JP4031597B2 - How to remove nitrogen from wastewater - Google Patents

How to remove nitrogen from wastewater Download PDF

Info

Publication number
JP4031597B2
JP4031597B2 JP25307499A JP25307499A JP4031597B2 JP 4031597 B2 JP4031597 B2 JP 4031597B2 JP 25307499 A JP25307499 A JP 25307499A JP 25307499 A JP25307499 A JP 25307499A JP 4031597 B2 JP4031597 B2 JP 4031597B2
Authority
JP
Japan
Prior art keywords
nitrogen
bacteria
wastewater
denitrification
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25307499A
Other languages
Japanese (ja)
Other versions
JP2001070984A (en
Inventor
理 三木
敏朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25307499A priority Critical patent/JP4031597B2/en
Publication of JP2001070984A publication Critical patent/JP2001070984A/en
Application granted granted Critical
Publication of JP4031597B2 publication Critical patent/JP4031597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、独立栄養細菌を用いて、下水・排水中に含まれる窒素化合物を効率的に除去する方法に関する。
【0002】
【従来の技術】
下水・排水からの窒素の除去方法としては、生物学的脱窒素方法が広く知られている。窒素の形態としてはアンモニア性窒素の形で含有されることが多い。例えば、高濃度のアンモニア性窒素を含有する排水は、製鉄所コークス工場、屎尿、肥料工場、半導体工場、皮革工場などから発生する。製鉄所コークス工場から発生するアンモニア性窒素含有排水は安水とも呼ばれ、アンモニア性窒素を数百〜数千mg/l程度も含有している。一方、都市下水は、アンモニア性窒素を数十mg/l程度、養殖場排水は数mg/l程度含有している。
【0003】
このような下水・排水のアンモニア性窒素の生物学的除去方法としては、好気性独立栄養細菌(ニトロゾモナス、ニトロバクター等の硝化細菌)による生物学的酸化と通性嫌気性従属栄養細菌(シュードモナス等)による生物学的還元の組み合わせから成る生物学的硝化−脱窒素法が広く知見されている。
【0004】
まず、硝化工程は以下の2段の反応から成っており、関与する硝化細菌の種類は異なっている。
【0005】
2NH4 + + 3O2 → 2NO2 -+2H2O+4H+ (1)
【0006】
2NO2 - + O2 → 2NO3 - (2)
【0007】
(1)式に示す反応は、ニトロゾモナスを代表種とする亜硝酸菌によってもたらされ、(2)式に示す反応は、ニトロバクターを代表種とする硝酸菌によってもたらされる。
【0008】
上記反応によって生成した亜硝酸性窒素ならびに硝酸性窒素は、一般的に通性嫌気性従属栄養細菌を用いて還元されて酸化窒素ガス(N2O)あるいは窒素ガス(N2)となり、大気中に放散される。
【0009】
2NO2 - + 6H2 → N2 +2H2O+2OH- (3)
【0010】
2NO3 - +10H2 → N2 +4H2O+2OH- (4)
【0011】
通性嫌気性従属栄養細菌は水素供与体が必要であり、有機物質が通常利用される。都市下水では下水中の有機物がそのまま用いられ、有機物を含まない排水ではメタノールが添加される。
【0012】
この生物学的硝化−脱窒素法は、アンモニア性窒素濃度が100mg/l以下では問題が少なく、また、最も安価で安定した処理方法である。
【0013】
【発明が解決しようとする課題】
しかし、生物学的硝化−脱窒素法は、アンモニア性窒素濃度が100mg/lを超えると様々な課題が生じ、安定した処理が困難となる。すなわち、アンモニア性窒素濃度が100mg/lを超えると、硝化工程において、アンモニア性窒素の酸化が硝酸性窒素まで進行しないこと、すなわち、ニトロバクターが阻害を受け、処理水中の亜硝酸性窒素が蓄積しやすいことが知見されている。この原因として、遊離のアンモニウムイオンのニトロバクターへの阻害が知られている。特に、pHが高いと遊離のアンモニウムイオンが発生する。
【0014】
亜硝酸性窒素は従属栄養細菌に対して毒性が強く、処理水質が悪化しやすいことは広く知られている(例えば、遠矢泰典、「下水道協会誌」、VOL7、NO74、1970)。脱窒素に用いられている細菌は、通常、従属栄養細菌であるから、蓄積した亜硝酸性窒素によって脱窒素反応の進行に阻害が生ずる。脱窒素反応の進行が停止すると、亜硝酸性窒素が処理水に流出し、窒素規制をクリアできないばかりか、亜硝酸性窒素起因のCOD(化学的酸素要求量)も増大してしまう。
【0015】
このようなことから、アンモニア性窒素濃度が100mg/lを超えるような排水の場合、従来の生物学的硝化−脱窒素法の適用は、かなり困難である。
【0016】
一方、脱窒性能を有する細菌は、従属栄養細菌に限らない。水素細菌や硫黄酸化細菌などの独立栄養細菌も、酸素の無い状態で脱窒素機能を有することは広く知られている。これらの独立栄養細菌は、それぞれ水素や還元性硫黄化合物を酸化した時に発生するエネルギーと空気中の炭酸ガスから菌体を合成し増殖する。これらの細菌は、増殖速度が小さいことやフロック形成能力が弱いこと等の理由から、脱窒素作用が知られているものの脱窒素に用いられた事例はほとんどない。
【0017】
