/denitrification method, method for nitrifying/denitrifying ammonia nitrogen-containing liquid and nitrate forming nitrification/denitrification equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5115908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250