JP2003154394A - Biological denitrification method and apparatus - Google Patents

Biological denitrification method and apparatus

Info

Publication number
JP2003154394A
JP2003154394A JP2001357970A JP2001357970A JP2003154394A JP 2003154394 A JP2003154394 A JP 2003154394A JP 2001357970 A JP2001357970 A JP 2001357970A JP 2001357970 A JP2001357970 A JP 2001357970A JP 2003154394 A JP2003154394 A JP 2003154394A
Authority
JP
Japan
Prior art keywords
nitrogen
ammonia
solid
sludge
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001357970A
Other languages
Japanese (ja)
Inventor
Kiyomi Arakawa
清美 荒川
Yousei Katsura
甬生 葛
Toshihiro Tanaka
俊博 田中
Akira Yamaguchi
晶 山口
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001357970A priority Critical patent/JP2003154394A/en
Publication of JP2003154394A publication Critical patent/JP2003154394A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a biological denitrification method and apparatus for organic sewage, capable of easily obtaining high treated water quality at a low cost. SOLUTION: The biological denitrification method comprises a denitrification process, wherein organic sewage containing ammoniacal nitrogen and characterized in that C-BOD is 1/2 or less ammoniacal nitrogen is denitrified under a microaerobic condition and/or an intermittent aeration condition and a propagation condition of an ammonia oxidizing bacteria group and an autotrophic denitrification bacteria group in the presence of free ammonia, and a solid-liquid separation process in the rear stage of the denitrification process and the pH of the circulating sludge from the solid-liquid separation process is controlled to 7.5-10.5. The biological denitrification apparatus is also disclosed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア性窒素
を含む有機性汚水を生物学的に浄化する生物学的窒素除
去方法及び装置に関する。
TECHNICAL FIELD The present invention relates to a biological nitrogen removing method and apparatus for biologically purifying organic wastewater containing ammoniacal nitrogen.

【0002】[0002]

【従来の技術】有機性汚水(単に「汚水」ともいう)中
に含まれるアンモニア性窒素は河川、湖沼及び海洋など
における富栄養化の原因物質の一つであり、汚水処理工
程で効率的に除去されることが望まれる。一般に、汚水
中のアンモニア性窒素は硝化工程と脱窒工程によって窒
素ガスにまで分解される。具体的には、硝化工程ではア
ンモニア性窒素は好気条件で独立栄養性細菌であるアン
モニア酸化細菌によって亜硝酸性窒素に酸化され、この
亜硝酸性窒素が独立栄養性細菌である亜硝酸酸化細菌に
よって硝酸性窒素に酸化される。次に脱窒工程ではこれ
らの亜硝酸性窒素及び硝酸性窒素は嫌気条件で、従属栄
養性細菌である脱窒素菌により、有機物を電子供与体と
して利用しながら窒素ガスにまで分解される。
2. Description of the Related Art Ammoniacal nitrogen contained in organic sewage (also referred to simply as "sewage") is one of the causative substances of eutrophication in rivers, lakes and oceans, and is effectively used in the sewage treatment process. It is desired to be removed. Generally, ammoniacal nitrogen in wastewater is decomposed into nitrogen gas by a nitrification process and a denitrification process. Specifically, in the nitrification step, ammoniacal nitrogen is oxidized to nitrite nitrogen by an autotrophic bacterium, an ammonia-oxidizing bacterium under aerobic conditions, and the nitrite nitrogen is an autotrophic bacterium, a nitrite-oxidizing bacterium. Is oxidized to nitrate nitrogen. Next, in the denitrification step, these nitrite nitrogen and nitrate nitrogen are decomposed into nitrogen gas under anaerobic conditions by a denitrifying bacterium, which is a heterotrophic bacterium, while utilizing organic substances as electron donors.

【0003】このような従来の生物学的窒素除去法で
は、アンモニア性窒素を亜硝酸性窒素及び硝酸性窒素に
酸化する硝化工程では多量の酸素が必要であり、また従
属栄養性細菌である脱窒素菌を利用する脱窒工程では、
電子供与体としてメタノールなどの有機物を多量に添加
する必要があるので、ランニングコストを増加させてい
る。
In such a conventional biological nitrogen removal method, a large amount of oxygen is required in the nitrification process for oxidizing ammoniacal nitrogen to nitrite nitrogen and nitrate nitrogen, and denitrification which is a heterotrophic bacterium is required. In the denitrification process using nitrogen bacteria,
Since it is necessary to add a large amount of an organic substance such as methanol as an electron donor, the running cost is increased.

【0004】ところで、近年、嫌気条件下でアンモニア
性窒素を電子供与体、硝酸性窒素を電子受容体として両
者を反応させ、窒素ガスを生成することができる独立栄
養性の微生物群を利用した新しい窒素処理技術の開発が
進められている。例えば、提案された一つの窒素処理方
法ではアンモニア性窒素を含む汚水を硝化槽で部分的に
硝化して、アンモニア性窒素の一部を残留させる部分硝
化工程の後、部分硝化工程流出液のアンモニア性窒素、
亜硝酸性窒素、硝酸性窒素とを結合酸素脱窒工程で独立
栄養微生物群と反応させて除去している。しかしなが
ら、このような方法においては、処理が以下のような現
象で極めて不安定であり窒素除去が不十分で、実用性に
乏しいという問題点があった。すなわち、一般的には硝
化反応は概ねアンモニア性窒素が残留しない状態に設定
されており、部分硝化工程でアンモニア性窒素を残留さ
せつつ亜硝酸性窒素や硝酸性窒素にするには、DOやM
LSS(汚泥濃度)を極めて高い精度で原水状況に応じ
て調整する必要がある。結合酸素脱窒工程においては、
アンモニア性窒素が残留しすぎると亜硝酸性窒素、硝酸
性窒素が等量比以上になり結果的にはアンモニア性窒素
が残留する。逆にアンモニア性窒素が少なく亜硝酸性窒
素、硝酸性窒素が等量比以上になると亜硝酸性窒素、硝
酸性窒素が残留する。
By the way, recently, under anaerobic conditions, ammonia nitrogen is used as an electron donor and nitrate nitrogen is used as an electron acceptor to react with each other to produce nitrogen gas. Nitrogen treatment technology is being developed. For example, in one proposed nitrogen treatment method, the wastewater containing ammoniacal nitrogen is partially nitrified in a nitrification tank, and after the partial nitrification step in which a part of the ammoniacal nitrogen remains, the ammonia in the effluent of the partial nitrification step is Nitrogen,
Nitrite nitrogen and nitrate nitrogen are removed by reacting with autotrophic microorganisms in the combined oxygen denitrification process. However, in such a method, there is a problem that the treatment is extremely unstable due to the following phenomenon, nitrogen removal is insufficient, and practicability is poor. That is, in general, the nitrification reaction is set to a state where almost no ammoniacal nitrogen remains, and in order to leave ammoniacal nitrogen in the partial nitrification process to nitrite nitrogen or nitrate nitrogen, DO or M
It is necessary to adjust LSS (sludge concentration) with extremely high accuracy according to raw water conditions. In the combined oxygen denitrification process,
If the ammoniacal nitrogen remains excessively, the nitrite nitrogen and the nitrate nitrogen become equal to or more than the equivalence ratio, and as a result, the ammoniacal nitrogen remains. Conversely, when the amount of ammonia nitrogen is small and the amounts of nitrite nitrogen and nitrate nitrogen are equal to or more than the equivalence ratio, nitrite nitrogen and nitrate nitrogen remain.

【0005】また、提案された別の窒素処理方法では、
汚水の一部を亜硝酸化槽に導入し、槽内のアンモニア酸
化細菌を含む生物汚泥と混合し、散気装置から曝気し
て、アンモニア酸化細菌によりアンモニア性窒素を亜硝
酸性窒素に酸化する。亜硝酸化槽内の亜硝酸化液は独立
栄養性脱窒槽に導入するとともに、バイパス汚水路から
汚水の他の一部を導入し、槽内の独立栄養性脱窒素菌を
含む生物汚泥と混合し、嫌気条件下に脱窒を行う方法が
開示されている。しかしながら、この方法においても、
亜硝酸化槽においても、曝気時間、pH条件によって
は、汚水中のアンモニア性窒素は硝酸化まで反応が進行
し、結果的には嫌気条件下において独立栄養性脱窒素菌
による脱窒が不十分な場合が多く、処理の安定性がなく
実用性に問題があった。
Further, in another proposed nitrogen treatment method,
Part of the wastewater is introduced into the nitrite tank, mixed with the biological sludge containing ammonia-oxidizing bacteria in the tank, and aerated from the air diffuser, and the ammonia-oxidizing bacteria oxidize the ammoniacal nitrogen to nitrite nitrogen. . The nitrite solution in the nitrite tank is introduced into the autotrophic denitrification tank and at the same time, another part of the wastewater is introduced from the bypass wastewater channel and mixed with the biological sludge containing the autotrophic denitrifying bacteria in the tank. However, a method for denitrifying under anaerobic conditions is disclosed. However, even with this method,
Even in the nitrite tank, depending on the aeration time and pH conditions, the reaction of ammonia nitrogen in sewage proceeds to nitrification, resulting in insufficient denitrification by autotrophic denitrifying bacteria under anaerobic conditions. In many cases, the treatment was not stable and there was a problem in practicality.