しかし、発明者らは、これらの独立栄養細菌が亜硝酸性窒素に対し、従属栄養細菌と比較して極めて強い耐性を有していることを知見した。すなわち、亜硝酸性窒素濃度が2000mg/lに上昇しても、脱窒素速度の低下は見られなかった。したがって、アンモニア性窒素を高濃度に含む排水処理の場合、脱窒素用の細菌としては独立栄養細菌を用いた方が処理の安定化をもたらす(特願平11−117410号)。さらに、発明者らは、独立栄養細菌の中でも、硫黄酸化細菌は、自己造粒作用を有している場合もあるため、脱窒素槽での高濃度化が容易で、処理の高効率化が可能であることを知見している(特願平10−122719号)。
【0018】
このように、従属栄養細菌ではなく、亜硝酸性窒素に耐性のある独立栄養細菌を用いることにより、従来は困難であった高濃度のアンモニア性窒素を含有する排水の安定処理が可能となる。
【0019】
しかし、排水中の窒素濃度が高い場合、脱窒素工程において発生する窒素ガス量が増大する。この窒素ガスが独立栄養細菌に付着して脱窒素槽に浮き上がり、脱窒素槽から流出しやすくなる傾向がある。したがって、より安定した処理性能を得るためには、独立栄養細菌の流出防止対策が必要となる。本発明は、上記課題を解決するものである。
【0020】
【課題を解決するための手段】
本発明の要旨は、次の(1)〜(6)である。
【0021】
(1)独立栄養細菌を用いて排水中の亜硝酸性窒素および硝酸性窒素を窒素ガスに還元して排水から除去する脱窒素方法において、独立栄養細菌として、自己造粒した硫黄酸化細菌を用い、脱窒素槽の処理水を後段のろ材を充填したろ過装置でろ過して、当該ろ過装置の沈殿物を前記脱窒素槽へ返送して、前記独立栄養細菌の脱窒素槽からの流出を防止することにより、脱窒素槽内部で独立栄養細菌を高濃度化させることを特徴とする排水からの窒素の除去方法。
【0022】
(2)独立栄養細菌を用いて排水中の亜硝酸性窒素および硝酸性窒素を窒素ガスに還元して排水から除去する脱窒素方法において、独立栄養細菌として、自己造粒した硫黄酸化細菌を用い、前記独立栄養細菌の脱窒素槽からの浮上流出を脱窒素槽内上部に設けたろ材を充填したろ過部を用いて防止することにより、脱窒素槽内部で独立栄養細菌を高濃度化させることを特徴とする排水からの窒素の除去方法。
【0024】
(3)前記ろ材が、砂、砂利、セラミックス、アンスラサイト、または浮遊性ろ材であることを特徴とする(1)又は(2)の排水からの窒素の除去方法。
【0025】
(4)ろ材径が3mm以下のろ材を充填したろ過装置またはろ過部を用いることを特徴とする前記(1)、(2)または(3)の排水からの窒素の除去方法。
【0026】
(5)脱窒素槽下部および/またはろ過部の下部に水中攪拌機を有することを特徴とする前記(2)〜(4)の排水からの窒素の除去方法。
【0027】
【発明の実施の形態】
脱窒素工程において、亜硝酸性窒素に耐性のある独立栄養細菌を用いて亜硝酸性窒素を還元して窒素ガスにする方法を用いると、硝化工程において、亜硝酸性窒素を完全に硝酸性窒素まで酸化する必要が無くなり、脱窒素槽の処理時間の短縮や維持管理が容易となる。しかし、排水中の窒素濃度が100mg/lを超えると、脱窒素反応により生成する窒素ガスにより独立栄養細菌の浮上現象が生じる場合がある。独立栄養細菌の中でも、自己造粒した硫黄酸化細菌を用いると、粒径が1〜3mmもあるため浮上はかなり抑制される。しかし、完全な制御は困難である。
【0028】
ところで、下水や屎尿の活性汚泥処理において、膜分離装置の適用事例が数多く報告されるようになった。これは、膜分離装置を用いて、活性汚泥を反応槽内部に高濃度に維持して高効率処理をはかるものである。膜としては、限外ろ過膜(UF:Ultra filtration)や精密ろ過膜(MF:Micro filtration)が用いられている。膜を利用することで、反応槽内部の活性汚泥濃度(MLSS)を6000〜10000mg/lに維持できる。そして、浮遊性の粒径が小さな活性汚泥(数10ミクロン程度のフロック)を対象としているため、孔径の小さな膜が使われることが多い。このため透過水量が小さく、必要圧力も過大となる(例えば、和田洋六著、「水のリサイクル」、地人書館、179〜180頁)。
【0029】
本発明の参考形態においては、図1に示すようにMF膜(孔径:0.1〜1ミクロン)等を用いた膜分離装置4により、独立栄養細菌の脱窒素槽2からの流出を防止する。特に、1〜3mm程度の粒径を有する自己造粒した硫黄酸化細菌を用いた場合には、活性汚泥処理の際に用いるように孔径の小さな膜を用いる必要は全くなく、孔径が10ミクロンから500ミクロンと従来の膜と比較して極めて大きなろ過膜でも十分対応できる。このため、透過水量も20〜50m3/m2と大きくとれる。なお、500ミクロン以上の孔径となると、自己造粒した硫黄酸化細菌が柔らかいため、孔径中に入り込みやすくなる。さらに、自己造粒した硫黄酸化細菌ばかりでなく、凝集剤等を添加して強制的に造粒させた硫黄酸化細菌を用いることもできる。
【0030】
また、本発明の実施形態においては、図2に示すように、砂、砂利、セラミックスまたは浮遊性濾剤等をろ剤として充填したろ過装置8を用いても、独立栄養細菌の脱窒素槽2からの流出を防止できる。膜分離装置の場合と同様に、1〜3mm程度の粒径を有する自己造粒した硫黄酸化細菌を用いた場合には、従来の砂ろ過装置に用いられているようなろ剤径:0.45〜0.7mmという粒径の小さな砂を用いる必要は全くなく、1〜3mmの砂利で対応できる。ろ過速度も200〜500m/日程度まで可能であった。一般に、ろ過は膜分離と除去機構が全く異なっており、除去対象物質のろ剤表面への輸送(阻止作用と重力沈降作用)および除去対象物質のろ剤表面での付着が重要な因子である。したがって、最適なろ材径やろ過速度は実験的に求めざるを得ない。なお、1〜3mmの砂利をろ材として用いた実験で、ろ過速度を500m/日以上にあげると、処理水中に硫黄酸化細菌の流出が観察された。
【0031】
ろ剤の種類としては、砂、砂利ばかりでなく、成形したセラミックス、アンスラサイトまたは浮遊性のろ剤等を用いることもできる。さらに、図3に示すように、ろ過部9を脱窒素槽2内の上部に設置することにより脱窒素槽2と一体化することもできる。この場合、窒素ガスの放散を促すためのガス抜き配管12を設けることが望ましい。さらに、ろ過部と組み合わせる場合、浮上した硫黄酸化細菌がろ材に付着するのを防止するため、脱窒素槽下部および/またはろ過部の下部に水中攪拌機10を設けることが望ましい。
【0032】
【実施例】
以下、本発明の実施例を説明する。
