JP2008023485A - Biological denitrification method and apparatus therefor - Google Patents

Biological denitrification method and apparatus therefor Download PDF

Info

Publication number
JP2008023485A
JP2008023485A JP2006200996A JP2006200996A JP2008023485A JP 2008023485 A JP2008023485 A JP 2008023485A JP 2006200996 A JP2006200996 A JP 2006200996A JP 2006200996 A JP2006200996 A JP 2006200996A JP 2008023485 A JP2008023485 A JP 2008023485A
Authority
JP
Japan
Prior art keywords
denitrification
tank
biological
waste water
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006200996A
Other languages
Japanese (ja)
Inventor
Yuutai Terajima
勇太 寺嶋
Yoshiaki Hasebe
吉昭 長谷部
Masahiro Eguchi
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2006200996A priority Critical patent/JP2008023485A/en
Publication of JP2008023485A publication Critical patent/JP2008023485A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment process in which waste water is treated efficiently by biologically denitrifying waste water in the same and one tank where an autotrophic denitrifying microorganism coexists with a heterotrophic denitrifying microorganism and to provide a biological denitrification method and a biological denitrification apparatus, in each of which the simplification of a structure of the biological denitrification apparatus, a reduction in costs and the shortening of a period of construction work can be realized. <P>SOLUTION: The biological denitrification method being a method for biologically treating waste water containing ammonia nitrogen comprises: a waste water supply step of directly supplying at least a part of the waste water to be treated to a denitrification tank and supplying the reminder being the waste water unsupplied to the denitrification tank to a nitration tank; a nitration step of nitrating the waste water supplied to the nitration tank; and a denitrification step of supplying an electron donor to the denitrification tank to denitrify the ammonia nitrogen contained in the waste water supplied directly to the denitrification tank and the nitrate nitrogen which is contained in the waste water, which is supplied from the nitration tank to the denitrification tank, and produced by the nitration at the nitration step. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ANAMMOX微生物と硝酸を脱窒する独立又は従属栄養性脱窒微生物を単一の槽内に共存させて排水を処理することにより、低コストで残留窒素の少ない高品質な処理水を得ることができる生物脱窒方法および装置に関する。   The present invention treats wastewater by coexisting an independent or heterotrophic denitrifying microorganism that denitrifies ANAMMOX microorganisms and nitric acid in a single tank, thereby producing high-quality treated water with low residual nitrogen and low cost. The present invention relates to a biodenitrification method and apparatus that can be obtained.

一般に、排水中のアンモニア性窒素は、アンモニア性窒素をアンモニア酸化細菌により亜硝酸性窒素に酸化し、更にこの亜硝酸性窒素を亜硝酸酸化細菌により硝酸性窒素に酸化する硝化工程と、これらの亜硝酸性窒素及び硝酸性窒素を従属栄養性細菌である脱窒菌により、有機物を電子供与体として利用して窒素ガスにまで分解する脱窒工程との2段階の生物反応を経て窒素ガスにまで分解される。しかし、このような従来の硝化脱窒法では、脱窒工程において電子供与体としてメタノールなどの有機物を多量に必要とし、また硝化工程では多量の酸素が必要であるため、ランニングコストが高いという欠点がある。   In general, ammonia nitrogen in wastewater is oxidized by ammonia oxidizing bacteria to nitrite nitrogen, and nitrifying nitrogen is oxidized to nitrate nitrogen by nitrite oxidizing bacteria. Nitrite nitrogen and nitrate nitrogen are denitrified bacteria, which are heterotrophic bacteria, and are converted into nitrogen gas through a two-stage biological reaction with a denitrification process that decomposes organic matter into nitrogen gas using an electron donor. Disassembled. However, such a conventional nitrification denitrification method requires a large amount of organic matter such as methanol as an electron donor in the denitrification step, and also requires a large amount of oxygen in the nitrification step, so that the running cost is high. is there.

これに対して、近年、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性微生物(自己栄養細菌)を利用し、アンモニア性窒素と亜硝酸性窒素とを反応させて脱窒する方法が提案された。この独立栄養性脱窒微生物(以下「ANAMMOX 微生物」と称する場合がある。)による脱窒処理は、以下のようなANAMMOX 反応で進行する。
NH4 + +1.32NO2 - →N2 +0.26NO3 - +2H2
In contrast, in recent years, ammonia nitrogen and nitrite nitrogen are reacted using autotrophic microorganisms (autotrophic bacteria) using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A method of denitrifying by letting go was proposed. This denitrification treatment by autotrophic denitrification microorganisms (hereinafter sometimes referred to as “ANAMMOX microorganisms”) proceeds by the following ANAMMOX reaction.
NH 4 + + 1.32NO 2 → N 2 + 0.26NO 3 + 2H 2 O

ANAMMOX微生物は絶対嫌気性微生物であり、微量の酸素で阻害を受けること、有機物が残留していると阻害を受けること、特に硫化水素が発生するような絶対嫌気性条件下では著しい阻害を受けることが言われている。しかしながら、上記ANAMMOX 反応を利用した排水処理は、排水中のアンモニア性窒素や有機性窒素の1/2を亜硝酸性窒素に硝化させるだけで、硝酸性窒素にまで酸化する必要がなく、酸素供給の点からも省エネルギー的であり、またこれまでの従属栄養性脱窒微生物の硝酸呼吸による脱窒反応のように水素供与体を必要とすることもないので、外部からメタノール等の水素供与体の添加が不要であること、更には独立栄養性脱窒微生物であることから、菌体転換率が小さく、余剰汚泥の発生量も極めて小さいなどの大きな利点があるため、効率的な排水処理プロセスとして期待されている。   ANAMMOX microorganisms are absolutely anaerobic microorganisms that are inhibited by trace amounts of oxygen, that they are inhibited when organic matter remains, and that they are significantly inhibited under absolute anaerobic conditions where hydrogen sulfide is generated. Has been said. However, the wastewater treatment using the ANAMMOX reaction does not require oxidation to nitrate nitrogen by simply nitrifying ammonia nitrogen and organic nitrogen in the wastewater to nitrite nitrogen. From the point of view of this, it is energy-saving, and it does not require a hydrogen donor unlike the conventional denitrification reaction by nitrate respiration of heterotrophic denitrifying microorganisms. Since there is no need for addition, and since it is an autotrophic denitrifying microorganism, it has great advantages such as a low cell conversion rate and extremely low surplus sludge generation, making it an efficient wastewater treatment process. Expected.

一方、ANAMMOX反応では硝酸性窒素を脱窒することが出来ず、そのため脱窒前段の硝化工程においてアンモニア性窒素の亜硝酸型処理を行わなければならず、生物処理により亜硝酸型処理を行うためには空気量、、水温、pH、炭酸供給量の制御等の厳密な操作が必要とされ、長期間に及ぶ安定した亜硝酸化制御が困難であった。   On the other hand, in the ANAMMOX reaction, nitrate nitrogen cannot be denitrified. Therefore, ammonia nitrogen must be treated with nitrite in the nitrification process before denitrification, and nitrite is treated by biological treatment. However, strict operations such as control of air amount, water temperature, pH, and carbonic acid supply amount were required, and stable nitritation control over a long period of time was difficult.

更に、ANAMMOX微生物は残留有機物の阻害を受けることから、電子供与体として有機物を必要とする従属栄養性の脱窒菌と同一槽内に共存させて、硝酸性窒素の処理を行うことは困難とされてきた。そのため、遅分解性固形有機物を添加することでANAMMOX反応により副生する少量の硝酸のみを従属栄養性脱窒微生物により脱窒させる手法や(特許文献1)、連続処理ではなく回分式で処理反応を多工程に分割して行うことによりANAMMOX反応後の処理水中に残存する亜硝酸性窒素と硝酸性窒素を従属栄養性の脱窒菌により脱窒する手法が提案されている(特許文献2)。また、一般的にANAMMOX微生物は増殖速度が遅いとされていることから、増殖促進剤としてヒドラジン、メタノール等を装置立ち上げ時に少量添加する手法も提案されている(特許文献3)。なお、本明細書では、ANAMMOXや脱窒に関して、「微生物」、「細菌」、「菌」という文言を使用することがあるが、これらは全て同義語を意味するものとする。
特開2004-283758号公報 特開2003-39092号公報 特開2003-1292号公報
Furthermore, because ANAMMOX microorganisms are inhibited by residual organic matter, it is difficult to treat nitrate nitrogen by coexisting with heterotrophic denitrifying bacteria that require organic matter as an electron donor in the same tank. I came. Therefore, a method of denitrifying only a small amount of nitric acid by-produced by ANAMMOX reaction by adding heterodegradable solid organic substances by heterotrophic denitrifying microorganisms (Patent Document 1), or batch-type treatment reaction instead of continuous treatment Has been proposed in which the nitrite nitrogen and nitrate nitrogen remaining in the treated water after the ANAMMOX reaction are denitrified by heterotrophic denitrifying bacteria (Patent Document 2). Further, since ANAMMOX microorganisms are generally considered to have a slow growth rate, a method of adding a small amount of hydrazine, methanol or the like as a growth promoter when the apparatus is started up has been proposed (Patent Document 3). In this specification, the terms “microorganism”, “bacteria”, and “fungus” may be used in connection with ANAMMOX and denitrification, all of which are synonymous.
Japanese Patent Laid-Open No. 2004-283758 JP 2003-39092 A JP 2003-1292 A

上記のような現状に鑑み、本発明は、独立栄養性脱窒微生物および従属栄養性脱窒微生物を同一槽内に共存させることにより、生物脱窒する排水処理において、効率のよい排水処理プロセスを提供するとともに、装置構造の単純化、コスト削減、工期の短縮等を実現できる、生物脱窒方法および装置を提供することを目的とする。   In view of the current situation as described above, the present invention provides an efficient wastewater treatment process in wastewater treatment for biological denitrification by allowing autotrophic denitrification microorganisms and heterotrophic denitrification microorganisms to coexist in the same tank. An object of the present invention is to provide a biological denitrification method and apparatus capable of simplifying the structure of the apparatus, reducing costs, shortening the construction period, and the like.

上記目的に沿う本発明に係る生物脱窒方法は、アンモニア性窒素含有排水の生物学的処理方法であって、
処理対象となる排水の少なくとも一部を直接脱窒槽に供給するとともに脱窒槽に供給しなかった残りの排水を硝化槽に供給する排水供給工程と、
硝化槽に供給されてきた排水を硝酸化する硝化工程と、
前記直接脱窒槽に供給されてきた排水中のアンモニア性窒素と、前記硝化槽から前記脱窒槽に供給される排水中の前記硝化工程で硝酸化された硝酸性窒素を、脱窒槽において電子供与体を供給することにより脱窒する脱窒工程と、
を含むことを特徴とする方法からなる。
The biological denitrification method according to the present invention that meets the above-mentioned object is a biological treatment method of ammoniacal nitrogen-containing wastewater,
A wastewater supply step of supplying at least a part of the wastewater to be treated directly to the denitrification tank and supplying the remaining wastewater not supplied to the denitrification tank to the nitrification tank;
A nitrification process for nitrating the wastewater supplied to the nitrification tank;
Electron donors in the denitrification tank are ammoniacal nitrogen in the wastewater that has been directly supplied to the denitrification tank and nitrate nitrogen that has been nitrated in the nitrification step in the wastewater that is supplied from the nitrification tank to the denitrification tank. A denitrification step of denitrifying by supplying
It comprises the method characterized by including.

また、本発明に係る生物脱窒装置は、アンモニア性窒素含有排水の生物学的処理装置であって、
処理対象となる排水の少なくとも一部を硝化槽をバイパスさせて直接脱窒槽に供給するとともに脱窒槽に供給しなかった残りの排水を硝化槽に供給する排水供給手段と、
硝化槽に供給されてきた排水を硝酸化する硝化手段と、
前記直接脱窒槽に供給されてきた排水中のアンモニア性窒素と、前記硝化槽から前記脱窒槽に供給される排水中の前記硝化手段で硝酸化された硝酸性窒素を、脱窒槽において電子供与体を供給することにより脱窒する脱窒手段と、
を含むことを特徴とする装置からなる。
Moreover, the biological denitrification apparatus according to the present invention is a biological treatment apparatus for ammonia nitrogen-containing wastewater,
A waste water supply means for supplying at least part of the waste water to be treated directly to the denitrification tank by bypassing the nitrification tank and supplying the remaining waste water not supplied to the denitrification tank to the nitrification tank;
Nitrification means for nitrating the wastewater that has been supplied to the nitrification tank;
Electron donors in the denitrification tank are ammonia nitrogen in the wastewater that has been directly supplied to the denitrification tank and nitrate nitrogen that has been nitrated by the nitrification means in the wastewater that is supplied from the nitrification tank to the denitrification tank. Denitrification means for denitrification by supplying
It comprises the apparatus characterized by including.

すなわち、本発明に係る生物脱窒方法および装置は、処理対象となる排水の一部を硝化槽をバイパスさせて、電子供与体添加下において硝酸化した残りの排水とともに脱窒槽に供給することにより、適切なアンモニア性窒素と硝酸性窒素の比率にて、効率よく低コストにて脱窒を行うようにしたものである。   That is, the biological denitrification method and apparatus according to the present invention bypasses the nitrification tank for a part of the wastewater to be treated and supplies it to the denitrification tank together with the remaining wastewater nitrated under the addition of the electron donor. In addition, denitrification is performed efficiently and at low cost at an appropriate ratio of ammonia nitrogen and nitrate nitrogen.

この本発明に係る生物脱窒方法および装置においては、脱窒工程に流動床式生物処理装置を用いることが好ましい。また、硝化工程にも流動床式生物処理装置を用いることができる。流動床式生物処理装置における生物担体としては、例えば、スポンジ、ゲル、グラニュール、プラスチック成型品のうちの少なくとも一つを用いることができる。   In the biological denitrification method and apparatus according to the present invention, it is preferable to use a fluidized bed biological treatment apparatus for the denitrification step. A fluidized bed biological treatment apparatus can also be used for the nitrification step. As a biological carrier in a fluidized bed biological treatment apparatus, for example, at least one of sponge, gel, granule, and plastic molded product can be used.

脱窒工程に、固定床と比較し設置が容易で既存設備の改造が容易な流動床型の生物処理装置を用いることにより、槽内構造を単純化できると共に、工期、コストを削減することができる。   By using a fluidized bed biological treatment device that is easier to install and easier to modify the existing equipment in the denitrification process, the internal structure of the tank can be simplified and the construction period and cost can be reduced. it can.

本発明に係る生物脱窒方法および装置によれば、排水の一部を硝化槽をバイパスさせて直接脱窒槽に供給することによって、アンモニア性窒素と硝酸性窒素を適切な比率で脱窒槽に供給することが可能になり、脱窒槽において効率的な処理が可能となる。また、亜硝酸化の処理が不要で長時間にわたり安定した処理が可能となる。   According to the biological denitrification method and apparatus according to the present invention, ammonia nitrogen and nitrate nitrogen are supplied to the denitrification tank at an appropriate ratio by supplying a part of the waste water directly to the denitrification tank, bypassing the nitrification tank. This makes it possible to perform efficient processing in the denitrification tank. Further, nitritation treatment is unnecessary and stable treatment can be performed for a long time.

また、脱窒装置を流動床式の装置とすることで、既存設備の改良が容易となり、また、装置構造も簡素になるので、工期、コストの削減が図れる。   Further, by using a fluidized bed type denitrification device, the existing facilities can be easily improved and the structure of the device is simplified, so that the construction period and cost can be reduced.

以下に、本発明について、望ましい実施の形態とともに詳細に説明する。
図1は、本発明に係る方法の実施に好適な窒素含有排水処理装置の一例を示す概略構成図である。比較のために、図2に従来の脱窒装置の一例の概略構成を、図3に従来のANAMMOX反応による処理装置の一例の概略構成を、それぞれ示す。
Hereinafter, the present invention will be described in detail together with preferred embodiments.
FIG. 1 is a schematic configuration diagram showing an example of a nitrogen-containing wastewater treatment apparatus suitable for carrying out the method according to the present invention. For comparison, FIG. 2 shows a schematic configuration of an example of a conventional denitrification apparatus, and FIG. 3 shows a schematic configuration of an example of a processing apparatus using a conventional ANAMOX reaction.

例えば半導体産業において排出されるような、アンモニア性窒素含有排水を硝化槽、脱窒槽、酸化槽よりなる排水処理装置において処理する場合に、図1に示すような構成で本発明を実施することにより、低コストでの排水処理が可能となる。   For example, when the ammonia nitrogen-containing wastewater discharged in the semiconductor industry is treated in a wastewater treatment apparatus comprising a nitrification tank, a denitrification tank, and an oxidation tank, the present invention is implemented with the configuration shown in FIG. Therefore, wastewater treatment can be performed at a low cost.

具体的には、例えば図1に示すように、排水1中のアンモニア性窒素を硝酸性窒素とする硝化槽2と、当該硝化槽2からの処理水(排水)中の硝酸性窒素を脱窒する脱窒槽3と、脱窒槽3において処理された排水中に残存する有機物を処理する酸化槽4よりなるような排水処理装置において、排水1の一部を硝化槽2をバイパスさせて直接脱窒槽3に供給する。脱窒槽3では独立栄養性脱窒微生物による反応(ANAMMOX反応)で電子供与体として利用されるアンモニア性窒素はバイパスラインBにより供給され、従属栄養性脱窒微生物による反応(脱窒反応)で電子供与体として利用される有機物はラインYにより供給される。本発明は上記ANAMMOX反応処理と脱窒反応処理を共存処理させることにより実施が可能となる。つまり、硝化槽2でアンモニアを硝酸にし、脱窒とANAMMOX反応を行う脱窒槽3でバイパスされてきたアンモニアを添加するとともに、メタノールを添加し、脱窒菌およびANAMMOX菌の相互作用(脱窒菌からANAMMOX菌への亜硝酸の受け渡し)によって硝酸とアンモニアを窒素にして処理し、余剰に添加したメタノールが存在する場合にはそれを酸化槽4で処理する。なお、電子供与体として添加する有機物としてはメタノール、イソプロピルアルコール、プロピオン酸、ギ酸、酢酸(有機酸類)、アラニン、グルコース等の溶解性有機物(アルコール類)の他、油等の難溶解性の液状有機物も考えられる。その他に、槽内に水素ガス、還元態硫黄化合物を供給し、水素ガスや還元態硫黄化合物を電子供与体として用いる独立栄養性の脱窒菌を用いてもよい。   Specifically, for example, as shown in FIG. 1, nitrification tank 2 in which ammonia nitrogen in waste water 1 is nitrate nitrogen, and nitrate nitrogen in treated water (drain water) from nitrification tank 2 is denitrified. In a wastewater treatment apparatus comprising a denitrification tank 3 and an oxidation tank 4 for treating organic matter remaining in wastewater treated in the denitrification tank 3, a part of the wastewater 1 is directly bypassed the nitrification tank 2 and directly denitrification tank 3 is supplied. In the denitrification tank 3, ammonia nitrogen used as an electron donor in a reaction by an autotrophic denitrifying microorganism (ANAMMOX reaction) is supplied by the bypass line B, and an electron by a reaction by a heterotrophic denitrifying microorganism (denitrification reaction). The organics used as donors are supplied by line Y. The present invention can be implemented by coexisting the above-mentioned ANAMMOX reaction treatment and denitrification reaction treatment. That is, ammonia is converted into nitric acid in the nitrification tank 2, and ammonia that has been bypassed in the denitrification tank 3 that performs denitrification and ANAMMOX reaction is added, and methanol is added, and the interaction between the denitrifying bacteria and ANAMMOX bacteria (from denitrifying bacteria to ANAMMOX The nitric acid and ammonia are treated with nitrogen by the delivery of nitrous acid to the bacteria, and if there is excess methanol added, it is treated in the oxidation tank 4. In addition, as organic substances to be added as an electron donor, in addition to soluble organic substances (alcohols) such as methanol, isopropyl alcohol, propionic acid, formic acid, acetic acid (organic acids), alanine, and glucose, hardly soluble liquids such as oil Organic matter is also conceivable. In addition, an autotrophic denitrifying bacterium that supplies hydrogen gas and a reduced sulfur compound into the tank and uses the hydrogen gas or the reduced sulfur compound as an electron donor may be used.

なお、電子供与体とはANAMMOX微生物の場合はアンモニアであり、他の独立脱窒微生物の場合は水素であり、還元態硫黄、従属栄養性脱窒菌の場合は有機物である。また、電子受容体はANAMMOX微生物にとっては亜硝酸であり、他の独立脱窒微生物の場合は硝酸または亜硝酸であり、還元態硫黄、従属栄養性脱窒菌の場合も硝酸または亜硝酸である。   The electron donor is ammonia in the case of ANAMMOX microorganisms, hydrogen in the case of other independent denitrifying microorganisms, and organic substance in the case of reduced sulfur and heterotrophic denitrifying bacteria. The electron acceptor is nitrous acid for ANAMMOX microorganisms, nitric acid or nitrous acid for other independent denitrifying microorganisms, and nitric acid or nitrous acid for reduced sulfur and heterotrophic denitrifying bacteria.

この際、脱窒槽に電子供与体として供給されるアンモニア性窒素は硝化槽からの処理水中に残存する形として、又は、処理対象であるアンモニア性窒素含有排水の一部をバイパスして、脱窒槽に供給することが可能である。   At this time, the ammonia nitrogen supplied as an electron donor to the denitrification tank remains in the treated water from the nitrification tank, or bypasses part of the ammonia nitrogen-containing waste water to be treated. Can be supplied.

また、脱窒槽に供給される硝化槽処理水及びアンモニア性窒素含有排水中に、従属栄養性脱窒細菌が電子供与体として利用するのに十分な有機物や独立栄養性の脱窒菌が利用するのに十分な電子供与体が含まれる場合には、メタノール等の供給は不要である。   In addition, sufficient organic matter and autotrophic denitrifying bacteria are available for use by heterotrophic denitrifying bacteria as electron donors in the nitrification tank treated water and ammonia nitrogen-containing wastewater supplied to the denitrifying tank. If sufficient electron donor is contained in the liquid, supply of methanol or the like is not necessary.

更に、脱窒槽内で供給したメタノールなどの有機物が脱窒槽で消費されて残存していない場合には、後段の酸化槽4は不要である。   Further, when the organic matter such as methanol supplied in the denitrification tank is consumed in the denitrification tank and does not remain, the subsequent oxidation tank 4 is not necessary.

なお、硝酸の亜硝酸化手段は生物処理によるものに限られず、また、脱窒槽においてpH等を調整し処理を行うことは一般的手段として用いられるものである。   The means for nitrating nitric acid is not limited to that by biological treatment, and adjusting the pH and the like in a denitrification tank is a general means.

更に、生物処理の早期立ち上げの観点から、増殖速度の遅い独立栄養性脱窒細菌を事前に汚泥や担体に付着させた状態等で集積しておいたものを脱窒槽に添加してもよい。   Furthermore, from the viewpoint of early start-up of biological treatment, what has been accumulated in advance in a state where autotrophic denitrifying bacteria having a slow growth rate are attached to sludge or a carrier in advance may be added to the denitrification tank. .

また、硝化槽において脱窒槽へ供給する排水中の亜硝酸性窒素及び硝酸性窒素の比率を制御することにより、脱窒槽における独立栄養性脱窒細菌と従属栄養性脱窒細菌の増殖速度を制御し共存させることが可能である。   In addition, the growth rate of autotrophic and heterotrophic denitrifying bacteria in the denitrification tank is controlled by controlling the ratio of nitrite nitrogen and nitrate nitrogen in the wastewater supplied to the denitrification tank in the nitrification tank Can coexist.

また、脱窒槽へ供給される排水中の亜硝酸性窒素量、及び、硝酸性窒素量から脱窒槽へ添加する電子供与体(メタノール等)量を制御することによっても、独立栄養性脱窒細菌と従属栄養性脱窒細菌の増殖速度を制御し、より理想的な条件で共存させることが可能である。   In addition, by controlling the amount of nitrite nitrogen in the wastewater supplied to the denitrification tank and the amount of electron donor (such as methanol) added to the denitrification tank from the amount of nitrate nitrogen, the autotrophic denitrifying bacteria It is possible to control the growth rate of heterotrophic denitrifying bacteria and coexist in more ideal conditions.

本発明との比較のために、図2に従来の脱窒による処理態様の一例を示し、図3に従来のANAMMOX反応による処理態様の一例を示す。図2に示す例では、硝化槽2でアンモニアを硝酸にし、脱窒槽3aでメタノールを添加し硝酸を窒素にして処理し、余剰に添加したメタノールを酸化槽4で処理する。図3に示す例では、硝化槽2でアンモニアを亜硝酸にし、ANAMMOX槽3bでアンモニアを添加し、亜硝酸とアンモニアを窒素にして処理する。この場合、メタノールの添加は無いので酸化槽は不要である。   For comparison with the present invention, FIG. 2 shows an example of a conventional treatment mode by denitrification, and FIG. 3 shows an example of a conventional treatment mode by ANAMOX reaction. In the example shown in FIG. 2, ammonia is converted into nitric acid in the nitrification tank 2, methanol is added in the denitrification tank 3 a and nitric acid is converted into nitrogen, and excess added methanol is processed in the oxidation tank 4. In the example shown in FIG. 3, ammonia is converted into nitrous acid in the nitrification tank 2, ammonia is added in the ANAMOX tank 3b, and nitrous acid and ammonia are converted into nitrogen. In this case, since no methanol is added, an oxidation tank is not necessary.

つまり、図2に示す従来の脱窒処理では、脱窒槽3aへの電子供与体としてのメタノールの添加は行われるが、アンモニアの一部を硝化槽2をバイパスさせて脱窒槽3aに供給することは考えられておらず、図3に示す従来のANAMMOX処理では、アンモニアの一部を硝化槽2をバイパスさせてANAMMOX槽3bに供給することは考えられるものの、ANAMMOX槽3bに電子供与体としての有機物等(メタノール等)を供給することは考えられていない。   That is, in the conventional denitrification process shown in FIG. 2, methanol as an electron donor is added to the denitrification tank 3a, but a part of ammonia is supplied to the denitrification tank 3a by bypassing the nitrification tank 2. In the conventional ANAMOX treatment shown in FIG. 3, it is conceivable that a part of ammonia is supplied to the ANAMOX tank 3b by bypassing the nitrification tank 2, but is supplied to the ANAMOX tank 3b as an electron donor. It is not considered to supply organic substances (methanol, etc.).

これら従来処理に対し、本発明では、アンモニアの一部の適切な量を硝化槽2をバイパスさせて直接脱窒槽3に供給し、脱窒槽3において、硝化槽2からの処理水とバイパス供給されたアンモニア性窒素含有排水を、電子供与体としての有機物等(メタノール等)を添加した条件下にて(電子供与体としての有機物等(メタノール等)が存在する条件下にて)、かつ、独立栄養性脱窒細菌と従属栄養性脱窒細菌が適切に共存した条件下にて、脱窒処理を行うようにしている。つまり、脱窒処理とANAMMOX処理が、互いに阻害し合うことなく、進行できるようにしたものである。原水のバイパスラインへの供給量は20〜60%が好ましい。この範囲にすることによりより安定的に共存処理が可能となる。   In contrast to these conventional treatments, in the present invention, an appropriate amount of ammonia is bypassed through the nitrification tank 2 and directly supplied to the denitrification tank 3, and the treated water from the nitrification tank 2 is supplied by bypass in the denitrification tank 3. Ammonia nitrogen-containing wastewater was added under conditions where organic substances such as an electron donor (methanol etc.) were added (under conditions where organic substances such as an electron donor (methanol etc.) were present) and independently The denitrification treatment is performed under conditions where the nutritional denitrifying bacteria and the heterotrophic denitrifying bacteria coexist appropriately. In other words, the denitrification process and the ANAMOX process can proceed without interfering with each other. The amount of raw water supplied to the bypass line is preferably 20 to 60%. By making this range, coexistence processing can be performed more stably.

図4、図5は、本発明の実施に好適な生物脱窒装置の例を示すものである。
例えば、脱窒槽3内に脱窒を行う微生物である従属栄養性又は独立栄養性の脱窒菌の、グラニュール(汚泥の造粒体)又は微生物担体を添加し、単純な装置構造で担体の設置コスト、工期を抑えて排水処理が可能となる。また、装置構造がシンプルであり、メンテナンスが容易であると共に、既存設備への本手法の適用にあたっては担体を添加するだけでよく改良が容易である。
4 and 5 show an example of a biological denitrification apparatus suitable for carrying out the present invention.
For example, granule (sludge granule) or microbial carrier of heterotrophic or autotrophic denitrifying bacteria which are denitrifying microorganisms is added to the denitrification tank 3, and the carrier is installed with a simple device structure. Wastewater treatment becomes possible with reduced cost and construction period. In addition, the structure of the apparatus is simple and maintenance is easy, and in applying this method to existing equipment, it is sufficient to add a carrier and the improvement is easy.

担体としては、スポンジ、ゲル、プラスチック成型品、各種グラニュール(脱窒グラニュール、硝化グラニュール、ANAMMOXグラニュール等)等を利用することができる。好適には、親水性のポリウレタンスポンジやポリビニルアルコール(PVA)ゲルを利用することができる。図4に示す例では、親水性ポリウレタンスポンジ担体5を用いており、図5に示す例では、親水性ポリウレタンスポンジ担体5とPVAゲル担体6を用いている。また、本手法における、嫌気微生物が硝酸を亜硝酸まで還元し、その亜硝酸をANAMMOX菌が利用し脱窒を行うという特性に鑑み、両細菌が同一担体内に存在し亜硝酸の移動が容易となるような、各細菌が付着しやすい素材を組み合わせた担体を用いてもよい。   As the carrier, sponges, gels, plastic molded articles, various granules (denitrification granules, nitrification granules, ANAMOX granules, etc.) and the like can be used. Preferably, a hydrophilic polyurethane sponge or polyvinyl alcohol (PVA) gel can be used. In the example shown in FIG. 4, the hydrophilic polyurethane sponge carrier 5 is used, and in the example shown in FIG. 5, the hydrophilic polyurethane sponge carrier 5 and the PVA gel carrier 6 are used. In addition, in view of the characteristics that anaerobic microorganisms reduce nitric acid to nitrous acid and denitrify the nitrous acid using ANAMMOX bacteria in this method, both bacteria are present in the same carrier and nitrous acid can be easily transferred. A carrier that combines materials that easily adhere to each bacterium may be used.

なお、生物脱窒槽3内を流動させる手段としては、水中攪拌機7(図4に例示)や水中ポンプ8(図5に例示)の設置により流動を起こす手法が考えられ、特に、ドラフトチューブ9(図5に例示)を設置することで、より低エネルギーで強い攪拌を得ることができる。   In addition, as a means for flowing in the biological denitrification tank 3, a method of causing flow by installing an underwater stirrer 7 (illustrated in FIG. 4) or an underwater pump 8 (illustrated in FIG. 5) is conceivable. In particular, a draft tube 9 ( By installing (illustrated in FIG. 5), strong agitation can be obtained with lower energy.

表1〜表3に、PVAゲル及び親水性ポリウレタンスポンジ担体を用いた脱窒方法の試験結果を示す(試験No.1〜5)。具体的には、表1に試験条件を示すが(○印は存在していることを示している)、密閉可能な容器内に表2に示す組成の溶液を作製し、前述のゲル及び担体を水溶液に対し体積比でそれぞれ5%計10%となるように添加した後に、独立栄養性脱窒菌及び従属栄養性脱窒菌を担体に付着させるための種汚泥として添加した。その後、容器内を窒素ガスで封入し嫌気条件とし、一日に数回容器を手で振り容器内部を攪拌した。そして、所定時間毎に酸素に触れないように窒素雰囲気下で容器内の溶液を採取し、アンモニア性窒素、硝酸性窒素、亜硝酸性窒素の各濃度を測定した。なお、アンモニア性窒素の測定には、インドフェノール青吸光光度法(JIS(1998年),K0102,P145)を用い、硝酸性窒素・亜硝酸性窒素の測定にはイオンクロマトグラフィーを用いた。   Tables 1 to 3 show the test results of the denitrification method using the PVA gel and the hydrophilic polyurethane sponge carrier (Test Nos. 1 to 5). Specifically, the test conditions are shown in Table 1 (circles indicate that they exist), and a solution having the composition shown in Table 2 is prepared in a sealable container, and the gel and carrier described above are prepared. Was added to the aqueous solution so that the total volume ratio would be 5% and 10%, respectively, and then added as seed sludge for attaching autotrophic denitrifying bacteria and heterotrophic denitrifying bacteria to the carrier. Thereafter, the inside of the container was sealed with nitrogen gas to make anaerobic conditions, and the inside of the container was stirred by shaking the container several times a day. And the solution in a container was extract | collected in nitrogen atmosphere so that oxygen might not be touched every predetermined time, and each density | concentration of ammonia nitrogen, nitrate nitrogen, and nitrite nitrogen was measured. In addition, indophenol blue absorptiometry (JIS (1998), K0102, P145) was used for measuring ammonia nitrogen, and ion chromatography was used for measuring nitrate nitrogen and nitrite nitrogen.

その結果、表3に試験結果を示すように、担体存在下で独立栄養性脱窒菌(ANAMMOX菌)と従属栄養性脱窒菌が共存している系においてはメタノールの添加により硝酸及びアンモニア性窒素濃度が減少し(表6、No.4,No.5)、生物学的脱窒によりアンモニア性窒素と硝酸性窒素が同時に除去されることが確認された。   As a result, as shown in Table 3, in the system where autotrophic denitrifying bacteria (ANAAMOX bacteria) and heterotrophic denitrifying bacteria coexist in the presence of a carrier, the concentration of nitric acid and ammoniacal nitrogen is increased by adding methanol. (Table 6, No. 4, No. 5), it was confirmed that biological nitrogen removal removes ammonia nitrogen and nitrate nitrogen simultaneously.

Figure 2008023485
Figure 2008023485

Figure 2008023485
Figure 2008023485

Figure 2008023485
Figure 2008023485

本発明は、半導体製造分野等のあらゆる分野におけるアンモニア性窒素含有排水の生物脱窒処理に適用できる。   The present invention can be applied to biological denitrification treatment of ammoniacal nitrogen-containing wastewater in all fields such as the semiconductor manufacturing field.

本発明の一実施例に係る方法を実施するための排水処理装置の概略構成図である。It is a schematic block diagram of the waste water treatment equipment for enforcing the method concerning one example of the present invention. 従来の脱窒装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conventional denitrification apparatus. ANAMMOX反応による処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the processing apparatus by ANAMMOX reaction. 本発明の実施に好適な生物脱窒装置の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the biological denitrification apparatus suitable for implementation of this invention. 本発明の実施に好適な生物脱窒装置の別の例を示す概略斜視図である。It is a schematic perspective view which shows another example of the biological denitrification apparatus suitable for implementation of this invention.

符号の説明Explanation of symbols

1 アンモニア性窒素含有排水
2 硝化槽
3 脱窒槽
4 酸化槽
5 親水性ポリウレタンスポンジ担体
6 PVAゲル担体
7 水中攪拌機
8 水中ポンプ
9 ドラフトチューブ
B バイパスライン
1 Wastewater containing ammonia nitrogen 2 Nitrification tank 3 Denitrification tank 4 Oxidation tank 5 Hydrophilic polyurethane sponge carrier 6 PVA gel carrier 7 Submerged agitator 8 Submersible pump 9 Draft tube B Bypass line

Claims (8)

アンモニア性窒素含有排水の生物学的処理方法であって、
処理対象となる排水の少なくとも一部を直接脱窒槽に供給するとともに脱窒槽に供給しなかった残りの排水を硝化槽に供給する排水供給工程と、
硝化槽に供給されてきた排水を硝酸化する硝化工程と、
前記直接脱窒槽に供給されてきた排水中のアンモニア性窒素と、前記硝化槽から前記脱窒槽に供給される排水中の前記硝化工程で硝酸化された硝酸性窒素を、脱窒槽において電子供与体を供給することにより脱窒する脱窒工程と、
を含むことを特徴とする生物脱窒方法。
A biological treatment method for ammoniacal nitrogen-containing wastewater,
A wastewater supply step of supplying at least a part of the wastewater to be treated directly to the denitrification tank and supplying the remaining wastewater not supplied to the denitrification tank to the nitrification tank;
A nitrification process for nitrating the wastewater supplied to the nitrification tank;
Electron donors in the denitrification tank are ammoniacal nitrogen in the wastewater that has been directly supplied to the denitrification tank and nitrate nitrogen that has been nitrated in the nitrification step in the wastewater that is supplied from the nitrification tank to the denitrification tank. A denitrification step of denitrifying by supplying
A biological denitrification method comprising:
前記脱窒工程に流動床式生物処理装置を用いることを特徴とする、請求項1に記載の生物脱窒方法。   The biological denitrification method according to claim 1, wherein a fluidized bed biological treatment apparatus is used in the denitrification step. 前記硝化工程に流動床式生物処理装置を用いることを特徴とする、請求項1または2に記載の生物脱窒方法。   The biological denitrification method according to claim 1 or 2, wherein a fluidized bed biological treatment apparatus is used in the nitrification step. 前記流動床式生物処理装置における生物担体として、スポンジ、ゲル、グラニュール、プラスチック成型品のうちの少なくとも一つを用いることを特徴とする、請求項2または3に記載の生物脱窒方法。   The biological denitrification method according to claim 2 or 3, wherein at least one of a sponge, a gel, a granule, and a plastic molded product is used as a biological carrier in the fluidized bed biological treatment apparatus. アンモニア性窒素含有排水の生物学的処理装置であって、
処理対象となる排水の少なくとも一部を硝化槽をバイパスさせて直接脱窒槽に供給するとともに脱窒槽に供給しなかった残りの排水を硝化槽に供給する排水供給手段と、
硝化槽に供給されてきた排水を硝酸化する硝化手段と、
前記直接脱窒槽に供給されてきた排水中のアンモニア性窒素と、前記硝化槽から前記脱窒槽に供給される排水中の前記硝化手段で硝酸化された硝酸性窒素を、脱窒槽において電子供与体を供給することにより脱窒する脱窒手段と、
を含むことを特徴とする生物脱窒装置。
A biological treatment apparatus for ammonia-containing nitrogen-containing wastewater,
A waste water supply means for supplying at least part of the waste water to be treated directly to the denitrification tank by bypassing the nitrification tank and supplying the remaining waste water not supplied to the denitrification tank to the nitrification tank;
Nitrification means for nitrating the wastewater that has been supplied to the nitrification tank;
Electron donors in the denitrification tank are ammonia nitrogen in the wastewater that has been directly supplied to the denitrification tank and nitrate nitrogen that has been nitrated by the nitrification means in the wastewater that is supplied from the nitrification tank to the denitrification tank. Denitrification means for denitrification by supplying
A biological denitrification apparatus comprising:
前記脱窒手段に流動床式生物処理装置を用いることを特徴とする、請求項5に記載の生物脱窒装置。   The biological denitrification apparatus according to claim 5, wherein a fluidized bed biological treatment apparatus is used as the denitrification means. 前記硝化手段に流動床式生物処理装置を用いることを特徴とする、請求項5または6に記載の生物脱窒装置。   The biological denitrification apparatus according to claim 5 or 6, wherein a fluidized bed biological treatment apparatus is used as the nitrification means. 前記流動床式生物処理装置における生物担体として、スポンジ、ゲル、グラニュール、プラスチック成型品のうちの少なくとも一つを用いることを特徴とする、請求項6または7に記載の生物脱窒装置。   The biological denitrification apparatus according to claim 6 or 7, wherein at least one of a sponge, a gel, a granule, and a plastic molded product is used as a biological carrier in the fluidized bed biological treatment apparatus.
JP2006200996A 2006-07-24 2006-07-24 Biological denitrification method and apparatus therefor Pending JP2008023485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200996A JP2008023485A (en) 2006-07-24 2006-07-24 Biological denitrification method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200996A JP2008023485A (en) 2006-07-24 2006-07-24 Biological denitrification method and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2008023485A true JP2008023485A (en) 2008-02-07

Family

ID=39114675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200996A Pending JP2008023485A (en) 2006-07-24 2006-07-24 Biological denitrification method and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2008023485A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251255A (en) * 2010-06-02 2011-12-15 Kumamoto Univ Waste liquid treatment method and waste liquid treatment device
JP2015131253A (en) * 2014-01-09 2015-07-23 株式会社日立製作所 Operational method of wastewater processing apparatus
US10112857B2 (en) * 2013-07-08 2018-10-30 Degremont Method and equipment for the biological denitrification of waste water
WO2019198803A1 (en) * 2018-04-13 2019-10-17 株式会社クラレ Wastewater treatment method

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626591A (en) * 1979-08-07 1981-03-14 Ebara Infilco Co Ltd Biological denitrifying method for waste water
JPS5626592A (en) * 1979-08-08 1981-03-14 Ebara Infilco Co Ltd Biological denitrifying method for waste water
JPS6372397A (en) * 1987-05-28 1988-04-02 Ebara Infilco Co Ltd Biological denitrification of waste water
JPH03501099A (en) * 1988-02-05 1991-03-14 ギスト ブロカデス ナームローゼ フェンノートチャップ Anoxic oxidation of ammonia
JP2001038389A (en) * 1999-07-30 2001-02-13 Kawasaki City Method for removing nitrogen of waste water
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2002361285A (en) * 2001-06-12 2002-12-17 Kurita Water Ind Ltd Denitrification method and denitrification equipment
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2003260493A (en) * 2002-03-08 2003-09-16 Kiyomoto Iron & Machinery Works Co Ltd Removal method for nitrate nitrogen in water and apparatus therefor
JP2003285093A (en) * 2002-03-28 2003-10-07 Ebara Corp Biological denitrification method and apparatus therefor
JP2004050149A (en) * 2002-07-24 2004-02-19 Ebara Corp Biological treatment method and equipment for liquid organic waste or sewage
JP2004141742A (en) * 2002-10-23 2004-05-20 Asahi Eng Co Ltd Waste water treatment equipment and waste water treatment method
JP2005305410A (en) * 2004-03-25 2005-11-04 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2005329399A (en) * 2004-04-20 2005-12-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2006130397A (en) * 2004-11-05 2006-05-25 Hitachi Plant Eng & Constr Co Ltd Waste water treatment system
JP2006166875A (en) * 2004-12-20 2006-06-29 Japan Science & Technology Agency Denitrifying bacterial strain and method for removing nitric acid by using the same
JP2006247625A (en) * 2005-03-14 2006-09-21 Hitachi Plant Technologies Ltd Method for treating ammonia-containing water
JP2006247623A (en) * 2005-03-14 2006-09-21 Hitachi Plant Technologies Ltd Ammonia-containing water treatment method
JP2006263719A (en) * 2005-02-28 2006-10-05 Hitachi Plant Technologies Ltd Process and equipment for treating ammonia-containing liquid
JP2006272177A (en) * 2005-03-29 2006-10-12 Mitsubishi Heavy Ind Ltd Method and system for removing biological nitrogen
JP2006272321A (en) * 2005-03-04 2006-10-12 Hitachi Plant Technologies Ltd Treatment method of ammonia-containing liquid and its treatment apparatus
JP2006272172A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Method and apparatus for biologically treating nitrogen-containing water
JP2006320831A (en) * 2005-05-18 2006-11-30 Hitachi Plant Technologies Ltd Apparatus for treating ammonia-containing liquid
JP2007125484A (en) * 2005-11-02 2007-05-24 Japan Organo Co Ltd Nitrogen-containing wastewater treatment method
JP2007152236A (en) * 2005-12-05 2007-06-21 Takuma Co Ltd Ammonia-containing wastewater treatment method
JP2007237144A (en) * 2006-03-13 2007-09-20 Hitachi Plant Technologies Ltd Nitrogen containing water treatment process and arrangement
JP2007237145A (en) * 2006-03-13 2007-09-20 Hitachi Plant Technologies Ltd Batch treatment process of nitrogen containing water

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626591A (en) * 1979-08-07 1981-03-14 Ebara Infilco Co Ltd Biological denitrifying method for waste water
JPS5626592A (en) * 1979-08-08 1981-03-14 Ebara Infilco Co Ltd Biological denitrifying method for waste water
JPS6372397A (en) * 1987-05-28 1988-04-02 Ebara Infilco Co Ltd Biological denitrification of waste water
JPH03501099A (en) * 1988-02-05 1991-03-14 ギスト ブロカデス ナームローゼ フェンノートチャップ Anoxic oxidation of ammonia
JP2001038389A (en) * 1999-07-30 2001-02-13 Kawasaki City Method for removing nitrogen of waste water
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2002361285A (en) * 2001-06-12 2002-12-17 Kurita Water Ind Ltd Denitrification method and denitrification equipment
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2003260493A (en) * 2002-03-08 2003-09-16 Kiyomoto Iron & Machinery Works Co Ltd Removal method for nitrate nitrogen in water and apparatus therefor
JP2003285093A (en) * 2002-03-28 2003-10-07 Ebara Corp Biological denitrification method and apparatus therefor
JP2004050149A (en) * 2002-07-24 2004-02-19 Ebara Corp Biological treatment method and equipment for liquid organic waste or sewage
JP2004141742A (en) * 2002-10-23 2004-05-20 Asahi Eng Co Ltd Waste water treatment equipment and waste water treatment method
JP2005305410A (en) * 2004-03-25 2005-11-04 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2005329399A (en) * 2004-04-20 2005-12-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2006130397A (en) * 2004-11-05 2006-05-25 Hitachi Plant Eng & Constr Co Ltd Waste water treatment system
JP2006166875A (en) * 2004-12-20 2006-06-29 Japan Science & Technology Agency Denitrifying bacterial strain and method for removing nitric acid by using the same
JP2006263719A (en) * 2005-02-28 2006-10-05 Hitachi Plant Technologies Ltd Process and equipment for treating ammonia-containing liquid
JP2006272321A (en) * 2005-03-04 2006-10-12 Hitachi Plant Technologies Ltd Treatment method of ammonia-containing liquid and its treatment apparatus
JP2006247625A (en) * 2005-03-14 2006-09-21 Hitachi Plant Technologies Ltd Method for treating ammonia-containing water
JP2006247623A (en) * 2005-03-14 2006-09-21 Hitachi Plant Technologies Ltd Ammonia-containing water treatment method
JP2006272177A (en) * 2005-03-29 2006-10-12 Mitsubishi Heavy Ind Ltd Method and system for removing biological nitrogen
JP2006272172A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Method and apparatus for biologically treating nitrogen-containing water
JP2006320831A (en) * 2005-05-18 2006-11-30 Hitachi Plant Technologies Ltd Apparatus for treating ammonia-containing liquid
JP2007125484A (en) * 2005-11-02 2007-05-24 Japan Organo Co Ltd Nitrogen-containing wastewater treatment method
JP2007152236A (en) * 2005-12-05 2007-06-21 Takuma Co Ltd Ammonia-containing wastewater treatment method
JP2007237144A (en) * 2006-03-13 2007-09-20 Hitachi Plant Technologies Ltd Nitrogen containing water treatment process and arrangement
JP2007237145A (en) * 2006-03-13 2007-09-20 Hitachi Plant Technologies Ltd Batch treatment process of nitrogen containing water

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
井坂和一、角野立夫、吉江幸子、常田聡、稲森悠平: "嫌気性アンモニア酸化反応系における亜硝酸酸化反応の発見", 第39回 日本水環境学会年会講演集, JPN6009014534, 17 March 2005 (2005-03-17), JP, pages 325, ISSN: 0002352310 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251255A (en) * 2010-06-02 2011-12-15 Kumamoto Univ Waste liquid treatment method and waste liquid treatment device
US10112857B2 (en) * 2013-07-08 2018-10-30 Degremont Method and equipment for the biological denitrification of waste water
JP2015131253A (en) * 2014-01-09 2015-07-23 株式会社日立製作所 Operational method of wastewater processing apparatus
WO2019198803A1 (en) * 2018-04-13 2019-10-17 株式会社クラレ Wastewater treatment method

Similar Documents

Publication Publication Date Title
JP6227509B2 (en) Waste water treatment apparatus and waste water treatment method
JP4572504B2 (en) Biological denitrification method
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
JP4691938B2 (en) Nitrogen-containing liquid processing method and apparatus
JP5100091B2 (en) Water treatment method
JP4644107B2 (en) Method for treating wastewater containing ammonia
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP4882175B2 (en) Nitrification method
JP4872171B2 (en) Biological denitrification equipment
JP5006845B2 (en) Method for suppressing generation of nitrous oxide
CN104445833B (en) A kind of method of wastewater biochemical denitrogenation
JP2006325512A (en) Waste water-treating system
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP5292658B2 (en) A method for nitrification of ammonia nitrogen-containing water
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2006082053A (en) Method and apparatus for treating nitrogen-containing drainage
JP2014104416A (en) Water treatment apparatus and water treatment method
JP2008023485A (en) Biological denitrification method and apparatus therefor
JP5055670B2 (en) Denitrification method and denitrification apparatus
CN103857632A (en) Processing system and processing method for nitrogen-containing organic waste water
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JP4835906B2 (en) Treatment equipment for ammonia-containing liquid
CN105836913A (en) Denitrification method for degradation-resistant wastewater
JP2019217481A (en) Water treatment method
WO2019244964A1 (en) Water treatment method and water treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305