【0006】さらに、最近提案された方法は、アンモニ
ア性窒素を含む原水を亜硝酸化兼脱窒槽に導入し、槽内
底部に設けられた散気装置から、独立栄養脱窒素菌の増
殖を阻害しない量の空気を曝気しながら、アンモニア酸
化菌及び独立栄養脱窒素菌と混合することにより亜硝酸
化及び脱窒を同時に並行して行い、アンモニア性窒素を
完全に除去し、槽内液はポンプにより吸引することによ
り分離膜を透過させて透過液室側に移行させ、この透過
液を処理水として処理水路から排出する技術が開示され
ている。しかしながら、この方法を試験したところ、ア
ンモニア性窒素を完全に除去した場合、亜硝酸化兼脱窒
槽内での亜硝酸化菌により亜硝酸性窒素が硝酸性窒素ま
で酸化されてしまうことが判明した。さらに分離膜を亜
硝酸化兼脱窒槽内に投入した場合、分離膜の性能を引き
出すためには多量の空気で曝気を行う必要があり、槽内
を独立栄養脱窒素菌の増殖を阻害しない空気量に制御す
ることが不可能となった。
Furthermore, the recently proposed method introduces raw water containing ammoniacal nitrogen into a nitrite / denitrification tank and inhibits the growth of autotrophic denitrifying bacteria from an air diffuser provided at the bottom of the tank. While aerating a certain amount of air, by mixing with ammonia-oxidizing bacteria and autotrophic denitrifying bacteria, nitrite and denitrification are simultaneously performed in parallel, ammonia nitrogen is completely removed, and the tank liquid is pumped. There is disclosed a technique in which the separation membrane is permeated to be moved to the permeate chamber side by suction by and the permeate is discharged as treated water from the treated water channel. However, when this method was tested, it was found that when ammonia nitrogen was completely removed, nitrite nitrogen was oxidized to nitrate nitrogen by the nitrite bacteria in the nitrite / denitrification tank. . Furthermore, when the separation membrane is put into a nitrite and denitrification tank, aeration with a large amount of air is necessary to bring out the performance of the separation membrane, and the inside of the tank is an air that does not inhibit the growth of autotrophic denitrifying bacteria. It became impossible to control the quantity.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、低コ
ストで、しかも容易に高い処理水質が得られる生物学的
窒素除去方法を提供することである。本発明の他の課題
は、低コストで、しかも容易に高い処理水質が得られる
生物学的窒素除去装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for removing biological nitrogen which is low in cost and can easily obtain high treated water quality. Another object of the present invention is to provide a biological nitrogen removing apparatus that can easily obtain high quality of treated water at low cost.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を次
の構成からなる生物学的窒素除去方法及び装置により解
決するものである。 (1)アンモニア性窒素を含みかつC−BODがアンモ
ニア性窒素の1/2以下である有機性汚水を微好気的条
件及び/又は間欠曝気条件下で、かつ遊離のアンモニア
が存在する状態とし、さらにアンモニア酸化細菌及び独
立栄養性脱窒素菌群の増殖条件下で、窒素除去工程と該
窒素除去工程の後段の固液分離工程からなり、該固液分
離工程からの循環汚泥のpHを7.5〜10.5に制御
する有機性汚水の生物学的窒素除去方法。 (2)前記固液分離工程のろ過体はダイナミックろ過膜
及び/又は活性汚泥を阻止する高分子膜であることを特
徴とする前記(1)記載の生物学的窒素除去方法。 (3)前記窒素除去工程において微生物担体及び/又は
ゼオライト成形体及び活性汚泥を存在させることを特徴
とする前記(1)又は(2)記載の生物学的窒素除去方
法。 (4)前記窒素除去工程において微好気的条件及び/又
は間欠曝気条件下とするときの空気供給をORPにより
制御することを特徴とする前記(1)〜(3)のいずれ
か1項記載の生物学的窒素除去方法。
SUMMARY OF THE INVENTION The present invention solves the above problems by a method and apparatus for removing biological nitrogen having the following constitution. (1) Organic wastewater containing ammonia nitrogen and having C-BOD of 1/2 or less of that of ammonia nitrogen is treated under microaerobic conditions and / or intermittent aeration conditions, and free ammonia is present. Further, under the growth conditions of the ammonia-oxidizing bacteria and the autotrophic denitrifying bacteria group, it comprises a nitrogen removal step and a solid-liquid separation step subsequent to the nitrogen removal step, and the pH of the circulating sludge from the solid-liquid separation step is adjusted to 7 A method for biological nitrogen removal of organic wastewater controlled to 0.5 to 10.5. (2) The method for removing biological nitrogen according to (1), wherein the filter in the solid-liquid separation step is a dynamic filtration membrane and / or a polymer membrane that blocks activated sludge. (3) The method for removing biological nitrogen according to (1) or (2) above, wherein a microorganism carrier and / or a zeolite molded product and activated sludge are present in the nitrogen removal step. (4) Any one of the above (1) to (3), wherein the air supply under the slightly aerobic condition and / or the intermittent aeration condition in the nitrogen removal step is controlled by ORP. Biological nitrogen removal method.

【0009】(5)アンモニア性窒素を含みかつC−B
ODがアンモニア性窒素の1/2以下である有機性汚水
を微好気的条件及び/又は間欠曝気条件下で、かつ遊離
のアンモニアが存在する状態とし、さらにアンモニア酸
化細菌及び独立栄養性脱窒素菌群の増殖条件下で処理す
る窒素除去装置と、該窒素除去装置の後段の固液分離装
置からなり、該固液分離装置からの循環汚泥のpHを
7.5〜10.5に制御する有機性汚水の生物学的窒素
除去装置。
(5) C-B containing ammoniacal nitrogen
The organic sewage having an OD of 1/2 or less of that of ammonia nitrogen is set under microaerobic conditions and / or intermittent aeration conditions and in the presence of free ammonia, and further, ammonia-oxidizing bacteria and autotrophic denitrification. It is composed of a nitrogen removing device that is treated under the growth conditions of bacterial groups, and a solid-liquid separator that is a latter stage of the nitrogen removing device, and controls the pH of the circulating sludge from the solid-liquid separator to 7.5 to 10.5. Biological nitrogen removal equipment for organic wastewater.

【0010】本発明において、「脱窒」は特に断らない
限り独立栄養性脱窒素菌による脱窒を意味する。また、
BODは炭素系有機物由来のBODであり、下水試験方
法(1997年版)P.144で定義している硝化を抑
制した生物化学的酸素要求量(C−BOD)を意味す
る。本発明で処理の対象となる有機性汚水は、アンモニ
ア性窒素を含みかつBODがアンモニア性窒素の1/2
以下である有機性汚水を対象とし、亜硝酸性窒素、その
他の不純物などを含んでいてもよい。有機性窒素化合物
を含む汚水は、そのまま本発明に供してもよいが、嫌気
性処理又は好気性処理などにより有機性窒素化合物をア
ンモニア性窒素に変換したのち、本発明に供してもよ
い。本発明で処理の対象となる汚水の例としては、嫌気
性硝化槽脱離液、ごみ浸出水、肥料工場排水などが挙げ
られる。
In the present invention, "denitrification" means denitrification by autotrophic denitrifying bacteria unless otherwise specified. Also,
BOD is a BOD derived from a carbon-based organic substance, and is disclosed in P.I. It means the biochemical oxygen demand (C-BOD) with inhibition of nitrification as defined in 144. The organic wastewater to be treated in the present invention contains ammonia nitrogen and has a BOD of 1/2 that of ammonia nitrogen.
The target is the following organic sewage, and may contain nitrite nitrogen, other impurities, and the like. The sewage containing the organic nitrogen compound may be directly used in the present invention, or may be used in the present invention after converting the organic nitrogen compound into ammonia nitrogen by anaerobic treatment or aerobic treatment. Examples of wastewater to be treated in the present invention include anaerobic nitrification tank desorbed liquid, waste leachate, fertilizer factory wastewater, and the like.

【0011】本発明の生物学的窒素除去方法は、アンモ
ニア性窒素を含む汚水を微好気的条件及び/又は間欠曝
気条件下で、アンモニア酸化細菌及び独立栄養性窒素菌
群の存在下により、アンモニア性窒素を残留させつつア
ンモニア性窒素と亜硝酸性窒素及び/又は硝酸性窒素と
を窒素ガスとして脱窒する窒素除去工程で処理すること
を特徴とする生物学的処理方法である。
The biological nitrogen removal method of the present invention comprises treating wastewater containing ammoniacal nitrogen under microaerobic conditions and / or intermittent aeration conditions in the presence of ammonia-oxidizing bacteria and autotrophic nitrogenous bacteria. It is a biological treatment method characterized in that the treatment is carried out in a nitrogen removing step of denitrifying ammonia nitrogen and nitrite nitrogen and / or nitrate nitrogen as nitrogen gas while leaving ammonia nitrogen remaining.

【0012】窒素除去工程は、汚水中のアンモニア性窒
素の約1/3〜1/2量を亜硝酸性窒素あるいは硝酸性
窒素に酸化すると同時に、残留したアンモニア性窒素で
生成した亜硝酸性窒素あるいは硝酸性窒素を脱窒する。
In the step of removing nitrogen, about 1/3 to 1/2 of the amount of ammonia nitrogen in wastewater is oxidized to nitrite nitrogen or nitrate nitrogen, and at the same time, nitrite nitrogen produced by residual ammonia nitrogen is produced. Alternatively, denitrifying nitrate nitrogen.