【0033】
(実施例1)製鉄所コークス工場安水処理への適用
【0034】
本発明の方法を、製鉄所コークス工場から発生する安水の活性汚泥処理水の脱窒素に適用した。安水はフエノールが主体の排水であるが、アンモニア性窒素を1000〜5000mg/l程度含有している。従来は海水で3〜5倍程度に希釈し、活性汚泥によりフェノールを中心に分解除去していた。このような安水活性汚泥処理水は、活性汚泥によってフェノール等の有機物は除去されているものの、アンモニア性窒素を300〜1000mg/l含有していることが多い。
【0035】
処理フローを図4に示す。
【0036】
硝化槽14でアンモニア性窒素を亜硝酸性窒素まで酸化するために、以下の運転条件で硝化槽14を運転した。まず、硝化槽14にセラミック担体をリアクター容積あたり70%投入し、硝化細菌を付着させた(固定床型バイオリアクター)。次に、硫酸および水酸化ナトリウムによってpHを7〜8に制御するとともに、空気および/または酸素により、DOを2mg/l以上、またORPを+150mV(銀/塩化銀基準)以上に維持するように運転した。アンモニア性窒素容積負荷が5kg−N/m3・日の範囲で、アンモニア性窒素(850mg/l)は80%が亜硝酸性窒素に、20%が硝酸性窒素になった。
【0037】
脱窒素槽2に自己造粒させた硫黄酸化細菌を投入し、硫黄源としてチオ硫酸を硫黄として窒素の3倍量添加した。硫酸および水酸化ナトリウムによってpHを7〜8に制御するとともに、硝酸性窒素と亜硝酸性窒素の容積負荷が10kg−N/m3・日の条件で運転したところ、処理水中の窒素濃度は10mg/l以下となった。後段に、サドル型のセラミックス(サイズ:1インチ)を充填したろ過装置8を設置した。ろ過速度を200m/日で運転したが、処理水5に自己造粒した硫黄酸化細菌の流出は観察されなかった。
【0038】
処理水中に残留するチオ硫酸は、好気性硫黄酸化細菌を用いた生物酸化槽16において硫酸イオンまで酸化した。生物酸化槽16では、曝気によって溶存酸素を2mg/l以上に維持した。生物酸化槽16の滞留時間が1時間でチオ硫酸は硫酸イオンまで酸化され、CODも20mg/l以下となった。
【0039】
(実施例2)屎尿処理活性汚泥処理水への適用
【0040】
従来の標準的な脱窒素法では、収集屎尿を10〜20倍程度に希釈した後、活性汚泥で処理し有機物除去(BOD)を行っていた。窒素除去も併せて行う場合には、硝化液を脱窒素槽に循環し、排水中の有機物により脱窒素を行い、脱窒素−硝化のフローとなる循環式硝化−脱窒素法が採用されている場合が多い。しかし、窒素除去を行う場合、亜硝酸性窒素蓄積が生じやすく、窒素除去効率が低下しやすい。このため、希釈倍率が大きくなり、施設の巨大化を招いてしまう。なお、収集屎尿の水質は、BODが10000〜20000mg/l、CODが5000〜10000mg/l、TNが5000〜10000mg/l(大半が有機性窒素とアンモニア性窒素)程度である。
【0041】
図5に示す処理フローで、本発明を屎尿処理に適用した。屎尿を淡水で3倍に希釈後、まず、活性汚泥により有機物を除去した。
【0042】
その後、硝化槽14でアンモニア性窒素を亜硝酸性窒素まで酸化するために、以下の運転条件で硝化槽14を運転した。まず、硝化槽14には浮遊性の円筒型プラスチックス担体(内径3mm、長さ4mm)を硝化槽容積あたり25%投入し、硝化菌を付着させた(流動床型バイオリアクター)。次に、硫酸および水酸化ナトリウムによってpHを7〜8に制御するとともに、空気および/または酸素により、DOを2mg/l以上、ORPを+150mV(銀/塩化銀基準)以上に維持するように運転した。硝化槽14のアンモニア性窒素容積負荷が5kg−N/m3・日の条件で、有機性窒素とアンモニア性窒素の合計(2500mg/l)は90%が亜硝酸性窒素に、10%が硝酸性窒素になった。
【0043】
さらに、脱窒素槽2に自己造粒させた硫黄酸化細菌を投入し、硫黄源としてチオ硫酸を硫黄として窒素の3倍量添加した。脱窒素槽2の上部には、浮遊性の円筒型プラスチックス担体(内径:3mm;長さ4mm)を脱窒素槽2の容積あたり25%投入した。また、脱窒素槽2の下部中央に水中攪拌機を設置し、常時攪拌することにより、プラスチックス担体に浮上した硫黄酸化細菌が固着することを防止した。硫酸および水酸化ナトリウムによってpHを7〜8に制御するとともに、硝酸性窒素と亜硝酸性窒素の容積負荷が15kg−N/m3・日の条件で運転したが、処理水中の窒素濃度は5mg/l以下となった。さらに、処理水中に残留するチオ硫酸は、生物酸化槽16によって硫酸イオンまで酸化した。生物酸化槽16では、曝気によって溶存酸素を2mg/l以上に維持した。滞留時間1時間でチオ硫酸は硫酸イオンまで酸化され、CODも20mg/l以下となった。
【0044】
【発明の効果】
本発明により、独立栄養細菌を用いてアンモニア性窒素を高濃度に含有する排水を処理する際に発生する、細菌の浮上流出による処理効率低下を防止でき、安定した窒素除去が可能となる。
【図面の簡単な説明】
【図1】膜分離装置を用いて本発明の参考形態の方法を実施するための装置を示す図である。
【図2】ろ過装置を用いて本発明の方法を実施するための装置を示す図である。
【図3】脱窒素槽内のろ過部を用いて本発明の方法を実施するための装置を示す図である。
【図4】本発明方法において、ろ過装置を用いる処理フローを示す図である。
【図5】本発明方法において、ろ過部を有する脱窒素槽を用いる処理フローを示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently removing nitrogen compounds contained in sewage / drainage using autotrophic bacteria.
[0002]
[Prior art]
Biological denitrification methods are widely known as methods for removing nitrogen from sewage and wastewater. The nitrogen is often contained in the form of ammoniacal nitrogen. For example, wastewater containing high concentrations of ammonia nitrogen is generated from steelworks coke factories, manure, fertilizer factories, semiconductor factories, leather factories, and the like. Ammonia nitrogen-containing wastewater generated from a steelworks coke factory is also referred to as an aqueous water, and contains several hundred to several thousand mg / l of ammoniacal nitrogen. On the other hand, municipal sewage contains about several tens mg / l of ammonia nitrogen and about several mg / l of farm effluent.
[0003]
Biological removal of ammoniacal nitrogen from sewage and wastewater includes biological oxidation by aerobic autotrophic bacteria (nitrifying bacteria such as nitrozomonas and nitrobacter) and facultative anaerobic heterotrophic bacteria (pseudomonas, etc.) A biological nitrification-denitrogenation method comprising a combination of biological reductions by
[0004]
First, the nitrification process consists of the following two-stage reaction, and the types of nitrifying bacteria involved are different.
[0005]
2NH 4 + + 3O 2 → 2NO 2 + 2H 2 O + 4H + (1)
[0006]
2NO 2 - + O 2 → 2NO 3 - (2)
[0007]
The reaction shown in the formula (1) is brought about by nitrite bacteria having nitrozomonas as a representative species, and the reaction shown in the formula (2) is brought about by nitrate bacteria having a nitrobacter as a representative species.
[0008]
Nitrite nitrogen and nitrate nitrogen generated by the above reaction are generally reduced using facultative anaerobic heterotrophic bacteria to form nitric oxide gas (N 2 O) or nitrogen gas (N 2 ), which is To be dissipated.
[0009]
2NO 2 + 6H 2 → N 2 + 2H 2 O + 2OH (3)
[0010]
2NO 3 + 10H 2 → N 2 + 4H 2 O + 2OH (4)
[0011]
Facultative anaerobic heterotrophic bacteria require hydrogen donors and organic substances are usually used. In urban sewage, organic matter in sewage is used as it is, and in wastewater that does not contain organic matter, methanol is added.
[0012]
This biological nitrification-denitrification method has few problems when the ammoniacal nitrogen concentration is 100 mg / l or less, and is the most inexpensive and stable treatment method.
[0013]
[Problems to be solved by the invention]
However, in the biological nitrification-denitrogenation method, various problems occur when the ammoniacal nitrogen concentration exceeds 100 mg / l, and stable treatment becomes difficult. That is, when the ammonia nitrogen concentration exceeds 100 mg / l, the oxidation of ammonia nitrogen does not proceed to nitrate nitrogen in the nitrification process, that is, nitrobacter is inhibited and nitrite nitrogen in the treated water accumulates. It has been found that it is easy to do. As the cause of this, inhibition of free ammonium ions to nitrobacter is known. In particular, when the pH is high, free ammonium ions are generated.
[0014]
It is widely known that nitrite nitrogen is highly toxic to heterotrophic bacteria and the quality of treated water is likely to deteriorate (for example, Yasunori Toya, “Sewerage Association Journal”, VOL7, NO74, 1970). Since bacteria used for denitrification are usually heterotrophic bacteria, accumulation of nitrite nitrogen inhibits the progress of the denitrification reaction. When the progress of the denitrification reaction stops, nitrite nitrogen flows out into the treated water, and not only the nitrogen regulation cannot be cleared, but also the COD (chemical oxygen demand) due to nitrite nitrogen increases.
[0015]
For this reason, it is quite difficult to apply the conventional biological nitrification-denitrogenation method in the case of wastewater whose ammonia nitrogen concentration exceeds 100 mg / l.
[0016]
On the other hand, bacteria having denitrification performance are not limited to heterotrophic bacteria. It is well known that autotrophic bacteria such as hydrogen bacteria and sulfur-oxidizing bacteria also have a denitrification function in the absence of oxygen. Each of these autotrophic bacteria synthesizes and proliferates from the energy generated when hydrogen or reducing sulfur compounds are oxidized and carbon dioxide in the air. Although these bacteria are known for denitrification due to their low growth rate and weak floc-forming ability, there have been few examples of their use for denitrification.
[0017]
However, the inventors have found that these autotrophic bacteria have a very strong resistance to nitrite nitrogen compared to heterotrophic bacteria. That is, even when the nitrite nitrogen concentration was increased to 2000 mg / l, no decrease in the denitrification rate was observed. Therefore, in the case of wastewater treatment containing ammonia nitrogen at a high concentration, the use of autotrophic bacteria as the bacteria for denitrification brings about stabilization of the treatment (Japanese Patent Application No. 11-117410). In addition, among the autotrophic bacteria, the inventors of the present invention can easily increase the concentration in the denitrification tank because the sulfur-oxidizing bacteria may have a self-granulating action, and the processing efficiency can be improved. It is known that this is possible (Japanese Patent Application No. 10-122719).
[0018]
Thus, by using autotrophic bacteria resistant to nitrite nitrogen instead of heterotrophic bacteria, stable treatment of wastewater containing high concentration ammoniacal nitrogen, which has been difficult in the past, becomes possible.
[0019]
However, when the nitrogen concentration in the wastewater is high, the amount of nitrogen gas generated in the denitrification process increases. This nitrogen gas tends to adhere to autotrophic bacteria and float on the denitrification tank, and tends to flow out of the denitrification tank. Therefore, in order to obtain more stable processing performance, it is necessary to take measures to prevent the outflow of autotrophic bacteria. The present invention solves the above problems.
[0020]
[Means for Solving the Problems]
The gist of the present invention is the following (1) to (6).
[0021]
(1) In the denitrification method of reducing nitrite nitrogen and nitrate nitrogen in wastewater to nitrogen gas using autotrophic bacteria and removing them from wastewater, self-granulated sulfur-oxidizing bacteria are used as autotrophic bacteria The treated water in the denitrification tank is filtered through a filtration device filled with a subsequent filter medium, and the precipitate in the filtration device is returned to the denitrification tank to prevent the outflow of the autotrophic bacteria from the denitrification tank. A method for removing nitrogen from wastewater, wherein the concentration of autotrophic bacteria is increased in the denitrification tank.
[0022]
(2) In the denitrification method of reducing nitrite nitrogen and nitrate nitrogen in wastewater to nitrogen gas using autotrophic bacteria and removing them from wastewater, self-granulated sulfur-oxidizing bacteria are used as autotrophic bacteria In addition, the concentration of autotrophic bacteria in the denitrification tank is increased by preventing the floating outflow of the autotrophic bacteria from the denitrification tank using a filtration unit filled with a filter medium provided in the upper part of the denitrification tank. A method for removing nitrogen from wastewater.
[0024]
(3) The method for removing nitrogen from waste water according to (1) or (2), wherein the filter medium is sand, gravel, ceramics, anthracite, or a floating filter medium.
[0025]
(4) The method for removing nitrogen from the waste water of (1), (2) or (3) above, wherein a filtration device or a filtration part filled with a filter medium having a diameter of 3 mm or less is used.
[0026]
(5) The method for removing nitrogen from waste water according to (2) to (4) above, wherein an underwater stirrer is provided at the lower part of the denitrification tank and / or the lower part of the filtration part.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
In the denitrification process, using a method that reduces nitrite nitrogen to nitrogen gas using autotrophic bacteria resistant to nitrite nitrogen, the nitrite nitrogen is completely converted to nitrate nitrogen in the nitrification process. It is no longer necessary to oxidize, and the processing time of the denitrification tank is shortened and maintenance is facilitated. However, if the nitrogen concentration in the wastewater exceeds 100 mg / l, the autotrophic bacteria may float due to the nitrogen gas generated by the denitrification reaction. Among the autotrophic bacteria, when self-granulated sulfur-oxidizing bacteria are used, the flying height is considerably suppressed because the particle diameter is 1 to 3 mm. However, complete control is difficult.
[0028]
By the way, many application examples of the membrane separation apparatus have been reported in the activated sludge treatment of sewage and manure. In this method, the activated sludge is maintained at a high concentration inside the reaction tank using a membrane separation device, and a high-efficiency treatment is performed. As the membrane, an ultrafiltration membrane (UF) or a microfiltration membrane (MF) is used. By using the membrane, the activated sludge concentration (MLSS) inside the reaction vessel can be maintained at 6000 to 10,000 mg / l. And since it is intended for activated sludge (floc of about several tens of microns) with a small floating particle size, a membrane with a small pore diameter is often used. For this reason, the amount of permeated water is small and the required pressure is excessive (for example, Yoroku Wada, “Water Recycling”, Jinshokan, pages 179-180).
[0029]
In the reference embodiment of the present invention, as shown in FIG. 1, the outflow of autotrophic bacteria from the denitrification tank 2 is prevented by a membrane separation device 4 using an MF membrane (pore diameter: 0.1 to 1 micron) or the like. . In particular, when a self-granulated sulfur-oxidizing bacterium having a particle size of about 1 to 3 mm is used, it is not necessary to use a membrane with a small pore size as used in activated sludge treatment, and the pore size is from 10 microns. Even filtration membranes that are extremely large compared to conventional membranes of 500 microns can be adequately accommodated. For this reason, the amount of permeated water can be as large as 20 to 50 m 3 / m 2 . When the pore diameter is 500 microns or more, the self-granulated sulfur-oxidizing bacteria are soft, so that they easily enter the pore diameter. Further, not only sulfur-oxidizing bacteria that are self-granulated but also sulfur-oxidizing bacteria that are forcibly granulated by adding a flocculant or the like can be used.
[0030]
Further, in the embodiment of the present invention, as shown in FIG. 2, even if the filtration device 8 filled with sand, gravel, ceramics or floating filter medium is used as a filter medium, the denitrification tank 2 for the autotrophic bacteria is used. Can be prevented from flowing out. As in the case of the membrane separator, when a self-granulated sulfur-oxidizing bacterium having a particle size of about 1 to 3 mm is used, the filter medium diameter used in the conventional sand filter: 0.45 There is no need to use sand having a small particle diameter of ˜0.7 mm, and gravel of 1 to 3 mm can be used. The filtration rate was also possible up to about 200 to 500 m / day. In general, filtration is completely different in membrane separation and removal mechanism, and transport of the substance to be removed to the filter medium surface (blocking action and gravity sedimentation action) and adhesion of the substance to be removed on the filter medium are important factors. . Therefore, the optimum filter medium diameter and filtration rate must be obtained experimentally. In addition, in the experiment using 1 to 3 mm gravel as a filter medium, when the filtration rate was increased to 500 m / day or more, outflow of sulfur-oxidizing bacteria was observed in the treated water.
[0031]
As a kind of the filter medium, not only sand and gravel but also formed ceramics, anthracite, or floating filter medium can be used. Furthermore, as shown in FIG. 3, the filtration unit 9 can be integrated with the denitrification tank 2 by being installed in the upper part of the denitrification tank 2. In this case, it is desirable to provide a gas vent pipe 12 for promoting the diffusion of nitrogen gas. Furthermore, when combined with a filtration unit, it is desirable to provide an underwater agitator 10 at the lower part of the denitrification tank and / or the lower part of the filtration unit in order to prevent the sulfur-oxidizing bacteria that have floated from adhering to the filter medium.
[0032]
【Example】
Examples of the present invention will be described below.
[0033]
(Example 1) Application to steelworks coke factory water treatment [0034]
The method of the present invention was applied to denitrification of activated water sludge treated water generated from a steelworks coke plant. Awamizu is a wastewater mainly composed of phenol, but contains about 1000 to 5000 mg / l of ammoniacal nitrogen. Conventionally, it has been diluted 3 to 5 times with seawater and decomposed and removed mainly with phenol by activated sludge. Such a water-activated activated sludge treated water often contains 300 to 1000 mg / l of ammoniacal nitrogen, although organic substances such as phenol are removed by the activated sludge.
[0035]
The processing flow is shown in FIG.
[0036]
In order to oxidize ammonia nitrogen to nitrite nitrogen in the nitrification tank 14, the nitrification tank 14 was operated under the following operating conditions. First, 70% of the ceramic carrier was introduced into the nitrification tank 14 per reactor volume to allow nitrifying bacteria to adhere (fixed bed type bioreactor). Next, the pH is controlled to 7-8 with sulfuric acid and sodium hydroxide, and DO and air are maintained at 2 mg / l or more and ORP at +150 mV (silver / silver chloride standard) or more by air and / or oxygen. Drove. Ammonia nitrogen (850 mg / l) became 80% nitrite nitrogen and 20% nitrate nitrogen when the ammonia nitrogen volume load was in the range of 5 kg-N / m 3 · day.
[0037]
The sulfur-oxidizing bacteria self-granulated were put into the denitrification tank 2, and thiosulfuric acid was used as sulfur as a sulfur source, and 3 times the amount of nitrogen was added. When the pH was controlled to 7-8 with sulfuric acid and sodium hydroxide, and the volumetric load of nitrate nitrogen and nitrite nitrogen was operated at 10 kg-N / m 3 · day, the nitrogen concentration in the treated water was 10 mg. / L or less. A filtration device 8 filled with saddle type ceramics (size: 1 inch) was installed in the rear stage. Although the filtration rate was operated at 200 m / day, the outflow of sulfur-oxidizing bacteria self-granulated in the treated water 5 was not observed.
[0038]
The thiosulfuric acid remaining in the treated water was oxidized to sulfate ions in the biological oxidation tank 16 using aerobic sulfur-oxidizing bacteria. In the biological oxidation tank 16, the dissolved oxygen was maintained at 2 mg / l or more by aeration. The residence time in the biological oxidation tank 16 was 1 hour, and thiosulfuric acid was oxidized to sulfate ions, and the COD was 20 mg / l or less.
[0039]
(Example 2) Application to treated sewage sludge treated water [0040]
In the conventional standard denitrification method, collected manure was diluted about 10 to 20 times, and then treated with activated sludge to remove organic matter (BOD). When nitrogen removal is also performed, the nitrification solution is circulated to the denitrification tank, denitrification is performed with organic matter in the waste water, and a circulation type nitrification-denitrification method is adopted that results in a denitrification-nitrification flow. There are many cases. However, when nitrogen removal is performed, nitrite nitrogen accumulation tends to occur, and the nitrogen removal efficiency tends to decrease. For this reason, a dilution rate becomes large and the facility will be enlarged. The water quality of the collected manure is about BOD of 10,000 to 20000 mg / l, COD of 5000 to 10,000 mg / l, and TN of 5000 to 10,000 mg / l (mostly organic nitrogen and ammoniacal nitrogen).
[0041]
In the processing flow shown in FIG. 5, the present invention is applied to the manure treatment. After diluting manure three times with fresh water, organic substances were first removed with activated sludge.
[0042]
Thereafter, in order to oxidize ammonia nitrogen to nitrite nitrogen in the nitrification tank 14, the nitrification tank 14 was operated under the following operating conditions. First, a floating cylindrical plastic carrier (inner diameter: 3 mm, length: 4 mm) was introduced into the nitrification tank 14 by 25% per nitrification tank volume to allow nitrification bacteria to adhere (fluidized bed bioreactor). Next, the pH is controlled to 7-8 with sulfuric acid and sodium hydroxide, and the air and / or oxygen is operated so as to maintain DO at 2 mg / l or more and ORP at +150 mV (silver / silver chloride standard) or more. did. Under the condition that the ammonia nitrogen volume load of the nitrification tank 14 is 5 kg-N / m 3 · day, 90% of the total of organic nitrogen and ammonia nitrogen (2500 mg / l) is nitrite nitrogen and 10% is nitric acid. Became nitrogen.
[0043]
Further, sulfur-oxidizing bacteria self-granulated were put into the denitrification tank 2, and thiosulfuric acid was used as sulfur as a sulfur source, and 3 times the amount of nitrogen was added. A floating cylindrical plastic carrier (inner diameter: 3 mm; length: 4 mm) was introduced into the upper part of the denitrification tank 2 by 25% per volume of the denitrification tank 2. In addition, an underwater stirrer was installed in the center of the lower part of the denitrification tank 2 and was constantly stirred to prevent the sulfur-oxidizing bacteria floating on the plastics carrier from sticking. The pH was controlled to 7-8 with sulfuric acid and sodium hydroxide, and the operation was performed under the condition that the volume load of nitrate nitrogen and nitrite nitrogen was 15 kg-N / m 3 · day, but the nitrogen concentration in the treated water was 5 mg. / L or less. Furthermore, the thiosulfuric acid remaining in the treated water was oxidized to sulfate ions by the biological oxidation tank 16. In the biological oxidation tank 16, the dissolved oxygen was maintained at 2 mg / l or more by aeration. With a residence time of 1 hour, thiosulfuric acid was oxidized to sulfate ions, and COD was 20 mg / l or less.
[0044]
【The invention's effect】
According to the present invention, it is possible to prevent a reduction in processing efficiency due to the floating outflow of bacteria, which occurs when processing wastewater containing ammonia nitrogen at a high concentration using autotrophic bacteria, and stable nitrogen removal becomes possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing an apparatus for carrying out a method according to a reference embodiment of the present invention using a membrane separation apparatus.
FIG. 2 is a diagram showing an apparatus for carrying out the method of the present invention using a filtration apparatus.
FIG. 3 is a view showing an apparatus for carrying out the method of the present invention using a filtration part in a denitrification tank.
FIG. 4 is a diagram showing a processing flow using a filtration device in the method of the present invention.
FIG. 5 is a diagram showing a processing flow using a denitrification tank having a filtration part in the method of the present invention.

Claims (5)

独立栄養細菌を用いて排水中の亜硝酸性窒素および硝酸性窒素を窒素ガスに還元して排水から除去する脱窒素方法において、独立栄養細菌として、自己造粒した硫黄酸化細菌を用い、脱窒素槽の処理水を後段のろ材を充填したろ過装置でろ過して、当該ろ過装置の沈殿物を前記脱窒素槽へ返送して、前記独立栄養細菌の脱窒素槽からの流出を防止することにより、脱窒素槽内部で独立栄養細菌を高濃度化させることを特徴とする排水からの窒素の除去方法。In the denitrification method, which uses autotrophic bacteria to reduce nitrite nitrogen and nitrate nitrogen in wastewater to nitrogen gas and remove them from wastewater, denitrification using self-granulated sulfur-oxidizing bacteria as autotrophic bacteria By filtering the treated water in the tank with a filtration device filled with a subsequent filter medium, returning the precipitate of the filtration device to the denitrification tank, and preventing the outflow of the autotrophic bacteria from the denitrification tank A method for removing nitrogen from wastewater, characterized by increasing the concentration of autotrophic bacteria inside a denitrification tank. 独立栄養細菌を用いて排水中の亜硝酸性窒素および硝酸性窒素を窒素ガスに還元して排水から除去する脱窒素方法において、独立栄養細菌として、自己造粒した硫黄酸化細菌を用い、前記独立栄養細菌の脱窒素槽からの浮上流出を脱窒素槽内上部に設けたろ材を充填したろ過部を用いて防止することにより、脱窒素槽内部で独立栄養細菌を高濃度化させることを特徴とする排水からの窒素の除去方法。In the denitrification method of reducing nitrite nitrogen and nitrate nitrogen in wastewater to nitrogen gas using autotrophic bacteria and removing them from wastewater, self-granulated sulfur-oxidizing bacteria are used as the autotrophic bacteria. It is characterized by increasing the concentration of autotrophic bacteria inside the denitrification tank by preventing the floating outflow of vegetative bacteria from the denitrification tank using a filtration unit filled with a filter medium provided in the upper part of the denitrification tank. To remove nitrogen from wastewater. 前記ろ材が、砂、砂利、セラミックス、アンスラサイト、または浮遊性ろ材であることを特徴とする請求項1又は2記載の排水からの窒素の除去方法。  The method for removing nitrogen from wastewater according to claim 1 or 2, wherein the filter medium is sand, gravel, ceramics, anthracite, or a floating filter medium. ろ材径が3mm以下のろ材を充填したろ過装置またはろ過部を用いることを特徴とする請求項1、2または3記載の排水からの窒素の除去方法。  The method for removing nitrogen from wastewater according to claim 1, 2 or 3, wherein a filtration device or a filtration part filled with a filter medium having a diameter of 3 mm or less is used. 脱窒素槽下部および/またはろ過部の下部に水中攪拌機を有することを特徴とする請求項2〜4のいずれか1項に記載の排水からの窒素の除去方法。  The method for removing nitrogen from waste water according to any one of claims 2 to 4, further comprising an underwater stirrer at a lower part of the denitrification tank and / or a lower part of the filtration part.
JP25307499A 1999-09-07 1999-09-07 How to remove nitrogen from wastewater Expired - Fee Related JP4031597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25307499A JP4031597B2 (en) 1999-09-07 1999-09-07 How to remove nitrogen from wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25307499A JP4031597B2 (en) 1999-09-07 1999-09-07 How to remove nitrogen from wastewater

Publications (2)

Publication Number Publication Date
JP2001070984A JP2001070984A (en) 2001-03-21
JP4031597B2 true JP4031597B2 (en) 2008-01-09

Family

ID=17246140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25307499A Expired - Fee Related JP4031597B2 (en) 1999-09-07 1999-09-07 How to remove nitrogen from wastewater

Country Status (1)

Country Link
JP (1) JP4031597B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316189A (en) * 2001-04-18 2002-10-29 Hitachi Plant Eng & Constr Co Ltd Biological treatment apparatus and autotrophic sulfur denitrification method
KR100722655B1 (en) * 2001-07-18 2007-05-28 현대중공업 주식회사 Advanced wastewater treatment system with alkalinity-added sulfur media and submerged membrane module
TWI449674B (en) * 2004-12-14 2014-08-21 Kurita Water Ind Ltd Drainage treatment device and treatment method
KR20140104627A (en) * 2013-02-20 2014-08-29 주식회사 부강테크 Wastewater processing apparatus using membrane for recovering active granule of microorganism and method using the same
CN103723893B (en) * 2014-01-10 2016-06-29 中国科学院生态环境研究中心 A kind of remove the method for nitrate nitrogen in water
CN112850895B (en) * 2021-01-29 2022-11-08 安道麦安邦(江苏)有限公司 Method and device for treating pymetrozine organic nitrogen wastewater

Also Published As

Publication number Publication date
JP2001070984A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
TWI494281B (en) Apparatus for treating organic waste water
JP5315587B2 (en) Apparatus and method for treating wastewater containing organic matter
JP4632356B2 (en) Biological nitrogen removal method and system
KR101373881B1 (en) Apparatus and method for treatment of organic substance-containing wastewater
US8323487B2 (en) Waste water treatment apparatus
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP2007038107A (en) Method for treating organic drainage
KR100643775B1 (en) Treatment hybrid process for remove nutrient using floating microorganism
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP3958900B2 (en) How to remove nitrogen from wastewater
JP4031597B2 (en) How to remove nitrogen from wastewater
JP2003053384A (en) Method for removing nitrogen and phosphorus from waste water and facility therefor
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JP2012024707A (en) Denitrification method and denitrification device for ammoniacal nitrogen waste liquid
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP5722087B2 (en) Biological nitrogen treatment method of ammonia containing wastewater
KR20140067307A (en) Advanced treatment method for purifying wastewater
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP2004255269A (en) Denitrification method and denitrification apparatus
JP3377346B2 (en) Organic wastewater treatment method and apparatus
KR20040020325A (en) A method for treating the graywater by membrane
JP4709792B2 (en) Wastewater treatment system
JP2002018479A (en) Method for removing nitrogen from water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees