JP2003285093A - Biological denitrification method and apparatus therefor - Google Patents

Biological denitrification method and apparatus therefor

Info

Publication number
JP2003285093A
JP2003285093A JP2002091447A JP2002091447A JP2003285093A JP 2003285093 A JP2003285093 A JP 2003285093A JP 2002091447 A JP2002091447 A JP 2002091447A JP 2002091447 A JP2002091447 A JP 2002091447A JP 2003285093 A JP2003285093 A JP 2003285093A
Authority
JP
Japan
Prior art keywords
filter medium
tank
water
septic tank
medium filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002091447A
Other languages
Japanese (ja)
Other versions
JP3916220B2 (en
Inventor
Yasuhiro Honma
康弘 本間
Toshihiro Tanaka
俊博 田中
Hiroshi Tsuno
洋 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002091447A priority Critical patent/JP3916220B2/en
Publication of JP2003285093A publication Critical patent/JP2003285093A/en
Application granted granted Critical
Publication of JP3916220B2 publication Critical patent/JP3916220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological denitrification system enabling almost perfect denitrification and preventing the lowering of a recovery ratio of water by washing the filter medium packed part of a biological membrane filtering and cleaning apparatus. <P>SOLUTION: In a biological denitrification method for water using an activated sludge treatment apparatus having a denitrification tank and a nitrification tank and the biological membrane filtering type septic tank provided on the downstream side thereof, the biological membrane filtering type septic tank is set to an ascending flow type and a hydrogen donor is injected in water on the downstream side of an NO<SB>x</SB>-N detection means but on the upstream side of the filter medium packed part in an amount controlled on the basis of the signal from the NO<SB>x</SB>-N detection means arranged on the upstream side of the filter medium packed part arranged at the intermediate part of the septic tank. An oxygen-containing gas is injected in the central part of the filter medium packed part in an amount controlled on the basis of the signal from the dissolved oxygen detection means arranged on the downstream side of the filter medium packed part and washing wastewater discharged by the washing operation of the filter medium packed part of the biological membrane filtering type septic tank is returned to the activated sludge treatment apparatus. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水の生物学的窒素
除去システムに関し、より詳細には、活性汚泥処理装置
の下流に、制御された水素供与体を注入し、制御された
酸素含有気体を注入する生物膜ろ過型浄化槽を配した水
の生物学的窒素除去システムに関する。
FIELD OF THE INVENTION The present invention relates to a biological nitrogen removal system for water, and more particularly to a controlled oxygen donor for injecting a controlled hydrogen donor downstream of an activated sludge treatment device. The present invention relates to a biological nitrogen removal system for water having a biofilm filtration septic tank for injecting water.

【0002】[0002]

【従来の技術】1998年度末における下水道の普及率
は57%に達し、下水道整備は中小市町村に重点が移っ
て来ている。また、水環境保全に対する意識が高まるな
か、閉鎖性水域の富栄養化対策や下水処理水の循環再利
用などを目的とした高度処理の促進も重要な課題となっ
ている。高度処理法における現在の主な除去対象物質
は、標準活性汚泥法で除去できない窒素とリンであり、
これらの除去方式として、循環式硝化脱窒法(窒素除
去)や嫌気好気法(リン除去)などがすでに実用化され
ている。
2. Description of the Related Art The sewerage penetration rate reached 57% at the end of 1998, and the emphasis on sewerage development has shifted to small and medium-sized municipalities. In addition, as awareness of water environment conservation increases, promotion of advanced treatment for the purpose of eutrophication in closed water areas and recycling and reuse of sewage treatment water is also an important issue. The current main substances to be removed in the advanced treatment method are nitrogen and phosphorus that cannot be removed by the standard activated sludge method,
As a method for removing these, a circulating nitrification denitrification method (nitrogen removal), an anaerobic aerobic method (phosphorus removal), etc. have already been put into practical use.

【0003】最近では、標準活性汚泥法と同等の滞留時
問で、窒素、リンの同時除去可能な担体投入型活性汚泥
法が開発され、その普及が期待されている。一方、生物
膜ろ過法は物理的なろ過作用に加えて、ろ材に高密度に
付着した微生物の働きにより溶解性有機物の除去や硝化
を高速で行えることから、高機能な生物処理装置として
開発が進められてきた(用水と廃水,vol.25,N
o.5(1983)、志村ら「生物膜ろ過法を用いた窒
素除去プロセス」第31回下水道研究発表会講演集(1
994)など)。小規模下水処理においては、前記特徴
に加え、沈殿池が必要なく汚泥管理が不要で維持管理が
容易であることから、好気的条件で処理する好気性ろ床
法が活性汚泥法に代わる二次処理方式として実用化が進
んでいる。また、下水二次処理水を対象とした高度処理
としても適用が進んできている。しかしながら、実用化
が進んでいるこれらの方式は窒素除去に対応していない
ため、生物膜ろ過法の特徴を生かした窒素除去プロセス
が望まれていた。
Recently, a carrier-introduced activated sludge method capable of simultaneously removing nitrogen and phosphorus at the same retention time as that of the standard activated sludge method has been developed, and its spread is expected. On the other hand, the biofilm filtration method is capable of removing soluble organic substances and nitrification at high speed due to the action of microorganisms adhering to the filter medium at high speed in addition to the physical filtration action. Has been promoted (water and wastewater, vol.25, N
o. 5 (1983), Shimura et al., "Nitrogen Removal Process Using Biofilm Filtration Method", 31st Sewer Research Presentation Lecture (1
994) etc.). In the small-scale sewage treatment, in addition to the features described above, a settling tank is not required and sludge management is not required, and maintenance is easy. Practical use is progressing as the next processing method. Further, its application is being advanced as an advanced treatment for secondary sewage treatment water. However, since these methods, which have been put into practical use, do not support nitrogen removal, a nitrogen removal process that makes the most of the characteristics of the biofilm filtration method has been desired.

【0004】本発明者等は、小規模下水向けの窒素除去
プロセスとして、比重が水より軽い浮上ろ材を用いた生
物膜ろ過法による窒素除去装置の開発を行った(佐久間
ら「浮上ろ材を用いた生物膜ろ過法による窒素除去」第
4回北大衛生工学シンポジウム講演論文集(1996)
など)。生物膜ろ過法のろ材として浮上ろ材を用いた場
合、上向流で通水し、充填層に通気管を設置すること
で、通気管の下部を嫌気部、上部を好気部とすることが
でき、一塔で窒素除去が可能となる(Rogalla
et.al.“Upscaling a compac
t nitrogen removal proces
s” Wat.Sci.Tech.(1992)。ま
た、嫌気性ろ床に浮上ろ材を用い、ろ床下部を沈殿部と
することで最初沈殿池を兼ねた脱窒槽とすることが可能
であり、既設の好気性ろ床と組合せることで窒素除去を
行うことができる(田中ら「小規模下水処理プロセスに
関する研究」荏原インフェルコ時報第104号(199
1))。このような背景のもと、本発明者らは汚泥集約
処理の返流水の効率的な処理方式として、SS、リンの
除去を目的とした前処理プロセスと有機汚濁物質、窒素
の除去を目的とした生物処理プロセスとからなる処理シ
ステムの開発を行ってきた(エバラ時報No.187
(2000−4)、(社)日本下水道協会第38回下水
道研究発表会講演集p538−540(2001)な
ど)。
As a nitrogen removal process for small-scale sewage, the present inventors have developed a nitrogen removal device by a biofilm filtration method using a floating filter medium having a specific gravity lighter than that of water (Sakuma et al. Removal of Nitrogen by the Biofilm Filtration Method ", 4th Hokkaido University Hygiene Engineering Symposium Proceedings (1996)
Such). When a floating filter medium is used as the filter medium for the biofilm filtration method, it is possible to make the lower part of the ventilation pipe an anaerobic part and the upper part an aerobic part by passing water in an upward flow and installing a ventilation pipe in the packed bed. It is possible to remove nitrogen in one tower (Rogalla
et. al. "Upscaling a compac
t nitrogen removal processes
s "Wat. Sci. Tech. (1992). Moreover, it is possible to use a floating filter medium for the anaerobic filter bed, and by using the lower part of the filter bed as a settling section, a denitrification tank that doubles as a settling tank can be obtained. Nitrogen removal can be performed by combining with the existing aerobic filter (Tanaka et al. "Research on small-scale sewage treatment process" EBARA Inferco Jikkan No. 104 (199)
1)). Against this background, the present inventors have aimed to remove SS and phosphorus as a pretreatment process and organic pollutants and nitrogen as an efficient treatment method of the return water of sludge intensive treatment. We have been developing a treatment system consisting of the following biological treatment processes (Ebara Bulletin No. 187).
(2000-4), (Company) Japan Sewer Association 38th Sewer Research Presentation Lecture p538-540 (2001), etc.).

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の前凝集
及び生物膜ろ過の組み合わせ等の生物浄化装置にて処理
された処理液の全窒素濃度の限界は10mg/リットル
程度であり、この値以下に窒素除去をすることは極めて
困難であった。また、通常10〜12時間であるHRT
(Hydric Retention Time、滞留
時間)を短縮するという要望が強い。更に、最終沈殿池
を設けずに処理液の透明度を改善するという要望も強か
った。
However, the limit of the total nitrogen concentration of the treatment liquid treated by the conventional biological purification apparatus such as the combination of the precoagulation and the biofilm filtration is about 10 mg / liter, which is less than this value. It was extremely difficult to remove nitrogen. Also, HRT is usually 10-12 hours
There is a strong demand for shortening (Hydric Retention Time, retention time). Furthermore, there has been a strong demand for improving the transparency of the treatment liquid without providing a final settling tank.

【0006】このような実情から、本発明は、ほぼ完全
な窒素除去が可能であるシステムにあって、生物膜ろ過
浄化装置のろ材充填部の洗浄により回収率の低下しな
い、生物学的窒素除去システムを提供することを目的と
する。
In view of the above circumstances, the present invention provides a system capable of almost completely removing nitrogen, and biological nitrogen removal in which the recovery rate does not decrease due to cleaning of the filter medium filling part of the biofilm filtration and purification device. The purpose is to provide a system.

【0007】[0007]

【課題を解決するための手段】本発明は、以下に記載す
る手段によって前記課題を解決した。 (1)脱窒槽及び硝化槽を有する活性汚泥処理装置及び
その下流側に設けた生物膜ろ過型浄化槽を用いる水の生
物学的窒素除去方法において、該生物膜ろ過型浄化槽を
上向流式とし、該生物膜ろ過型浄化槽の中間部に配置さ
れたろ材充填部よりも水の上流に設置された酸化態窒素
(NOx−N)検知手段からの信号により制御された量
の水素供与体を、該検知手段より下流でかつ該ろ材充填
部よりも水の上流に注入し、一方、該ろ材充填部の下流
に設置された溶存酸素(DO)検知手段からの信号によ
り制御された量の酸素含有気体を、前記ろ材充填部のほ
ぼ中央に注入し、該生物膜浄化槽のろ材充填部の洗浄操
作により排出される洗浄排水を、活性汚泥処理装置に戻
すことを特徴とする水の生物学的窒素除去方法。 (2)前記洗浄排水を、活性汚泥処理装置の脱窒槽流入
部に戻すことを特徴とする前記(1)に記載の生物学的
窒素除去方法。 (3)前記水素供与体の注入量を、COD/N比が2.
4以上になるように制御することを特徴とする前記
(1)又は(2)に記載の生物学的窒素除去方法。 (4)前記酸素含有気体の注入量を、DOが5mg/リ
ットル以上となるように制御することを特徴とする前記
(1)〜(3)のいずれか1項に記載の生物学的窒素除
去方法。
The present invention has solved the above-mentioned problems by the means described below. (1) In a biological nitrogen removal method of water using an activated sludge treatment device having a denitrification tank and a nitrification tank and a biofilm filtration septic tank provided on the downstream side, the biofilm filtration septic tank is an upflow type the organism membrane filtration type septic tank of the intermediate portion arranged oxidized nitrogen than filter material filling portion disposed upstream of water (NO x -N) is controlled by a signal from the sensing means the amount of the hydrogen donor Injecting water downstream of the detection means and upstream of water from the filter medium filling section, while controlling the amount of oxygen by a signal from a dissolved oxygen (DO) detection means installed downstream of the filter medium filling section. Biological water characterized by injecting a contained gas into substantially the center of the filter medium filling section and returning the cleaning wastewater discharged by the cleaning operation of the filter medium filling section of the biofilm septic tank to the activated sludge treatment device. Nitrogen removal method. (2) The biological nitrogen removing method according to (1), wherein the cleaning wastewater is returned to the denitrification tank inflow part of the activated sludge treatment device. (3) The injection amount of the hydrogen donor is set so that the COD / N ratio is 2.
The method for removing biological nitrogen according to (1) or (2) above, wherein the method is controlled so as to be 4 or more. (4) The biological nitrogen removal according to any one of (1) to (3), wherein the injection amount of the oxygen-containing gas is controlled so that DO is 5 mg / liter or more. Method.

【0008】(5)脱窒槽及び硝化槽を有する活性汚泥
処理装置及びその下流側に設けた生物膜ろ過型浄化槽を
用いる水の生物学的窒素除去装置において、該生物膜ろ
過型浄化槽を上向流式とし、該生物膜ろ過型浄化槽の中
間部にろ材充填部が配置され、該ろ材充填部の上流に酸
化態窒素(NOx−N)検知手段が設置され、該検知手
段より下流でかつ該ろ材充填部よりも水の上流に、該検
知手段からの信号により制御された量の水素供与体を注
入する注入手段が設置され、一方、該ろ材充填部の下流
に溶存酸素(DO)検知手段が設置され、前記ろ材充填
部のほぼ中央に、溶存酸素(DO)検知手段からの信号
により制御された量の酸素含有気体を注入する注入手段
が設置され、さらに該生物膜ろ過型浄化槽のろ材充填部
の洗浄操作により排出される洗浄排水を、活性汚泥処理
装置に戻す配管を設けたことを特徴とする水の生物学的
窒素除去装置。
(5) In an apparatus for biological nitrogen removal of water using an activated sludge treatment device having a denitrification tank and a nitrification tank and a biofilm filtration type septic tank provided on the downstream side, the biofilm filtration type septic tank is directed upward. and the flow type, is arranged filter media filled portion in an intermediate portion of the organism membrane filtration type septic tank, the filter media upstream oxidation nitrogen (NO x -N) detecting means of the filling unit is installed, and downstream from said detecting means Injecting means for injecting an amount of hydrogen donor controlled by a signal from the detecting means is installed upstream of the filter medium filling section, while dissolved oxygen (DO) detection is provided downstream of the filter medium filling section. A means is installed, and an injection means for injecting an oxygen-containing gas in an amount controlled by a signal from the dissolved oxygen (DO) detection means is installed at substantially the center of the filter medium filling section, and further, the injection means of the biofilm filtration septic tank is installed. By cleaning the filter material filling section The washing waste water issued, biological nitrogen removal system of water, characterized in that a pipe for returning the activated sludge treatment apparatus.

【0009】すなわち、本発明の骨子とするところは、
活性汚泥処理装置及びその下流側に設けた生物膜ろ過型
浄化槽を有する生物学的窒素除去システムにおいて、該
生物膜ろ過型浄化槽を上向流式として、該生物膜ろ過型
浄化槽の中間部にろ材充填部を配し、該ろ材充填部の水
の上流に酸化態窒素(NOx−N)検知手段を設け、該
酸化態窒素検知手段からの信号により制御された量の水
素供与体を、前記検知手段の下流でかつ該ろ材充填部の
水の上流に注入し、一方、該ろ材充填部の下流に溶存酸
素(DO)検知手段を設け、該溶存酸素検知手段からの
信号により制御された量の酸素含有気体を該ろ材充填部
のほぼ中央部に注入することにより、完全な窒素除去を
行うことのできるようにするとともに、該生物膜ろ過型
浄化槽のろ材充填部の洗浄操作により排出される洗浄排
水を、活性汚泥処理装置に戻すことにより、洗浄排水を
処理水として回収することにより、水回収率が低下しな
い生物学的窒素除去システムである。
That is, the main points of the present invention are:
In a biological nitrogen removal system having an activated sludge treatment device and a biofilm filtration type septic tank provided on the downstream side thereof, the biofilm filtration type septic tank is an upflow type, and a filter medium is provided in an intermediate part of the biofilm filtration type septic tank. disposing the filling unit, the upstream of the filter media filled portion of the water provided oxide nitrogen (NO x -N) detecting means, the hydrogen donor of the amount controlled by a signal from oxidation nitrogen detection means, wherein The amount controlled by the signal from the dissolved oxygen detection means is provided downstream of the detection means and upstream of the water in the filter medium filling portion, while the dissolved oxygen (DO) detection means is provided downstream of the filter medium filling portion. By injecting the oxygen-containing gas into the substantially central portion of the filter medium filling portion, it is possible to completely remove nitrogen, and the gas is discharged by a cleaning operation of the filter medium filling portion of the biofilm filtration septic tank. Wash wastewater, activated sludge treatment By returning to the apparatus, by collecting the washing waste water as treated water, a biological nitrogen removal system water recovery rate does not decrease.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明するが、本発明はこれに限定されない。
なお、実施態様及び実施例を説明する図1及び図2にお
いて、同一機能を有する構成要素は同一符号を付け、そ
の繰り返しの説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.
In FIGS. 1 and 2 for explaining the embodiments and examples, constituent elements having the same function are designated by the same reference numerals, and repeated description thereof will be omitted.

【0011】図1は、本発明の生物学的窒素除去システ
ムの一形態の概要を例示した図である。図1の活性汚泥
処理装置2は、下水処理などで実用化されている循環式
硝化脱窒法を行なう装置であり、脱窒槽3、硝化槽4及
び沈殿池7より構成される。脱窒槽3では流入廃水1中
の有機物を水素供与体として利用し、硝化循環液中の硝
酸態窒素(NOx−N:NO2−N及びNO3−N)を、窒
素ガスに還元し窒素除去を行う。硝化槽4では残留有機
物の分解除去及び、アンモニア態窒素(NH4−N)を
NOx−Nとする硝化反応が行われる。硝化槽4の活性
汚泥スラリー5は沈殿池7へ送られる。沈殿池7では、
活性汚泥と沈殿池越流水8に固液分離される。沈殿池越
流水8の全窒素濃度の限界は、10mg/リットル程度
である。
FIG. 1 is a diagram illustrating an outline of one embodiment of the biological nitrogen removal system of the present invention. The activated sludge treatment device 2 shown in FIG. 1 is a device that performs a circulating nitrification denitrification method that is practically used in sewage treatment, and is composed of a denitrification tank 3, a nitrification tank 4, and a sedimentation tank 7. Using organic matter denitrification tank 3 the inflow waste water 1 as a hydrogen donor, nitrate nitrogen in the nitrification circulating fluid: the (NO x -N NO 2 -N and NO 3 -N), then reduced to nitrogen gas nitrogen Remove. In the nitrification tank 4, decomposition and removal of residual organic substances and nitrification reaction using ammonia nitrogen (NH 4 —N) as NO x —N are performed. The activated sludge slurry 5 in the nitrification tank 4 is sent to the settling tank 7. In settling basin 7,
Solid-liquid separation is performed into activated sludge and overflow water 8 in the sedimentation basin. The limit of the total nitrogen concentration of the settling basin overflow water 8 is about 10 mg / liter.

【0012】図1の生物膜ろ過槽11では、ろ過による
物理的分離効果と、ろ材表面に付着増殖した微生物群に
よる生物反応とを、同時に活用することが可能である。
そのため、生物膜ろ過槽11の後段に最終沈殿池は不要
であり、微生物群を高濃度に保持可能であるため、省ス
ペース型の反応器となる。この生物膜ろ過槽11を設け
ることにより、全窒素濃度は5mg/リットル以下を安
定して得ることができる。
In the biofilm filtration tank 11 of FIG. 1, it is possible to simultaneously utilize the physical separation effect by filtration and the bioreaction by the group of microorganisms adhering and growing on the surface of the filter medium.
Therefore, the final settling tank is not required in the latter stage of the biofilm filtration tank 11 and the microorganism group can be maintained at a high concentration, so that the reactor becomes a space-saving type. By providing this biofilm filtration tank 11, a total nitrogen concentration of 5 mg / liter or less can be stably obtained.

【0013】生物膜ろ過槽11の下層(上流側)を嫌気
性として、そこに水素供与体15を注入して酸化態窒素
の除去を行う。そのために、その上流で沈殿池越流水8
の酸化態窒素濃度を測定し、その濃度に応じて窒素を除
去できるように制御された量の水素供与体15を注入で
きるようにした。この酸化態窒素濃度検知手段13は、
ろ材充填部12の上流から採取した沈殿池越流水8のN
2−N及びNO3−Nの量を測定する装置であればよ
く、この検知手段からの信号は、これらの窒素の全量に
関するものである。水素供与体15の注入量は、COD
/N比(mg/COD/mgN)が2.4以上、特に3
〜8、その上特に4〜5となるように制御することが好
ましい。ここで、CODは水素供与体15による量であ
り、NはNOx−Nの量を表す。
The lower layer (upstream side) of the biofilm filtration tank 11 is made anaerobic, and a hydrogen donor 15 is injected therein to remove oxidized nitrogen. Therefore, the overflow water 8
The concentration of oxidized nitrogen was measured, and a controlled amount of hydrogen donor 15 was injected so that nitrogen could be removed according to the concentration. The oxidized nitrogen concentration detecting means 13 is
N of the settling basin overflow water 8 collected from the upstream of the filter medium filling section 12
Any device that measures the amount of O 2 —N and NO 3 —N may be used, and the signal from this sensing means relates to the total amount of these nitrogens. The injection amount of the hydrogen donor 15 is COD.
/ N ratio (mg / COD / mgN) is 2.4 or more, especially 3
It is preferable to control so as to be 8 to 8 and especially 4 to 5. Here, COD is the amount of the hydrogen donor 15, N represents the amount of NO x -N.

【0014】この制御は、通常これらの範囲内に任意の
設定値を設け、COD/N比がこの設定値の近傍にある
ように行われる。この水素供与体15を生物膜ろ過槽1
1の上流から注入する。その注入位置は、前記酸化態窒
素検知手段13による採取位置よりも下流であることが
好ましい。酸化態窒素の測定値に応じて水素供与体15
の添加量を制御するため、無駄な水素供与体15の添加
を防ぎ、低コスト化を図る上で、安定した脱窒処理が可
能である。水素供与体15は、水に可溶で比較的低分子
量の有機物であればよく、メタノール、エタノール、イ
ソプロパノール、酢酸等が挙げられるが、コスト面など
からメタノールが好ましい。
This control is usually performed by setting an arbitrary set value within these ranges so that the COD / N ratio is in the vicinity of this set value. This hydrogen donor 15 is used as a biofilm filtration tank 1
Inject from 1 upstream. The injection position is preferably downstream of the sampling position of the oxidized nitrogen detecting means 13. Hydrogen donor 15 according to the measured value of oxidized nitrogen
In order to prevent unnecessary addition of the hydrogen donor 15 and reduce the cost, a stable denitrification treatment is possible because the addition amount of is controlled. The hydrogen donor 15 may be any organic substance having a relatively low molecular weight and soluble in water, and examples thereof include methanol, ethanol, isopropanol, acetic acid, and the like, and methanol is preferable from the viewpoint of cost.

【0015】生物膜ろ過槽11のほぼ中ほどから酸素含
有気体17を強制的に注入することにより、その上層
(下流)を好気性として、下層(上流)において窒素を
処理した残量の水素供与体15を除去する。この段階に
より、同時に処理液の酸素濃度を確保することも可能に
なる。この段階(下流側)があるため、この生物膜ろ過
槽11は上向流とならざるを得ない。また、この段階
(下流側)があるために、前段(上流側)では十分な又
は必要に応じて過剰の量の水素供与体15を用いること
が可能になり、窒素の除去を完全とすることが可能とな
る。生物膜ろ過槽11の上層で水素供与体15の除去を
行うために、必要に応じて被処理液の酸素濃度を所定濃
度に確保するために、ろ材充填部12を通過した被処理
液の溶存酸素量を測定し、注入する酸素含有気体17量
を制御する。溶存酸素検知手段は生物膜ろ過槽11のろ
材充填部12の下流から採取した被処理液の溶存酸素量
を検知する装置であればよい。酸素含有気体の注入量を
DO(溶存酸素濃度)が5mg/リットル以上、特に5
〜8mg/リットル、その上特に5〜7mg/リットル
となるように制御することが好ましい。
By forcibly injecting the oxygen-containing gas 17 from approximately the middle of the biofilm filtration tank 11, the upper layer (downstream) is made aerobic and the lower layer (upstream) is treated with nitrogen to supply the remaining amount of hydrogen. The body 15 is removed. At this stage, it is possible to secure the oxygen concentration of the treatment liquid at the same time. Since there is this stage (downstream side), this biofilm filtration tank 11 is forced to flow upward. Further, since there is this stage (downstream side), it is possible to use a sufficient amount or an excessive amount of the hydrogen donor 15 in the preceding stage (upstream side), and complete removal of nitrogen. Is possible. In order to remove the hydrogen donor 15 in the upper layer of the biofilm filtration tank 11, in order to secure the oxygen concentration of the liquid to be treated at a predetermined concentration as necessary, the liquid to be treated which has passed through the filter medium filling section 12 is dissolved. The amount of oxygen is measured and the amount of oxygen-containing gas 17 injected is controlled. The dissolved oxygen detection means may be any device that detects the dissolved oxygen amount of the liquid to be treated, which is sampled from the downstream side of the filter medium filling section 12 of the biofilm filtration tank 11. The injection amount of the oxygen-containing gas is DO (dissolved oxygen concentration) of 5 mg / liter or more, especially 5
It is preferable to control the concentration to be 8 mg / liter, and more preferably 5 to 7 mg / liter.

【0016】この制御は、通常これらの範囲内に任意の
設定値を設け、DOがこの設定値の近傍にあるように行
われる。酸素含有気体17は、生物膜ろ過槽のろ材充填
部12のほぼ中央部に注入する。中央部とは、このろ材
充填部12の最上流部と最下流部の中央を意味し、ほぼ
中央とはその上流及ぴ下流に有効量のろ材があればよい
という意味である。生物膜ろ過槽処理水20の溶存酸素
濃度の連続測定を行い、測定値に応じて生物膜ろ過槽1
1の曝気量を制御することで過大な曝気を減らし、使用
電気量の節減ができる。
This control is usually performed by setting an arbitrary set value within these ranges so that DO is in the vicinity of this set value. The oxygen-containing gas 17 is injected into substantially the center of the filter medium filling section 12 of the biofilm filtration tank. The central part means the center of the most upstream part and the most downstream part of the filter medium filling part 12, and substantially the center means that there is an effective amount of the filter media upstream and downstream thereof. The dissolved oxygen concentration of the biological membrane filtration tank treated water 20 is continuously measured, and the biological membrane filtration tank 1 is measured according to the measured value.
By controlling the aeration amount of 1, excessive aeration can be reduced and the amount of electricity used can be saved.

【0017】生物膜ろ過槽11の場合、運転を継統する
と、ろ材充填部12にSS成分が捕捉され、損失水頭が
増加するので、洗浄操作が必要である。ろ材充填部12
の洗浄操作は、ろ材充填部12下部の洗浄用散気管22
からの空気洗浄、ろ材充填部12上部からの洗浄水23
の供給及びろ材充填部12下部からの洗浄排水24の排
出による洗浄の過程を組み合わせることにより行う。ろ
材充填部12上部から供給する洗浄水23としては、生
物膜ろ過槽11の処理水20を用いることが好ましい。
脱窒にかかわる微生物はほとんどが通性嫌気性であり、
通常運転時には曝気を行わないろ材充填部12の下層
(下部)でも曝気による洗浄を行っても問題がない。洗
浄操作は損失水頭が設定値を超過した場合、もしくは洗
浄後の処理継続時間が設定値を超過した場合に行う。図
1の処理システムであれば、生物膜ろ過槽7の洗浄頻度
は1週間に数回となる。
In the case of the biofilm filtration tank 11, when the operation is continued, the SS component is trapped in the filter medium filling section 12 and the head loss is increased, so that the washing operation is required. Filter medium filling section 12
The cleaning operation is performed by the cleaning air diffuser 22 below the filter medium filling unit 12.
From the top, cleaning water from the upper part of the filter medium filling section 12
And the cleaning process by discharging the cleaning drainage 24 from the lower part of the filter medium filling section 12 are combined. As the cleaning water 23 supplied from the upper part of the filter medium filling section 12, it is preferable to use the treated water 20 of the biofilm filtration tank 11.
Most of the microorganisms involved in denitrification are facultative anaerobic,
There is no problem even if the lower layer (lower part) of the filter medium filling section 12 that is not aerated during normal operation is cleaned by aeration. The washing operation is performed when the head loss exceeds the set value or when the treatment duration after washing exceeds the set value. Figure
In the case of the treatment system of 1, the frequency of cleaning the biofilm filtration tank 7 is several times a week.

【0018】生物膜ろ過槽11の洗浄排水24は、活性
汚泥処理装置2に戻すことにより流入廃水1とともに処
理される。洗浄排水24の汚濁成分は、ろ材充填部12
に捕捉された微生物を主成分とするSSであり、硝化脱
窒処理に悪影響を与えることはなく、沈殿池7で固液分
離されるため、洗浄排水24の返流位置を沈殿池流入部
や脱窒槽3、硝化槽4とすることが可能である。しかし
ながら、脱窒槽3や硝化槽4の滞留時間の減少による硝
化脱窒処理性能の低下や、沈殿池7の水面積負荷の上昇
による固液分離性能の低下を引き起こす可能性がある場
合には、洗浄排水24の返流位置を沈殿池7流入部や脱
窒槽3、硝化槽4ではなく、流入廃水1の調整槽とし、
流入廃水1とともに処理をするようにする。
The washing wastewater 24 of the biofilm filtration tank 11 is returned to the activated sludge treatment device 2 and treated together with the inflowing wastewater 1. The pollutant component of the cleaning drainage 24 is the filter medium filling section 12
Since the SS is mainly composed of the microorganisms captured in, it does not adversely affect the nitrification and denitrification process, and solid-liquid separation is performed in the sedimentation tank 7, so that the return position of the washing wastewater 24 is set at the inflow part of the sedimentation tank or The denitrification tank 3 and the nitrification tank 4 can be used. However, when there is a possibility that the nitrification denitrification treatment performance may decrease due to the reduction of the residence time of the denitrification tank 3 or the nitrification tank 4 and the solid-liquid separation performance may decrease due to an increase in the water area load of the settling tank 7, The return position of the cleaning drainage 24 is not the inflow part of the sedimentation basin 7, the denitrification tank 3 or the nitrification tank 4 but the adjustment tank for the inflowing wastewater 1,
It should be treated together with the inflow wastewater 1.

【0019】あるいは、洗浄排水貯留槽を設置し、洗浄
排水24を一時貯留し、沈殿池7の水面積負荷の上昇に
よる固液分離性能の低下や脱窒槽3、硝化槽4の滞留時
間の減少による硝化脱窒処理性能の低下を引き起こすこ
とのない流量で洗浄排水24を沈殿池7流入部や脱窒槽
3、硝化槽4に返流する方法でもよい。生物膜ろ過槽1
1を複数系列設置し、各生物膜ろ過槽11の洗浄時期を
ずらし、1槽の1回あたりの洗浄排水24量を低減する
ことで、洗浄排水24の返流位置を沈殿池7流入部や脱
窒槽3、硝化槽4とした場合に、沈殿池7の水面積負荷
の上昇による固液分離性能の低下、脱窒槽3や硝化槽4
の滞留時間の減少による硝化脱窒処理性能の低下を引き
起こす可能性は小さくなる。また、この場合に、洗浄排
水24を一時貯留する洗浄排水貯留槽の容量を小さくす
ることが可能となる。
Alternatively, a cleaning drainage storage tank is installed to temporarily store the cleaning drainage 24, and the solid-liquid separation performance is reduced due to an increase in the water area load of the sedimentation basin 7, and the residence time of the denitrification tank 3 and the nitrification tank 4 is reduced. Alternatively, the cleaning wastewater 24 may be returned to the inflow portion of the settling tank 7, the denitrification tank 3, and the nitrification tank 4 at a flow rate that does not cause deterioration of the nitrification denitrification treatment performance. Biofilm filtration tank 1
1 is installed in plural series, the cleaning time of each biofilm filtration tank 11 is shifted, and the amount of cleaning wastewater 24 per one tank is reduced, so that the return position of the cleaning wastewater 24 is set at the inflow part of the sedimentation tank 7 or the like. When the denitrification tank 3 and the nitrification tank 4 are used, the solid-liquid separation performance deteriorates due to an increase in the water area load of the settling tank 7, and the denitrification tank 3 and the nitrification tank 4
It is less likely that the nitrification and denitrification treatment performance will be deteriorated due to the decrease in the residence time. Further, in this case, it is possible to reduce the capacity of the cleaning drainage storage tank for temporarily storing the cleaning drainage 24.

【0020】洗浄排水24中の汚濁成分は活性汚泥処理
装置2で浄化され、余剰汚泥10とともに濃縮工程や脱
水工程等の汚泥処理設備で処理される。生物膜ろ過槽1
1の洗浄排水24を前段の活性汚泥処理装置2に戻し、
流入廃水1とともに処理し、処理水20として回収する
ことで、水回収率がほぼ100%となる。
The pollutant components in the cleaning wastewater 24 are purified by the activated sludge treatment device 2 and are treated together with the surplus sludge 10 in sludge treatment equipment such as a concentration step and a dehydration step. Biofilm filtration tank 1
Return the washing wastewater 24 of No. 1 to the activated sludge treatment device 2 of the previous stage,
By treating with the inflowing wastewater 1 and collecting it as the treated water 20, the water recovery rate becomes almost 100%.

【0021】なお、図1において、9は返送汚泥であ
り、6は硝化液循環用配管であり、22はろ材充填部1
2へ酸素含有気体17を注入する散気管である。図2は
実施例に用いた生物学的窒素除去システムの模式図であ
り、洗浄水循環システムと洗浄排水循環システムを具体
的に示すものである。図2において、25は処理水槽、
26は洗浄水ポンプ、27は洗浄排水槽、28は洗浄排
水送水ポンプであり、その他の構成要素は図1と同一で
ある。
In FIG. 1, 9 is a returned sludge, 6 is a nitrification liquid circulation pipe, and 22 is a filter medium filling section 1.
2 is an air diffuser for injecting an oxygen-containing gas 17 into 2. FIG. 2 is a schematic diagram of the biological nitrogen removal system used in the examples, and specifically shows the wash water circulation system and the wash drainage circulation system. In FIG. 2, 25 is a treated water tank,
26 is a wash water pump, 27 is a wash drain tank, 28 is a wash drain water pump, and other components are the same as those in FIG.

【0022】[0022]

【実施例】本発明を実施例により更に具体的に説明する
が、本発明はこの実施例により限定されるものではな
い。
EXAMPLES The present invention will be described more specifically by way of examples, but the present invention is not limited to these examples.

【0023】(1)実験条件 図2の工程図に従い、以下の条件で実験を行った。原水
としては最初沈殿池越流水を使用した。
(1) Experimental conditions An experiment was conducted under the following conditions according to the process chart of FIG. As raw water, the first settling pond overflow water was used.

【0024】 ・原水性状(平均値) BOD 150mg/リットル SS 80mg/リットル T−N 40mg/リットル[0024] ・ Water condition (average value) BOD 150 mg / liter SS 80 mg / liter T-N 40 mg / liter

【0025】 ・実験装置の仕様 脱窒槽容量 1.5m3 硝化槽容量 3m3 沈殿池水面積負荷 15m3/m2/d 生物膜ろ過槽 φ0.5m×4m ろ材充填層高2m(嫌気部1m、好気部1m) ろ材充填容量400リットル(嫌気部200リットル、
好気部200リットル) 洗浄排水槽 2m3
・ Specification of experimental equipment Denitrification tank capacity 1.5m 3 Nitrification tank capacity 3m 3 Sedimentation tank water area load 15m 3 / m 2 / d Biofilm filtration tank φ0.5m × 4m Filter medium packed bed height 2m (anaerobic part 1m, Aerobic part 1m) Filter medium filling capacity 400 liters (anaerobic part 200 liters,
Aerobic part 200 liters) Cleaning drainage tank 2m 3

【0026】 ・活性汚泥処理の運転条件 原水量(Q) 6リットル/min MLSS 3000mg/リットル 返送汚泥量 0.5Q 返送汚泥濃度 9000mg/リットル 硝化液循環水量 0.5〜1.5Q 硝化槽DO 3〜4mg/リットル 水温 20℃[0026] ・ Operating conditions for activated sludge treatment Raw water volume (Q) 6 liters / min MLSS 3000 mg / liter Return sludge amount 0.5Q Return sludge concentration 9000mg / liter Nitrification solution circulating water volume 0.5-1.5Q Nitrification tank DO 3-4 mg / liter Water temperature 20 ℃

【0027】 ・生物膜ろ過槽の運転条件 メタノール注入量 COD/NOx−N=4.5 処理水DO 6mg/リットル 水温 20℃ 洗浄水量 1m3/回 洗浄排水送水量 0.5リットル/minOperating conditions of biofilm filtration tank Methanol injection amount COD / NO x -N = 4.5 Treated water DO 6 mg / liter Water temperature 20 ° C. Wash water amount 1 m 3 / wash water flow amount 0.5 l / min

【0028】生物膜ろ過槽のろ材として、比重0.1
6、有効径4mmの発泡ポリスチレン粒子を使用した。
生物膜ろ過槽で脱窒を行うための水素供与体として、メ
タノールを使用した。沈殿池越流水の酸化態窒素濃度を
連続的に測定し、COD/NOx−N=4.5となるよ
うにメタノール注入量を制御した。生物膜ろ過槽の処理
水のDOを連続的に測定し、処理水のDOが6mg/リ
ットルとなるように空気量を制御した。生物膜ろ過槽の
洗浄は損失水頭が2mを超えた場合に実施した。洗浄排
水を洗浄排水貯槽に貯留した後、0.5リットル/mi
nの流量で脱窒槽に戻すようにした。ろ材充填層洗浄1
回あたりの洗浄排水量は1m3である。
As a filter medium for a biofilm filtration tank, a specific gravity of 0.1
6. Expanded polystyrene particles having an effective diameter of 4 mm were used.
Methanol was used as the hydrogen donor for denitrification in the biofilm filtration tank. The oxidized form of nitrogen concentration in the settling basin overflow flowing water continuously measured and controlled methanol injection amount such that the COD / NO x -N = 4.5. The DO of the treated water in the biofilm filtration tank was continuously measured, and the air amount was controlled so that the DO of the treated water was 6 mg / liter. Cleaning of the biofilm filtration tank was performed when the head loss was over 2 m. After storing the cleaning wastewater in the cleaning wastewater storage tank, 0.5 liter / mi
It was returned to the denitrification tank at a flow rate of n. Filter medium packed bed cleaning 1
The amount of washing waste water per operation is 1 m 3 .

【0029】実験を3つの期間に分けて行った。実験区
1は硝化液循環水量1.5Qとし、生物膜ろ過槽を使用
しない期間、実験区2は生物膜ろ過槽を使用し、硝化液
循環水量1.5Qとした期間、実験区3は生物膜ろ過槽
を使用し、硝化液循環水量を0.5Qとした期間であ
る。
The experiment was conducted in three periods. Experiment section 1 has a nitrification solution circulating water volume of 1.5Q, and the biofilm filtration tank is not used. Experiment section 2 uses a biofilm filtration tank and nitrification solution circulation water amount is 1.5Q. This is a period in which a membrane filtration tank is used and the amount of circulating water of nitrification solution is set to 0.5Q.

【0030】(2)実験結果 ・窒素除去 結果を図3に示す。約40mg/リットルで流入後、沈
殿池越流水のT−Nは実験区1、2で約13mg/リッ
トル、実験区3で約20mg/リットルであり、循環比
に応じた窒素除去率であった。沈殿池越流水のT−Nの
大部分はNOx−Nであった。生物膜ろ過槽を使用し、
沈殿池越流水のNOx−N濃度に応じたメタノールを注
入することで脱窒を行った実験区2、3では、処理水の
窒素濃度はNOx−Nで0.5mg/リットル以下、T
−Nで1mg/リットルを達成できた。
(2) Experimental results-The nitrogen removal results are shown in FIG. After inflowing at about 40 mg / liter, the T-N of the overflow water of the sedimentation basin was about 13 mg / liter in experimental sections 1 and 2, and about 20 mg / liter in experimental section 3, showing a nitrogen removal rate according to the circulation ratio. . Most of the TN of the overflow water of the sedimentation tank was NOx-N. Using a biofilm filtration tank,
In Experimental Sections 2 and 3 in which denitrification was performed by injecting methanol according to the NOx-N concentration of the overflow water of the sedimentation basin, the nitrogen concentration of the treated water was 0.5 mg / liter or less for NOx-N, T
1N / l could be achieved with -N.

【0031】・生物膜ろ過槽のDO制御 結果を図4に示す。曝気量制御を組み込むことで生物膜
ろ過槽処理水のDOを6mg/リットルに安定して制御
できた。 ・SS 結果を図5に示す。実験区1〜3を通じて、沈殿池越流
水のSSは、10mg/リットル以下であった。実験区
2、3では、生物膜ろ過処理水のSSを5mg/リット
ル以下に処理できた。
The DO control result of the biofilm filtration tank is shown in FIG. By incorporating the aeration amount control, the DO of the biofilm filtration tank treated water could be stably controlled to 6 mg / liter.・ SS results are shown in FIG. Throughout the experimental sections 1 to 3, the SS of the overflow water of the sedimentation basin was 10 mg / liter or less. In the experimental sections 2 and 3, SS of the biofilm-filtered water could be treated to 5 mg / liter or less.

【0032】・BOD 結果を図6に示す。約150mg/リットルで流入後、
実験区1〜3を通じて、沈殿池越流水では10mg/リ
ットル以下に、実験区2、3の生物膜ろ過処理水では5
mg/リットル以下に低下した。実験区2に比べ、沈殿
池越流水のNO x−N濃度が高く、メタノール注入量の
増えた実験区3においても注入したメタノールの残存分
は、ほぼ除去されていると考えられる。
-BOD Results are shown in FIG. After flowing in at about 150 mg / liter,
Through the experimental zones 1 to 3, 10 mg / liter in the overflow water of the sedimentation pond
5 or less for the biofilm-filtered water in the experimental sections 2 and 3
It fell below mg / liter. Precipitation compared to Experiment Zone 2
NO of Ikegoe running water x-High N concentration,
Remaining amount of injected methanol in the increased experimental section 3
Are considered to have been removed.

【0033】・ろ材充填層の洗浄 ろ材充填層の洗浄頻度は、実験区2では3日に1回、実
験区3では2日に1回であった。メタノール注入量の多
い実験区3では、実験区2に比べ洗浄頻度が高かった。
原水量に対する洗浄排水量の割合は、実験区2で4%、
実験区3で6%であった。洗浄排水送水量は0.5リッ
トル/minであるから、1回当たりの洗浄排水量1m
3を33時間で送水できる。洗浄頻度は2〜3日(48
〜72時間)に1回であるから、洗浄排水送水量0.5
リットル/minとすることで、次回の洗浄が始まる前
に洗浄排水槽に受け入れた洗浄排水の全量を脱窒槽に送
水できる。
Washing of filter medium packed bed The cleaning frequency of the filter medium packed bed was once every 3 days in experimental section 2 and once every 2 days in experimental section 3. In Experiment Group 3 in which a large amount of methanol was injected, the cleaning frequency was higher than that in Experiment Group 2.
The ratio of the amount of washing wastewater to the amount of raw water was 4% in Experimental Zone 2,
It was 6% in experimental section 3. The amount of cleaning wastewater sent is 0.5 liters / min, so the amount of cleaning wastewater per meter is 1 m.
Can deliver 3 in 33 hours. Cleaning frequency is 2-3 days (48
Once every 72 hours), the amount of washing waste water sent is 0.5
By setting the rate to 1 liter / min, the entire amount of the cleaning drainage received in the cleaning drainage tank before the next cleaning starts can be sent to the denitrification tank.

【0034】・洗浄排水を活性汚泥処理設備に戻した場
合の処理水質 図3、5、6の結果から、生物膜ろ過槽の洗浄排水を活
性汚泥処理設備に戻した実験区2、3の場合において
も、沈殿池越流水のT−N、SS、BODの水質は、実
験区1と同じであった(実験区3のT−Nが高いのは、
硝化液循環比が異なるため)。洗浄排水の汚濁成分は、
ろ材充填部に捕捉された微生物を主成分とするSSであ
り、硝化脱窒処理に悪影響を与えることはなく、沈殿池
で固液分離されるため、沈殿池越流水の水質に影響を与
えることはなかった。洗浄排水送水時の送水量は、原水
量の1割以下であり、沈殿池の水面積負荷の上昇による
固液分離性能の低下や、脱窒槽、硝化槽の滞留時間の減
少による窒素除去性能の低下に及ぼす影響はなかった。
-Treatment water quality when washing wastewater is returned to the activated sludge treatment facility. From the results of Figs. 3, 5 and 6, in the case of the experimental sections 2 and 3 where the washing wastewater of the biofilm filtration tank is returned to the activated sludge treatment facility. Also, the quality of TN, SS, and BOD of the overflow water of the sedimentation basin was the same as that of the experimental section 1 (the experimental section 3 has a high TN,
Because the nitrification solution circulation ratio is different). The pollutant components of the cleaning wastewater are
It is an SS mainly composed of microorganisms trapped in the filter medium filling part, which does not adversely affect the nitrification and denitrification process, and because it is separated into solid and liquid in the sedimentation tank, it affects the quality of the overflow water of the sedimentation tank. There was no. The amount of water sent during washing drainage is less than 10% of the amount of raw water, and the solid-liquid separation performance decreases due to an increase in the water area load of the sedimentation basin, and the nitrogen removal performance of the denitrification tank and the nitrification tank decreases due to the decrease There was no effect on the decline.

【0035】・水回収率 結果を第1表に示す。全実験区において、水回収率は9
8%以上であった。実験区2、3では、生物膜ろ過槽の
洗浄排水を前段の活性汚泥処理装置に戻し、原水ととも
に処理し、処理水として回収することで、実験区1と同
じ水回収率が得られた。
The results of water recovery rate are shown in Table 1. Water recovery rate is 9 in all experimental plots
It was 8% or more. In Experimental Zones 2 and 3, the same waste water recovery rate as in Experimental Zone 1 was obtained by returning the cleaning wastewater from the biofilm filtration tank to the activated sludge treatment device in the previous stage, treating it with raw water, and collecting it as treated water.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】本発明によれば、活性汚泥処理装置及び
その下流側に設けた生物膜ろ過型浄化槽からなる生物学
的窒素除去システムであって、該生物膜ろ過型浄化槽を
上向流として、該生物膜ろ過型浄化槽の中間部にろ材充
填部を配し、該ろ材充填部の上流に酸化態窒素(NOx
−N)検知手段を設け、該酸化態窒素検知手段からの信
号により制御された量の水素供与体を該ろ材充填部の上
流に注入し、一方、該ろ材充填部の下流に溶存酸素(D
O)検知手段を設け、該溶存酸素検知手段からの信号に
より制御された量の酸素含有気体を該ろ材充填部のほぼ
中央部に注入することにより、完全な窒素除去を行うこ
とのできる生物膜ろ過型浄化槽において、完全な窒素除
去が達成でき、かつ、該生物膜浄化槽のろ材充填部の洗
浄操作により排出される洗浄排水を活性汚泥処理システ
ムに戻し、洗浄排水を流入廃水とともに処理し、処理水
として回収することで、水回収率が低下しない生物学的
窒素除去システムを提供することができた。
According to the present invention, there is provided a biological nitrogen removal system comprising an activated sludge treatment device and a biofilm filtration septic tank provided on the downstream side thereof, wherein the biofilm filtration septic tank is used as an upward flow. A filter medium filling section is arranged in the middle of the biofilm filtration septic tank, and oxidized nitrogen (NO x) is provided upstream of the filter medium filling section.
-N) A detection means is provided, and a hydrogen donor in an amount controlled by a signal from the oxidized nitrogen detection means is injected upstream of the filter medium filling section, while dissolved oxygen (D) is supplied downstream of the filter medium filling section.
O) A biofilm capable of complete nitrogen removal by providing a detection means and injecting an amount of oxygen-containing gas controlled by a signal from the dissolved oxygen detection means into substantially the center of the filter medium filling part. In the filtration type septic tank, complete nitrogen removal can be achieved, and the washing wastewater discharged by the washing operation of the filter medium filling part of the biofilm septic tank is returned to the activated sludge treatment system, and the washing wastewater is treated together with the inflowing wastewater, and treated. By recovering as water, it was possible to provide a biological nitrogen removal system in which the water recovery rate does not decrease.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による生物学的窒素除去システムの原理
を説明する模式図である。
FIG. 1 is a schematic diagram illustrating the principle of a biological nitrogen removal system according to the present invention.

【図2】本発明の実施例に使用した生物学的窒素除去装
置のブロック図である。
FIG. 2 is a block diagram of a biological nitrogen removing apparatus used in an embodiment of the present invention.

【図3】全窒素の経日変化を示すグラフである。FIG. 3 is a graph showing the daily change of total nitrogen.

【図4】処理水DOの経日変化を示すグラフである。FIG. 4 is a graph showing the daily change of treated water DO.

【図5】SSの経日変化を示すグラフである。FIG. 5 is a graph showing the daily change of SS.

【図6】BODの経日変化を示すグラフである。FIG. 6 is a graph showing daily changes in BOD.

【符号の説明】[Explanation of symbols]

1 流入原水 2 活性汚泥処理装置 3 脱窒槽 4 硝化槽 5 活性汚泥スラリー 6 硝化液循環 7 沈殿池 8 沈殿池越流水 9 返送汚泥 10 余剰汚泥 11 生物膜ろ過槽 12 ろ材充填部(層) 13 NOx計 14 水素供与体注入ポンプ 15 水素供与体(メタノール) 16 水素供与体貯槽 17 空気(酸素含有気体) 18 散気管 19 DO計 20 処理水 21 空気 22 洗浄用散気管 23 洗浄水 24 洗浄排水 25 処理水槽 26 洗浄水ポンプ 27 洗浄排水槽 28 洗浄排水送水ポンプ1 Influent Raw Water 2 Activated Sludge Treatment Device 3 Denitrification Tank 4 Nitrification Tank 5 Activated Sludge Slurry 6 Nitrification Solution Circulation 7 Settling Tank 8 Sedimentation Tank Overflow Water 9 Returned Sludge 10 Excess Sludge 11 Biofilm Filtration Tank 12 Filter Media Packing Layer (layer) 13 NO x total 14 hydrogen donor injection pump 15 hydrogen donor (methanol) 16 hydrogen donor storage tank 17 air (oxygen-containing gas) 18 air diffuser 19 DO meter 20 treated water 21 air 22 cleaning air diffuser 23 cleaning water 24 cleaning drain 25 Treated water tank 26 Wash water pump 27 Wash drain tank 28 Wash drain pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津野 洋 滋賀県大津市衣川2−8−14 Fターム(参考) 4D040 BB05 BB23 BB42 BB57 BB82 BB91 BB93    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Tsuno             2-8-14 Kinugawa, Otsu City, Shiga Prefecture F-term (reference) 4D040 BB05 BB23 BB42 BB57 BB82                       BB91 BB93

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 脱窒槽及び硝化槽を有する活性汚泥処理
装置及びその下流側に設けた生物膜ろ過型浄化槽を用い
る水の生物学的窒素除去方法において、該生物膜ろ過型
浄化槽を上向流式とし、該生物膜ろ過型浄化槽の中間部
に配置されたろ材充填部よりも水の上流に設置された酸
化態窒素(NOx−N)検知手段からの信号により制御
された量の水素供与体を、該検知手段より下流でかつ該
ろ材充填部よりも水の上流に注入し、一方、該ろ材充填
部の下流に設置された溶存酸素(DO)検知手段からの
信号により制御された量の酸素含有気体を、前記ろ材充
填部のほぼ中央に注入し、該生物膜浄化槽のろ材充填部
の洗浄操作により排出される洗浄排水を、活性汚泥処理
装置に戻すことを特徴とする水の生物学的窒素除去方
法。
1. A method for biological nitrogen removal of water using an activated sludge treatment device having a denitrification tank and a nitrification tank and a biofilm filtration septic tank provided on the downstream side thereof, wherein the biofilm filtration septic tank is upflowed. and wherein the hydrogen of the amount controlled by a signal from the organism membrane filtration type septic tank of the intermediate portion arranged filter material filling section oxide nitrogen, which is installed upstream of the water than (NO x -N) detecting means donating A body is injected downstream of the detection means and upstream of water from the filter medium filling portion, while the amount controlled by a signal from a dissolved oxygen (DO) detection means installed downstream of the filter medium filling portion. Oxygen-containing gas is injected into substantially the center of the filter medium filling part, and the cleaning wastewater discharged by the cleaning operation of the filter medium filling part of the biofilm septic tank is returned to the activated sludge treatment device. Nitrogen removal method.
【請求項2】 前記洗浄排水を、活性汚泥処理装置の脱
窒槽流入部に戻すことを特徴とする請求項1に記載の生
物学的窒素除去方法。
2. The biological nitrogen removing method according to claim 1, wherein the cleaning wastewater is returned to the denitrification tank inflow part of the activated sludge treatment device.
【請求項3】 前記水素供与体の注入量を、COD/N
比が2.4以上になるように制御することを特徴とする
請求項1又は請求項2に記載の生物学的窒素除去方法。
3. The injection amount of the hydrogen donor is COD / N
The biological nitrogen removal method according to claim 1 or 2, wherein the ratio is controlled to be 2.4 or more.
【請求項4】 前記酸素含有気体の注入量を、DOが5
mg/リットル以上となるように制御することを特徴と
する請求項1〜3のいずれか1項に記載の生物学的窒素
除去方法。
4. The injection amount of the oxygen-containing gas is DO of 5
The method for removing biological nitrogen according to any one of claims 1 to 3, wherein the method is controlled to be at least mg / liter.
【請求項5】 脱窒槽及び硝化槽を有する活性汚泥処理
装置及びその下流側に設けた生物膜ろ過型浄化槽を用い
る水の生物学的窒素除去装置において、該生物膜ろ過型
浄化槽を上向流式とし、該生物膜ろ過型浄化槽の中間部
にろ材充填部が配置され、該ろ材充填部の上流に酸化態
窒素(NOx−N)検知手段が設置され、該検知手段よ
り下流でかつ該ろ材充填部よりも水の上流に、該検知手
段からの信号により制御された量の水素供与体を注入す
る注入手段が設置され、一方、該ろ材充填部の下流に溶
存酸素(DO)検知手段が設置され、前記ろ材充填部の
ほぼ中央に、溶存酸素(DO)検知手段からの信号によ
り制御された量の酸素含有気体を注入する注入手段が設
置され、さらに該生物膜ろ過型浄化槽のろ材充填部の洗
浄操作により排出される洗浄排水を、活性汚泥処理装置
に戻す配管を設けたことを特徴とする水の生物学的窒素
除去装置。
5. An activated sludge treatment device having a denitrification tank and a nitrification tank, and a biological nitrogen removal apparatus for water using a biofilm filtration septic tank provided on the downstream side of the biofilm filtration septic tank. In the formula, a filter medium filling part is arranged in an intermediate part of the biofilm filtration septic tank, an oxidized nitrogen (NO x -N) detecting means is installed upstream of the filter medium filling part, and is located downstream of the detecting means and Injecting means for injecting a hydrogen donor in an amount controlled by a signal from the detecting means is installed upstream of the filter medium filling section, while dissolved oxygen (DO) detecting means is provided downstream of the filter medium filling section. Is installed, and an injection means for injecting an oxygen-containing gas in an amount controlled by a signal from a dissolved oxygen (DO) detection means is installed in substantially the center of the filter medium filling section, and the filter medium of the biofilm filtration septic tank is further installed. It is discharged by cleaning the filling section. A biological nitrogen removing device for water, characterized in that a pipe is provided for returning the cleaning wastewater to the activated sludge treatment device.
JP2002091447A 2002-03-28 2002-03-28 Biological nitrogen removal method and apparatus Expired - Lifetime JP3916220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091447A JP3916220B2 (en) 2002-03-28 2002-03-28 Biological nitrogen removal method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091447A JP3916220B2 (en) 2002-03-28 2002-03-28 Biological nitrogen removal method and apparatus

Publications (2)

Publication Number Publication Date
JP2003285093A true JP2003285093A (en) 2003-10-07
JP3916220B2 JP3916220B2 (en) 2007-05-16

Family

ID=29236526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091447A Expired - Lifetime JP3916220B2 (en) 2002-03-28 2002-03-28 Biological nitrogen removal method and apparatus

Country Status (1)

Country Link
JP (1) JP3916220B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023485A (en) * 2006-07-24 2008-02-07 Japan Organo Co Ltd Biological denitrification method and apparatus therefor
JP2011177619A (en) * 2010-02-26 2011-09-15 Taisei Corp Water treatment apparatus and water treatment method
JP2013202511A (en) * 2012-03-28 2013-10-07 Swing Corp Removing device and removing method of nitrogen and phosphorus
CN111285576A (en) * 2020-04-01 2020-06-16 中国科学院生态环境研究中心 Method for quickly dissolving excrement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023485A (en) * 2006-07-24 2008-02-07 Japan Organo Co Ltd Biological denitrification method and apparatus therefor
JP2011177619A (en) * 2010-02-26 2011-09-15 Taisei Corp Water treatment apparatus and water treatment method
JP2013202511A (en) * 2012-03-28 2013-10-07 Swing Corp Removing device and removing method of nitrogen and phosphorus
CN111285576A (en) * 2020-04-01 2020-06-16 中国科学院生态环境研究中心 Method for quickly dissolving excrement

Also Published As

Publication number Publication date
JP3916220B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
CN1309665C (en) Nitrogen and phosphorus removing process
JP3214707B2 (en) Wastewater treatment method using intermittent discharge type long aeration process
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP4678577B2 (en) Wastewater treatment system
CN215327544U (en) A2/O, MBR integrated disinfection system
JP3391057B2 (en) Biological nitrogen removal equipment
CN107473382A (en) By controlling dissolved oxygen to realize sewage carbon nitrogen while the bioremediation removed
JP3916220B2 (en) Biological nitrogen removal method and apparatus
CN218810847U (en) AAO sewage treatment system of improvement
JP4042718B2 (en) Anaerobic ammonia oxidation method and apparatus
JP3737288B2 (en) Wastewater treatment system
JP3095620B2 (en) Biological nitrogen removal equipment
JPH0461993A (en) Method and apparatus for biological nitration and denitrification of organic polluted water
JP2004275820A (en) Wastewater treatment apparatus
JP6943854B2 (en) Organic wastewater treatment methods and equipment
JP3973069B2 (en) Organic wastewater treatment method and apparatus
JP2953835B2 (en) Biological nitrification and denitrification equipment
JPH04244297A (en) Treatment of sewage
WO2020021755A1 (en) Method for treating organic wastewater and device for treating organic wastewater
RU2170710C1 (en) Method for biological cleaning of domestic and compositionally analogous industrial waste waters from organic and suspended substances
JP3934368B2 (en) Biofilm filtration system
CN1450003A (en) Batch circulated upflow sludge bed organic waste water treatment process
JP3651201B2 (en) Control method of intermittent aeration activated sludge process
KR20040083044A (en) Advanced wastewater treatment method using reactor-regulated raw water storage tank
RU36657U1 (en) UNIT OF BIOLOGICAL CLEANING OF HOUSEHOLD WASTE WATER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3916220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term