JP4644107B2 - Method for treating wastewater containing ammonia - Google Patents

Method for treating wastewater containing ammonia Download PDF

Info

Publication number
JP4644107B2
JP4644107B2 JP2005351321A JP2005351321A JP4644107B2 JP 4644107 B2 JP4644107 B2 JP 4644107B2 JP 2005351321 A JP2005351321 A JP 2005351321A JP 2005351321 A JP2005351321 A JP 2005351321A JP 4644107 B2 JP4644107 B2 JP 4644107B2
Authority
JP
Japan
Prior art keywords
water
anammox
tank
nitrogen
nitritation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005351321A
Other languages
Japanese (ja)
Other versions
JP2007152236A (en
Inventor
弘次 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2005351321A priority Critical patent/JP4644107B2/en
Publication of JP2007152236A publication Critical patent/JP2007152236A/en
Application granted granted Critical
Publication of JP4644107B2 publication Critical patent/JP4644107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、排水処理システムに関する。さらに詳しくは、アンモニアを含む排水からのアンモニア性窒素の効率的な除去システムに関する。   The present invention relates to a wastewater treatment system. More particularly, the present invention relates to an efficient removal system of ammonia nitrogen from waste water containing ammonia.

下水処理を含む有機性廃棄物の処理排水中に含まれるアンモニア性窒素は、河川、海洋などにおける富栄養化の原因物質の一つであるため、除去する必要がある。一般に、アンモニア性窒素を含む排水処理には、好気条件下において、アンモニア酸化細菌および亜硝酸酸化細菌によってアンモニア性窒素を亜硝酸性窒素および硝酸性窒素に酸化する硝化反応と、嫌気条件下において、脱窒細菌により亜硝酸性窒素および硝酸性窒素を窒素ガスに還元する脱窒反応とを組み合わせた生物学的硝化脱窒法が採用されている。   Ammonia nitrogen contained in wastewater from organic waste including sewage treatment is one of the causative substances of eutrophication in rivers, oceans, etc., so it must be removed. In general, wastewater treatment containing ammonia nitrogen is carried out under aerobic conditions, under the anaerobic condition, in the nitrification reaction in which ammonia nitrogen is oxidized to nitrite nitrogen and nitrate nitrogen by ammonia oxidizing bacteria and nitrite oxidizing bacteria. In addition, a biological nitrification denitrification method in combination with a denitrification reaction in which nitrite nitrogen and nitrate nitrogen are reduced to nitrogen gas by a denitrifying bacterium is employed.

しかし、この方法は、硝化反応において大量の酸素(空気)の曝気を必要とすること、脱窒反応において電子供与体としてメタノールなどの有機物を大量に必要とすること、汚泥が大量に発生すること、反応速度が遅いため大規模な処理設備が必要となることなど、処理コストが上昇する。   However, this method requires aeration of a large amount of oxygen (air) in the nitrification reaction, requires a large amount of organic matter such as methanol as an electron donor in the denitrification reaction, and generates a large amount of sludge. However, since the reaction rate is slow, a large-scale processing facility is required, and the processing cost increases.

これに代わる方法として、独立栄養性の脱窒微生物(以下、アナモックス微生物という)を用いる窒素除去方法が提案されている。この方法は、嫌気条件下でアンモニアが電子供与体および亜硝酸が電子受容体となる反応であり、大量の酸素(空気)の供給ならびに有機物の添加を必要としないため、極めて経済的な窒素除去方法である。例えば、特許文献1には、アンモニア性窒素を部分的に亜硝酸化または硝酸化し、アナモックス微生物と反応させて脱窒する方法が提案されている。また、特許文献2には、アンモニア性窒素を部分的に亜硝酸化し、これとアンモニア性窒素を含む原水とを混合した混合液から有機物を除き、アナモックス微生物と接触させて窒素を除去する方法が記載されている。また、特許文献3には、アナモックス微生物の脱窒効率を上げるために、アンモニア性窒素の亜硝酸化率を55%以下に制御し、これをアナモックス微生物と接触させて、脱窒する方法が記載されている。さらに、特許文献4には、メタン発酵で有機物を除去した後に亜硝酸化工程を行い、アンモニア性窒素の亜硝酸化率を60%に制御する脱窒方法が記載されている。これらの方法では、アナモックス処理により硝酸が発生し(1NH +1.32NO +0.066HCO +0.13H→1.02N+0.26NO +0.066CH0.50.15+2.03HO)、生じた硝酸の除去のために、メタノールなどの有機物を添加しなければならず、新たに汚泥が発生する。 As an alternative method, a nitrogen removal method using an autotrophic denitrifying microorganism (hereinafter referred to as anammox microorganism) has been proposed. This method is a reaction in which ammonia becomes an electron donor and nitrous acid becomes an electron acceptor under anaerobic conditions, and it does not require supply of a large amount of oxygen (air) and addition of organic substances. Is the method. For example, Patent Document 1 proposes a method in which ammonia nitrogen is partially nitritized or nitrated and reacted with anammox microorganisms for denitrification. Further, Patent Document 2 discloses a method in which ammonia nitrogen is partially nitrified, organic substances are removed from a mixed solution obtained by mixing this with raw water containing ammonia nitrogen, and nitrogen is removed by contacting with anammox microorganisms. Are listed. Patent Document 3 describes a method for denitrification by controlling the nitritation rate of ammonia nitrogen to 55% or less in order to increase the denitrification efficiency of anammox microorganisms, and bringing this into contact with anammox microorganisms. Has been. Furthermore, Patent Document 4 describes a denitrification method in which an organic substance is removed by methane fermentation and then a nitritation step is performed to control the nitritation rate of ammoniacal nitrogen to 60%. In these methods, nitric acid is generated by anammox process (1NH 4 + + 1.32NO 2 - + 0.066HCO 3 - + 0.13H + → 1.02N 2 + 0.26NO 3 - + 0.066CH 2 O 0.5 N 0 .15 + 2.03H 2 O), organic substances such as methanol must be added to remove the generated nitric acid, and sludge is newly generated.

このように、従来のアナモックス処理法では、亜硝酸化槽(好気槽)で排水中のアンモニアの一部を、アンモニア酸化細菌を用いて亜硝酸に部分酸化し、次いで、アナモックス処理槽(嫌気槽)でアナモックス菌を用いて、アンモニアを亜硝酸により嫌気的に酸化し、窒素ガスの形態にして処理する(図1参照)。しかし、これらの方法では、亜硝酸とアンモニアとの比率を、理論値である亜硝酸/アンモニア=1.32付近に制御することが困難であり、アナモックス処理水中に亜硝酸またはアンモニアが残存する。また、アナモックス処理により一部硝酸が生成されるため、脱窒率を高めることも困難であった。
特開平8−192185号公報 特開2001-104992号公報 特開2003−33784号公報 特開2005−74253号公報
Thus, in the conventional anammox treatment method, a part of ammonia in the wastewater is partially oxidized to nitrous acid using ammonia oxidizing bacteria in the nitritation tank (aerobic tank), and then the anammox treatment tank (anaerobic) In the tank), anammox bacteria are used, and ammonia is anaerobically oxidized with nitrous acid and treated in the form of nitrogen gas (see FIG. 1). However, in these methods, it is difficult to control the ratio of nitrous acid and ammonia to around the theoretical value of nitrous acid / ammonia = 1.32, and nitrous acid or ammonia remains in the anammox-treated water. Moreover, since a part of nitric acid is produced by the anammox treatment, it is difficult to increase the denitrification rate.
JP-A-8-192185 Japanese Patent Laid-Open No. 2001-104992 JP 2003-33784 A JP 2005-74253 A

本発明は、アンモニア性窒素を含む排水から効率よくかつ簡便に窒素成分を除去する方法を提供することを目的とする。   An object of this invention is to provide the method of removing a nitrogen component efficiently and simply from the waste_water | drain containing ammonia nitrogen.

本発明は、有機物およびアンモニア性窒素を含む排水を処理する方法を提供し、該方法は、
該排水を嫌気性脱窒槽に導入して脱窒水を得る工程;
該脱窒水の一部を完全亜硝酸化槽に導入して亜硝酸化水を得る工程;
該脱窒水の他の一部および該亜硝酸化水をアナモックス処理槽に導入してアナモックス処理水を得る工程;および
該アナモックス処理水を膜分離装置で分離して透過水および濃縮水を得る工程;
を含む。
The present invention provides a method for treating wastewater containing organic matter and ammoniacal nitrogen, the method comprising:
Introducing the waste water into an anaerobic denitrification tank to obtain denitrified water;
Introducing a part of the denitrification water into a complete nitritation tank to obtain nitritation water;
Introducing another part of the denitrified water and the nitrified water into an anammox treatment tank to obtain anammox treated water; and separating the anammox treated water with a membrane separator to obtain permeated water and concentrated water Process;
including.

1つの実施態様では、上記アナモックス処理槽に導入される上記脱窒水の一部の量と上記亜硝酸化水の量との比率は、40〜50:60〜50である。   In one embodiment, the ratio of the amount of part of the denitrified water introduced into the anammox treatment tank and the amount of nitrite water is 40-50: 60-50.

さらなる実施態様では、上記方法は、上記濃縮水を上記嫌気性脱窒槽に返送する工程をさらに含む。   In a further embodiment, the method further comprises returning the concentrated water to the anaerobic denitrification tank.

本発明はまた、有機物およびアンモニア性窒素を含む排水を処理するための排水処理システムを提供し、該排水処理システムは、
該排水が導入される嫌気性脱窒槽;
該嫌気性脱窒槽で得られた脱窒水の一部が導入される完全亜硝酸化槽;
該脱窒水の他の一部および該完全亜硝酸化槽で得られた亜硝酸化水が導入されるアナモックス処理槽;および
該アナモックス処理槽で得られたアナモックス処理水が導入される膜分離装置;
を備える。
The present invention also provides a wastewater treatment system for treating wastewater containing organic matter and ammoniacal nitrogen, the wastewater treatment system comprising:
Anaerobic denitrification tank into which the wastewater is introduced;
A complete nitritation tank into which a part of the denitrified water obtained in the anaerobic denitrification tank is introduced;
An anammox treatment tank into which the other part of the denitrification water and the nitritation water obtained in the complete nitritation tank are introduced; and a membrane separation into which the anammox treatment water obtained in the anammox treatment tank is introduced apparatus;
Is provided.

ある実施態様では、上記排水処理システムは、上記膜分離装置で分離された濃縮水を上記嫌気性脱窒槽に返送するための返送路をさらに備える。   In one embodiment, the wastewater treatment system further includes a return path for returning the concentrated water separated by the membrane separator to the anaerobic denitrification tank.

1つの実施態様では、上記排水処理システムは、上記アナモックス処理槽に導入される上記脱窒水の量と上記亜硝酸化水の量とを所定の比率で分配する装置をさらに備える。   In one embodiment, the wastewater treatment system further includes a device that distributes the amount of the denitrified water introduced into the anammox treatment tank and the amount of the nitrite water at a predetermined ratio.

本発明によれば、排水中のアンモニアを完全亜硝酸化槽で完全に亜硝酸化するため、アナモックス反応槽に導入する亜硝酸化された処理水の量とアンモニアを含む脱窒水の量との比率を固定することができる。したがって、運転制御が容易である。また、アナモックス反応の副生成物である硝酸については、これを含む濃縮水を嫌気性脱窒槽に返送することにより、排水に含まれる有機物を使用して除去(脱窒)することができる。そのため、排水中の窒素濃度を効率よく低減できる。   According to the present invention, in order to completely nitrite ammonia in the wastewater in the complete nitritation tank, the amount of treated nitritized water introduced into the anammox reaction tank and the amount of denitrified water containing ammonia The ratio of can be fixed. Therefore, operation control is easy. Moreover, about the nitric acid which is a by-product of an anammox reaction, it can remove (denitrify) using the organic substance contained in waste water by returning the concentrated water containing this to an anaerobic denitrification tank. Therefore, the nitrogen concentration in waste water can be reduced efficiently.

本発明の排水処理方法およびシステムを、添付の図面を参照して説明する。   The waste water treatment method and system of the present invention will be described with reference to the accompanying drawings.

(排水処理システム)
図2に、本発明の排水処理システムの一実施態様を示す。本発明の排水処理システムは、有機物およびアンモニア性窒素を含む排水が導入される嫌気性脱窒槽1;該嫌気性脱窒槽1で得られた脱窒水の一部が導入される完全亜硝酸化槽2;該脱窒水の他の一部および該完全亜硝酸化槽2で得られた亜硝酸化水が導入されるアナモックス処理槽3;および該アナモックス処理槽3で得られたアナモックス処理水が導入される膜分離装置4を備える。好適には、膜分離装置4で分離された濃縮水を嫌気性脱窒槽1に返送するための返送路11をさらに備える。また、アナモックス処理槽3に導入される脱窒水の量と亜硝酸化水の量とを所定の比率で分配する装置13をさらに備える。ここで、所定の比率は、好ましくは40〜50:60〜50となるように調節される。
(Wastewater treatment system)
FIG. 2 shows an embodiment of the wastewater treatment system of the present invention. The wastewater treatment system of the present invention comprises an anaerobic denitrification tank 1 into which wastewater containing organic matter and ammonia nitrogen is introduced; a complete nitritation in which a part of the denitrified water obtained in the anaerobic denitrification tank 1 is introduced Tank 2; Anammox treatment tank 3 into which another part of the denitrified water and nitritized water obtained in the complete nitritation tank 2 are introduced; and Anammox treated water obtained in the Anammox treatment tank 3 Is provided with a membrane separation device 4. Preferably, a return path 11 for returning the concentrated water separated by the membrane separator 4 to the anaerobic denitrification tank 1 is further provided. Further, the apparatus further includes a device 13 that distributes the amount of denitrified water and the amount of nitrite water introduced into the anammox treatment tank 3 at a predetermined ratio. Here, the predetermined ratio is preferably adjusted to be 40-50: 60-50.

(排水処理方法)
本発明の排水処理方法は、有機物およびアンモニア性窒素を含む排水の処理に好適である。本発明の方法は、このような排水を嫌気性脱窒槽1に導入して脱窒水を得る工程(嫌気性脱窒工程);該脱窒水の一部を完全亜硝酸化槽2に導入して亜硝酸化水を得る工程(完全亜硝酸化工程);該脱窒水の他の一部および該亜硝酸化水をアナモックス処理槽3に導入してアナモックス処理水を得る工程(アナモックス処理工程);および該アナモックス処理水を膜分離装置4で分離して透過水および濃縮水を得る工程(膜分離工程);を含む。好適には、濃縮水を嫌気性脱窒槽1に返送する工程(濃縮水返送工程)をさらに含み、嫌気性脱窒槽1において、濃縮水中の硝酸は排水中の有機物を利用して脱窒される。この方法は、例えば、図2に示すような排水処理システムにおいて行われ得る。
(Wastewater treatment method)
The waste water treatment method of the present invention is suitable for treatment of waste water containing organic matter and ammoniacal nitrogen. In the method of the present invention, such waste water is introduced into the anaerobic denitrification tank 1 to obtain denitrified water (anaerobic denitrification process); a part of the denitrified water is introduced into the complete nitritation tank 2 Step of obtaining nitrified water (complete nitritation step); introducing another portion of the denitrified water and the nitrite water into the anammox treatment tank 3 to obtain anammox treated water (anammox treatment) Step); and a step of separating the anammox-treated water with the membrane separation device 4 to obtain permeated water and concentrated water (membrane separation step). Preferably, the method further includes a step of returning the concentrated water to the anaerobic denitrification tank 1 (concentrated water return step). In the anaerobic denitrification tank 1, the nitric acid in the concentrated water is denitrified using organic substances in the waste water. . This method can be performed, for example, in a wastewater treatment system as shown in FIG.

(嫌気性脱窒工程)
有機物およびアンモニア性窒素を含む排水は、排水供給路5から嫌気性脱窒槽1に導入されて、嫌気性脱窒工程に供される。この工程では、嫌気条件下において脱窒細菌により、アナモックス処理により生成した硝酸性窒素(および亜硝酸性窒素)が窒素ガスに還元される。ここでは、脱窒細菌として、既存の水処理施設で行われている嫌気性脱窒処理に用いられる脱窒細菌を含む汚泥が用いられ得る。
(Anaerobic denitrification process)
Waste water containing organic matter and ammonia nitrogen is introduced into the anaerobic denitrification tank 1 from the waste water supply path 5 and subjected to an anaerobic denitrification step. In this step, nitrate nitrogen (and nitrite nitrogen) generated by anammox treatment is reduced to nitrogen gas by denitrifying bacteria under anaerobic conditions. Here, sludge containing denitrifying bacteria used for anaerobic denitrification treatment performed in an existing water treatment facility can be used as the denitrifying bacteria.

この工程で処理される排水には、脱窒反応の電子供与体として必要な有機物が含まれているため、嫌気性脱窒槽1中の脱窒細菌は、この有機物を利用して窒素ガスを発生する。なお、本明細書において、有機物は、微生物などの生物により酸化され得る有機物をいい、生物学的酸素要求量(BOD)と同義で使用する。したがって、有機物をBODと表記することがある。   Since the wastewater treated in this process contains organic matter necessary as an electron donor for the denitrification reaction, the denitrifying bacteria in the anaerobic denitrification tank 1 generate nitrogen gas using this organic matter. To do. In this specification, an organic substance means an organic substance that can be oxidized by a living organism such as a microorganism, and is used synonymously with biological oxygen demand (BOD). Therefore, the organic substance may be expressed as BOD.

脱窒細菌の基質である硝酸性窒素は、後述するように、膜分離装置4で分離して得られる濃縮水を返送することによって供給され得る。この工程で脱窒された排水(および濃縮水)は、アンモニア性窒素を含むが硝酸(および亜硝酸)を含まない脱窒水として、次の完全亜硝酸化工程に供給され、そして発生した窒素ガスは、排ガス路16から排出される。   Nitrate nitrogen, which is a substrate for denitrifying bacteria, can be supplied by returning concentrated water obtained by separation in the membrane separation device 4 as described later. Waste water (and concentrated water) denitrified in this step is supplied to the next complete nitritation step as denitrified water containing ammonia nitrogen but not nitric acid (and nitrous acid), and the generated nitrogen The gas is discharged from the exhaust gas passage 16.

(完全亜硝酸化工程)
アンモニアを含む脱窒水の一部は、ポンプ12を介して脱膣水供給路6から完全亜硝酸化槽2に導入される。ここでは、好気条件下でアンモニア酸化細菌(亜硝酸化菌)の働きにより、脱窒水に含まれるアンモニアの全量が亜硝酸に酸化される。亜硝酸化菌は、ニトロソモナス属に代表される好気性バクテリアであり、アンモニアを酸化して亜硝酸を生成する。
(Complete nitritation process)
A part of the denitrified water containing ammonia is introduced into the complete nitritation tank 2 from the devaginal water supply path 6 via the pump 12. Here, the total amount of ammonia contained in denitrified water is oxidized to nitrous acid by the action of ammonia oxidizing bacteria (nitrifying bacteria) under aerobic conditions. Nitrite bacteria are aerobic bacteria represented by the genus Nitrosomonas, which oxidize ammonia to produce nitrite.

アンモニアの完全亜硝酸化は、亜硝酸とアンモニアとの比率を一定に保つ部分亜硝酸化に比較して技術的に容易である。そのため、次のアナモックス処理工程に供する亜硝酸化水の量を制御することにより、亜硝酸量を一定にすることができる。ただし、完全亜硝酸化を制御するには、完全亜硝酸化槽2へのブロア14からの空気吹き込み量を制御するために、アンモニアが完全に亜硝酸に酸化されていることを測定するためのアンモニアセンサ15が必要である。こうして得られた亜硝酸化水は、アンモニアをほとんど含まない。   The complete nitritation of ammonia is technically easier than partial nitritation, which keeps the ratio of nitrous acid and ammonia constant. Therefore, the amount of nitrous acid can be made constant by controlling the amount of nitrite water supplied to the next anammox treatment step. However, in order to control complete nitritation, in order to control the amount of air blown from the blower 14 to the complete nitritation tank 2, it is necessary to measure that ammonia is completely oxidized to nitrite. An ammonia sensor 15 is required. The nitritized water thus obtained contains almost no ammonia.

(アナモックス処理工程)
アナモックス処理槽3ではアナモックス菌によるアナモックス反応が起こり、アンモニアが亜硝酸により嫌気的に酸化され、窒素ガスとして排ガス路17から大気中に放出される。アナモックス菌は、独立栄養性の脱窒微生物であり、嫌気条件下、アンモニア性窒素および亜硝酸性窒素を電子供与体・受容体として反応させ、それらの窒素成分を窒素ガスとして除去する。酸素の供給および有機物の添加を必要としないため、極めて経済的に窒素除去され得る。独立栄養性のアナモックス菌は、有機物が存在すると生育を阻害されるが、本発明においては、先の嫌気的脱窒工程および完全亜硝酸化工程における好気性従属栄養細菌により排水中の有機物が消費されて少なくなっているため、アナモックス処理を迅速に行うことができる。
(Anamox treatment process)
In the anammox treatment tank 3, an anammox reaction by anammox bacteria occurs, and ammonia is anaerobically oxidized by nitrous acid and released as nitrogen gas from the exhaust gas passage 17 into the atmosphere. Anammox is an autotrophic denitrifying microorganism that reacts ammonia nitrogen and nitrite nitrogen as an electron donor / acceptor under anaerobic conditions and removes nitrogen components as nitrogen gas. Nitrogen removal can be done very economically because no oxygen supply and no organic addition is required. Although autotrophic anammox bacteria are inhibited from growth in the presence of organic matter, in the present invention, organic matter in wastewater is consumed by aerobic heterotrophic bacteria in the previous anaerobic denitrification and complete nitritation steps. Therefore, anammox processing can be performed quickly.

アナモックス処理槽3には、亜硝酸化水が亜硝酸化水供給路7を介して導入される。同時に、反応比率に応じた量のアンモニアを含む脱窒水が、ポンプ13を介して脱窒水バイパス路8から投入される。アナモックス処理の脱窒効率を上げるために、アンモニア態窒素と亜硝酸態窒素との比率は、好ましくは約1:1.1〜1.4、より好ましくは約1:1.32に制御される。したがって、脱窒水の量と亜硝酸化水の量との比率は、好ましくは約40〜50:60〜50となる。   Nitrite water is introduced into the anammox treatment tank 3 via the nitrite water supply path 7. At the same time, denitrified water containing ammonia in an amount corresponding to the reaction ratio is introduced from the denitrified water bypass path 8 via the pump 13. In order to increase the denitrification efficiency of the anammox treatment, the ratio of ammonia nitrogen to nitrite nitrogen is preferably controlled to about 1: 1.1 to 1.4, more preferably about 1: 1.32. . Therefore, the ratio between the amount of denitrified water and the amount of nitrite water is preferably about 40-50: 60-50.

こうしてアナモックス処理されたアナモックス処理水には、亜硝酸性窒素およびアンモニア性窒素がほとんど含まれていない。   The anammox-treated water thus subjected to anammox treatment contains almost no nitrite nitrogen and ammonia nitrogen.

(膜分離工程)
アナモックス処理水は、次いで、アナモックス処理水供給路9から膜分離装置4に送られる。膜分離装置4により、アナモックス処理水中のアナモックス処理において生成した硝酸や一部未分解の有機物などが分離され、透過水は透過水放流路10から系外に放流される。
(Membrane separation process)
The anammox treated water is then sent from the anammox treated water supply path 9 to the membrane separation device 4. The membrane separator 4 separates nitric acid, partially undecomposed organic matter, etc. generated in the anammox treatment in the anammox treated water, and the permeate is discharged out of the system from the permeate discharge channel 10.

膜分離装置4に備えられる膜としては、アナモックス処理水中のアナモックス処理において生成した硝酸や一部未分解の有機物などを除去できるものであれば特に限定されない。例えば、孔径と水中の除去対象物質の分子の大きさとによって分子レベルのふるい分けを行うUF膜(限外濾過膜)と、水は通すがイオンや低分子物質を通しにくい性質を有する半透膜であるRO膜(逆浸透膜)との組み合わせが挙げられる。   The membrane provided in the membrane separation device 4 is not particularly limited as long as it can remove nitric acid or partially undecomposed organic matter generated in the anammox treatment in the anammox treatment water. For example, a UF membrane (ultrafiltration membrane) that screens at the molecular level according to the pore size and the molecular size of the substance to be removed in water, and a semipermeable membrane that has the property of allowing water to pass but not allowing ions or low-molecular substances to pass through. The combination with a certain RO membrane (reverse osmosis membrane) is mentioned.

膜分離装置4において膜を透過した透過水は、系外に放流され、一方、硝酸や有機物を含む濃縮水は、濃縮水返送路11を通って嫌気的脱窒槽1に戻される。返送された濃縮水は、硝酸の供給源となり得る。   The permeated water that has passed through the membrane in the membrane separation device 4 is discharged out of the system, while the concentrated water containing nitric acid and organic matter is returned to the anaerobic denitrification tank 1 through the concentrated water return path 11. The returned concentrated water can be a source of nitric acid.

以下に、実施例を挙げて本発明を説明するが、本発明は以下の実施例に制限されない。なお、以下の実施例および比較例において、アンモニア態窒素、亜硝酸態窒素、硝酸態窒素、リン酸態リン、およびBODは、JIS−K0102に準じて測定した。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples. In the following Examples and Comparative Examples, ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, phosphate phosphorus, and BOD were measured according to JIS-K0102.

(実施例1)
畜産廃棄物(養豚業)のメタン発酵脱離水を対象として、図2に示す構成のシステムにおいて排水処理を行った。なお、以下に記載のように、メタン発酵脱離水を完全亜硝酸化槽に直接導入し、最初のみ嫌気的脱窒槽1への導入を省略した。
Example 1
The wastewater treatment was performed in the system shown in FIG. 2 for methane fermentation desorption water of livestock waste (pig farming). In addition, as described below, methane fermentation desorption water was directly introduced into the complete nitritation tank, and introduction into the anaerobic denitrification tank 1 was omitted only at the beginning.

畜産廃棄物(豚の糞尿)をメタン発酵処理(35℃、処理時間25日)した後、固液分離して得られた脱離水を処理した。脱離水の性状は、以下の表1に示すように、アンモニア態窒素が2,740mg/l、およびBODが3,770mg/lであった。このうち1.32容量部を完全亜硝酸化槽2に導入し、亜硝酸化処理した。亜硝酸化槽2の運転条件は、温度30℃、pH=7.5、滞留時間10時間とした。完全亜硝酸化処理水の性状を以下の表1に併せて示す。アンモニア態窒素が10mg/l、亜硝酸態窒素が2,730mg/l、およびBODが1,490mg/lであった。アンモニア態窒素は酸化されて、ほぼ100%が亜硝酸態窒素になっていた。   Livestock waste (pig excrement) was treated with methane fermentation (35 ° C., treatment time 25 days), and then the desorbed water obtained by solid-liquid separation was treated. The properties of the desorbed water were 2,740 mg / l for ammonia nitrogen and 3,770 mg / l for BOD as shown in Table 1 below. Of these, 1.32 parts by volume were introduced into the complete nitritation tank 2 and subjected to nitritation treatment. The operating conditions of the nitritation tank 2 were a temperature of 30 ° C., pH = 7.5, and a residence time of 10 hours. Properties of completely nitritized water are also shown in Table 1 below. The ammonia nitrogen was 10 mg / l, the nitrite nitrogen was 2,730 mg / l, and the BOD was 1,490 mg / l. Ammonia nitrogen was oxidized and almost 100% became nitrite nitrogen.

次いで、亜硝酸化処理水1.32容量部および脱離水1.00容量部をアナモックス処理槽3に導入し、温度30℃、pH=7.5、滞留時間8時間で運転した。アナモックス処理水の性状を以下の表1に併せて示す。アンモニア態窒素が5mg/l、亜硝酸態窒素が10mg/l、硝酸態窒素が300mg/l、およびBODが600mg/lであった。   Next, 1.32 parts by volume of nitrite-treated water and 1.00 parts by volume of desorbed water were introduced into the anammox treatment tank 3 and operated at a temperature of 30 ° C., pH = 7.5, and a residence time of 8 hours. Properties of anammox treated water are also shown in Table 1 below. Ammonia nitrogen was 5 mg / l, nitrite nitrogen was 10 mg / l, nitrate nitrogen was 300 mg / l, and BOD was 600 mg / l.

次いで、膜分離装置4(UF膜[日東電工株式会社NUT−3000,キャピラリー型]とRO膜[東レ株式会社SU−710,スパイラル型]との組み合わせ)により膜分離を行った。透過水および濃縮水の性状を、以下の表1に併せて示す。透過水には窒素成分は含まれておらず、放流基準を満たしていた。濃縮水には、アナモックス処理により生成した硝酸態窒素、ならびに分解できなかったアンモニア態窒素、亜硝酸態窒素、およびBOD成分が含まれていた。次いで、主として硝酸態窒素の分解を目的として、濃縮水を脱離水が導入されている嫌気性脱窒槽1に返送して、脱窒処理を行った。以降、同様の操作を繰り返した。   Subsequently, membrane separation was performed by a membrane separator 4 (a combination of a UF membrane [Nitto Denko Corporation NUT-3000, capillary type] and an RO membrane [Toray Industries, Inc. SU-710, spiral type]). The properties of permeated water and concentrated water are also shown in Table 1 below. The permeated water contained no nitrogen component and met the discharge standard. The concentrated water contained nitrate nitrogen produced by the anammox treatment and ammonia nitrogen, nitrite nitrogen, and BOD components that could not be decomposed. Next, mainly for the purpose of decomposing nitrate nitrogen, the concentrated water was returned to the anaerobic denitrification tank 1 into which the desorbed water was introduced, and denitrification treatment was performed. Thereafter, the same operation was repeated.

Figure 0004644107
Figure 0004644107

(比較例1)
上記実施例1と同様の畜産廃棄物のメタン発酵脱離水を用い、図1に示すような装置において従来の方法でアナモックス処理を行った。
(Comparative Example 1)
Using the methane fermentation desorption water of the livestock waste similar to Example 1, the anammox treatment was performed by the conventional method in the apparatus as shown in FIG.

脱離水を部分亜硝酸化槽に導入し、アンモニア酸化細菌によりアンモニアの亜硝酸化を行った。運転条件は、温度30℃、pH=7.5、滞留時間5時間とした。次いで、部分亜硝酸化処理水をアナモックス処理槽に導入し、温度30℃、pH=7.5、滞留時間8時間でアナモックス処理を行った。脱離水、部分亜硝酸化処理水、およびアナモックス処理水の性状を表2に示す。実施例1と比較して、処理水中のアンモニア態、亜硝酸態、および硝酸態窒素濃度が高く、放流するにはさらなる処理の必要があった。   Desorbed water was introduced into a partial nitritation tank, and ammonia was nitrified by ammonia oxidizing bacteria. The operating conditions were a temperature of 30 ° C., pH = 7.5, and a residence time of 5 hours. Next, partially nitritized water was introduced into the anammox treatment tank, and anammox treatment was performed at a temperature of 30 ° C., pH = 7.5, and a residence time of 8 hours. Table 2 shows the properties of the desorbed water, partially nitritized water, and anammox-treated water. Compared to Example 1, the ammonia, nitrite, and nitrate nitrogen concentrations in the treated water were high, and further treatment was required to discharge.

Figure 0004644107
Figure 0004644107

(実施例2)
食品廃棄物のメタン発酵脱離水を対象として、図2に示す構成のシステムにおいて排水処理を行った。
(Example 2)
The wastewater treatment was performed in the system having the configuration shown in FIG. 2 for methane fermentation desorption water of food waste.

食品廃棄物をメタン発酵処理(35℃、処理時間20日)した後、固液分離されて得られた脱離水を用いた。脱離水の性状は、以下の表3に示すように、アンモニア態窒素が1,440mg/l、およびBODが4,000mg/lであった。このうち1.32容量部を完全亜硝酸化槽2に導入し、亜硝酸化処理した。亜硝酸化槽2の運転条件は、温度30℃、pH=7.5、滞留時間10時間とした。完全亜硝酸化処理水の性状を以下の表3に併せて示す。アンモニア態窒素が5mg/l、亜硝酸態窒素が1,430mg/l、およびBODが1,600mg/lであった。アンモニア態窒素は酸化されて、ほぼ100%が亜硝酸態窒素になっていた。 The food waste was subjected to methane fermentation treatment (35 ° C., treatment time 20 days), and then desorbed water obtained by solid-liquid separation was used. The properties of the desorbed water were 1,440 mg / l for ammonia nitrogen and 4,000 mg / l for BOD as shown in Table 3 below. Of these, 1.32 parts by volume were introduced into the complete nitritation tank 2 and subjected to nitritation treatment. The operating conditions of the nitritation tank 2 were a temperature of 30 ° C., pH = 7.5, and a residence time of 10 hours. Properties of completely nitritized water are also shown in Table 3 below. The ammonia nitrogen was 5 mg / l, the nitrite nitrogen was 1,430 mg / l, and the BOD was 1,600 mg / l. Ammonia nitrogen was oxidized and almost 100% became nitrite nitrogen.

次いで、亜硝酸化処理水1.32容量部および脱離水1.00容量部をアナモックス処理槽3に導入し、温度30℃、pH=7.5、滞留時間8時間で運転した。アナモックス処理水の性状を以下の表3に併せて示す。アンモニア態窒素が10mg/l、亜硝酸態窒素が10mg/l、硝酸態窒素が160mg/l、およびBODが800mg/lであった。 Next, 1.32 parts by volume of nitrite-treated water and 1.00 parts by volume of desorbed water were introduced into the anammox treatment tank 3 and operated at a temperature of 30 ° C., pH = 7.5, and a residence time of 8 hours. Properties of anammox treated water are also shown in Table 3 below. The ammonia nitrogen was 10 mg / l, the nitrite nitrogen was 10 mg / l, the nitrate nitrogen was 160 mg / l, and the BOD was 800 mg / l.

次いで、膜分離装置4(UF膜[日東電工株式会社NUT−3000,キャピラリー型]とRO膜[東レ株式会社SU−710,スパイラル型]との組み合わせ)により膜分離を行った。透過水および濃縮水の性状を、以下の表3に併せて示す。透過水には窒素成分は含まれておらず、放流基準を満たしていた。濃縮水には、アナモックス処理により生成した硝酸態窒素、ならびに分解できなかったアンモニア態窒素、亜硝酸態窒素、およびBOD成分が含まれていた。次いで、主として硝酸態窒素の分解を目的として、濃縮水を脱離水が導入されている嫌気性脱窒槽1に返送して、脱窒処理を行った。   Subsequently, membrane separation was performed by a membrane separator 4 (a combination of a UF membrane [Nitto Denko Corporation NUT-3000, capillary type] and an RO membrane [Toray Industries, Inc. SU-710, spiral type]). The properties of the permeated water and the concentrated water are also shown in Table 3 below. The permeated water contained no nitrogen component and met the discharge standard. The concentrated water contained nitrate nitrogen produced by the anammox treatment and ammonia nitrogen, nitrite nitrogen, and BOD components that could not be decomposed. Next, mainly for the purpose of decomposing nitrate nitrogen, the concentrated water was returned to the anaerobic denitrification tank 1 into which the desorbed water was introduced, and denitrification treatment was performed.

Figure 0004644107
Figure 0004644107

(比較例2)
上記実施例2と同様の食品廃棄物のメタン発酵脱離水を用い、図1に示すような装置において従来の方法でアナモックス処理を行った。
(Comparative Example 2)
Using the same methane fermentation desorption water of food waste as in Example 2 above, anammox treatment was performed by a conventional method in an apparatus as shown in FIG.

脱離水を部分亜硝酸化槽に導入し、アンモニア酸化細菌によりアンモニアの亜硝酸化を行った。運転条件は、温度30℃、pH=7.5、滞留時間5時間とした。次いで、部分亜硝酸化処理水をアナモックス処理槽に導入し、温度30℃、pH=7.5、滞留時間8時間でアナモックス処理を行った。脱離水、部分亜硝酸化処理水、およびアナモックス処理水の性状を表4に示す。実施例2と比較して、処理水中のアンモニア態、亜硝酸態、および硝酸態窒素濃度が高く、放流するにはさらなるアンモニア除去処理の必要があった。   Desorbed water was introduced into a partial nitritation tank, and ammonia was nitrified by ammonia oxidizing bacteria. The operating conditions were a temperature of 30 ° C., pH = 7.5, and a residence time of 5 hours. Next, partially nitritized water was introduced into the anammox treatment tank, and anammox treatment was performed at a temperature of 30 ° C., pH = 7.5, and a residence time of 8 hours. Table 4 shows the properties of the desorbed water, partially nitritized water, and anammox-treated water. Compared to Example 2, the ammonia, nitrite, and nitrate nitrogen concentrations in the treated water were high, and further ammonia removal treatment was required to discharge.

Figure 0004644107
Figure 0004644107

本発明によれば、排水中のアンモニアを完全亜硝酸化槽で完全に亜硝酸化するため、アナモックス反応槽に導入するアンモニアを含む脱窒水の量と亜硝酸化水の量との比率を固定することができる。したがって、アナモックス処理における運転制御が容易である。また、アナモックス反応の副生成物である硝酸については、これを含む濃縮水を嫌気性脱窒槽に返送することにより、排水に含まれる有機物を使用して除去(脱窒)することができる。そのため、排水中の窒素濃度を効率よく低減できるだけでなく、メタノールなどの新たな有機物の投入の必要がないため汚泥発生量も少なくすることができる。このように、比較的小さい規模の設備でのアンモニア態窒素の除去が可能である。   According to the present invention, in order to completely nitrite the ammonia in the wastewater in the complete nitritation tank, the ratio between the amount of denitrified water containing ammonia introduced into the anammox reaction tank and the amount of nitrite water is Can be fixed. Therefore, operation control in the anammox process is easy. Moreover, about the nitric acid which is a by-product of an anammox reaction, it can remove (denitrify) using the organic substance contained in waste water by returning the concentrated water containing this to an anaerobic denitrification tank. Therefore, not only can the nitrogen concentration in the wastewater be efficiently reduced, but it is also possible to reduce the amount of sludge generated because there is no need to introduce new organic matter such as methanol. In this way, it is possible to remove ammonia nitrogen with a relatively small scale facility.

従来のアナモックス処理法に用いられる脱窒装置を示す系統図である。It is a systematic diagram which shows the denitrification apparatus used for the conventional anammox processing method. 本発明の排水処理システムを示す系統図である。It is a systematic diagram showing the waste water treatment system of the present invention.

符号の説明Explanation of symbols

1 嫌気脱窒槽
2 完全亜硝酸化槽
3 アナモックス処理槽
4 膜分離装置
5 排水供給路
6 脱窒水供給路
7 亜硝酸化水供給路
8 脱窒水バイパス路
9 アナモックス処理水供給路
10 透過水放流路
11 濃縮水返送路
12、13 ポンプ
14 ブロア
15 アンモニアセンサ
16、17 排ガス路
DESCRIPTION OF SYMBOLS 1 Anaerobic denitrification tank 2 Complete nitritation tank 3 Anammox treatment tank 4 Membrane separator 5 Drain supply path 6 Denitrification water supply path 7 Nitrite water supply path 8 Denitrification water bypass path 9 Anammox treated water supply path 10 Permeate Release channel 11 Concentrated water return channel 12, 13 Pump 14 Blower 15 Ammonia sensor 16, 17 Exhaust gas channel

Claims (4)

有機物およびアンモニア性窒素を含む排水を処理する方法であって、
該排水を嫌気性脱窒槽に導入して脱窒水を得る工程;
該脱窒水の一部を完全亜硝酸化槽に導入して亜硝酸化水を得る工程;
該脱窒水の他の一部および該亜硝酸化水をアナモックス処理槽に導入してアナモックス処理水を得る工程
該アナモックス処理水を膜分離装置で分離して透過水および濃縮水を得る工程;および
硝酸性窒素を含む該濃縮水を該嫌気性脱窒槽に返送する工程;
を含む、方法。
A method for treating waste water containing organic matter and ammonia nitrogen,
Introducing the waste water into an anaerobic denitrification tank to obtain denitrified water;
Introducing a part of the denitrification water into a complete nitritation tank to obtain nitritation water;
Introducing another part of the denitrified water and the nitrified water into an anammox treatment tank to obtain anammox treated water ;
Separating the anammox treated water with a membrane separator to obtain permeated water and concentrated water; and
Returning the concentrated water containing nitrate nitrogen to the anaerobic denitrification tank;
Including a method.
前記アナモックス処理槽に導入される前記脱窒水の一部の量と前記亜硝酸化水の量との比率が、40〜50:60〜50である、請求項1に記載の方法 The method according to claim 1, wherein a ratio of a part of the denitrified water introduced into the anammox treatment tank and a quantity of the nitrite water is 40 to 50:60 to 50 . 有機物およびアンモニア性窒素を含む排水を処理するための排水処理システムであって、
該排水が導入される嫌気性脱窒槽;
該嫌気性脱窒槽で得られた脱窒水の一部が導入される完全亜硝酸化槽;
該脱窒水の他の一部および該完全亜硝酸化槽で得られた亜硝酸化水が導入されるアナモックス処理槽
該アナモックス処理槽で得られたアナモックス処理水が導入される膜分離装置;および
該膜分離装置で分離された硝酸性窒素を含む濃縮水を該嫌気性脱窒槽に返送するための返送路;
を備える、排水処理システム。
A wastewater treatment system for treating wastewater containing organic matter and ammonia nitrogen,
Anaerobic denitrification tank into which the wastewater is introduced;
A complete nitritation tank into which a part of the denitrified water obtained in the anaerobic denitrification tank is introduced;
An anammox treatment tank into which another part of the denitrification water and the nitrite obtained in the complete nitritation tank are introduced ;
A membrane separator into which the anammox treated water obtained in the anammox treatment tank is introduced; and
A return path for returning concentrated water containing nitrate nitrogen separated by the membrane separator to the anaerobic denitrification tank;
Equipped with a wastewater treatment system.
前記アナモックス処理槽に導入される前記脱窒水の量と前記亜硝酸化水の量とを所定の比率で分配する装置をさらに備える、請求項に記載の排水処理システム。 The wastewater treatment system according to claim 3 , further comprising a device that distributes the amount of the denitrified water introduced into the anammox treatment tank and the amount of the nitrite water at a predetermined ratio.
JP2005351321A 2005-12-05 2005-12-05 Method for treating wastewater containing ammonia Expired - Fee Related JP4644107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005351321A JP4644107B2 (en) 2005-12-05 2005-12-05 Method for treating wastewater containing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005351321A JP4644107B2 (en) 2005-12-05 2005-12-05 Method for treating wastewater containing ammonia

Publications (2)

Publication Number Publication Date
JP2007152236A JP2007152236A (en) 2007-06-21
JP4644107B2 true JP4644107B2 (en) 2011-03-02

Family

ID=38237258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005351321A Expired - Fee Related JP4644107B2 (en) 2005-12-05 2005-12-05 Method for treating wastewater containing ammonia

Country Status (1)

Country Link
JP (1) JP4644107B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023485A (en) * 2006-07-24 2008-02-07 Japan Organo Co Ltd Biological denitrification method and apparatus therefor
JP5006849B2 (en) * 2008-07-10 2012-08-22 メタウォーター株式会社 Denitrification method of organic raw water by controlling nitrite type nitrification
JP5186420B2 (en) * 2009-03-12 2013-04-17 日鉄住金環境株式会社 Waste water treatment method and waste water treatment equipment
WO2013185350A1 (en) * 2012-06-15 2013-12-19 乐金电子研发中心(上海)有限公司 Internal-circulation aeration anammox-membrane bioreactor
KR101426361B1 (en) 2012-12-27 2014-08-08 (주)일신종합환경 Treatment system of wastewater containing ammonium nitrogen and nitrite nitrogen
CN105217786B (en) * 2015-10-25 2017-11-07 北京工业大学 Based on DEAMOX reinforcing improvement subsection water inflow As2The apparatus and method of/O technique biological carbon and phosphorous removals
KR101995350B1 (en) * 2017-10-24 2019-07-02 두산중공업 주식회사 Water treatment apparatus for removing nitrogen compounds
JP2019177333A (en) * 2018-03-30 2019-10-17 Jfeエンジニアリング株式会社 Method for methane fermentation of organic waste
KR102042971B1 (en) * 2019-06-24 2019-11-11 두산중공업 주식회사 Water treatment apparatus for removing nitrogen compounds
CN112142274A (en) * 2020-11-02 2020-12-29 天津城建大学 Municipal sewage treatment device adopting short-cut denitrification-anaerobic ammonia oxidation coupling double-membrane process
CN113582447A (en) * 2021-07-28 2021-11-02 江苏泷涛环境技术有限公司 High-concentration degradation-resistant organic wastewater treatment system
CN114149077B (en) * 2021-11-27 2023-02-14 浙江沃乐环境科技有限公司 Integrated wastewater synchronous denitrification and defluorination reactor device and use method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252690A (en) * 2000-03-09 2001-09-18 Kurita Water Ind Ltd Nitrite forming method
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2003154393A (en) * 2001-11-22 2003-05-27 Ebara Corp Biological method for removing nitrogen and apparatus therefor
JP2004275997A (en) * 2003-03-19 2004-10-07 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2005246135A (en) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2005305410A (en) * 2004-03-25 2005-11-04 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2005324133A (en) * 2004-05-14 2005-11-24 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for recovering microbial cell, microbial cell acclimating/culturing method and waste water treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252690A (en) * 2000-03-09 2001-09-18 Kurita Water Ind Ltd Nitrite forming method
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2003154393A (en) * 2001-11-22 2003-05-27 Ebara Corp Biological method for removing nitrogen and apparatus therefor
JP2004275997A (en) * 2003-03-19 2004-10-07 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2005246135A (en) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2005305410A (en) * 2004-03-25 2005-11-04 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2005324133A (en) * 2004-05-14 2005-11-24 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for recovering microbial cell, microbial cell acclimating/culturing method and waste water treatment apparatus

Also Published As

Publication number Publication date
JP2007152236A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4644107B2 (en) Method for treating wastewater containing ammonia
JP4632356B2 (en) Biological nitrogen removal method and system
JP2000015288A (en) Waste water treatment method and apparatus
JP5006845B2 (en) Method for suppressing generation of nitrous oxide
JP4882175B2 (en) Nitrification method
WO2013084973A1 (en) Processing system and processing method for nitrogen-containing organic waste water
JP2010063987A (en) Waste water treatment device and treatment method
JP2006325512A (en) Waste water-treating system
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP2005246135A (en) Method for biologically removing nitrogen
JP4302341B2 (en) Biological nitrogen removal method and apparatus
Park et al. Effects of fill modes on N2O emission from the SBR treating domestic wastewater
JP2003154394A (en) Biological denitrification method and apparatus
JP2003154393A (en) Biological method for removing nitrogen and apparatus therefor
JP3721871B2 (en) Production method of ultra pure water
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP4848144B2 (en) Waste water treatment equipment
WO2013084972A1 (en) Processing system and processing method for nitrogen-containing organic waste water
JP2003010883A (en) Nitration method of ammonia nitrogen-containing water
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JP4529277B2 (en) Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
US10947141B2 (en) Systems and methods for controlling denitrification in a denitrifying biological reactor
KR20200027629A (en) Wastewater treatment method and wastewater treatment system using reaction tank containing aerobic granular sludge
JP2001079593A (en) Removing method of nitrogen in waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101203

R150 Certificate of patent or registration of utility model

Ref document number: 4644107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees