JP2001079593A - Removing method of nitrogen in waste water - Google Patents

Removing method of nitrogen in waste water

Info

Publication number
JP2001079593A
JP2001079593A JP25968499A JP25968499A JP2001079593A JP 2001079593 A JP2001079593 A JP 2001079593A JP 25968499 A JP25968499 A JP 25968499A JP 25968499 A JP25968499 A JP 25968499A JP 2001079593 A JP2001079593 A JP 2001079593A
Authority
JP
Japan
Prior art keywords
nitrogen
bacteria
wastewater
tank
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25968499A
Other languages
Japanese (ja)
Other versions
JP3958900B2 (en
Inventor
Osamu Miki
理 三木
Toshiro Kato
敏朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25968499A priority Critical patent/JP3958900B2/en
Publication of JP2001079593A publication Critical patent/JP2001079593A/en
Application granted granted Critical
Publication of JP3958900B2 publication Critical patent/JP3958900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and stably remove nitrogen from waste water having >100 mg/l ammonia nitrogen concentration using autotrophic bacteria. SOLUTION: At the time of biologically denitrification from the waste water, nitrous nitrogen and nitrate nitrogen in the waste water are reduced into gaseous nitrogen to remove nitrogen from the waste water by using heterotrophic bacteria and sulfur oxidation bacteria in combination as the denitrification bacteria in an oxygen-free tank 2, an aerobic tank 3 for oxidizing ammonia to nitrous nitrogen and nitrate nitrogen with nitrification bacteria is provided in the poststage of the oxygen-free tank 2 and the treated water is circulated to the oxygen-free tank 2. It is preferable that the oxygen-free tank is provided in multistage to use the heterotrophic bacteria and the sulfur oxidation bacteria to segregate, the aerobic tank 3 is provided in multistage to use the nitrous bacteria and the nitrate bacteria of the nitrification bacteria to segregate and the water treated with the nitrous bacteria is circulated to the oxygen-free tank, where the sulfur oxidation bacteria is mainly existed, and the water treated with the nitrate bacteria is circulated to the oxygen-free tank, where the heterotrophic bacterial is mainly existed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、従属栄養細菌およ
び独立栄養細菌である硫黄酸化細菌と硝化細菌を用い
て、排水中に含まれる窒素化合物を効率的に除去する方
法に関する。
TECHNICAL FIELD The present invention relates to a method for efficiently removing nitrogen compounds contained in wastewater by using heterotrophic bacteria and autotrophic bacteria, sulfur oxidizing bacteria and nitrifying bacteria.

【0002】[0002]

【従来の技術】排水からの窒素の除去方法としては、生
物学的脱窒素方法が広く知られている。排水中の窒素の
形態としてはアンモニア性窒素の形で含有されることが
多い。特に高濃度のアンモニア性窒素を含有する排水
は、製鉄所コークス工場、屎尿、肥料工場、半導体工
場、皮革工場などから発生する。特に、製鉄所コークス
工場から発生するアンモニア性窒素含有排水は安水とも
呼ばれ、アンモニア性窒素を数百〜数千mg/l程度も
含有している。
2. Description of the Related Art As a method for removing nitrogen from wastewater, a biological denitrification method is widely known. The form of nitrogen in wastewater is often contained in the form of ammoniacal nitrogen. In particular, wastewater containing a high concentration of ammonia nitrogen is generated from a coke factory, a human waste, a fertilizer factory, a semiconductor factory, a leather factory, and the like. In particular, the wastewater containing ammonia nitrogen generated from a coke plant of an ironworks is also referred to as low water, and contains about several hundred to several thousand mg / l of ammonia nitrogen.

【0003】排水からのアンモニア性窒素の生物学的除
去方法としては、好気性独立栄養細菌(ニトロゾモナ
ス、ニトロバクター等の硝化細菌)による生物学的酸化
と通性嫌気性従属栄養細菌(シュードモナス等)による
生物学的還元の組み合わせから成る生物学的硝化−脱窒
素法が広く知見されている。
[0003] As a method for biologically removing ammonia nitrogen from wastewater, biological oxidation by aerobic autotrophic bacteria (nitrifying bacteria such as Nitrozomonas and Nitrobacter) and facultative anaerobic heterotrophic bacteria (Pseudomonas etc.) are known. The biological nitrification-denitrification process, which consists of a combination of biological reductions by A.

【0004】まず、硝化工程は以下の2段の反応から成
っており、関与する硝化細菌の種類は異なっている。
[0004] First, the nitrification process comprises the following two-stage reactions, and the types of nitrifying bacteria involved are different.

【0005】 2NH4 + + 3O2 → 2NO2 -+2H2O+4H+ (1)[0005] 2NH 4 + + 3O 2 → 2NO 2 - + 2H 2 O + 4H + (1)

【0006】 2NO2 - + O2 → 2NO3 - (2)2NO 2 + O 2 → 2NO 3 (2)

【0007】(1)式に示す反応は、ニトロゾモナスを
代表種とする亜硝酸菌によってもたらされ、(2)式に
示す反応は、ニトロバクターを代表種とする硝酸菌によ
ってもたらされる。
The reaction represented by the formula (1) is caused by nitrites represented by Nitrozomonas, and the reaction represented by the formula (2) is caused by nitrites represented by Nitrobacter.

【0008】上記反応によって生成した亜硝酸性窒素な
らびに硝酸性窒素は、一般的に通性嫌気性従属栄養細菌
を用い、無酸素の条件下で以下のように還元されて酸化
窒素ガス(N2O)あるいは窒素ガス(N2)となり、大
気中に放散される。
[0008] Nitrite nitrogen and nitrate nitrogen produced by the above reaction are reduced as follows under oxygen-free conditions using a facultative anaerobic heterotrophic bacterium, and nitric oxide gas (N 2 O) or nitrogen gas (N 2 ) and is released into the atmosphere.

【0009】 2NO2 - + 6H2 → N2 +2H2O+2OH- (3)2NO 2 + 6H 2 → N 2 + 2H 2 O + 2OH (3)

【0010】 2NO3 - +10H2 → N2 +4H2O+2OH- (4)2NO 3 + 10H 2 → N 2 + 4H 2 O + 2OH (4)

【0011】通性嫌気性従属栄養細菌は水素供与体が必
要であり、有機物が通常利用される。都市下水などでは
下水中の有機物がそのまま用いられ、有機物を含まない
排水ではメタノールなどが添加されることが多い。
A facultative anaerobic heterotrophic bacterium requires a hydrogen donor, and organic matter is usually used. In municipal sewage and the like, organic matter in sewage is used as it is, and in wastewater containing no organic matter, methanol or the like is often added.

【0012】この生物学的硝化−脱窒素法は、アンモニ
ア性窒素濃度が100mg/l以下の排水では最も安価
で安定した処理方法で広く用いられている。
This biological nitrification-denitrification method is widely used as the cheapest and stable treatment method for wastewater having an ammonia nitrogen concentration of 100 mg / l or less.

【0013】[0013]

【発明が解決しようとする課題】しかし、生物学的硝化
−脱窒素法は、アンモニア性窒素濃度が100mg/l
を超えると様々な課題が生じ、安定した処理が困難とな
る。すなわち、アンモニア性窒素濃度が100mg/l
を超えると、硝化工程において、アンモニア性窒素の酸
化が硝酸性窒素まで進行しないこと、すなわち、ニトロ
バクターが阻害を受け、処理水中の亜硝酸性窒素が蓄積
しやすいことが知見されている。この原因として、遊離
のアンモニウムイオンのニトロバクターへの阻害が知ら
れている。特に、pHが高いと遊離のアンモニウムイオ
ンが発生しやすい。
However, the biological nitrification-denitrification method has an ammonia nitrogen concentration of 100 mg / l.
When the number exceeds, various problems occur, and stable processing becomes difficult. That is, the ammonia nitrogen concentration is 100 mg / l.
It has been found that, when the temperature exceeds the limit, in the nitrification step, the oxidation of ammoniacal nitrogen does not proceed to nitrate nitrogen, that is, the nitrobacter is inhibited, and the nitrite nitrogen in the treated water tends to accumulate. As a cause of this, inhibition of free ammonium ions on nitrobacter is known. In particular, when the pH is high, free ammonium ions are easily generated.

【0014】亜硝酸性窒素は従属栄養細菌に対して毒性
が強く、処理水質が悪化しやすいことは広く知られてい
る(例えば、遠矢泰典、「下水道協会誌」、VOL7、
NO74、1970)。脱窒素に用いられている細菌
は、通常、従属栄養細菌であるから、蓄積した亜硝酸性
窒素によって脱窒素反応の進行に阻害が生ずる。脱窒素
反応の進行が停止すると、亜硝酸性窒素が処理水に流出
し、窒素規制をクリアできないばかりか、亜硝酸性窒素
起因のCOD(化学的酸素要求量)も増大してしまう。
It is widely known that nitrite nitrogen is highly toxic to heterotrophic bacteria and easily deteriorates the quality of treated water (for example, Yasunori Toya, "Sewerage Association Journal", Vol.
NO 74, 1970). Since the bacteria used for denitrification are usually heterotrophic bacteria, the accumulated nitrite nitrogen inhibits the progress of the denitrification reaction. When the progress of the denitrification reaction is stopped, nitrite nitrogen flows out into the treated water, and not only nitrogen regulation cannot be cleared, but also COD (chemical oxygen demand) due to nitrite nitrogen increases.

【0015】このようなことから、アンモニア性窒素濃
度が100mg/lを超えるような排水の場合、従来の
生物学的硝化−脱窒素法の適用は、かなり難しい。
[0015] For this reason, in the case of wastewater in which the concentration of ammonia nitrogen exceeds 100 mg / l, it is quite difficult to apply the conventional biological nitrification-denitrification method.

【0016】例えば、「鉄と鋼」,VOL82,No.
5,447−452,1996には、生物学的硝化−脱
窒素法のコークス炉排水への適用事例が報告されてお
り、特に、亜硝酸性窒素濃度を50mg/l以下にしな
ければならないとされている。用いている脱窒素細菌
は、メタノールを添加していることから、従属栄養細菌
である。
For example, “Iron and Steel”, VOL82, No.
No. 5,447-452, 1996 reports an application of a biological nitrification-denitrification method to coke oven effluent. In particular, it is required that the concentration of nitrite nitrogen be reduced to 50 mg / l or less. ing. The denitrifying bacteria used are heterotrophic bacteria because of the addition of methanol.

【0017】ところで、脱窒性能を有する細菌は、従属
栄養細菌に限らない。水素細菌や硫黄酸化細菌などの独
立栄養細菌も、酸素の無い状態で脱窒素機能を有するこ
とは広く知られている。これらの独立栄養細菌は、それ
ぞれ水素や還元性硫黄化合物を酸化した時に発生するエ
ネルギーと空気中の炭酸ガスから菌体を合成し増殖す
る。これらの細菌は、増殖速度が小さいことやフロック
形成能力が弱いこと等の理由から、脱窒素作用が知られ
ているものの脱窒素に用いられた事例はほとんどない。
Incidentally, the bacteria having the denitrifying performance are not limited to heterotrophic bacteria. It is widely known that autotrophic bacteria such as hydrogen bacteria and sulfur oxidizing bacteria also have a denitrification function in the absence of oxygen. These autotrophic bacteria synthesize and grow cells from the energy generated when hydrogen and reducing sulfur compounds are oxidized and carbon dioxide in the air, respectively. Although these bacteria are known to have a denitrifying effect because of their low growth rate and weak floc-forming ability, they have hardly been used for denitrification.

【0018】しかし、発明者らは、これらの独立栄養細
菌が亜硝酸性窒素に対し、従属栄養細菌と比較して極め
て強い耐性を有していることを知見した。すなわち、亜
硝酸性窒素濃度が2000mg/lに上昇しても、脱窒
素速度の低下は見られなかった。したがって、アンモニ
ア性窒素を高濃度に含む排水処理の場合、脱窒素用の細
菌としては独立栄養細菌を用いた方が処理の安定化をも
たらす(特願平11−117410号)。さらに、発明
者らは、独立栄養細菌の中でも、硫黄酸化細菌は、自己
造粒作用を有している場合もあるため、リアクターでの
高濃度化が容易で、処理の高効率化が可能であることを
知見している(特願平10−122719号)。
However, the inventors have found that these autotrophic bacteria have extremely strong resistance to nitrite nitrogen as compared to heterotrophic bacteria. That is, even if the nitrite nitrogen concentration increased to 2000 mg / l, no decrease in the denitrification rate was observed. Therefore, in the case of wastewater treatment containing a high concentration of ammonia nitrogen, the use of autotrophic bacteria as the bacteria for denitrification leads to more stable treatment (Japanese Patent Application No. 11-117410). Furthermore, among autotrophic bacteria, the sulfur oxidizing bacteria may have a self-granulating effect, so that the concentration can be easily increased in the reactor and the processing efficiency can be increased. (Japanese Patent Application No. 10-122719).

【0019】このように、亜硝酸性窒素に耐性のある独
立栄養細菌を用いることにより、従来は困難であった高
濃度のアンモニア性窒素を含有する排水の安定処理が可
能となる。
As described above, by using an autotrophic bacterium that is resistant to nitrite nitrogen, it is possible to stably treat wastewater containing a high concentration of ammonia nitrogen, which has been difficult in the past.

【0020】しかし、実際の排水中には、アンモニア性
窒素ばかりでなく、有機物および硫黄化合物が大量に含
まれる場合がある。例えばコークス工場排水は、有機物
としてフェノールを、硫黄化合物としてチオ硫酸、チオ
シアンを高濃度に含有している。このような場合、独立
栄養細菌単独で脱窒素することはできない。硫黄化合物
だけでなく、有機物が大量に存在しているからである。
有機物が大量に存在している場合、通常、従属栄養細菌
が優占種となってしまう。すなわち、無酸素槽において
は、呼吸源である硝酸性窒素をめぐり、従属栄養細菌と
硫黄酸化細菌の競合が生じるが、有機物が大量に存在す
る場合は、硫黄酸化細菌の増殖に阻害が生じるため、こ
の両者をうまく制御する必要がある。
However, actual wastewater sometimes contains a large amount of not only ammonia nitrogen but also organic substances and sulfur compounds. For example, coke plant effluent contains high concentrations of phenol as an organic substance and thiosulfuric acid and thiocyan as sulfur compounds. In such a case, autotrophic bacteria alone cannot be denitrified. This is because not only sulfur compounds but also organic substances are present in large amounts.
When large amounts of organic matter are present, heterotrophic bacteria usually become the dominant species. In other words, in anoxic tanks, competition between heterotrophic bacteria and sulfur oxidizing bacteria occurs over nitrate nitrogen, which is a respiratory source, but when large amounts of organic matter are present, growth of sulfur oxidizing bacteria is inhibited. It is necessary to control both well.

【0021】さらに、好気槽においても、呼吸源である
酸素をめぐり、従属栄養細菌と独立栄養細菌である硝化
細菌、あるいは亜硝酸菌と硝酸菌の競合が生じるため、
この両者の反応もうまく制御する必要がある。
Furthermore, even in an aerobic tank, competition between heterotrophic bacteria and autotrophic bacteria nitrifying bacteria, or nitrite bacteria and nitrate bacteria occurs over oxygen as a respiratory source.
The reaction between the two also needs to be well controlled.

【0022】本発明は、上記課題を解決するものであ
る。
The present invention solves the above problems.

【0023】[0023]

【課題を解決するための手段】本発明の要旨は、次の
(1)〜(11)である。
The gist of the present invention is the following (1) to (11).

【0024】(1)排水からの生物学的脱窒素方法にお
いて、無酸素槽にて有機物および硫黄化合物を用い、硫
黄酸化細菌により排水中の亜硝酸性窒素および硝酸性窒
素を窒素ガスに還元して排水から窒素を除去することを
特徴とする排水からの窒素の除去方法。
(1) In a method of biologically removing nitrogen from wastewater, nitrate nitrogen and nitrate nitrogen in wastewater are reduced to nitrogen gas by sulfur-oxidizing bacteria using organic substances and sulfur compounds in an oxygen-free tank. A method for removing nitrogen from wastewater, comprising removing nitrogen from the wastewater.

【0025】(2)無酸素槽において、従属栄養細菌お
よび硫黄酸化細菌を併用することを特徴とする前記
(1)の排水からの窒素の除去方法。
(2) The method for removing nitrogen from wastewater according to (1), wherein heterotrophic bacteria and sulfur-oxidizing bacteria are used in combination in an anoxic tank.

【0026】(3)無酸素槽を多段として、従属栄養細
菌と硫黄酸化細菌を棲み分けて用いることを特徴とする
前記(2)の排水からの窒素の除去方法。
(3) The method for removing nitrogen from wastewater according to (2), wherein heterotrophic bacteria and sulfur-oxidizing bacteria are used separately by using a multi-stage anoxic tank.

【0027】(4)無酸素槽の後段に、硝化細菌により
アンモニア性窒素を亜硝酸性窒素および硝酸性窒素に酸
化する好気槽を設け、この処理水を無酸素槽に循環する
ことを特徴とする前記(1)〜(3)のいずれかの排水
からの窒素の除去方法。
(4) An aerobic tank for oxidizing ammonia nitrogen to nitrite nitrogen and nitrate nitrogen by nitrifying bacteria is provided downstream of the anoxic tank, and this treated water is circulated to the anoxic tank. The method for removing nitrogen from wastewater according to any one of the above (1) to (3).

【0028】(5)好気槽を多段として、硝化細菌であ
る亜硝酸菌と硝酸菌を棲み分けて用いることを特徴とす
る前記(4)の排水からの窒素の除去方法。
(5) The method for removing nitrogen from wastewater according to the above (4), wherein nitrifying bacteria and nitrifying bacteria, which are nitrifying bacteria, are used separately in a multistage aerobic tank.

【0029】(6)亜硝酸菌による処理水を硫黄酸化細
菌主体の無酸素槽に循環し、硝酸菌による処理水を従属
栄養細菌主体の無酸素槽に循環することを特徴とする前
記(5)の排水からの窒素の除去方法。
(6) The water treated by nitrite is circulated to an anoxic tank mainly containing sulfur oxidizing bacteria, and the water treated by nitric acid is circulated to an anoxic tank mainly containing heterotrophic bacteria. ) Method for removing nitrogen from wastewater.

【0030】(7)前記(4)〜(6)のいずれかの方
法による処理水をさらに好気槽に通水し、亜硝酸菌およ
び硝酸菌により、残留するアンモニア性窒素および亜硝
酸性窒素を硝酸性窒素まで完全に酸化することを特徴と
する排水からの窒素の除去方法。
(7) The treated water according to any of the above (4) to (6) is further passed through an aerobic tank, and the remaining ammoniacal nitrogen and nitrite nitrogen are removed by nitrite and nitrate. A method for removing nitrogen from wastewater, wherein the nitrogen is completely oxidized to nitrate nitrogen.

【0031】(8)前記(4)〜(7)のいずれかの方
法による処理水を、従属栄養細菌を主体とする無酸素槽
または硫黄酸化細菌を主体とする無酸素槽に通水し、残
留する亜硝酸性窒素および硝酸性窒素を窒素まで還元す
ることを特徴とする排水からの窒素の除去方法。
(8) The treated water according to any one of the above (4) to (7) is passed through an anoxic tank mainly containing heterotrophic bacteria or an anoxic tank mainly containing sulfur oxidizing bacteria. A method for removing nitrogen from wastewater, comprising reducing residual nitrite nitrogen and nitrate nitrogen to nitrogen.

【0032】(9)硫黄酸化細菌として、造粒させた硫
黄酸化細菌または自己造粒作用を有する硫黄酸化細菌を
用いることを特徴とする前記(1)〜(8)のいずれか
の排水からの窒素の除去方法。
(9) A granulated sulfur oxidizing bacterium or a sulfur oxidizing bacterium having a self-granulating action is used as the sulfur oxidizing bacterium according to any one of the above (1) to (8). How to remove nitrogen.

【0033】(10)無酸素槽および/または好気槽に
膜分離装置またはろ過装置を設置することを特徴とする
前記(1)〜(9)のいずれかの排水からの窒素の除去
方法。
(10) The method for removing nitrogen from wastewater according to any one of the above (1) to (9), wherein a membrane separation device or a filtration device is installed in the anoxic tank and / or the aerobic tank.

【0034】(11)無酸素槽および/または好気槽に
微生物固定化担体を投入することを特徴とする前記
(1)〜(10)のいずれかの排水からの窒素の除去方
法。
(11) The method for removing nitrogen from wastewater according to any one of (1) to (10), wherein the microorganism-immobilized carrier is put into an anoxic tank and / or an aerobic tank.

【0035】[0035]

【発明の実施の形態】本発明の処理フローを図1に、各
槽の機能を表1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the processing flow of the present invention, and Table 1 shows the function of each tank.

【0036】[0036]

【表1】 [Table 1]

【0037】まず、無酸素槽1では、好気槽4で生成し
た硝酸性窒素を従属栄養細菌を用いて次式のように窒素
ガスまで還元する。窒素の形態としては、大半が硝酸性
窒素となっているため、従属栄養細菌への阻害が少な
い。この状況下では、従属栄養細菌は硫黄酸化細菌より
もはるかに増殖速度が大きいため、従属栄養細菌による
脱窒素が主体となる。
First, in the anoxic tank 1, the nitrate nitrogen generated in the aerobic tank 4 is reduced to nitrogen gas using a heterotrophic bacterium as shown in the following equation. As the form of nitrogen is mostly nitrate nitrogen, there is little inhibition on heterotrophic bacteria. In this situation, heterotrophic bacteria have a much higher growth rate than sulfur-oxidizing bacteria, and thus mainly denitrify by heterotrophic bacteria.

【0038】 2NO3 - +10H2 → N2 +4H2O+2OH- 2NO 3 + 10H 2 → N 2 + 4H 2 O + 2OH

【0039】次に、無酸素槽2では、好気槽3で生成し
た亜硝酸性窒素を硫黄酸化細菌を用いて次式のように窒
素ガスまで還元する。自己造粒した硫黄酸化細菌を用い
ることが望ましいが、硫黄酸化細菌のかわりに水素細菌
を用いてもかまわない。窒素の形態としては、大半が亜
硝酸性窒素となっているため、従属栄養細菌は生育が困
難である。この状況下では、亜硝酸性窒素に耐性のある
硫黄酸化細菌が優占種となり、硫黄酸化細菌による脱窒
素が主体となる。硫黄源が不足する場合や都市下水など
のようにほとんど硫黄を含まない排水の場合は、チオ硫
酸、硫黄粒などの硫黄源を添加すればよい。排水中の硫
黄と窒素の重量比率(以下、S/N比という)が3.5
以上になるように添加することが望ましい。
Next, in the anoxic tank 2, the nitrite nitrogen generated in the aerobic tank 3 is reduced to nitrogen gas using sulfur oxidizing bacteria as in the following equation. It is desirable to use self-granulated sulfur oxidizing bacteria, but hydrogen bacteria may be used instead of sulfur oxidizing bacteria. As the form of nitrogen is mostly nitrite nitrogen, heterotrophic bacteria are difficult to grow. In this situation, sulfur oxidizing bacteria resistant to nitrite nitrogen become the dominant species, and denitrification by sulfur oxidizing bacteria is dominant. In the case where the sulfur source is insufficient, or in the case of wastewater containing almost no sulfur such as municipal sewage, a sulfur source such as thiosulfuric acid and sulfur particles may be added. The weight ratio of sulfur to nitrogen in the wastewater (hereinafter referred to as S / N ratio) is 3.5
It is desirable to add so that it becomes above.

【0040】 2NO2 - + 6H2 → N2 +2H2O+2OH- 2NO 2 + 6H 2 → N 2 + 2H 2 O + 2OH

【0041】なお、無酸素槽1と無酸素槽2は、排水の
有機物濃度が低い場合は、1つの槽としてもかまわない
ことも新たに知見した。具体的には、排水中の有機物の
指標であるBODと窒素の重量比率(以下、BOD/N
比という)が1以下の場合、1槽としてもかまわない。
なお、この場合において、S/N比は3.5以上あるこ
とが望ましい。このような条件下では、従属栄養細菌も
ある程度存在が可能であるが、返送される亜硝酸性窒素
のため脱窒素機能が大幅に低下しているため、主として
硫黄酸化細菌によって脱窒素反応が進行する。さらに、
この程度の有機物が存在すると、浮遊性有機物に硫黄酸
化細菌が付着したり、わずかに存在する従属栄養細菌か
ら発生する高分子物質により、硫黄酸化細菌の凝集性が
高まり、硫黄酸化細菌の高濃度化が容易となる利点があ
ることがわかった。したがって、排水中にある程度の有
機物濃度があることは硫黄酸化細菌にとって望ましいこ
とである。例えば、都市下水の活性汚泥処理水はBO
D:20mg/l以下と有機物濃度が低く、BOD/N
比が0.4〜1程度であるから、硫黄酸化細菌による1
槽処理が可能である。また、排水中に全く有機物が含ま
れていない場合、このまま硫黄酸化細菌による処理も可
能であるが、メタノールや酢酸等の有機化合物をBOD
/N比が0.1〜1程度となるように添加することが望
ましい。
It was newly found that the oxygen-free tank 1 and the oxygen-free tank 2 may be used as one tank when the concentration of organic matter in the wastewater is low. Specifically, the weight ratio of BOD to nitrogen (hereinafter referred to as BOD / N
When the ratio is 1 or less, it may be one tank.
In this case, the S / N ratio is desirably 3.5 or more. Under these conditions, heterotrophic bacteria can be present to some extent, but since the nitrite nitrogen is returned, the denitrification function is greatly reduced, and the denitrification reaction proceeds mainly by sulfur-oxidizing bacteria. I do. further,
When such organic matter is present, sulfur-oxidizing bacteria adhere to the planktonic organic matter, and macromolecules generated from slightly existing heterotrophic bacteria increase the cohesiveness of the sulfur-oxidizing bacteria and increase the concentration of sulfur-oxidizing bacteria. It has been found that there is an advantage that the conversion becomes easy. It is therefore desirable for sulfur oxidizing bacteria to have some organic matter concentration in the wastewater. For example, activated sludge treated water of municipal sewage is BO
D: Organic matter concentration as low as 20 mg / l or less, BOD / N
Since the ratio is about 0.4 to 1, 1
Tank treatment is possible. In addition, when no organic matter is contained in the wastewater, treatment with sulfur-oxidizing bacteria is possible as it is, but organic compounds such as methanol and acetic acid can be treated with BOD.
It is desirable to add such that the / N ratio becomes about 0.1 to 1.

【0042】次に、好気槽3では、亜硝酸菌により次式
のようにアンモニア性窒素を亜硝酸性窒素まで酸化す
る。処理水には亜硝酸が主体で蓄積しており、この処理
水を無酸素槽2に循環する。
Next, in the aerobic tank 3, ammonium nitrate is oxidized by nitrite to nitrite nitrogen as shown in the following formula. Nitrite is mainly accumulated in the treated water, and the treated water is circulated to the oxygen-free tank 2.

【0043】 2NH4 + + 3O2 → 2NO2 -+2H2O+4H+ 2NH 4 + + 3O 2 → 2NO 2 + 2H 2 O + 4H +

【0044】さらに、好気槽4では、硝酸菌により次式
のように亜硝酸性窒素を硝酸性窒素まで酸化する。処理
水には硝酸が主体で蓄積しており、この処理水を無酸素
槽1に循環する。
Further, in the aerobic tank 4, nitrite nitrogen is oxidized to nitrate nitrogen by a nitric acid bacterium as shown in the following formula. Nitric acid is mainly accumulated in the treated water, and the treated water is circulated to the oxygen-free tank 1.

【0045】2NO2 - + O2 → 2NO3 - [0045] 2NO 2 - + O 2 → 2NO 3 -

【0046】このように、脱窒素工程において、亜硝酸
性窒素に耐性のある独立栄養細菌を併用して亜硝酸性窒
素を還元して窒素ガスにする方法を用いると、硝化工程
において、必ずしも亜硝酸性窒素を完全に硝酸性窒素ま
で酸化する必要が無くなり、従来の生物学的硝化−脱窒
素法と比較して、反応槽の処理時間の短縮や維持管理が
容易となる。
As described above, in the denitrification step, if the method of reducing nitrite nitrogen to nitrogen gas by using an autotrophic bacterium resistant to nitrite nitrogen is used, the nitrite step is not necessarily required. There is no need to completely oxidize nitrate nitrogen to nitrate nitrogen, which makes it easier to shorten the processing time and maintain the reactor compared to the conventional biological nitrification-denitrification method.

【0047】なお、先にも述べたように、排水のBOD
/N比が1以下の場合は、無酸素槽が1つの場合があ
る。このような場合、硫黄酸化細菌によって脱窒素反応
が進行するため、好気槽も1つでかまわない。
As described above, the BOD of wastewater
When the / N ratio is 1 or less, there may be one oxygen-free tank. In such a case, a single aerobic tank may be used because the denitrification reaction proceeds by the sulfur-oxidizing bacteria.

【0048】さらに、排水の窒素の形態がアンモニア性
窒素ではなく、高濃度の亜硝酸性窒素および/または硝
酸性窒素の場合、好気槽3および好気槽4は必要ない。
この場合、硫黄酸化細菌を単独で用いる無酸素槽2で処
理することが望ましい。
Furthermore, if the form of nitrogen in the wastewater is not ammoniacal nitrogen but a high concentration of nitrite nitrogen and / or nitrate nitrogen, the aerobic tanks 3 and 4 are not required.
In this case, it is desirable to treat in an anoxic tank 2 using sulfur oxidizing bacteria alone.

【0049】さらに、先に述べた方法では循環方式を採
用しているため、循環総量を原水量の4倍とっても最大
窒素除去率は75%程度である。したがって、さらに除
去率をあげる必要がある場合は、以下のように処理す
る。すなわち、処理水6中の窒素が亜硝酸性窒素および
硝酸性窒素の場合には、無酸素槽8と残留有機物や硫黄
化合物の除去のための好気槽9を設置すればよい。処理
水6中にアンモニア性窒素が残留している場合には、図
1に示したように、好気槽7と無酸素槽8と好気槽9を
設置すればよい。
Further, since the circulation method is employed in the above-described method, the maximum nitrogen removal rate is about 75% even if the total circulation amount is four times the raw water amount. Therefore, if it is necessary to further increase the removal rate, the following processing is performed. That is, when the nitrogen in the treated water 6 is nitrite nitrogen and nitrate nitrogen, an anoxic tank 8 and an aerobic tank 9 for removing residual organic substances and sulfur compounds may be provided. When ammoniacal nitrogen remains in the treated water 6, an aerobic tank 7, an anoxic tank 8, and an aerobic tank 9 may be installed as shown in FIG.

【0050】また、各槽での細菌濃度を高めるために、
自己造粒作用を有する硫黄酸化細菌または凝集剤を併用
して造粒させた硫黄酸化細菌を用いることが好ましい。
さらに、各槽にプラスチックス、セラミックス、スラ
グ、ゲル等の微生物固定化担体を投入して各槽の微生物
を高濃度化することにより、一層の高効率処理が可能と
なる。無酸素槽1、2、好気槽3、4の内部に膜分離装
置を設置したり、各層の出口近辺にろ過装置を設置する
ことにより、それぞれの微生物を高濃度化し、一層の高
効率処理を図ることも可能である。沈殿池5の代わり
に、膜分離装置または濾過装置を設置することもでき
る。
In order to increase the bacterial concentration in each tank,
It is preferable to use a sulfur-oxidizing bacterium having a self-granulating action or a sulfur-oxidizing bacterium granulated in combination with a flocculant.
In addition, a microorganism-immobilized carrier such as plastics, ceramics, slag, and gel is charged into each tank to increase the concentration of microorganisms in each tank, so that more efficient treatment can be performed. By installing a membrane separation device inside the anoxic tanks 1 and 2 and the aerobic tanks 3 and 4 and installing a filtration device near the outlet of each layer, the concentration of each microorganism is increased, and further high-efficiency treatment is performed. It is also possible to plan. Instead of the sedimentation basin 5, a membrane separation device or a filtration device can be installed.

【0051】[0051]

【実施例】本発明の方法を、製鉄所コークス工場から発
生する安水からの有機物および窒素除去に適用した。
EXAMPLE The method of the present invention was applied to the removal of organic matter and nitrogen from low-temperature water generated from a steelmaking coke plant.

【0052】安水はフェノールが主体の排水であるが、
アンモニア性窒素も大量に含んでいるため、アンモニア
ストリッピングによりアンモニア性窒素を90%程度除
去した後、海水および/または淡水により3〜5倍程度
に希釈し、活性汚泥法によりフェノールを中心に分解除
去していた。このような安水活性汚泥処理水は、活性汚
泥によってフェノール等の有機物は除去されているもの
の、アンモニア性窒素はほとんど除去されず、300〜
1000mg/l程度含有していることが多い。
[0052] Ansui is a wastewater mainly composed of phenol.
Since ammonia nitrogen is contained in a large amount, about 90% of ammonia nitrogen is removed by ammonia stripping, and then diluted about 3 to 5 times with seawater and / or fresh water. Had been removed. In such a treated water with activated sludge, although organic substances such as phenol are removed by activated sludge, ammonia nitrogen is hardly removed and 300 to
It often contains about 1000 mg / l.

【0053】希釈後の安水を対象として、本発明法を適
用した。供給原水の性状を表2に示す。
The method of the present invention was applied to the diluted water. Table 2 shows the properties of the feed water.

【0054】[0054]

【表2】 [Table 2]

【0055】図1の好気槽3でアンモニア性窒素を亜硝
酸性窒素まで酸化するため、以下の運転条件で運転し
た。好気槽3に浮遊性の円筒型プラスチックス担体(内
径:3mm;長さ4mm)を脱窒槽容積あたり15%投
入し、亜硝酸菌を付着させた。硫酸および水酸化ナトリ
ウムによってpHを7.5〜8.5に制御するととも
に、空気および/または酸素によりDOを2mg/l以
上、ORPを+150mV(銀/塩化銀基準)以上に維
持するように運転した。HRT(水理学的滞留時間)が
12時間(アンモニア性窒素容積負荷が1.6kg−N
/m3・日)の条件で、アンモニア性窒素(800mg
/l)は70%が亜硝酸性窒素に、20%が硝酸性窒素
となり、アンモニア性窒素も10%残留した。本液を原
水量に対して3倍量、無酸素槽2に循環した。
In order to oxidize ammonia nitrogen to nitrite nitrogen in the aerobic tank 3 shown in FIG. 1, operation was carried out under the following operating conditions. A floating cylindrical plastics carrier (inner diameter: 3 mm; length: 4 mm) was charged into the aerobic tank 3 at 15% per volume of the denitrification tank, and nitrite was allowed to adhere. The pH is controlled to 7.5 to 8.5 by sulfuric acid and sodium hydroxide, and the operation is performed by air and / or oxygen to maintain DO at 2 mg / l or more and ORP at +150 mV (silver / silver chloride standard) or more. did. HRT (hydraulic residence time) is 12 hours (ammonia nitrogen volume load is 1.6 kg-N
/ M 3 · day) under ammonia nitrogen (800 mg
In (l), 70% was in nitrite nitrogen, 20% was in nitrate nitrogen, and 10% of ammonia nitrogen remained. This solution was circulated to the oxygen-free tank 2 in an amount three times the amount of the raw water.

【0056】無酸素槽2には自己造粒させた硫黄酸化細
菌を投入した。硫黄源11として、排水中のチオ硫酸と
合算してチオ硫酸が硫黄として亜硝酸性窒素の3.5倍
量になるように添加した。硫酸および水酸化ナトリウム
によってpHを7〜8に制御するとともに、HRTが2
時間(亜硝酸性窒素の容積負荷が11kg−N/m3
日)の条件で運転した。ここで75%の除去率が得ら
れ、総窒素濃度は200mg/lとなった。余分な硫黄
化合物が好気槽3に流入するのを防ぐため、無酸素槽2
のORPを−200mV(銀/塩化銀基準)程度に維持
するよう、空気および/または酸素を間欠的に供給し
た。
The anoxic tank 2 was charged with self-granulated sulfur-oxidizing bacteria. As the sulfur source 11, thiosulfuric acid in the wastewater was added so that the total amount of thiosulfuric acid was 3.5 times the amount of nitrite nitrogen as sulfur. The pH is controlled to 7 to 8 with sulfuric acid and sodium hydroxide, and the HRT is 2
Time (volume loading of nitrite nitrogen is 11kg-N / m 3 ·
Day). Here, a removal rate of 75% was obtained, and the total nitrogen concentration was 200 mg / l. In order to prevent excess sulfur compounds from flowing into the aerobic tank 3, the oxygen-free tank 2
And / or oxygen was supplied intermittently to maintain the ORP of about -200 mV (based on silver / silver chloride).

【0057】好気槽4では、亜硝酸性窒素を硝酸性窒素
まで酸化するために以下の運転条件で運転した。好気槽
4にも浮遊性の円筒型プラスチックス担体(内径:3m
m;長さ4mm)を脱窒槽容積あたり15%投入し、硝
化菌を付着させた。硫酸および水酸化ナトリウムによっ
てpHを7〜8に制御するとともに、空気および/また
は酸素によりDOを2mg/l以上、ORPを+200
mV(銀/塩化銀基準)以上に維持するように運転し
た。HRTが6時間(窒素容積負荷が0.8kg−N/
3・日)で、窒素(200mg/l)は95%が硝酸
性窒素となった。亜硝酸性窒素は10mg/l程度であ
り、この程度では従属栄養細菌の阻害は生じない。本液
を原水量に対して3倍量、無酸素槽1に循環した。
The aerobic tank 4 was operated under the following operating conditions to oxidize nitrite nitrogen to nitrate nitrogen. Floating cylindrical plastics carrier (inner diameter: 3m)
m; 4 mm in length) was added at 15% per denitrification tank volume, and nitrifying bacteria were attached. The pH is controlled to 7 to 8 by sulfuric acid and sodium hydroxide, DO is 2 mg / l or more, and ORP is +200 by air and / or oxygen.
The operation was performed so as to maintain mV (based on silver / silver chloride). HRT for 6 hours (nitrogen volume load is 0.8kg-N /
m 3 · day), 95% of nitrogen (200 mg / l) became nitrate nitrogen. The amount of nitrite nitrogen is about 10 mg / l, at which level no inhibition of heterotrophic bacteria occurs. This solution was circulated to the oxygen-free tank 1 in an amount three times the amount of the raw water.

【0058】無酸素槽1には、下水の活性汚泥などの従
属栄養細菌を投入した。硫酸および水酸化ナトリウムに
よってpHを7〜8に制御するとともに、HRTが4時
間(硝酸性窒素の容積負荷が1.2kg−N/m3
日)の条件で運転した。ここで75%の除去率が得ら
れ、総窒素濃度は50mg/lとなった。余分な有機物
が無酸素槽2に流入するのを防ぐため、無酸素槽1のO
RPを−200mV(銀/塩化銀基準)程度に維持する
よう、空気および/または酸素を間欠的に供給した。
Into the anoxic tank 1, heterotrophic bacteria such as activated sludge of sewage were charged. The pH is controlled to 7 to 8 with sulfuric acid and sodium hydroxide, and the HRT is maintained for 4 hours (the volumetric load of nitrate nitrogen is 1.2 kg-N / m 3 ···
Day). Here, a removal rate of 75% was obtained, and the total nitrogen concentration was 50 mg / l. In order to prevent excess organic matter from flowing into the anaerobic tank 2, the O
Air and / or oxygen were intermittently supplied to maintain the RP at about -200 mV (based on silver / silver chloride).

【0059】好気槽4の後段には沈殿池5を設置し、微
生物と処理水6を分離し、沈殿濃縮した微生物群は無酸
素槽1に返送した。
A sedimentation basin 5 was installed at the subsequent stage of the aerobic tank 4, and the microorganisms and the treated water 6 were separated. The microorganisms precipitated and concentrated were returned to the anoxic tank 1.

【0060】窒素放流基準が平均60mg/lの場合、
ここまでの処理で十分である。しかし、さらにより高度
な水質が求められる場合は、以下の工程を加えた。
When the nitrogen release standard is 60 mg / l on average,
The processing up to this point is sufficient. However, if even higher water quality was required, the following steps were added.

【0061】処理水6を、後段にサドル型のセラミック
ス(サイズ:1インチ)を好気槽容量あたり70%充填
した好気槽7に通水した。硫酸および水酸化ナトリウム
によってpHを7〜8に制御するとともに、空気および
/または酸素によりDOを2mg/l以上、ORPを+
200mV(銀/塩化銀基準)以上に維持するように運
転した。HRTが1時間で、窒素(50mg/l)は完
全に硝酸性窒素となった。
The treated water 6 was passed through an aerobic tank 7 in which a saddle-type ceramic (size: 1 inch) was filled 70% per aerobic tank capacity in the latter stage. The pH is controlled to 7 to 8 by sulfuric acid and sodium hydroxide, DO is 2 mg / l or more, and ORP is ++ by air and / or oxygen.
The operation was performed so as to maintain 200 mV (based on silver / silver chloride). At an HRT of 1 hour, the nitrogen (50 mg / l) was completely turned into nitrate nitrogen.

【0062】さらに、無酸素槽8には硫黄酸化細菌を投
入し、硫黄源11としてチオ硫酸を硫黄として残留窒素
の3倍量添加し、上向流れで通水した。無酸素槽8の上
部には、浮遊性の円筒型プラスチックス担体(内径:3
mm;長さ4mm)を無酸素槽8の容積あたり25%投
入した。また、無酸素槽8の下部中央に水中攪拌機を設
置し、常時攪拌することにより、プラスチックス担体に
浮上した硫黄酸化細菌が固着することを防止した。硫酸
および水酸化ナトリウムによってpHを7〜8に制御す
るとともに、HRTが1時間(窒素容積負荷が1.2k
g−N/m3・日)の条件で運転したが、処理水中の窒
素濃度は5mg/l以下となった。
Further, a sulfur-oxidizing bacterium was introduced into the anoxic tank 8, thiosulfuric acid was added as a sulfur source 11 in the amount of three times the amount of residual nitrogen as sulfur, and water was passed in an upward flow. Above the oxygen-free tank 8, a floating cylindrical plastic carrier (inner diameter: 3
mm; length 4 mm) was charged at 25% per volume of the oxygen-free tank 8. In addition, an underwater stirrer was installed at the center of the lower part of the anoxic tank 8 to constantly stir to prevent the sulfur-oxidizing bacteria floating on the plastics carrier from sticking. The pH is controlled to 7 to 8 with sulfuric acid and sodium hydroxide, and the HRT is set for 1 hour (nitrogen volume load is 1.2 k
g-N / m 3 · day), but the nitrogen concentration in the treated water became 5 mg / l or less.

【0063】さらに、処理水中に残留するチオ硫酸は、
好気槽9において硫酸イオンまで酸化した。好気槽9に
は好気性硫黄酸化細菌を投入し、曝気によって溶存酸素
を2mg/l以上に維持した。HRT1時間でチオ硫酸
は硫酸イオンまで完全に酸化され、BODも20mg/
l以下となった。
Further, thiosulfuric acid remaining in the treated water is:
In the aerobic tank 9, it was oxidized to sulfate ions. The aerobic tank 9 was charged with aerobic sulfur-oxidizing bacteria, and the dissolved oxygen was maintained at 2 mg / l or more by aeration. Thiosulfuric acid was completely oxidized to sulfate ions in 1 hour of HRT, and BOD was 20 mg /
1 or less.

【0064】以上の方法により、最終処理水10のBO
Dは20mg/l以下、窒素は5mg/l以下となっ
た。
By the above method, the BO of the final treated water 10
D was 20 mg / l or less, and nitrogen was 5 mg / l or less.

【0065】[0065]

【発明の効果】本発明により、有機物とアンモニア性窒
素を高濃度に含有する排水から、安定した窒素除去が可
能となる。
According to the present invention, stable removal of nitrogen from wastewater containing high concentrations of organic substances and ammoniacal nitrogen can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理フローを示す図である。FIG. 1 is a diagram showing a processing flow of the present invention.

【符号の説明】[Explanation of symbols]

1 無酸素槽 2 無酸素槽 3 好気槽 4 好気槽 5 沈殿池 6 処理水 7 好気槽 8 無酸素槽 9 好気槽 10 最終処理水 11 硫黄源 1 Anoxic tank 2 Anoxic tank 3 Aerobic tank 4 Aerobic tank 5 Sedimentation basin 6 Treated water 7 Aerobic tank 8 Anoxic tank 9 Aerobic tank 10 Final treated water 11 Sulfur source

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 排水からの生物学的脱窒素方法におい
て、無酸素槽にて有機物および硫黄化合物を用い、硫黄
酸化細菌により排水中の亜硝酸性窒素および硝酸性窒素
を窒素ガスに還元して排水から窒素を除去することを特
徴とする排水からの窒素の除去方法。
1. A method for biological denitrification from wastewater, wherein organic substances and sulfur compounds are used in an oxygen-free tank, and nitrite nitrogen and nitrate nitrogen in the wastewater are reduced to nitrogen gas by sulfur oxidizing bacteria. A method for removing nitrogen from wastewater, comprising removing nitrogen from wastewater.
【請求項2】 無酸素槽において、従属栄養細菌および
硫黄酸化細菌を併用することを特徴とする請求項1記載
の排水からの窒素の除去方法。
2. The method for removing nitrogen from wastewater according to claim 1, wherein heterotrophic bacteria and sulfur-oxidizing bacteria are used together in the anoxic tank.
【請求項3】 無酸素槽を多段として、従属栄養細菌と
硫黄酸化細菌を棲み分けて用いることを特徴とする請求
項2記載の排水からの窒素の除去方法。
3. The method for removing nitrogen from wastewater according to claim 2, wherein the oxygen-free tank is provided in multiple stages, and heterotrophic bacteria and sulfur-oxidizing bacteria are used separately.
【請求項4】 無酸素槽の後段に、硝化細菌によりアン
モニア性窒素を亜硝酸性窒素および硝酸性窒素に酸化す
る好気槽を設け、この処理水を無酸素槽に循環すること
を特徴とする請求項1〜3のいずれかに記載の排水から
の窒素の除去方法。
4. An aerobic tank for oxidizing ammonia nitrogen to nitrite nitrogen and nitrate nitrogen by nitrifying bacteria is provided at a stage subsequent to the anoxic tank, and the treated water is circulated to the anoxic tank. The method for removing nitrogen from wastewater according to claim 1.
【請求項5】 好気槽を多段として、硝化細菌である亜
硝酸菌と硝酸菌を棲み分けて用いることを特徴とする請
求項4記載の排水からの窒素の除去方法。
5. The method for removing nitrogen from wastewater according to claim 4, wherein the aerobic tank is provided in multiple stages, and nitrifying bacteria and nitrifying bacteria which are nitrifying bacteria are used separately.
【請求項6】 亜硝酸菌による処理水を硫黄酸化細菌主
体の無酸素槽に循環し、硝酸菌による処理水を従属栄養
細菌主体の無酸素槽に循環することを特徴とする請求項
5記載の排水からの窒素の除去方法。
6. The water treated by nitrite is circulated to an anoxic tank mainly containing sulfur oxidizing bacteria, and the water treated by nitric acid is circulated to an anoxic tank mainly containing heterotrophic bacteria. For removing nitrogen from effluents of wastewater.
【請求項7】 請求項4〜6のいずれかに記載の方法に
よる処理水をさらに好気槽に通水し、亜硝酸菌および硝
酸菌により、残留するアンモニア性窒素および亜硝酸性
窒素を硝酸性窒素まで完全に酸化することを特徴とする
排水からの窒素の除去方法。
7. The treated water according to any one of claims 4 to 6 is further passed through an aerobic tank, and the remaining ammoniacal nitrogen and nitrite nitrogen are removed by nitrite and nitrate. A method for removing nitrogen from wastewater, wherein the nitrogen is completely oxidized to neutral nitrogen.
【請求項8】 請求項4〜7のいずれかに記載の方法に
よる処理水を、従属栄養細菌を主体とする無酸素槽また
は硫黄酸化細菌を主体とする無酸素槽に通水し、残留す
る亜硝酸性窒素および硝酸性窒素を窒素まで還元するこ
とを特徴とする排水からの窒素の除去方法。
8. The treated water according to any one of claims 4 to 7 is passed through an anoxic tank mainly composed of heterotrophic bacteria or an anoxic tank mainly composed of sulfur oxidizing bacteria, and remains. A method for removing nitrogen from wastewater, comprising reducing nitrite nitrogen and nitrate nitrogen to nitrogen.
【請求項9】 硫黄酸化細菌として、造粒させた硫黄酸
化細菌または自己造粒作用を有する硫黄酸化細菌を用い
ることを特徴とする請求項1〜8のいずれかに記載の排
水からの窒素の除去方法。
9. The method according to claim 1, wherein a granulated sulfur oxidizing bacterium or a sulfur oxidizing bacterium having a self-granulating action is used as the sulfur oxidizing bacterium. Removal method.
【請求項10】 無酸素槽および/または好気槽に膜分
離装置またはろ過装置を設置することを特徴とする請求
項1〜9のいずれかに記載の排水からの窒素の除去方
法。
10. The method for removing nitrogen from wastewater according to claim 1, wherein a membrane separation device or a filtration device is installed in the anoxic tank and / or the aerobic tank.
【請求項11】 無酸素槽および/または好気槽に微生
物固定化担体を投入することを特徴とする請求項1〜1
0のいずれかに記載の排水からの窒素の除去方法。
11. The microorganism-immobilized carrier is introduced into an anoxic tank and / or an aerobic tank.
0. The method for removing nitrogen from wastewater according to any one of 0.
JP25968499A 1999-09-14 1999-09-14 How to remove nitrogen from wastewater Expired - Fee Related JP3958900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25968499A JP3958900B2 (en) 1999-09-14 1999-09-14 How to remove nitrogen from wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25968499A JP3958900B2 (en) 1999-09-14 1999-09-14 How to remove nitrogen from wastewater

Publications (2)

Publication Number Publication Date
JP2001079593A true JP2001079593A (en) 2001-03-27
JP3958900B2 JP3958900B2 (en) 2007-08-15

Family

ID=17337488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25968499A Expired - Fee Related JP3958900B2 (en) 1999-09-14 1999-09-14 How to remove nitrogen from wastewater

Country Status (1)

Country Link
JP (1) JP3958900B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369115A (en) * 2000-11-17 2002-05-22 Kwangju Inst Sci & Tech Simultaneous removal process of nitrogen and phosphorus in wastewater
JP2005211832A (en) * 2004-01-30 2005-08-11 Nippon Steel Corp Method for removing ammonia nitrogen from waste water
KR100970576B1 (en) * 2008-01-22 2010-07-16 강원대학교산학협력단 The apparatus and method of removing BOD, N, and P removal from an animal wastewater
WO2011103286A2 (en) * 2010-02-17 2011-08-25 University Of South Florida Solids retention time uncoupling by selective wasting of sludge
JP2016077954A (en) * 2014-10-15 2016-05-16 新日鐵住金株式会社 Biological nitrogen removal method
CN111979138A (en) * 2020-05-21 2020-11-24 厦门大学 Heterotrophic nitrification aerobic denitrifying bacterium Y15 and application thereof
CN113121015A (en) * 2021-05-21 2021-07-16 哈尔滨工业大学(深圳) Water treatment device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249492B (en) * 2011-06-20 2012-12-26 北京桑德环境工程有限公司 Processing method of lamivudine wastewater
CN104355404B (en) * 2014-10-27 2017-03-01 北京工业大学 A kind of method and apparatus quickly realizing biofilter Anammox

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369115A (en) * 2000-11-17 2002-05-22 Kwangju Inst Sci & Tech Simultaneous removal process of nitrogen and phosphorus in wastewater
GB2369115B (en) * 2000-11-17 2003-01-08 Kwangju Inst Sci & Tech Simultaneous removal process of nitrogen and phosphorous in wastewater
JP2005211832A (en) * 2004-01-30 2005-08-11 Nippon Steel Corp Method for removing ammonia nitrogen from waste water
JP4570069B2 (en) * 2004-01-30 2010-10-27 新日本製鐵株式会社 Method for removing ammonia nitrogen from wastewater
KR100970576B1 (en) * 2008-01-22 2010-07-16 강원대학교산학협력단 The apparatus and method of removing BOD, N, and P removal from an animal wastewater
WO2011103286A2 (en) * 2010-02-17 2011-08-25 University Of South Florida Solids retention time uncoupling by selective wasting of sludge
WO2011103286A3 (en) * 2010-02-17 2011-12-22 University Of South Florida Solids retention time uncoupling by selective wasting of sludge
US8535534B2 (en) 2010-02-17 2013-09-17 University Of South Florida Solids retention time uncoupling by selective wasting of sludge
JP2016077954A (en) * 2014-10-15 2016-05-16 新日鐵住金株式会社 Biological nitrogen removal method
CN111979138A (en) * 2020-05-21 2020-11-24 厦门大学 Heterotrophic nitrification aerobic denitrifying bacterium Y15 and application thereof
CN111979138B (en) * 2020-05-21 2022-06-21 厦门大学 Heterotrophic nitrification aerobic denitrifying bacterium Y15 and application thereof
CN113121015A (en) * 2021-05-21 2021-07-16 哈尔滨工业大学(深圳) Water treatment device

Also Published As

Publication number Publication date
JP3958900B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
CN108483655B (en) Method for deep denitrification by coupling shortcut nitrification and denitrification with anaerobic ammonia oxidation and sulfur autotrophic denitrification
JP3737410B2 (en) High concentration organic wastewater treatment method and apparatus using biomaker
JP5100091B2 (en) Water treatment method
CN112456643A (en) System and method for realizing partial anaerobic ammonia oxidation deep nitrogen and phosphorus removal by circulating and alternately utilizing main flow and side flow zone biomembrane of urban sewage treatment plant
JP4106203B2 (en) How to remove nitrogen from water
WO2006022539A1 (en) Progress for the biological denitrification of ammonium containing wastewater
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JPH08192185A (en) Biologically nitrifying and denitrifying method
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP2002011495A (en) Method for removing nitrogen and phosphor from wastewater
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP4570069B2 (en) Method for removing ammonia nitrogen from wastewater
JP3958900B2 (en) How to remove nitrogen from wastewater
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP2003053384A (en) Method for removing nitrogen and phosphorus from waste water and facility therefor
KR102144118B1 (en) Method for Removing Nitrogen and Phosphorus from Wastewater by Nutrient Removal Process via Nitrite and by Combining Anaerobic Ammonium Oxidation(ANAMMOX) Process
JP2000308900A (en) Treatment of ammonia-containing waste water
JP5722087B2 (en) Biological nitrogen treatment method of ammonia containing wastewater
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP2007117842A (en) Method and apparatus for removing nitrogen of high concentration organic waste water
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
CN112408699B (en) Integrated denitrification method for wastewater containing toxic and harmful organic matters
JP2001212592A (en) Method for removing nitrogen from wastewater
JP4031597B2 (en) How to remove nitrogen from wastewater
JP2003071490A (en) Method for removing nitrogen from wastewater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees