JP2007007557A - Waste water treatment apparatus - Google Patents

Waste water treatment apparatus Download PDF

Info

Publication number
JP2007007557A
JP2007007557A JP2005191817A JP2005191817A JP2007007557A JP 2007007557 A JP2007007557 A JP 2007007557A JP 2005191817 A JP2005191817 A JP 2005191817A JP 2005191817 A JP2005191817 A JP 2005191817A JP 2007007557 A JP2007007557 A JP 2007007557A
Authority
JP
Japan
Prior art keywords
anaerobic
nitrite
waste water
treatment
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005191817A
Other languages
Japanese (ja)
Other versions
JP4848144B2 (en
Inventor
Akira Cho
亮 張
Emi Okuda
絵美 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2005191817A priority Critical patent/JP4848144B2/en
Publication of JP2007007557A publication Critical patent/JP2007007557A/en
Application granted granted Critical
Publication of JP4848144B2 publication Critical patent/JP4848144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment apparatus capable of efficiently carrying out nitrite oxidation anaerobic denitrification treatment with a simple apparatus configuration even if the waste water has high BOD and high DO. <P>SOLUTION: The waste water treatment apparatus comprises an aerobic treatment part 13 which oxidizes an ammonium ion in the waste water into a nitrite ion by aerating the waste water, and an anaerobic treatment part 14 which makes the reaction of the generated nitrite ion and the ammonium ion in the waste water in an anaerobic state to generate nitrogen gas wherein the aerobic treatment part 13 and the anaerobic treatment part 14 are partitioned by a partition member 12 formed of, for example, any of a sponge type molding, a filter cloth, a semipermeable membrane and a microfiltration membrane capable of passing the ammonium ion and the nitrite ion without substantially generating convection of water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、廃水処理装置に関し、詳しくは、廃水中に高濃度で含まれるアンモニア性窒素の除去処理を部分亜硝酸化及び嫌気性アンモニア酸化により行う廃水処理装置に関する。   The present invention relates to a wastewater treatment apparatus, and more particularly, to a wastewater treatment apparatus that performs removal treatment of ammonia nitrogen contained in wastewater at a high concentration by partial nitritation and anaerobic ammonia oxidation.

水処理技術においてアンモニア含有廃水中の窒素除去技術としては、従来から循環式硝化脱窒法が広く知られている。しかしながら、この技術は、設置面積を広く必要とすることや循環ポンプの設置等、設備面におけるコストが高いことや脱窒の際の栄養源としての水素供与体を添加しなければならないといった問題点がある。   In the water treatment technology, a circulation nitrification denitrification method has been widely known as a nitrogen removal technology in ammonia-containing wastewater. However, this technology has a problem that a large installation area is required, a cost of equipment such as a circulation pump is high, and a hydrogen donor as a nutrient source in denitrification must be added. There is.

しかし、近年、アンモニア性窒素を含有する有機性廃液の処理方法において、廃液中のアンモニア性窒素を亜硝酸化細菌により部分的に亜硝酸化し、生成する亜硝酸化液を嫌気性アンモニア酸化法により、脱窒する処理方法が知られている。   However, in recent years, in the treatment method of organic waste liquid containing ammonia nitrogen, ammonia nitrogen in the waste liquid is partially nitrified by nitrifying bacteria, and the resulting nitrite is obtained by anaerobic ammonia oxidation method. A treatment method for denitrification is known.

この技術は、硝化反応の際、アンモニアから亜硝酸までの部分酸化のため、硝化に要する曝気量を削減できることに加えて、この反応に関わる微生物が自栄養性の細菌であるため、水素供与体である有機物の添加を必要としないので発生汚泥量が従来と比較しかなり減少するといった利点がある(例えば、特許文献1参照。)。   This technology not only reduces the amount of aeration required for nitrification due to partial oxidation from ammonia to nitrous acid during the nitrification reaction. In addition, the microorganism involved in this reaction is a self-trophic bacterium. Therefore, there is an advantage that the amount of generated sludge is considerably reduced as compared with the conventional method (for example, see Patent Document 1).

さらに、この嫌気性アンモニア酸化法を利用した技術として、SNAP法やCanon法が提案されている。SNAP法は、一槽でのアンモニア除去法であり、槽底部中央からの曝気により槽内に対流を発生させ、槽周辺部に設置した付着固定担体表面に好気性微生物であるアンモニア酸化細菌を付着させるとともに、担体内部の嫌気部分に嫌気性アンモニア酸化細菌を生息させ、この両者の働きによって硝化・脱窒を行う処理方法である。一方のCanon法は、リアクタに酸素を制限的に供給することで流入水中のアンモニアの半量をアンモニア酸化細菌の働きで硝酸に変換し、一槽で窒素除去を行う方法である。   Furthermore, as a technique using this anaerobic ammonia oxidation method, a SNAP method and a Canon method have been proposed. The SNAP method is a method for removing ammonia in a single tank, generating convection in the tank by aeration from the center of the bottom of the tank, and attaching ammonia-oxidizing bacteria, which are aerobic microorganisms, to the surface of the attached fixed carrier installed in the periphery of the tank. In addition, anaerobic ammonia-oxidizing bacteria are allowed to inhabit anaerobic parts inside the carrier, and nitrification and denitrification are performed by the action of both. On the other hand, the Canon method is a method in which half of the ammonia in the inflowing water is converted to nitric acid by the action of ammonia-oxidizing bacteria by supplying oxygen limitedly to the reactor, and nitrogen is removed in one tank.

しかしながら、この両方法は、いずれもリアクタ内を低DOとし、嫌気性アンモニア酸化細菌を優先させる方法であるため、亜硝酸生成速度が低く、脱窒の速度も低下するといった問題を有している。また、低C/N比の廃水に対しては有効であるが、高BODの廃水への適用は困難である。
特開2005−74253号公報
However, both of these methods have a problem that the inside of the reactor is low DO and anaerobic ammonia-oxidizing bacteria are given priority, so the nitrite production rate is low and the denitrification rate is also reduced. . In addition, it is effective for wastewater with a low C / N ratio, but it is difficult to apply to wastewater with high BOD.
JP 2005-74253 A

上述のように、SNAP法やCanon法のように一槽での脱窒処理は種々の問題点を有しているが、前記特許文献1に記載された方法では、前述のような利点は有しているものの、複数の処理槽を設置する必要があり、設備面におけるコストに問題があるだけでなく、BOD、DOの持込、亜硝酸/アンモニア濃度比の微調整等の問題がある。   As described above, the denitrification treatment in one tank has various problems as in the SNAP method and the Canon method, but the method described in Patent Document 1 has the above-described advantages. However, it is necessary to install a plurality of treatment tanks, and there are problems in terms of equipment cost, as well as problems such as bringing in BOD and DO, and fine adjustment of the nitrous acid / ammonia concentration ratio.

そこで本発明は、高BOD、高DOの廃水でも、亜硝酸化嫌気性脱窒処理を簡単な装置構成で効率よく行うことができる廃水処理装置を提供することを目的としている。   Accordingly, an object of the present invention is to provide a wastewater treatment apparatus that can efficiently perform nitritation anaerobic denitrification treatment with a simple apparatus configuration even with high BOD and high DO wastewater.

上記目的を達成するため、本発明の廃水処理装置は、廃水中に含まれるアンモニア性窒素の除去処理を行う廃水処理装置において、前記廃水を導入、曝気処理して廃水中のアンモニウムイオンを亜硝酸イオンに酸化する好気処理部と、生成した亜硝酸イオンと廃水中のアンモニウムイオンとを嫌気状態で反応させて窒素ガスを生成させる嫌気処理部とを有するとともに、前記好気処理部と前記嫌気処理部とを実質的に水の対流を発生させずに、前記アンモニウムイオン及び亜硝酸イオンが通過可能な仕切部材、例えば、スポンジ型成形体、ろ布、半透膜、精密ろ過膜のいずれか一種以上で形成した仕切部材で区画したことを特徴としている。   In order to achieve the above object, a wastewater treatment apparatus of the present invention is a wastewater treatment apparatus for removing ammonia nitrogen contained in wastewater. The wastewater is introduced and aerated to convert ammonium ions in the wastewater to nitrous acid. An aerobic treatment unit that oxidizes to ions, an anaerobic treatment unit that reacts the generated nitrite ions and ammonium ions in the wastewater in an anaerobic state to generate nitrogen gas, and the aerobic treatment unit and the anaerobic part A partition member capable of allowing the ammonium ions and nitrite ions to pass through without substantially causing convection of water between the processing section, for example, any of sponge-type molded bodies, filter cloths, semipermeable membranes, and microfiltration membranes It is characterized by partitioning with one or more partition members.

本発明の廃水処理装置によれば、好気処理部と嫌気処理部とに水(液)が対流(循環)しないので、嫌気処理部へのBOD、DOの持込みを最小限にでき、高効率、高負荷で運転することができる。   According to the waste water treatment apparatus of the present invention, since water (liquid) does not convect (circulate) between the aerobic treatment unit and the anaerobic treatment unit, it is possible to minimize the introduction of BOD and DO into the anaerobic treatment unit, and high efficiency. Can be operated at high load.

図1及び図2は本発明の廃水処理装置の第1形態例を示すもので、図1は概略系統図、図2は仕切部材の説明図である。この廃水処理装置は、処理槽11の内部を仕切部材12によって好気処理部13と嫌気処理部14とに区画したものであって、好気処理部13の底部には、水中に酸素を供給するための散気装置15が設けられている。また、好気処理部13には廃水導入手段16が設けられている。廃水を連続的に注入する場合、処理水導出手段17は嫌気処理部14に設けるのが好ましく、廃水を断続的に導入する、いわゆる回分式処理方式の場合では処理水導出手段は好気処理部13に設けるのが好ましい。   1 and 2 show a first embodiment of the wastewater treatment apparatus of the present invention, FIG. 1 is a schematic system diagram, and FIG. 2 is an explanatory view of a partition member. This wastewater treatment apparatus is configured such that the inside of a treatment tank 11 is partitioned into an aerobic treatment unit 13 and an anaerobic treatment unit 14 by a partition member 12, and oxygen is supplied to the bottom of the aerobic treatment unit 13. An air diffuser 15 is provided for this purpose. The aerobic treatment unit 13 is provided with waste water introduction means 16. In the case of continuously injecting waste water, the treated water deriving means 17 is preferably provided in the anaerobic treatment section 14, and in the case of a so-called batch treatment system in which waste water is introduced intermittently, the treated water deriving means is an aerobic treatment section. 13 is preferable.

仕切部材12は、実質的に水の対流が抑制され、主に拡散のみによってイオンの通過、移動が可能な材料、例えば、スポンジ型成形体、ろ布、半透膜、精密ろ過膜のいずれか又はこれらを組み合わせたもののように、水を通過させるためには圧力を加える必要があるもの、つまり、通水抵抗があるような材料によって形成されている。すなわち、イオンを拡散現象によって好気処理部13と嫌気処理部14とに移動させ、水の移動を抑制するようにしているため、水中の酸素はほとんど嫌気処理部14に移動することはなく、嫌気処理部14が好気性状態になることを防止している。また、イオンに比べて分子量が大きい有機化合物の拡散速度が比較的遅いことから、好気処理部13内のBOD成分が嫌気処理部14へ移動することも抑制することができる。   The partition member 12 is a material in which convection of water is substantially suppressed and ions can pass and move mainly only by diffusion, for example, a sponge-shaped molded body, a filter cloth, a semipermeable membrane, or a microfiltration membrane. Or it is formed by the material which needs to apply pressure in order to let water pass like the thing which combined these, ie, the material which has water flow resistance. That is, since ions are moved to the aerobic processing unit 13 and the anaerobic processing unit 14 by the diffusion phenomenon to suppress the movement of water, oxygen in the water hardly moves to the anaerobic processing unit 14, It prevents that the anaerobic process part 14 will be in an aerobic state. Moreover, since the diffusion rate of the organic compound having a large molecular weight compared to ions is relatively slow, it is possible to suppress the movement of the BOD component in the aerobic processing unit 13 to the anaerobic processing unit 14.

仕切部材12の材質、形状は適宜選択できるが、通水抵抗が一定以上である必要がある。ここでは、通水抵抗を圧力10kPaでの仕切部材12の単位面積[m]当たりの通水量Q10で表すと、好ましい仕切部材12の通水量Q10は500L/分/m以下であり、特に好ましいのは100L/分/mである。通水量Q10が500L/分/m以下であれば、対流を抑制するための通液抵抗が確保され、イオンを優先的に移動させることができる。また、仕切部材12の表面積は、その材質や廃液の性状等によって変動するが、窒素負荷1kg−N/日当たりの表面積は10m以上が好ましく、50m以上が特に好ましい。 The material and shape of the partition member 12 can be selected as appropriate, but the water flow resistance needs to be a certain level or more. Here, when representing the flow resistance in the unit area [m 2] passing water amount Q 10 per partition member 12 at the pressure 10 kPa, passing water Q 10 of the preferred partitioning member 12 is in 500L / min / m 2 or less Particularly preferred is 100 L / min / m 2 . If passing water Q 10 is 500L / min / m 2 or less, is resistance to fluid passage for suppressing the convection is ensured, it is possible to move the ions preferentially. Further, the surface area of the partition member 12 will vary depending properties such as the material and waste, nitrogen load 1 kg-N / day surface area 10 m 2 or more preferably, 50 m 2 or more is particularly preferable.

一方、好気処理部13での散気装置15からの曝気処理により、水中に溶解しているアンモニウムイオン(アンモニア性窒素)が酸化されて生成した亜硝酸イオン(亜硝酸性窒素)及び未反応のアンモニウムイオンは、仕切部材12の両側のイオン濃度差に応じて仕切部材12を拡散により通過して好気処理部13から嫌気処理部14に移動する。嫌気処理部14に移動したアンモニウムイオンと亜硝酸イオンとは、嫌気性アンモニア酸化によって窒素ガスを生成し、窒素ガスは気泡となって水中から系外に排出される。   On the other hand, nitrite ions (nitrite nitrogen) generated by oxidation of ammonium ions (ammonia nitrogen) dissolved in water by aeration treatment from the air diffuser 15 in the aerobic treatment unit 13 and unreacted The ammonium ions pass through the partition member 12 by diffusion according to the difference in ion concentration on both sides of the partition member 12 and move from the aerobic processing unit 13 to the anaerobic processing unit 14. The ammonium ions and nitrite ions that have moved to the anaerobic treatment unit 14 generate nitrogen gas by anaerobic ammonia oxidation, and the nitrogen gas is bubbled out of the system.

亜硝酸化手段である好気処理部13は、アンモニア性窒素を亜硝酸化細菌により、硝酸が生成しないように亜硝酸化して、亜硝酸アンモニウムを生成させるように構成される。このような亜硝酸化手段としては、アンモニア性窒素と亜硝酸化細菌とを好気性下に接触させてアンモニア性窒素を亜硝酸化させるものが採用できる。亜硝酸化細菌は浮遊状態でもよく、スポンジ、樹脂成形体、活性炭等の担体に担持させた状態でもよい。   The aerobic treatment unit 13 which is a nitritation means is configured to nitrite ammonia nitrogen by a nitrite bacterium so that nitric acid is not produced, thereby producing ammonium nitrite. As such nitritation means, a means for bringing ammonia nitrogen and nitrite bacteria into contact with each other under aerobic condition to nitrite ammonia nitrogen can be employed. Nitrite bacteria may be in a floating state, or may be in a state of being supported on a carrier such as a sponge, a resin molded body, or activated carbon.

好気処理部13で用いられる亜硝酸化細菌は、従来からアンモニア性窒素の亜硝酸化に用いられている細菌であって、好気性下でアンモニア性窒素を酸化して亜硝酸性窒素に転換する細菌である。このような亜硝酸化細菌は、アンモニア性窒素を含む液を好気性下に酸化することにより発生させることができるが、有機性廃水処理の好気処理手段から採取した汚泥をそのまま、又は、充填層に付着させて使用することができる。また、通常、散気によって好気処理部13内は略均一混合状態にあるが、散気による撹拌力が不十分な場合は、撹拌機、循環ポンプ等の撹拌手段を設けることができる。   The nitrite bacteria used in the aerobic treatment unit 13 are bacteria conventionally used for nitritation of ammonia nitrogen, and oxidize ammonia nitrogen under aerobic condition to convert to nitrite nitrogen. Bacteria to do. Such nitrite bacteria can be generated by oxidizing a liquid containing ammoniacal nitrogen under aerobic condition, but the sludge collected from the aerobic treatment means of organic wastewater treatment is used as it is or filled. It can be used attached to a layer. Normally, the inside of the aerobic processing unit 13 is in a substantially uniform mixed state due to aeration, but when the agitation force due to aeration is insufficient, agitation means such as an agitator and a circulation pump can be provided.

脱窒手段である嫌気処理部14は、亜硝酸化液を嫌気性アンモニア酸化細菌により、アンモニア性窒素と亜硝酸性窒素とを反応させて脱窒するように構成される。嫌気性アンモニア酸化細菌は嫌気性であるため、酸素が供給されない構造が採用される。嫌気性アンモニア酸化細菌は、浮遊状の汚泥として用いてもよく、担体に担持した状態又はグラニュール等の粒状の状態で用いてもよい。このような脱窒手段において、アンモニア性窒素と亜硝酸性窒素とを含む液を嫌気性アンモニア酸化細菌と接触させ、アンモニア性窒素と亜硝酸性窒素とを反応させ、窒素ガスに転換して脱窒を行う。   The anaerobic treatment unit 14 which is a denitrification means is configured to denitrify the nitrite solution by reacting ammonia nitrogen and nitrite nitrogen with anaerobic ammonia oxidizing bacteria. Since anaerobic ammonia oxidizing bacteria are anaerobic, a structure in which oxygen is not supplied is employed. Anaerobic ammonia oxidizing bacteria may be used as floating sludge, or may be used in a state of being supported on a carrier or in a granular state such as granules. In such denitrification means, a liquid containing ammonia nitrogen and nitrite nitrogen is brought into contact with anaerobic ammonia oxidizing bacteria, ammonia nitrogen and nitrite nitrogen are reacted, converted into nitrogen gas, and dehydrated. Nitrogen is performed.

嫌気処理部14で用いられる嫌気性アンモニア酸化細菌は、Planctomycetesに属す細菌であって、従来の脱窒に用いられている従属栄養性の脱窒細菌とは異なり、独立栄養性の細菌である。このため、脱窒に際して、従来の脱窒細菌には必要であったメタノール等の栄養源の添加を必要としない。また、嫌気性アンモニア酸化細菌は、アンモニア性窒素と亜硝酸性窒素とを反応させて直接窒素ガスに変換させるため、アンモニア性窒素及び亜硝酸性窒素を同時に除去でき、しかも、有害な廃棄物を生成しないという特徴を有している。   The anaerobic ammonia oxidizing bacterium used in the anaerobic treatment unit 14 is a bacterium belonging to Plantomycetes, and is an autotrophic bacterium, unlike the heterotrophic denitrifying bacterium used for conventional denitrification. For this reason, at the time of denitrification, it is not necessary to add a nutrient source such as methanol, which is necessary for conventional denitrifying bacteria. In addition, anaerobic ammonia-oxidizing bacteria react ammonia nitrogen and nitrite nitrogen directly to convert them into nitrogen gas, so ammonia ammonia and nitrite nitrogen can be removed at the same time, and harmful waste can be removed. It has the feature of not generating.

さらに、嫌気性アンモニア酸化細菌は、アンモニア性窒素を電子供与体、亜硝酸性窒素を電子受容体として、アンモニア性窒素と亜硝酸性窒素とを反応させて直接窒素ガスに変換させるため、酸素及び硝酸性窒素は不要であり、酸素が存在すると、嫌気性アンモニア酸化細菌の脱窒活性は低下する。したがって、嫌気処理部14には、実質的に酸素が含まれていない状態の液(廃水)を供給するべきである。また、嫌気性アンモニア酸化細菌は硝酸を資化できないため、好気処理部13において硝酸性窒素が実質的に生成させないことが好ましい。酸素については、仕切部材12から嫌気処理部14へ移動する間に細菌によって消費されるので、嫌気処理部14の入口部分で溶存酸素がなくなるような曝気量を容易に設定することができる。   Furthermore, anaerobic ammonia-oxidizing bacteria use ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor to react ammonia nitrogen and nitrite nitrogen directly to convert them into nitrogen gas. Nitrate nitrogen is not necessary, and the presence of oxygen reduces the denitrification activity of anaerobic ammonia oxidizing bacteria. Therefore, the anaerobic treatment unit 14 should be supplied with a liquid (waste water) that is substantially free of oxygen. Moreover, since anaerobic ammonia oxidizing bacteria cannot assimilate nitric acid, it is preferable that nitrate nitrogen is not substantially generated in the aerobic treatment unit 13. Since oxygen is consumed by bacteria while moving from the partition member 12 to the anaerobic treatment unit 14, the amount of aeration at which dissolved oxygen disappears at the inlet portion of the anaerobic treatment unit 14 can be easily set.

また、嫌気性アンモニア酸化細菌は、アンモニア性窒素と亜硝酸性窒素とをモル比で1:1.32で反応させるが、嫌気処理部14に供給する廃水は、アンモニア性窒素より亜硝酸性窒素の濃度が低くなっており、好気処理部13で生成した亜硝酸が仕切部材12を随時通過して嫌気処理部14で除去される状態となる。   The anaerobic ammonia oxidizing bacteria react ammonia nitrogen and nitrite nitrogen at a molar ratio of 1: 1.32. However, the wastewater supplied to the anaerobic treatment unit 14 is nitrite nitrogen rather than ammonia nitrogen. The nitrous acid produced | generated in the aerobic process part 13 will pass the partition member 12 at any time, and will be in the state removed by the anaerobic process part 14. FIG.

好気処理部13及び嫌気処理部14に供給する廃水は、アンモニア性窒素濃度が50〜3000mg/L、好ましくは80〜2000mg/L、さらに好ましくは300〜1000mg/Lの範囲であり、亜硝酸性窒素濃度が10〜300mg/L、好ましくは20〜200mg/L、さらに好ましくは30〜100mg/Lの範囲であり、pH6.5〜8.0、好ましくはpH6.7〜7.5の範囲が望ましい。   The waste water supplied to the aerobic treatment part 13 and the anaerobic treatment part 14 has an ammoniacal nitrogen concentration of 50 to 3000 mg / L, preferably 80 to 2000 mg / L, more preferably 300 to 1000 mg / L. The nitrogen concentration is 10 to 300 mg / L, preferably 20 to 200 mg / L, more preferably 30 to 100 mg / L, and pH 6.5 to 8.0, preferably pH 6.7 to 7.5. Is desirable.

好気処理部13及び嫌気処理部14における処理温度は室温以上でよく、特に30℃以上が望ましく、低温時には加温してもよい。また、pH調整剤、栄養剤、その他の添加剤は必要に応じて注入することができる。さらに、汚泥が過剰に生成する場合には、一部を引き抜いて廃棄すればよい。   The processing temperature in the aerobic processing unit 13 and the anaerobic processing unit 14 may be room temperature or higher, particularly 30 ° C. or higher, and may be heated at low temperatures. Moreover, a pH adjuster, a nutrient, and other additives can be inject | poured as needed. Furthermore, when sludge is generated excessively, a part of it may be extracted and discarded.

嫌気処理部14では、前述のように、嫌気性アンモニア酸化細菌によって亜硝酸化液中のアンモニア性窒素と亜硝酸性窒素とが反応し、窒素ガスに変換されて脱窒される。このとき、溶存酸素の存在は、嫌気性アンモニア酸化細菌の活性を低下させるため、嫌気処理部14には流入しないことが望まれる。本形態例に示すように、仕切部材12を介在させることによって溶存酸素が嫌気処理部14に直接流入することが阻害されるため、従来より大流量で嫌気処理を行うことができる。嫌気性アンモニア酸化細菌による反応は、以下の反応式(1)に示され、アンモニア性窒素と亜硝酸性窒素とが略1:1.32で反応する。   In the anaerobic treatment unit 14, as described above, the anaerobic ammonia oxidizing bacteria react with ammonia nitrogen and nitrite nitrogen in the nitrite and convert it to nitrogen gas for denitrification. At this time, since the presence of dissolved oxygen decreases the activity of the anaerobic ammonia oxidizing bacteria, it is desirable that the dissolved oxygen does not flow into the anaerobic treatment unit 14. As shown in the present embodiment, since the dissolved oxygen is inhibited from flowing directly into the anaerobic treatment unit 14 by interposing the partition member 12, the anaerobic treatment can be performed at a larger flow rate than before. Reaction by anaerobic ammonia oxidizing bacteria is shown in the following reaction formula (1), and ammonia nitrogen and nitrite nitrogen react at about 1: 1.32.

NH4++1.32NO +0.066HCO+0.13H
→ 1.02N+0.26NO +0.066CH0.50.15+2.03HO …(1)
NH 4+ + 1.32NO 2 + 0.066HCO 3 + 0.13H
→ 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O (1)

上記処理では、高アンモニア性窒素濃度及び亜硝酸性窒素の液を好気処理部13及び嫌気処理部14で処理することにより、好気処理部13において硝酸が生成しない条件でアンモニア性窒素を亜硝酸化することができ、嫌気処理部14において無酸素下で高効率で脱窒を行うことができる。   In the above process, the ammonia nitrogen is sublimated under conditions where nitric acid is not generated in the aerobic treatment unit 13 by treating the liquid of high ammonia nitrogen concentration and nitrite nitrogen in the aerobic treatment unit 13 and the anaerobic treatment unit 14. Nitrification can be performed, and denitrification can be performed with high efficiency in the anaerobic treatment unit 14 in the absence of oxygen.

好気処理部13では、アンモニア性窒素:亜硝酸性窒素のモル比が近似的に1:1.32の亜硝酸化液を生成させる必要はなく、生成した亜硝酸イオンが仕切部材12を通過して順次嫌気処理部14に移動するため、亜硝酸イオンの蓄積も起こらない。また、アンモニア性窒素を亜硝酸性窒素まで酸化すればよく、従来のように亜硝酸性窒素から硝酸性窒素に酸化する必要はないので、硝化細菌を含む汚泥は不要であり、硝化菌を担持させるための充填材が省略でき、処理槽11の小型化が図れるとともに、酸化に必要な酸素の量(曝気量)も少なくできる。   In the aerobic processing unit 13, it is not necessary to generate a nitrite having an ammonia nitrogen: nitrite nitrogen molar ratio of approximately 1: 1.32, and the generated nitrite ions pass through the partition member 12. Then, since it moves to the anaerobic processing part 14 sequentially, accumulation of nitrite ions does not occur. In addition, it is only necessary to oxidize ammonia nitrogen to nitrite nitrogen, and it is not necessary to oxidize nitrite nitrogen to nitrate nitrogen as in the past, so sludge containing nitrifying bacteria is unnecessary and supports nitrifying bacteria. Therefore, the processing tank 11 can be reduced in size and the amount of oxygen necessary for oxidation (aeration amount) can be reduced.

嫌気処理部14では、アンモニア性窒素と亜硝酸性窒素とを略1:1.32のモル比で反応させて脱窒するため、メタノール等の栄養源が不要であり、効率よく脱窒を行うことができる。また、脱窒反応で生成するのは無害な窒素ガスであり、そのまま廃棄できる。亜硝酸化液細菌及び嫌気性アンモニア酸化細菌は増殖速度が小さいので、汚泥の増加量は少なく、余剰汚泥の発生量は少ない。   In the anaerobic treatment unit 14, ammonia nitrogen and nitrite nitrogen are reacted at a molar ratio of approximately 1: 1.32 for denitrification. Therefore, no nutrient source such as methanol is required, and denitrification is performed efficiently. be able to. Moreover, it is harmless nitrogen gas produced | generated by denitrification reaction, and can be discarded as it is. Since nitrite bacteria and anaerobic ammonia-oxidizing bacteria have a low growth rate, the amount of sludge increase is small and the amount of surplus sludge generated is small.

図3は本発明の廃水処理装置の第2形態例を示す概略系統図である。なお、脱窒処理は前記第1形態例と同様にして行われるので、詳細な説明は省略する。   FIG. 3 is a schematic system diagram showing a second embodiment of the wastewater treatment apparatus of the present invention. Since the denitrification process is performed in the same manner as in the first embodiment, detailed description is omitted.

本形態例に示す廃水処理装置は、好気処理部となる好気処理槽21と、嫌気処理部となる嫌気処理槽22とを前記仕切部材と同様の材料で形成した連通部23を介して連通させたものであって、嫌気処理槽22内の液を循環経路を介してポンプ24で連通部23内に循環させ、連通部23の内部の嫌気液と外部の好気液との間でアンモニウムイオン及び亜硝酸イオンを移動させるように形成している。このように、ポンプ24によって嫌気処理槽22内に液の流動を発生させることにより、嫌気処理槽22内での反応効率を向上させることができる。   The wastewater treatment apparatus shown in the present embodiment includes an aerobic treatment tank 21 serving as an aerobic treatment part and an anaerobic treatment tank 22 serving as an anaerobic treatment part via a communication part 23 formed of the same material as the partition member. The fluid in the anaerobic treatment tank 22 is circulated into the communication portion 23 by the pump 24 via the circulation path, and the anaerobic liquid inside the communication portion 23 and the external aerobic liquid are communicated. Ammonium ions and nitrite ions are formed to move. Thus, the reaction efficiency in the anaerobic treatment tank 22 can be improved by generating a fluid flow in the anaerobic treatment tank 22 by the pump 24.

本発明の廃水処理装置の第1形態例を示す概略系統図である。1 is a schematic system diagram showing a first embodiment of a wastewater treatment apparatus of the present invention. 仕切部材の説明図である。It is explanatory drawing of a partition member. 本発明の廃水処理装置の第2形態例を示す概略系統図である。It is a schematic system diagram which shows the 2nd form example of the waste water treatment apparatus of this invention.

符号の説明Explanation of symbols

11…処理槽、12…仕切部材、13…好気処理部、14…嫌気処理部、15…散気装置、16…廃水導入手段、17…処理水導出手段、21…好気処理槽、22…嫌気処理槽、23…連通部、24…ポンプ   DESCRIPTION OF SYMBOLS 11 ... Processing tank, 12 ... Partition member, 13 ... Aerobic processing part, 14 ... Anaerobic processing part, 15 ... Air diffuser, 16 ... Waste water introduction means, 17 ... Treated water derivation means, 21 ... Aerobic processing tank, 22 ... Anaerobic treatment tank, 23 ... Communication part, 24 ... Pump

Claims (2)

廃水中に含まれるアンモニア性窒素の除去処理を行う廃水処理装置において、前記廃水を導入、曝気処理して廃水中のアンモニウムイオンを亜硝酸イオンに酸化する好気処理部と、生成した亜硝酸イオンと廃水中のアンモニウムイオンとを嫌気状態で反応させて窒素ガスを生成させる嫌気処理部とを有するとともに、前記好気処理部と前記嫌気処理部とを実質的に水の対流を発生させずに、前記アンモニウムイオン及び亜硝酸イオンが通過可能な仕切部材で区画したことを特徴とする廃水処理装置。   In a wastewater treatment apparatus for removing ammonia nitrogen contained in wastewater, an aerobic treatment unit that introduces the wastewater, aeration treatment to oxidize ammonium ions in the wastewater to nitrite ions, and generated nitrite ions And an anaerobic treatment part that reacts ammonium ions in wastewater in an anaerobic state to generate nitrogen gas, and substantially does not cause convection of water between the aerobic treatment part and the anaerobic treatment part. A wastewater treatment apparatus characterized by being partitioned by a partition member through which the ammonium ions and nitrite ions can pass. 前記仕切部材は、スポンジ型成形体、ろ布、半透膜、精密ろ過膜のいずれか一種以上であることを特徴とする請求項1記載の廃水処理装置。   The wastewater treatment apparatus according to claim 1, wherein the partition member is at least one of a sponge-type molded body, a filter cloth, a semipermeable membrane, and a microfiltration membrane.
JP2005191817A 2005-06-30 2005-06-30 Waste water treatment equipment Active JP4848144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191817A JP4848144B2 (en) 2005-06-30 2005-06-30 Waste water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191817A JP4848144B2 (en) 2005-06-30 2005-06-30 Waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2007007557A true JP2007007557A (en) 2007-01-18
JP4848144B2 JP4848144B2 (en) 2011-12-28

Family

ID=37746713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191817A Active JP4848144B2 (en) 2005-06-30 2005-06-30 Waste water treatment equipment

Country Status (1)

Country Link
JP (1) JP4848144B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149266A (en) * 2006-12-18 2008-07-03 Maezawa Ind Inc Wastewater treatment apparatus
KR101063828B1 (en) * 2009-02-06 2011-09-14 한국원자력연구원 Method of wastewater treatment using an anaerobic reactor having a biological nitrification process connected a cation exchange membrane
JP2011235287A (en) * 2011-07-20 2011-11-24 Maezawa Ind Inc Wastewater treatment apparatus
KR101176437B1 (en) 2011-01-06 2012-08-30 한국원자력연구원 Bio-electrochemical wastewater treating apparatus for a simultaneous removal of ammonia and organics and wastewater treatment method using the apparatus
US9702048B2 (en) 2014-07-30 2017-07-11 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus
WO2023178966A1 (en) * 2022-07-19 2023-09-28 中建三局绿色产业投资有限公司 Modular multi-stage biochemical-filtering sewage treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263592A (en) * 1997-03-24 1998-10-06 Gifu Pref Gov Treatment of waste water
JPH1146754A (en) * 1997-07-31 1999-02-23 Toray Eng Co Ltd Bioreactor
JPH11169866A (en) * 1997-12-11 1999-06-29 Hitachi Ltd Method for computing injection rate of flocculating agent in water treatment process and apparatus therefor
JP2001212591A (en) * 2000-02-02 2001-08-07 Nippon Steel Corp Method for removing nitrogen from wastewater
JP2004230338A (en) * 2003-01-31 2004-08-19 Nippon Steel Corp Method for removing ammonia nitrogen compound from waste water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263592A (en) * 1997-03-24 1998-10-06 Gifu Pref Gov Treatment of waste water
JPH1146754A (en) * 1997-07-31 1999-02-23 Toray Eng Co Ltd Bioreactor
JPH11169866A (en) * 1997-12-11 1999-06-29 Hitachi Ltd Method for computing injection rate of flocculating agent in water treatment process and apparatus therefor
JP2001212591A (en) * 2000-02-02 2001-08-07 Nippon Steel Corp Method for removing nitrogen from wastewater
JP2004230338A (en) * 2003-01-31 2004-08-19 Nippon Steel Corp Method for removing ammonia nitrogen compound from waste water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149266A (en) * 2006-12-18 2008-07-03 Maezawa Ind Inc Wastewater treatment apparatus
KR101063828B1 (en) * 2009-02-06 2011-09-14 한국원자력연구원 Method of wastewater treatment using an anaerobic reactor having a biological nitrification process connected a cation exchange membrane
KR101176437B1 (en) 2011-01-06 2012-08-30 한국원자력연구원 Bio-electrochemical wastewater treating apparatus for a simultaneous removal of ammonia and organics and wastewater treatment method using the apparatus
JP2011235287A (en) * 2011-07-20 2011-11-24 Maezawa Ind Inc Wastewater treatment apparatus
US9702048B2 (en) 2014-07-30 2017-07-11 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus
WO2023178966A1 (en) * 2022-07-19 2023-09-28 中建三局绿色产业投资有限公司 Modular multi-stage biochemical-filtering sewage treatment system

Also Published As

Publication number Publication date
JP4848144B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
KR101188480B1 (en) Method of nitrifying ammonium-nitrogen-containing water and method of treating the same
JP6227509B2 (en) Waste water treatment apparatus and waste water treatment method
JP5347221B2 (en) Nitrogen-containing liquid processing method and apparatus
EP2377819B1 (en) Method for removing biological nitrogen
JP3937664B2 (en) Biological nitrogen removal method and apparatus
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
KR101018772B1 (en) Method for treating water containing ammonia nitrogen
JP4691938B2 (en) Nitrogen-containing liquid processing method and apparatus
JP4644107B2 (en) Method for treating wastewater containing ammonia
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP6720100B2 (en) Water treatment method and water treatment device
JP4882175B2 (en) Nitrification method
JP4848144B2 (en) Waste water treatment equipment
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP2010000480A (en) Effective denitrification method for organic raw water
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2005246135A (en) Method for biologically removing nitrogen
JP5292658B2 (en) A method for nitrification of ammonia nitrogen-containing water
JP2003154394A (en) Biological denitrification method and apparatus
JPH11333496A (en) Microorganism carrier for denitrification
EP3689830A1 (en) Device and method for shortcut nitrogen removal and nitrite-oxidizing bacteria activity inhibition
JP5292659B2 (en) A method for nitrification of ammonia nitrogen-containing water
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP4101498B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JP2006088057A (en) Method for treating ammonia-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4848144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150