【0013】反応式は式(1)〜(4)のようになる。 1)亜硝酸窒素の生成 NH4 ++3/2O2 → NO2 -+2H++H2O・・・・・(1) 2)硝酸性窒素の生成 NO2 -+1/2O2 → NO3 -・・・・・・・・・・・・(2) 3)アンモニア性窒素と亜硝酸結合酸素を用いた独立栄養性脱窒素菌群による脱 窒反応 NH4 ++NO2 - → N2+2H2O・・・・・・・・・・(3) 4)アンモニア性窒素と硝酸結合酸素を用いた独立栄養性脱窒素菌群による脱窒 反応 NH4 ++2/3NO3 - → 5/6N2+2H2O・・・・(4)The reaction equations are as shown in equations (1) to (4). 1) Generation of nitrite nitrogen NH 4 + + 3 / 2O 2 → NO 2 - + 2H + + H 2 O ····· (1) 2) generation of nitrate nitrogen NO 2 - + 1 / 2O 2 → NO 3 - · ........... (2) 3) denitrification with ammonia nitrogen and autotrophic denitrification bacteria group using nitrous acid bound oxygen NH 4 + + NO 2 - → N 2 + 2H 2 O .......... (3) 4) denitrified by ammonia nitrogen and nitrate-bonded oxygen autotrophic denitrifying bacteria group using the reaction NH 4 + + 2 / 3NO 3 - → 5 / 6N 2 + 2H 2 O ... ・ (4)

【0014】本発明の窒素除去工程では圧倒的に式
(1)と式(3)の反応が主流であり、式(2)と式
(4)の反応は極めて起こりにくい。さらに、式(1)
と式(3)の反応のトリガーとなるのは、窒素除去工程
の液に概ね1mg/リットル以上、好ましくは3mg/
リットルの遊離のアンモニアが存在することである。遊
離のアンモニアの存在量は、窒素除去工程の出口におい
て50mg/リットル以下とすることが好ましい。遊離
のアンモニアの量が多くなると、水質悪化をもたらし、
アンモニアガスが放出されて環境が悪化することにな
る。遊離のアンモニアを存在せしめるには、流入するア
ンモニア性窒素に応じて水温又は/及びpHを操作する
のが好ましい。目安になる算定式を式(5)と式(6)
に示す。
In the nitrogen removing step of the present invention, the reactions of formulas (1) and (3) are predominantly predominant, and the reactions of formulas (2) and (4) are extremely unlikely to occur. Furthermore, equation (1)
And the trigger of the reaction of the formula (3) is about 1 mg / liter or more, preferably 3 mg / liter in the liquid of the nitrogen removing step.
Liters of free ammonia is present. The amount of free ammonia present is preferably 50 mg / liter or less at the outlet of the nitrogen removal step. When the amount of free ammonia increases, water quality deteriorates,
Ammonia gas is released and the environment is deteriorated. In order to allow free ammonia to exist, it is preferable to control the water temperature and / or pH depending on the inflowing ammoniacal nitrogen. Equations (5) and (6) that are used as a guide
Shown in.

【0015】 [NH3-N]={[NH4 + -N][10pH] }/ {(Kb /Kw )+10pH}・・・・(5) (Kb /Kw )=exp(6334/(273+T)) ......(6) ここで、〔NH3-N〕は遊離のアンモニア濃度(mg−
N/リットル)、〔NH4 +−N〕はアンモニア性窒素濃
度(mg−N/リットル)、Tは温度(℃)である。
[NH 3 -N] = {[NH 4 + -N] [10 pH ]} / {(Kb / Kw) +10 pH } ... (5) (Kb / Kw) = exp (6334 / (273 + T)) ...... (6) where [NH 3 -N] the free ammonia concentration (mg-
N / liter), [NH 4 + -N] is the concentration of ammonia nitrogen (mg-N / liter), and T is the temperature (° C.).

【0016】生物処理では希釈により処理を安定させる
のが一般的であり、たとえ、数千mg/リットルのアン
モニア性窒素が流入したときでも、反応槽内は高々数百
mg/リットルのアンモニア性窒素濃度となっている。
したがって、式(5)で求められた値よりは、水温又は
/及びpHはやや高めに設定するのが好ましい。さら
に、pH7.5以上の条件下で増量培養した前記独立栄
養性脱窒素菌群を添加することでも窒素除去工程の反応
は促進される。
In the biological treatment, it is general to stabilize the treatment by dilution. Even when a few thousand mg / liter of ammoniacal nitrogen is introduced, the reaction tank contains at most several hundred mg / liter of ammoniacal nitrogen. It is a concentration.
Therefore, it is preferable to set the water temperature and / or the pH to be slightly higher than the value obtained by the formula (5). Furthermore, the reaction of the nitrogen removal step is also promoted by adding the above-mentioned autotrophic denitrifying bacteria group, which has been subjected to increasing culture under conditions of pH 7.5 or higher.

【0017】本発明者らが長期に実験した結果では、水
温は10℃〜80℃、好ましくは20℃〜60℃であ
り、pHは7.5以上であることで遊離のアンモニアは
概ね1mg/リットル以上となり、窒素除去工程では圧
倒的に式(1)と式(3)の反応が進行した。pH7以
下では、遊離(ガス状)アンモニアが1.0mg/リッ
トル以下となるが、7.5以上では3mg/リットル以
上となり、亜硝酸を硝酸に変換する亜硝酸酸化細菌の増
殖が大幅に抑制され、アンモニア性窒素は大部分が亜硝
酸で反応を停止する。窒素除去工程のpHを制御する方
法は、窒素除去工程にpH調整剤を直接投入する場合
と、循環汚泥もしくは返送汚泥のpHを7.5〜10.
5に制御したあと窒素除去工程へ投入する場合とがあ
る。窒素除去工程に直接pH調整剤を投入する場合、局
所的にpH10以上に高くなると汚水由来のアンモニア
性窒素がストリッピングによりガス化する。アンモニア
性窒素濃度が低い循環汚泥もしくは返送汚泥のpHを
7.5〜10.5に制御することで、アンモニア性窒素
のストリッピングの解消と生物反応の促進が見出され
た。また、循環汚泥もしくは返送汚泥のpHをを高くす
ることにより汚泥の液化が進行し、余剰汚泥の増加を抑
制する効果も認められた。
According to the results of long-term experiments conducted by the present inventors, the water temperature is 10 ° C. to 80 ° C., preferably 20 ° C. to 60 ° C., and the pH is 7.5 or more, so that the amount of free ammonia is about 1 mg / min. The reaction amount of liters or more was overwhelmingly reached, and the reactions of the formulas (1) and (3) proceeded predominantly in the nitrogen removal step. At pH 7 or less, free (gaseous) ammonia is 1.0 mg / liter or less, but at 7.5 or more, it is 3 mg / liter or more, and the growth of nitrite-oxidizing bacteria that convert nitrite to nitric acid is significantly suppressed. Most of the ammoniacal nitrogen is nitrous acid and the reaction is stopped. The method of controlling the pH in the nitrogen removal step is performed by directly adding the pH adjuster to the nitrogen removal step, or by adjusting the pH of the circulating sludge or the returning sludge to 7.5 to 10.
In some cases, the nitrogen removal step is performed after controlling to 5. When the pH adjustor is directly added to the nitrogen removal step, if the pH locally rises to 10 or higher, ammoniacal nitrogen derived from sewage is gasified by stripping. By controlling the pH of the circulating sludge having a low ammonia nitrogen concentration or the returning sludge to 7.5 to 10.5, it was found that the stripping of ammonia nitrogen was eliminated and the biological reaction was promoted. In addition, the effect of suppressing the increase in excess sludge by advancing the liquefaction of sludge by increasing the pH of the circulating sludge or the returning sludge was also recognized.

【0018】さらに、この窒素除去における、重要な操
作条件として、工程内のDO(溶存酸素)濃度があるこ
とが長期の実験で明らかとなった。すなわち、式
(1)、(2)に示すようにアンモニア性窒素をすべて
硝酸性窒素はもちろん亜硝酸性窒素に変換させないこ
と、及び変換した亜硝酸性窒素の脱窒素のためにDOの
供給を制限することが、処理を安定させるために重要な
因子であることが明らかとなった。そのため、この窒素
除去工程は、溶存酸素濃度を常時1mg/リットル未満
となるように酸素含有気体を曝気し、微好気的条件にす
るか、又は1mg/リットル以上の場合において溶存酸
素濃度が0.2mg/リットル以下、好ましくは0mg
/リットルの時間帯があるように間欠曝気することが重
要である。間欠曝気の場合、DO濃度が0.2mg/リ
ットル以下の時間を0.2mg/リットル以上の時間よ
り長く取るほうが好ましい。なお、DO供給方法は微好
気と間欠を組み合わせてもよい。また、DOの制御はO
RPの測定値を用いて行うことも可能であり、この窒素
除去工程は、ORPを常時50mV未満となるように酸
素含有気体を曝気するか、又は50mV以上の場合にな
る場合、ORPが20mV以下、好ましくは0mV未満
の時間帯があるように間欠曝気することが重要である。
間欠曝気の場合、ORPが20mV以下の時間が20m
V以上の時間より長く取るほうが好ましい。
Further, it has been clarified in a long-term experiment that the DO (dissolved oxygen) concentration in the process is an important operating condition for removing nitrogen. That is, as shown in the formulas (1) and (2), all the ammoniacal nitrogen is not converted into nitrate nitrogen as well as nitrite nitrogen, and DO is supplied for denitrification of the converted nitrite nitrogen. Limitation has been found to be an important factor in stabilizing the process. Therefore, in this nitrogen removing step, the oxygen-containing gas is aerated so that the dissolved oxygen concentration is constantly less than 1 mg / liter and the conditions are set to aerobic conditions, or when the dissolved oxygen concentration is 1 mg / liter or more, the dissolved oxygen concentration is 0. 0.2 mg / liter or less, preferably 0 mg
It is important to perform intermittent aeration so that there is a time zone of 1 / liter. In the case of intermittent aeration, it is preferable to take the time when the DO concentration is 0.2 mg / liter or less longer than the time when the DO concentration is 0.2 mg / liter or more. The DO supply method may be a combination of slightly aerobic and intermittent. Also, DO control is O
It is also possible to carry out using the measured value of RP, and this nitrogen removal step aerates the oxygen-containing gas so that the ORP is always less than 50 mV, or when it is 50 mV or more, the ORP is 20 mV or less. It is important to perform intermittent aeration so that there is a time zone of preferably less than 0 mV.
In the case of intermittent aeration, the time when ORP is 20 mV or less is 20 m
It is preferable to take longer than V or more.

【0019】また、本発明では、活性汚泥(浮遊微生
物)だけでも独立栄養性脱窒素菌群とアンモニア酸化細
菌を増殖でき、窒素除去工程における反応は可能である
が、窒素除去工程に微生物担体を添加すると、この表面
に独立栄養性脱窒素菌群とアンモニア酸化細菌の生物膜
が形成され、反応が促進される。活性汚泥と微生物担体
表面のそれぞれの菌数が微妙に異なるため、相互に効果
を出し合うために、窒素除去の反応時間が短縮するだけ
でなく、汚水中のアンモニア性窒素の変動にも対応でき
る処理が極めて安定する。さらに、本発明では、窒素除
去工程に微生物担体としてゼオライト成形体を添加する
と、この表面に独立栄養性脱窒素菌群とアンモニア酸化
細菌の生物膜が形成されるとともに、汚水中のアンモニ
ア性窒素がゼオライト成形体に吸着されて濃縮が起こる
ことにより、反応が促進される。活性汚泥とゼオライト
成形体表面のそれぞれの菌数及びアンモニア性窒素濃度
が微妙に異なるため、相互に効果を出し合い、一般的な
微生物担体を用いた場合よりも大きな効果がある。
Further, in the present invention, the autotrophic denitrifying bacteria group and the ammonia-oxidizing bacteria can be grown only by the activated sludge (suspended microorganisms), and the reaction in the nitrogen removing step is possible, but the microbial carrier is used in the nitrogen removing step. When added, biofilms of autotrophic denitrifying bacteria and ammonia-oxidizing bacteria are formed on this surface to accelerate the reaction. The number of bacteria on the surface of the activated sludge and that on the surface of the microbial carrier are slightly different, so the mutual effects exert each other, so not only the reaction time for nitrogen removal is shortened, but also a treatment that can cope with fluctuations in ammonia nitrogen in the wastewater. Is extremely stable. Further, in the present invention, when a zeolite molded body is added as a microbial carrier in the nitrogen removal step, a biofilm of autotrophic denitrifying bacteria and ammonia-oxidizing bacteria is formed on this surface, and ammonia nitrogen in wastewater is The reaction is promoted by being adsorbed on the zeolite compact and being concentrated. Since the number of bacteria and the concentration of ammonia nitrogen on the surface of the activated sludge and the zeolite molded body are slightly different from each other, the effects are mutually exerted, and there is a greater effect than in the case of using a general microbial carrier.

【0020】さらに、本発明では、活性汚泥及び微生物
担体の固液分離手段として、沈殿池による固液分離も可
能である。この実施態様を図1に示す。しかし、一部の
硝酸性窒素の残留により汚泥が浮上した場合、ろ過体を
浸漬設置した固液分離工程の適用が極めて有効である。
活性汚泥及び微生物担体の流出を確実に阻止できること
から、生物脱窒反応槽内の脱窒菌及び硝化菌を高濃度に
維持することが可能となる。また、窒素除去工程の内部
を多段にすることで、汚水中のアンモニア性窒素濃度に
応じた適切な、pH、汚泥濃度が選択でき、より安定し
た窒素除去処理が可能となる。具体的には、汚水の流入
端側ではpHを低めに設定し、窒素負荷を高めるために
MLSSを下げる、工程の流出側ではpHを高めに設定
し、MLSSを上げることの操作が可能となる。
Further, in the present invention, solid-liquid separation by a sedimentation basin is also possible as a solid-liquid separation means for activated sludge and microbial carrier. This embodiment is shown in FIG. However, when the sludge floats up due to a part of the residual nitrate nitrogen, it is extremely effective to apply the solid-liquid separation step in which the filter body is installed by immersion.
Since it is possible to reliably prevent the outflow of the activated sludge and the microbial carrier, it becomes possible to maintain the denitrifying bacteria and the nitrifying bacteria in the biological denitrification reaction tank at a high concentration. In addition, by making the inside of the nitrogen removal step multistage, it is possible to select an appropriate pH and sludge concentration according to the ammonia nitrogen concentration in the wastewater, and more stable nitrogen removal processing becomes possible. Specifically, it is possible to set a lower pH on the inflow end side of sewage, lower the MLSS to increase the nitrogen load, and set a higher pH on the outflow side of the process to raise the MLSS. .

【0021】本発明の生物学的窒素除去装置を構成する
窒素除去装置には、前述した活性汚泥式、活性汚泥+微
生物担体添加方式だけでなく、活性汚泥に浸漬ろ材を入
れた処理方式も使用できる。また、窒素除去装置の内部
を多段にすることで、汚水中のアンモニア濃度に応じた
適切な、pH、汚泥濃度が選択でき、より安定した脱窒
処理が可能となる。
For the nitrogen removing device constituting the biological nitrogen removing device of the present invention, not only the above-mentioned activated sludge type and activated sludge + microbial carrier addition method but also a treatment method in which an activated sludge is immersed in a filter medium is used. it can. Further, by making the inside of the nitrogen removal device multi-stage, it is possible to select appropriate pH and sludge concentration according to the ammonia concentration in the wastewater, and more stable denitrification treatment becomes possible.

【0022】窒素除去装置は、アンモニア酸化細菌の活
性を高く、かつ亜硝酸酸化細菌の活性が低くなるように
制御されるとともに、独立栄養性脱窒素菌群によってア
ンモニアを用いて脱窒される。また、アンモニア性窒素
をすべて硝酸性窒素はもちろん亜硝酸性窒素に変換させ
ない装置である。すなわち、水温は10℃〜80℃、好
ましくは20℃〜60℃に、pHは7.5〜10.5、
好ましくは7.5〜9.5に設定する。さらに、溶存酸
素濃度を常時1mg/リットル未満となるように酸素含
有気体を曝気し、微好気的条件にするか、又は1mg/
リットル以上の場合において溶存酸素濃度が0.2mg
/リットル以下、好ましくは0mg/リットルの時間帯
があるように間欠曝気することが重要である。間欠曝気
の場合、DO濃度が0.2mg/リットル以下の時間を
0.2mg/リットル以上の時間より長く取るほうが好
ましい。窒素負荷は3kg−N/m3・day以下にな
るように制御する。
The nitrogen removing device is controlled so that the activity of the ammonia-oxidizing bacteria is high and the activity of the nitrite-oxidizing bacteria is low, and is denitrified by ammonia by the autotrophic denitrifying bacteria group. In addition, it is a device that does not convert all ammoniacal nitrogen into nitrite nitrogen as well as nitrate nitrogen. That is, the water temperature is 10 ° C to 80 ° C, preferably 20 ° C to 60 ° C, and the pH is 7.5 to 10.5.
It is preferably set to 7.5 to 9.5. Furthermore, the oxygen-containing gas is aerated so that the dissolved oxygen concentration is constantly less than 1 mg / liter, and the condition is set to a microaerobic condition, or 1 mg / liter.
Dissolved oxygen concentration is 0.2 mg in case of liter or more
It is important to perform intermittent aeration so that there is a time zone of 1 / liter or less, preferably 0 mg / liter. In the case of intermittent aeration, it is preferable to take the time when the DO concentration is 0.2 mg / liter or less longer than the time when the DO concentration is 0.2 mg / liter or more. The nitrogen load is controlled so as to be 3 kg-N / m 3 · day or less.

【0023】[0023]

【発明の実施の形態】本発明の実施の形態を図面を参照
にして説明するが、本発明はこの図面に限定されるもの
ではない。なお、実施の形態および実施例を説明する全
図において、同一機能を有する構成要素は同一の符号を
付けて説明する。図2は、本発明の処理方式で固液分離
工程にダイナミックろ過体を用いた一例のフローシート
を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these drawings. In all the drawings for explaining the embodiments and examples, constituent elements having the same functions are designated by the same reference numerals. FIG. 2 shows an example of a flow sheet in which the dynamic filter is used in the solid-liquid separation step in the treatment method of the present invention.

【0024】図2は、本発明の処理方法で固液分離工程
にダイナミックろ過体を用いた方式による一例のフロー
シートを示す。図2の処理装置の構成は、窒素除去装置
1、ダイナミックろ過体を浸漬設置した固液分離装置3
からなる。以下、アンモニア性窒素を含む廃水を原水と
いう。原水4の全量が窒素除去装置1に供給される。そ
の際に窒素除去装置1には、固液分離装置3からの循環
汚泥30も供給されている。原水投入量は窒素負荷が3
kg−N/m3・d以下になるように制御している。窒
素除去装置1は散気装置10を用い、間欠的に空気9が
供給され、空気9の供給タイミングは、DOが0.2m
g/リットル以下の時間が0.2mg/リットル以上に
なる時間よりも長くなり、さらに、0mg/リットルの
時間があるように制御している。また、pHが7.5〜
10.5の循環汚泥を返送することにより、装置内のp
Hを7.5〜10.5、好ましくは7.5〜9.5の範
囲内に制御してある。窒素除去装置1において、原水4
はアンモニア性窒素の1/3〜1/2が亜硝酸性窒素
に、若干が硝酸性窒素に酸化され、この反応と平行して
原水4中のアンモニア性窒素で、亜硝酸性窒素および硝
酸性窒素が反応して窒素ガスとして脱窒素する。
FIG. 2 shows an example of a flow sheet according to the method of the present invention, which uses a dynamic filter in the solid-liquid separation step. As for the constitution of the treatment device of FIG. 2, a nitrogen removal device 1 and a solid-liquid separation device 3 in which a dynamic filter body is installed by immersion.
Consists of. Hereinafter, wastewater containing ammoniacal nitrogen will be referred to as raw water. The entire amount of raw water 4 is supplied to the nitrogen removing device 1. At that time, the circulating sludge 30 from the solid-liquid separator 3 is also supplied to the nitrogen removing device 1. Raw water input is nitrogen load 3
The control is carried out so that it is not more than kg-N / m 3 · d. The nitrogen removing device 1 uses the air diffuser 10, and the air 9 is intermittently supplied. The supply timing of the air 9 is DO of 0.2 m.
The time period of g / liter or less is longer than the time period of 0.2 mg / liter or more, and further, the time period of 0 mg / liter is controlled. In addition, the pH is 7.5
By returning the circulating sludge of 10.5, p
H is controlled within the range of 7.5 to 10.5, preferably 7.5 to 9.5. In the nitrogen removal device 1, raw water 4
1/3 to 1/2 of the ammoniacal nitrogen is oxidized to nitrite nitrogen and some is oxidized to nitrate nitrogen. In parallel with this reaction, the ammonia nitrogen in the raw water 4 is nitrite nitrogen and nitrate nitrogen. Nitrogen reacts to denitrify as nitrogen gas.

【0025】図2に示す如く、窒素除去装置1からの処
理混合液が汚泥供給ポンプ16より固液分離装置3に供
給される。固液分離装置3に流入した処理混合液はろ過
体モジュール18より水頭圧Hでろ過され、ろ過水ライ
ン27よりろ過水が得られ、ろ過水弁19を通じて処理
水槽25に流入する。処理水槽25から処理水5を得
る。なお、ろ過後の汚泥混合液は循環汚泥30としてp
H制御装置11によりpHを7.5〜10.5に制御し
た後、窒素除去装置1に返送される。
As shown in FIG. 2, the treated mixed liquid from the nitrogen removing device 1 is supplied to the solid-liquid separation device 3 from the sludge supply pump 16. The treated mixed liquid that has flowed into the solid-liquid separation device 3 is filtered by the filter module 18 at a water head pressure H, filtered water is obtained from the filtered water line 27, and flows into the treated water tank 25 through the filtered water valve 19. The treated water 5 is obtained from the treated water tank 25. In addition, the sludge mixture after filtration is treated as the circulating sludge 30.
After the pH is controlled to 7.5 to 10.5 by the H control device 11, it is returned to the nitrogen removing device 1.

【0026】ろ過モジュール18の洗浄法としてモジュ
ール表面の空洗、内部への水逆洗と空洗、さらに内部侵
入汚泥の排出による組み合わせで行う。モジュール表面
への空洗方法としては、空洗ブロワ24から一定時間毎
に起動させ、空洗弁21を通じてろ過体下部の空洗用散
気管17に送気して行われる。水逆洗は処理水槽25内
のろ過水を水逆洗ポンプ26より供給し、水逆洗ライン
28を通じて、ろ過体内部に導入される。水逆洗は空洗
直後あるいは0.5〜5分後に行われる。内部侵入汚泥
の排出は、汚泥排出弁23を通じて汚泥排出ライン29
より窒素除去装置1に排出される。汚泥排出は水逆洗と
同時に行うと内部侵入汚泥が逆洗水とともに排出できる
ことから、侵入汚泥の堆積が少なくなる。内部空洗は空
洗ブロワ24を起動させ、内部空洗弁22を通じてモジ
ュール18内部へ曝気して行う。モジュール18下部に
供給された空気は、モジュール18内部を通過してエア
抜き弁20より大気に放出される。
As a method of cleaning the filtration module 18, the surface of the module is washed by air, backwashed with water and air, and the sludge is discharged. As a method of air-washing the surface of the module, the air-washing blower 24 is activated at regular intervals, and air is supplied to the air-washing diffuser pipe 17 below the filter through the air-washing valve 21. In the water backwashing, the filtered water in the treated water tank 25 is supplied from the water backwashing pump 26 and introduced into the inside of the filter through the water backwashing line 28. The backwashing with water is performed immediately after empty washing or after 0.5 to 5 minutes. The sludge discharge line 23 is used to discharge the invading sludge through the sludge discharge valve 23.
More discharged to the nitrogen removing device 1. When sludge is discharged at the same time as backwashing with water, the invading sludge can be discharged together with the backwashing water, so that the accumulation of invading sludge is reduced. The internal air washing is performed by activating the air washing blower 24 and aerating the inside of the module 18 through the internal air washing valve 22. The air supplied to the lower part of the module 18 passes through the inside of the module 18 and is released to the atmosphere from the air bleeding valve 20.

【0027】ろ過体としては不織布、織布、金属網等の
いずれを用いても同様な効果が得られる。ろ過体形状と
しては平面型が中心であるが、円筒型、中空型を用いる
ことも可能であり、複数個を束ねてモジュールろ過体と
して用いることが可能である。図1及び2において窒素
除去装置1は、担体15を添加した活性汚泥+微生物担
体の添加方式を示しているが、前述した活性汚泥のみの
活性汚泥方式が使用できる。また、窒素除去装置1の内
部を多段にすることで、汚水中のアンモニア濃度に応じ
た適切な、pH、汚泥濃度が選択でき、より安定した脱
窒処理が可能となる。
The same effect can be obtained by using any of a non-woven fabric, a woven fabric, a metal net or the like as the filter. The shape of the filter body is mainly a plane type, but it is also possible to use a cylindrical type or a hollow type, and it is possible to bundle a plurality of them and use them as a module filter body. 1 and 2, the nitrogen removing device 1 shows an addition method of activated sludge + microbial carrier to which the carrier 15 is added, but the above-mentioned activated sludge method of only activated sludge can be used. Further, by making the inside of the nitrogen removing device 1 multi-staged, it is possible to select appropriate pH and sludge concentration according to the ammonia concentration in the wastewater, and more stable denitrification treatment becomes possible.

【0028】図3は本発明による他の一例の処理フロー
を示す。図3の処理装置の構成は窒素除去装置1、固液
分離装置3からなる。図3に示すように原水4を窒素除
去装置1に流入し、生物学的窒素除去反応により窒素除
去された処理混合液は、汚泥供給ポンプ16により固液
分離装置3の下部に送られる。膜ろ過槽内はろ過モジュ
ール18を浸漬設置されている。膜ろ過はモジュール1
8下部の空洗用散気管17に空洗ブロワ24から送気し
ながら、吸引ポンプ31よりろ過して処理水5を得る。
ろ過膜で分離濃縮された汚泥混合液及び微生物担体は循
環汚泥30としてpH制御装置11によりpH7.5〜
10.5に制御した後、窒素除去装置1に返送される。
ろ過膜形状としては、平膜、中空糸膜等のMF膜、UF
膜の何れを用いても同様な効果が得られる。また、膜素
材は、高分子、金属、セラミックス等の何れでも同様な
効果が得られる。膜孔径は活性汚泥粒子を十分に阻止で
きるμm以下であることが望ましい。
FIG. 3 shows another processing flow according to the present invention. The structure of the processing apparatus of FIG. 3 comprises a nitrogen removing apparatus 1 and a solid-liquid separating apparatus 3. As shown in FIG. 3, the raw water 4 flows into the nitrogen removing device 1, and the treatment mixture liquid from which nitrogen has been removed by the biological nitrogen removing reaction is sent to the lower part of the solid-liquid separation device 3 by the sludge supply pump 16. The filtration module 18 is immersed and installed in the membrane filtration tank. Membrane filtration is module 1
The treated water 5 is obtained by filtering with a suction pump 31 while supplying air from the air-washing blower 24 to the air-washing diffuser 17 at the lower part of 8.
The sludge mixed liquid and the microbial carrier separated and concentrated by the filtration membrane are treated as the circulating sludge 30 by the pH controller 11 to adjust the pH to 7.5
After controlling to 10.5, it is returned to the nitrogen removing apparatus 1.
As the shape of the filtration membrane, flat membrane, MF membrane such as hollow fiber membrane, UF
The same effect can be obtained by using any of the films. Further, the same effect can be obtained by using any of polymer, metal, ceramics, etc. as the film material. It is desirable that the pore size of the membrane is not more than μm, which can sufficiently block the activated sludge particles.

【0029】[0029]

【実施例】以下において、本発明を実施例によりさらに
詳細に説明するが、本発明はこれらの実施例により制限
されるものではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0030】実施例1 この実施例においては、図2に示すようなフローにより
ごみ浸出水の処理を行った。窒素除去装置1;10m3
からなる。最初に原水4であるごみ浸出水の水質を第1
表に示す。この場合、BODは20mg/リットル、ア
ンモニア性窒素390mg/リットルであり、BODは
アンモニア性窒素に対し1/2以下である。
Example 1 In this example, waste leachate was treated by the flow shown in FIG. Nitrogen remover 1; 10m 3
Consists of. First, the quality of the waste leachate, which is raw water 4, is first
Shown in the table. In this case, BOD is 20 mg / liter and ammoniacal nitrogen is 390 mg / liter, and BOD is 1/2 or less with respect to ammoniacal nitrogen.

【0031】[0031]

【表1】 [Table 1]

【0032】原水4は、窒素除去装置1に供給し、窒素
除去を行った。窒素除去装置1の運転条件を第2表に示
す。窒素除去装置1には5mm×5mm×5mmのスポ
ンジ担体を装置容積の10v/v%投入し、攪拌機14
を用いて連続攪拌を行った。DO制御は3分間曝気、9
分間停止の間欠曝気で行った。pH制御はpHコントロ
ーラを用い、循環汚泥経路において8.7より高くなっ
た場合にはH2SO4を添加することにより、また8.5
より低くなった場合にはNaOHを添加することにより
行った。NaOHの消費量は1.6〜2.2g/d、H
2SO4はほとんど消費されなかった。第2表に窒素除去
装置の運転条件を示す。
The raw water 4 was supplied to the nitrogen removing device 1 to remove nitrogen. Table 2 shows the operating conditions of the nitrogen removing apparatus 1. The nitrogen removing device 1 was charged with a sponge carrier of 5 mm × 5 mm × 5 mm at 10 v / v% of the device volume, and the agitator 14
Was used for continuous stirring. DO control is aeration for 3 minutes, 9
It was performed by intermittent aeration with a stop of 1 minute. For the pH control, a pH controller is used, and when it becomes higher than 8.7 in the circulation sludge path, H 2 SO 4 is added, and the pH is adjusted to 8.5.
If it was lower, it was done by adding NaOH. The consumption amount of NaOH is 1.6 to 2.2 g / d, H
2 SO 4 was hardly consumed. Table 2 shows the operating conditions of the nitrogen removal device.

【0033】[0033]

【表2】 [Table 2]

【0034】第3表に原水4および処理水5の水質を示
す。窒素除去装置1では、pH8.5、水温30℃、ア
ンモニア性窒素17.8mg/リットルであり、遊離の
アンモニアは8.6mg/リットルとなった。窒素除去
装置1では、アンモニア性窒素が約95%減少し、亜硝
酸性窒素および硝酸性窒素は5mg/リットル以下とほ
とんど生成せず、窒素はほぼ除去されていた。
Table 3 shows the water quality of the raw water 4 and the treated water 5. In the nitrogen removing apparatus 1, the pH was 8.5, the water temperature was 30 ° C., the ammoniacal nitrogen was 17.8 mg / liter, and the amount of free ammonia was 8.6 mg / liter. In the nitrogen removing apparatus 1, the amount of ammonia nitrogen was reduced by about 95%, nitrite nitrogen and nitrate nitrogen were hardly generated at 5 mg / liter or less, and nitrogen was almost removed.

【0035】[0035]

【表3】 [Table 3]

【0036】目開き150mesh、孔径114μm、
厚み0.1mmのポリエステル織布をろ過体に用いたろ
過モジュール18によるダイナミックろ過では、安定し
て6m3/dの処理水が得られた。また、処理水SSが
常時5mg/リットル程度であり、高いろ過性能が得ら
れた。
Opening 150 mesh, hole diameter 114 μm,
In the dynamic filtration by the filtration module 18 using a 0.1 mm-thick polyester woven fabric as the filter body, 6 m 3 / d of treated water was stably obtained. Further, the treated water SS was always about 5 mg / liter, and high filtration performance was obtained.

【0037】実施例2 図3のフローにて、窒素除去装置1で実施例1と同じ原
水4の処理を行った。窒素除去装置1の運転条件は実施
例1と同様としたが、窒素除去装置1内では曝気をせず
に固液分離装置3からの循環汚泥量でDOをコントロー
ルした。膜ろ過槽では、孔径0.4μmの平面型精密M
F膜を用い、ろ過フラックスが常時0.3m/dとなる
ように吸引ろ過を行った。吸引ろ過は13分ON、2分
OFFの間欠運転とした。曝気は常時行い、曝気風量と
して汚泥流路面積あたりで2.5m3/m2/minとな
るようにセットした。第4表に各装置の原水4および処
理水5の水質を示す。窒素除去装置1では、pH8.
5、水温30℃、アンモニア性窒素18.2mg/リッ
トルであり、遊離のアンモニアは9.3mg/リットル
となった。窒素除去装置1では、アンモニア性窒素は約
95%減少し、亜硝酸性窒素および硝酸性窒素5mg/
リットル以下ともとんど生成せず、窒素はほぼ除去され
ていた。なお、処理水SSが1mg/リットル以下であ
り、膜ろ過によりSSの全くない清澄な処理水が得られ
た。さらに約3ヶ月の連続実験期間中で、ろ過フラック
スが0.3m/d、吸引圧が約0.1〜0.15kg/
cm2で、安定した処理となった。
Example 2 In the flow of FIG. 3, the same raw water 4 as in Example 1 was treated with the nitrogen removing apparatus 1. The operating conditions of the nitrogen removing device 1 were the same as in Example 1, but DO was controlled by the amount of circulating sludge from the solid-liquid separation device 3 without aeration in the nitrogen removing device 1. In the membrane filtration tank, a flat precision M with a pore size of 0.4 μm
Using an F membrane, suction filtration was performed so that the filtration flux was always 0.3 m / d. The suction filtration was intermittent operation for 13 minutes ON and 2 minutes OFF. Aeration was always performed, and the amount of aeration air was set to be 2.5 m 3 / m 2 / min per sludge channel area. Table 4 shows the water quality of raw water 4 and treated water 5 of each device. In the nitrogen removing device 1, the pH is 8.
5, water temperature was 30 ° C., ammoniacal nitrogen was 18.2 mg / liter, and free ammonia amounted to 9.3 mg / liter. In the nitrogen removing device 1, the amount of ammonia nitrogen was reduced by about 95%, and the amount of nitrite nitrogen and nitrate nitrogen was 5 mg /
Almost no nitrogen was removed even when the amount was less than 1 liter. The treated water SS was 1 mg / liter or less, and clear treated water having no SS was obtained by membrane filtration. Furthermore, during the continuous experiment period of about 3 months, the filtration flux is 0.3 m / d, and the suction pressure is about 0.1 to 0.15 kg /
With cm 2 , the treatment was stable.

【0038】[0038]

【表4】 [Table 4]

【0039】実施例3 図2のフローにて、窒素除去装置1で実施例1と同じ原
水4の処理を行った。窒素除去装置1の運転条件は実施
例1と同様としたが、窒素除去装置1内に投入する担体
は粒径2mmのゼオライト成形体を用いた。第5表に各
装置の原水4及び処理水5の水質を示す。窒素除去装置
1ではアンモニア性窒素が12.8mg/リットルで約
97%減少し、亜硝酸性窒素及び硝酸性窒素は5mg/
リットル以下とほとんど生成せず、実施例1、2よりも
窒素が除去されている結果となった。なお、ダイナミッ
クろ過では安定して6m3/dの処理水が得られた。ま
た、処理水SSが常時5mg/リットル程度であり、高
いろ過性能が得られた。
Example 3 In the flow of FIG. 2, the same raw water 4 as in Example 1 was treated with the nitrogen removing apparatus 1. The operating conditions of the nitrogen removing device 1 were the same as in Example 1, but a zeolite compact having a particle diameter of 2 mm was used as the carrier charged into the nitrogen removing device 1. Table 5 shows the water quality of raw water 4 and treated water 5 of each device. In the nitrogen removing device 1, the amount of ammonia nitrogen is 12.8 mg / liter, which is reduced by about 97%, and the amount of nitrite nitrogen and nitrate nitrogen is 5 mg / liter.
Almost no liters were produced, and the result was that nitrogen was removed more than in Examples 1 and 2. In addition, in the dynamic filtration, 6 m 3 / d of treated water was stably obtained. Further, the treated water SS was always about 5 mg / liter, and high filtration performance was obtained.

【0040】[0040]

【表5】 [Table 5]

【0041】比較例1 従来の硝化脱窒法であるメタノール注入による生物学的
窒素除去を行った。硝化装置1Aの容量;10m3、脱
窒装置2の容量;10m3からなる。フローを図4に示
す。窒素除去装置1を連続曝気し、かつ、pHの制御を
行わずに通常の硝化槽後段に脱窒素装置を設けて運転し
た。窒素除去装置の運転条件を第6表に示す。硝化装置
1Aには5mm×5mm×5mmのスポンジ担体を装置
容積の10v/v%投入し、攪拌機を用いて連続攪拌を
行った。脱窒装置は連続攪拌を行いメタノール注入量は
0g/dとした。
Comparative Example 1 Biological nitrogen removal was performed by injecting methanol, which is a conventional nitrification denitrification method. The nitrification apparatus 1A has a capacity of 10 m 3 , and the denitrification apparatus 2 has a capacity of 10 m 3 . The flow is shown in FIG. The nitrogen removing device 1 was continuously aerated, and the denitrifying device was installed in the subsequent stage of the normal nitrification tank without controlling the pH, and the device was operated. Table 6 shows the operating conditions of the nitrogen removing device. A sponge carrier of 5 mm × 5 mm × 5 mm was put into the nitrification apparatus 1A at 10 v / v% of the apparatus volume, and continuous stirring was performed using a stirrer. The denitrification apparatus was continuously stirred and the injection amount of methanol was 0 g / d.

【0042】[0042]

【表6】 [Table 6]

【0043】第7表に各装置の入口と出口での水質を示
す。硝化装置1Aではアンモニア性窒素は100%硝化
し、ほとんどが硝酸性窒素に変化した。また、pH制御
を行わなかったため、6.5まで低下した。脱窒装置2
では硝酸性窒素はほとんど除去されなかった。また、固
液分離を沈殿池で行った場合、沈殿池での脱窒による汚
泥浮上が激しく汚泥管理が困難であった。硝化装置1A
と脱窒装置2あわせての窒素除去率は21%であり、実
施例1、2に比べ除去率が非常に小さい結果となった。
Table 7 shows the water quality at the inlet and outlet of each device. In the nitrification apparatus 1A, 100% of the nitric acid nitrogen was nitrified, and most of it was changed to nitric acid nitrogen. In addition, the pH was lowered to 6.5 because the pH was not controlled. Denitrification device 2
Nitrate nitrogen was hardly removed in. In addition, when solid-liquid separation was performed in a sedimentation tank, sludge floated due to denitrification in the sedimentation tank and the sludge management was difficult. Nitrification device 1A
The nitrogen removal rate of the denitrification apparatus 2 was 21%, and the removal rate was very small as compared with Examples 1 and 2.

【0044】[0044]

【表7】 [Table 7]

【0045】比較例2 比較例1と同様に、従来の硝化脱窒法であるメタノール
注入による生物学的窒素除去を行った。フローを図4に
示す。硝化装置1Aは連続曝気し、かつ、pHの制御を
行わずに通常の硝化槽として運転し、脱窒装置2にはメ
タノールを8.0g/d添加し連続攪拌を行い脱窒槽と
し、メタノールの残留があったため3リットルの再曝気
槽(図示省略)を固液分離装置3の前に付けて運転し
た。各装置の入口と出口での水質を第8表に示す。硝化
装置1Aではアンモニア性窒素は100%硝化し、ほと
んどが硝酸性窒素に変化した。また、pH制御を行わな
かったため、6.5まで低下した。脱窒装置2ではメタ
ノールを添加することにより脱窒が進行し、硝酸性窒素
は90%除去された。硝化装置1Aと脱窒装置2あわせ
ての窒素除去率は約90%であり、従来の硝化脱窒法の
場合、メタノールを投入窒素量の3.4倍の8.0g/
d添加したにも係わらず、処理水水質が実施例1より悪
くなる結果であった。
Comparative Example 2 As in Comparative Example 1, biological nitrogen removal by methanol injection, which is a conventional nitrification denitrification method, was performed. The flow is shown in FIG. The nitrification apparatus 1A was continuously aerated and operated as a normal nitrification tank without controlling the pH, and 8.0 g / d of methanol was added to the denitrification apparatus 2 for continuous stirring to form a denitrification tank. Since there was residue, a 3 liter re-aeration tank (not shown) was installed in front of the solid-liquid separation device 3 to operate. Table 8 shows the water quality at the inlet and outlet of each device. In the nitrification apparatus 1A, 100% of the nitric acid nitrogen was nitrified, and most of it was changed to nitric acid nitrogen. In addition, the pH was lowered to 6.5 because the pH was not controlled. In the denitrification device 2, denitrification proceeded by adding methanol, and 90% of nitrate nitrogen was removed. The nitrogen removal rate of both the nitrification apparatus 1A and the denitrification apparatus 2 was about 90%, and in the case of the conventional nitrification and denitrification method, methanol was added 3.4 times as much as the amount of nitrogen, 8.0 g /
Despite the addition of d, the quality of the treated water was worse than that of Example 1.

【0046】[0046]

【表8】 [Table 8]

【0047】[0047]

【発明の効果】本発明によれば、アンモニア性窒素を含
んだ廃水の処理において、DOおよびpHを制御した窒
素除去装置にて有機性汚水を生物学的窒素除去方法によ
り窒素除去を行うことにより、酸素必要量が従来方法よ
りも低減でき、かつ、メタノール等の電子供与体を使用
せずに窒素ガスまでに脱窒素することが可能であること
から、低コスト化がはかれる。さらに亜硝酸性窒素を優
先的に生成させると同時に、亜硝酸性窒素とアンモニア
性窒素との反応を促進する効果も認められ、容易な制御
で確実に窒素除去を行うことが可能である。生物脱窒処
理後の汚泥混合液及び微生物担体を固液分離するため、
ろ過体の浸漬設置されている固液分離槽を用いたろ過を
行えば、良好な水質が得られるとともに、脱窒素菌及び
硝化菌の流出を防止でき、生物脱窒槽内に高濃度の菌体
を維持でき、安定した処理が得られる。
EFFECTS OF THE INVENTION According to the present invention, in the treatment of wastewater containing ammoniacal nitrogen, organic wastewater is removed by a biological nitrogen removal method by a nitrogen removal device with DO and pH control. The required oxygen amount can be reduced as compared with the conventional method, and nitrogen can be denitrified up to nitrogen gas without using an electron donor such as methanol, so that the cost can be reduced. Furthermore, the effect of accelerating the reaction between nitrite nitrogen and ammonia nitrogen while at the same time preferentially generating nitrite nitrogen is recognized, and nitrogen can be reliably removed by easy control. In order to perform solid-liquid separation of the sludge mixture after the biological denitrification treatment and the microbial carrier,
If filtration is performed using the solid-liquid separation tank in which the filter body is immersed, good water quality can be obtained, and outflow of denitrifying bacteria and nitrifying bacteria can be prevented. Can be maintained and stable processing can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】固液分離装置に沈殿池を用いた本発明の生物学
的窒素除去装置を示すフローである。
FIG. 1 is a flow chart showing a biological nitrogen removing apparatus of the present invention using a sedimentation tank as a solid-liquid separation apparatus.

【図2】固液分離装置にダイナミックろ過を用いた本発
明の生物学的窒素除去装置を示すフローである。
FIG. 2 is a flow chart showing the biological nitrogen removing apparatus of the present invention using dynamic filtration in the solid-liquid separation apparatus.

【図3】固液分離装置に膜分離を用いた本発明の生物学
的窒素除去装置を示すフローである。
FIG. 3 is a flow chart showing a biological nitrogen removing apparatus of the present invention using a membrane separation for a solid-liquid separation apparatus.

【図4】従来法の硝化脱窒法であるメタノール添加によ
る生物学的窒素除去装置のフローである。
FIG. 4 is a flow chart of a biological nitrogen removing apparatus by adding methanol, which is a conventional nitrification denitrification method.

【符号の説明】[Explanation of symbols]

1 窒素除去装置 1A 硝化装置 2 脱窒装置 3 固液分離装置 4 原水 5 処理水 6 返送汚泥 7 窒素除去装置流出液 9 空気 10 散気装置 11 pH制御装置 12 余剰汚泥 13 ガス排出管 14 攪拌装置 15 担体 16 汚泥供給ポンプ 17 空洗用散気管 18 ろ過モジュール 19 ろ過水弁 20 エア抜き弁 21 空洗弁 22 内部空洗弁 23 汚泥排出弁 24 空洗ブロア 25 処理水槽 26 水逆洗ポンプ 27 ろ過水ライン 28 水逆洗ライン 29 汚泥排出ライン 30 循環汚泥 31 吸引ポンプ 32 メタノール添加装置 1 Nitrogen removal device 1A Nitrification device 2 Denitrification equipment 3 Solid-liquid separator 4 Raw water 5 treated water 6 Return sludge 7 Nitrogen removal device effluent 9 air 10 Air diffuser 11 pH controller 12 Surplus sludge 13 Gas exhaust pipe 14 Stirrer 15 Carrier 16 Sludge supply pump 17 Air diffuser for air washing 18 Filtration module 19 Filtration water valve 20 Air bleeding valve 21 Flush valve 22 Internal flush valve 23 Sludge discharge valve 24 Air-washing blower 25 treated water tank 26 Water backwash pump 27 Filtered water line 28 Water backwash line 29 Sludge discharge line 30 circulating sludge 31 Suction pump 32 Methanol addition device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/28 C02F 1/28 M 1/44 1/44 F 3/10 3/10 Z (72)発明者 田中 俊博 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 山口 晶 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 片岡 克之 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D003 AA01 AA12 AB01 BA02 BA03 CA02 CA10 EA22 FA05 FA06 4D006 GA06 GA07 HA01 HA41 HA93 KA01 KA31 KA43 KB12 KB23 KC03 KC14 MA16 MC02 MC03 MC09 PB20 PC62 4D024 AA04 AB13 BA07 BB01 BC04 DB16 4D040 BB02 BB42 BB52 BB82 BB91 BB92 4D066 BA01 BB02 BB12 DA03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/28 C02F 1/28 M 1/44 1/44 F 3/10 3/10 Z (72) Invention Toshihiro Tanaka 11-1 Haneda Asahi-cho, Ota-ku, Tokyo (72) Inventor Akira Yamaguchi Akira Yamaguchi 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo (72) Inventor, Katsuyuki Kataoka Tokyo 11-1 Haneda Asahi-cho, Ota-ku, Tokyo F-term in EBARA CORPORATION (reference) 4D003 AA01 AA12 AB01 BA02 BA03 CA02 CA10 EA22 FA05 FA06 4D006 GA06 GA07 HA01 HA41 HA93 KA01 KA31 KA43 KB12 KB23 KC03 KC14 MA16 MC02 MC62 MC09 PB20 4D024 AA04 AB13 BA07 BB01 BC04 DB16 4D040 BB02 BB42 BB52 BB82 BB91 BB92 4D066 BA01 BB02 BB12 DA03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア性窒素を含みかつC−BOD
がアンモニア性窒素の1/2以下である有機性汚水を微
好気的条件及び/又は間欠曝気条件下で、かつ遊離のア
ンモニアが存在する状態とし、さらにアンモニア酸化細
菌及び独立栄養性脱窒素菌群の増殖条件下で、窒素除去
工程と該窒素除去工程の後段の固液分離工程からなり、
該固液分離工程からの循環汚泥のpHを7.5〜10.
5に制御する有機性汚水の生物学的窒素除去方法。
1. C-BOD containing ammoniacal nitrogen
The organic sewage containing less than 1/2 of ammonia nitrogen under microaerobic conditions and / or intermittent aeration conditions and in the presence of free ammonia, and further, ammonia oxidizing bacteria and autotrophic denitrifying bacteria Under the growth conditions of the group, consisting of a nitrogen removal step and a solid-liquid separation step after the nitrogen removal step,
The pH of the circulating sludge from the solid-liquid separation step is 7.5 to 10.
A method for removing biological nitrogen from organic wastewater controlled to 5.
【請求項2】 前記固液分離工程のろ過体はダイナミッ
クろ過膜及び/又は活性汚泥を阻止する高分子膜である
ことを特徴とする請求項1記載の生物学的窒素除去方
法。
2. The method for removing biological nitrogen according to claim 1, wherein the filter in the solid-liquid separation step is a dynamic filtration membrane and / or a polymer membrane that blocks activated sludge.
【請求項3】 前記窒素除去工程において微生物担体及
び/又はゼオライト成形体及び活性汚泥を存在させるこ
とを特徴とする請求項1又は請求項2記載の生物学的窒
素除去方法。
3. The method for removing biological nitrogen according to claim 1 or 2, wherein a microbial carrier and / or a zeolite molded product and activated sludge are present in the nitrogen removing step.
【請求項4】 前記窒素除去工程において微好気的条件
及び/又は間欠曝気条件下とするときの空気供給をOR
Pにより制御することを特徴とする請求項1〜3のいず
れか1項記載の生物学的窒素除去方法。
4. The air supply is controlled by OR when the microaerobic condition and / or the intermittent aeration condition are set in the nitrogen removing step.
The biological nitrogen removal method according to any one of claims 1 to 3, which is controlled by P.
【請求項5】 アンモニア性窒素を含みかつC−BOD
がアンモニア性窒素の1/2以下である有機性汚水を微
好気的条件及び/又は間欠曝気条件下で、かつ遊離のア
ンモニアが存在する状態とし、さらにアンモニア酸化細
菌及び独立栄養性脱窒素菌群の増殖条件下で処理する窒
素除去装置と、該窒素除去装置の後段の固液分離装置か
らなり、該固液分離装置からの循環汚泥のpHを7.5
〜10.5に制御する有機性汚水の生物学的窒素除去装
置。
5. C-BOD containing ammoniacal nitrogen
The organic sewage containing less than 1/2 of ammonia nitrogen under microaerobic conditions and / or intermittent aeration conditions and in the presence of free ammonia, and further, ammonia oxidizing bacteria and autotrophic denitrifying bacteria It consists of a nitrogen removal device for treating under group growth conditions, and a solid-liquid separation device after the nitrogen removal device, and the pH of the circulating sludge from the solid-liquid separation device is 7.5.
Biological nitrogen removal device for organic sewage controlled to ~ 10.5.
JP2001357970A 2001-11-22 2001-11-22 Biological denitrification method and apparatus Pending JP2003154394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357970A JP2003154394A (en) 2001-11-22 2001-11-22 Biological denitrification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357970A JP2003154394A (en) 2001-11-22 2001-11-22 Biological denitrification method and apparatus

Publications (1)

Publication Number Publication Date
JP2003154394A true JP2003154394A (en) 2003-05-27

Family

ID=19169232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357970A Pending JP2003154394A (en) 2001-11-22 2001-11-22 Biological denitrification method and apparatus

Country Status (1)

Country Link
JP (1) JP2003154394A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP2006021075A (en) * 2004-07-06 2006-01-26 Yoshiaki Kiso Weight reduction method for organic surplus sludge and its device
JP2007167779A (en) * 2005-12-22 2007-07-05 Daicel Chem Ind Ltd Method for treating waste water
JPWO2006035885A1 (en) * 2004-09-30 2008-05-15 栗田工業株式会社 Nitrogen-containing liquid processing method and apparatus
WO2010074008A1 (en) * 2008-12-28 2010-07-01 メタウォーター株式会社 Method and device for removing biological nitrogen and support therefor
JP2010172857A (en) * 2009-01-30 2010-08-12 Hitachi Plant Technologies Ltd Nitrous acid type nitrification reaction sludge, method and apparatus for manufacturing the same, and wastewater treatment method and system
JP2012501845A (en) * 2008-09-12 2012-01-26 ツィクラー−シュトゥルツ・アップヴァッサーテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Ammonium-containing wastewater treatment method
JPWO2011148949A1 (en) * 2010-05-25 2013-07-25 メタウォーター株式会社 Biological nitrogen removal method using anaerobic ammonia oxidation reaction
CN103232142A (en) * 2013-05-14 2013-08-07 大连东利伟业环保节能科技有限公司 Multifunctional dynamic biomembrane sewage treatment method
CN103288211A (en) * 2013-05-12 2013-09-11 北京工业大学 Device and method for treating low-C/N (carbon/nitrogen) ratio urban sewage by an anoxic/aerobic SBR-DEAMOX (denitrifying ammonium oxidation) denitrification process
JP2013230413A (en) * 2012-04-27 2013-11-14 Japan Organo Co Ltd Method and apparatus for treating nitrogen-containing waste water
CN103408140A (en) * 2013-08-14 2013-11-27 哈尔滨工业大学 Control method realizing CANON process high-efficiency stable operation
CN107344032A (en) * 2017-09-06 2017-11-14 河南方周瓷业有限公司 A kind of oiliness contains poly- method of wastewater treatment
WO2018074328A1 (en) * 2016-10-21 2018-04-26 株式会社日立製作所 Water treatment apparatus and water treatment method
CN109485153A (en) * 2018-12-19 2019-03-19 清华-伯克利深圳学院筹备办公室 A kind of biofilm reactor and method of wastewater efficient denitrogenation
CN111533416A (en) * 2020-05-18 2020-08-14 宇恒(南京)环保装备科技有限公司 Method for solid-liquid synergistic aerobic biological fermentation of high-nutrition waste organic matters

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP4613474B2 (en) * 2003-01-28 2011-01-19 栗田工業株式会社 Method for treating ammonia-containing water
JP2006021075A (en) * 2004-07-06 2006-01-26 Yoshiaki Kiso Weight reduction method for organic surplus sludge and its device
JPWO2006035885A1 (en) * 2004-09-30 2008-05-15 栗田工業株式会社 Nitrogen-containing liquid processing method and apparatus
JP5347221B2 (en) * 2004-09-30 2013-11-20 栗田工業株式会社 Nitrogen-containing liquid processing method and apparatus
JP2007167779A (en) * 2005-12-22 2007-07-05 Daicel Chem Ind Ltd Method for treating waste water
JP2012501845A (en) * 2008-09-12 2012-01-26 ツィクラー−シュトゥルツ・アップヴァッサーテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Ammonium-containing wastewater treatment method
WO2010074008A1 (en) * 2008-12-28 2010-07-01 メタウォーター株式会社 Method and device for removing biological nitrogen and support therefor
US8246830B2 (en) 2008-12-28 2012-08-21 Metawater Co., Ltd. Method and device for removing biological nitrogen and support therefor
JP5764330B2 (en) * 2008-12-28 2015-08-19 メタウォーター株式会社 Biological nitrogen removal method
JP2010172857A (en) * 2009-01-30 2010-08-12 Hitachi Plant Technologies Ltd Nitrous acid type nitrification reaction sludge, method and apparatus for manufacturing the same, and wastewater treatment method and system
JPWO2011148949A1 (en) * 2010-05-25 2013-07-25 メタウォーター株式会社 Biological nitrogen removal method using anaerobic ammonia oxidation reaction
JP5932639B2 (en) * 2010-05-25 2016-06-08 メタウォーター株式会社 Biological nitrogen removal method using anaerobic ammonia oxidation reaction
JP2013230413A (en) * 2012-04-27 2013-11-14 Japan Organo Co Ltd Method and apparatus for treating nitrogen-containing waste water
CN103288211B (en) * 2013-05-12 2014-09-24 北京工业大学 Device and method for treating low-C/N (carbon/nitrogen) ratio urban sewage by an anoxic/aerobic SBR-DEAMOX (denitrifying ammonium oxidation) denitrification process
CN103288211A (en) * 2013-05-12 2013-09-11 北京工业大学 Device and method for treating low-C/N (carbon/nitrogen) ratio urban sewage by an anoxic/aerobic SBR-DEAMOX (denitrifying ammonium oxidation) denitrification process
CN103232142A (en) * 2013-05-14 2013-08-07 大连东利伟业环保节能科技有限公司 Multifunctional dynamic biomembrane sewage treatment method
CN103408140A (en) * 2013-08-14 2013-11-27 哈尔滨工业大学 Control method realizing CANON process high-efficiency stable operation
WO2018074328A1 (en) * 2016-10-21 2018-04-26 株式会社日立製作所 Water treatment apparatus and water treatment method
JP2018065120A (en) * 2016-10-21 2018-04-26 株式会社日立製作所 Water treatment apparatus and its method
CN107344032A (en) * 2017-09-06 2017-11-14 河南方周瓷业有限公司 A kind of oiliness contains poly- method of wastewater treatment
CN109485153A (en) * 2018-12-19 2019-03-19 清华-伯克利深圳学院筹备办公室 A kind of biofilm reactor and method of wastewater efficient denitrogenation
CN111533416A (en) * 2020-05-18 2020-08-14 宇恒(南京)环保装备科技有限公司 Method for solid-liquid synergistic aerobic biological fermentation of high-nutrition waste organic matters

Similar Documents

Publication Publication Date Title
EP3747836B1 (en) Anaerobic ammonia oxidation-based sewage treatment process using mbr
KR101473050B1 (en) Method and device for removing biological nitrogen and support therefor
US7144508B2 (en) Method and apparatus of removing nitrogen
JP4796631B2 (en) Method and system for nitrifying and denitrifying sewage
JP4644107B2 (en) Method for treating wastewater containing ammonia
JP2003154394A (en) Biological denitrification method and apparatus
JP6720100B2 (en) Water treatment method and water treatment device
CA2542894C (en) Multi-environment wastewater treatment method
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2003024983A (en) Nitrification treatment method
JP4671178B2 (en) Nitrogen removal method and apparatus
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JPH11333496A (en) Microorganism carrier for denitrification
JP2007007557A (en) Waste water treatment apparatus
KR101186606B1 (en) Advanced treatment apparatus to removing nitrogen and phosphorus from wastewater
JP2003024987A (en) Nitrification method for ammonia nitrogen-containing water
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP2005034739A (en) Waste water treatment method
JP2010253404A (en) Method and apparatus of denitrifying digested sludge separation liquid
JP2003033787A (en) Method for nitrifying drainage
JPS6117559B2 (en)
JP3807945B2 (en) Method and apparatus for treating organic wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080319