JP3651201B2 - Control method of intermittent aeration activated sludge process - Google Patents

Control method of intermittent aeration activated sludge process Download PDF

Info

Publication number
JP3651201B2
JP3651201B2 JP24514397A JP24514397A JP3651201B2 JP 3651201 B2 JP3651201 B2 JP 3651201B2 JP 24514397 A JP24514397 A JP 24514397A JP 24514397 A JP24514397 A JP 24514397A JP 3651201 B2 JP3651201 B2 JP 3651201B2
Authority
JP
Japan
Prior art keywords
aeration
phosphorus
tank
activated sludge
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24514397A
Other languages
Japanese (ja)
Other versions
JPH1177079A (en
Inventor
弘明 古米
勇治 古屋
豊 森
繁 初又
康成 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP24514397A priority Critical patent/JP3651201B2/en
Publication of JPH1177079A publication Critical patent/JPH1177079A/en
Application granted granted Critical
Publication of JP3651201B2 publication Critical patent/JP3651201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水や生活排水、産業排水を生物学的に処理する方法で、特に排水中の窒素およびリンを除去するプロセスの制御方法に関する。
【0002】
【従来の技術】
下水や生活排水の処理は有機物除去が主体であり、活性汚泥法に代表される生物学的処理法が一般に用いられてきた。しかし近年になって、湖沼等の閉鎖性水域では富栄養化が大きな問題となっており、この原因となる窒素、リンの除去が重要となってきた。そのため、有機物に加えて窒素、リンを除去できる処理法が活性汚泥法の改良法として開発されており、代表的な方法としてはA2 O法、回分式活性汚泥法、間欠曝気式活性汚泥法などが挙げられる。これらの方法は、微生物が好気条件、嫌気条件に交互におかれ有機物、窒素、リンの除去がなされるため、嫌気好気活性汚泥法と総称されている。
【0003】
ここで、窒素、リンの除去を目的とした下水処理について、その原理を簡単に述べる。下水中の有機物は、活性汚泥を構成する微生物の食物となり、分解除去される。窒素は好気性の条件下で、硝化菌の働きによりNH4 −N(アンモニア性窒素)がNO3 −N( 硝酸性窒素)に酸化され、次いで嫌気性の条件下で脱窒菌の働きによりNO3 −NがN2 (窒素ガス)に還元されて除去される。硝化、脱窒の関係を整理すると次のようになる。
反応 窒素の形態 反応条件 微生物
硝化反応 アンモニア性窒素→硝酸性窒素 好気性(溶存酸素あり) 硝化菌
脱窒反応 硝酸性窒素→窒素ガス 嫌気性(溶存酸素なし) 脱窒菌
また、リンは反応槽では、運転条件を好気性と嫌気性とに交互に変えることによって、細胞内にリンを多量に蓄積する性質を持つ活性汚泥が反応槽内に作りだされ、この活性汚泥を利用して除去する。すなわち、この活性汚泥は、嫌気性条件下で水中の有機物を体内に貯蔵するために、体内に貯蔵しているリンを放出し、好気性条件下で体内に貯蔵してある有機物を利用して、水中のリンを吸収する性質がある。リンを多量に吸収した活性汚泥を余剰汚泥として処理系から除くことにより脱リンを行う。
この関係は下記のように整理することができる。
反応 槽内リン濃度 有機物 反応条件 リン除去
リン放出 増加 貯蔵 嫌気性(溶存酸素なし) −
リン吸収 減少 消費 好気性(溶存酸素あり) 活性汚泥抜出し
このように窒素、リンの除去においては、好気性、嫌気性の2条件が不可欠であるが、厳密には脱窒のための嫌気条件と脱リンのための嫌気条件とは異なっており、脱窒が終了した反応槽内にNO3 −Nに起因する酸素分子が無くなった後で活性汚泥からのリンの放出が起こり、これが次の曝気工程におけるリンの吸収につながっている。
【0004】
次に、小規模下水処理向けの代表的な回分装置での嫌気好気式活性汚泥法について説明する。
回分装置を用いた活性汚泥法は回分式活性汚泥法といわれ、その装置における窒素、リンの除去法は本発明者らが出願した特開平7−136683号公報に記載されているが、その概要は下記のように要約することができる。
【0005】
図6は回分式活性汚泥法に用いられる装置の要部構成を示す模式図であり、図6には装置構成とともに、水および空気の経路を実線の矢印、制御信号を点線の矢印で表してある。図6において、この装置は主として、下水1が流入し処理が行われる反応槽2、処理水3を排出する処理水排出装置4から構成される。制御系は、溶存酸素濃度を測定するDO計5、DO測定値および制御シーケンスに基づいてDO制御用のインバーター6、曝気ブロア7、曝気攪拌装置8に制御信号を出力する制御装置9から成っている。
【0006】
この装置における代表的な運転方法は、攪拌・曝気の組み合わせ工程、活性汚泥の沈殿工程、処理水の排出工程からなる処理サイクル(以下、単にサイクルと記載することもある)の1サイクルを6時間に設定し、サイクル開始後4時間内に反応槽2において攪拌、曝気を断続的に数回繰り返し(断続曝気処理工程)、その後、沈殿を1時間、処理水排出を1時間行うものである。このサイクルの中の断続曝気処理期間に硝化、脱窒、リン放出、リン吸収の反応が進行し、窒素、リンの除去が行われる。こうした運転において、DOは水質や運転条件にもよるが2mg/L程度に制御され、DOの設定値が適切な場合は窒素、リンの除去は良好である。
【0007】
また、排水が流入する第1曝気槽と、この第1曝気槽に直列に連結した第2曝気槽の二つの曝気槽を用い、その後に最終沈殿池を設けた装置と、その制御方法を本発明者らが出願した特開平6−55190号公報に記載してある。
図7はこの特開平6−55190号公報に記載の間欠曝気法および制御システムを説明するための装置の要部構成を示す模式図であり、図7を参照して以下にその概要を述べる。図7において、水および空気の経路を実線の矢印、制御信号系統を点線の矢印で表わしてあり、この装置は主として、下水1が流入し活性汚泥によって有機物、窒素、リンが除去される第1曝気槽2aと第2曝気槽2b、重力沈降によって活性汚泥が分離され処理水3が得られる最終沈殿池4、沈降した活性汚泥を第1曝気槽2aに返送する返送汚泥ポンプ5から構成されている。第1曝気槽2aと第2曝気槽2bの容積比はおよそ1:1であり、処理水の滞留時間の合計は16〜32時間である。制御系は第1曝気槽2a内の酸化還元電位を測定するORP計6a、第2曝気槽2b内の酸化還元電位を測定するORP計6b、それらの値に基づいて第1曝気ブロワ7a、第2曝気ブロワ7b、第1攪拌ポンプ8a、第2攪拌ポンプ8bヘの制御信号を出力する制御装置9から成っている。
【0008】
この装置における代表的な制御方法は、曝気時間を1時間に設定するとともに、曝気時間における第1曝気槽2aのDOを0.2mg/Lに設定してDO制御を行ない、攪拌時間については第2曝気槽2bのORPの変化率を測定し、ORPの屈曲点を演算により検出して、検出後直ちに攪拌を停止して曝気を開姶し、しかも、第1曝気槽2aと第2曝気槽2bの曝気、攪拌は連動させている。
【0009】
処理過程は、第1曝気槽2aでは低DO制御を行ない、硝化と脱窒を同時に進行させ(好気性脱窒)、第2曝気槽2bはDOを2〜3mg/L程度として硝化を積極的に進行させ、また同時に活性汚泥ヘのリンの吸収を行なう。そして1時間経過後、自動的に攪拌工程に移行する。攪拌工程は、第1曝気槽2aでは先の曝気工程で好気性脱窒が進行しているため、NO3 −Nは低濃度であり、短時間で脱窒が終了し、その後活性汚泥からのリンの放出が行なわれる。また第2曝気槽2bでは有機物濃度が低くなっているため、ゆっくりと脱窒が進行し、同時にORPが低下して行く。ORPは脱窒が終了した時点で届曲点を持つので、この屈曲点を検出して、攪拌を停止し曝気に移行する。したがって、第2曝気槽2bではリンの放出はほとんど起こらない。即ち、攪拌工程では主として第1曝気槽の2aでリンの放出、第2曝気槽2bで脱窒を行うものである。以上の方法は曝気槽を2槽としているため、曝気槽が1槽の場合に比べて、原水が未処理のまま放流される場合が少ないという特徴も持っている。
【0010】
【発明が解決しようとする課題】
以上、回分式活性汚泥法と、反応槽を2つ直列に接続した装置の場合の間欠曝気式活性汚泥法との制御方法について説明したが、水質、運転条件が変わることでリンの除去が悪くなることがある。細胞内にリンを多量に蓄積する脱リン菌が十分に存在し生物学的なリンの吸収と放出が行われているにも関わらず、リンの除去が不十分になることがある。何らかの原因で脱リン菌がリン吸収のために貯蔵する有機物が少なくなり、生物学的なリンの放出と吸収は起こっているが、放出したリンの量と吸収するリンの量が同じ、または、吸収するリンの量が少なくなり、処理水中のリンを完全に吸収できなくなってしまうという問題がある。
【0011】
本発明は上述の問題点に鑑みてなされたものであり、その目的は、リンの除去が不良になった場合、リンの除去を良好に回復させる間欠曝気式活性汚泥法の制御方法を提供することである。
【0012】
【課題を解決するための手段】
上記の課題を解決するために、本発明の制御方法は、以下の如く行う。
第1の発明は、排水が流入する反応槽内で、攪拌・曝気の組合せ工程、活性汚泥の沈殿工程、処理水の排出工程からなる処理サイクルを繰返して排水を処理する回分式装置を用いて、排水中の窒素、リンを除去する間欠曝気式活性汚泥法の制御方法において、pH計を設置し、攪拌工程におけるpHの値を攪拌工程開始時の反応槽内のpHよりも低くすることとする。
【0013】
この第1の発明の制御方法は、所定の時間(例えば1時間)に設定された攪拌工程では槽内に硝酸がなくなった時点で、リンの放出が起こる。一般にpHが一定であれば、リンの放出量は脱リン菌が体内に貯蔵する有機物量と比例するが、反応槽内の有機物量が一定の場合は、図5に示すように、pHが通常よりも高い時には、有機物が微生物の細胞膜を通過するためのエネルギーが通常よりも多く必要で、単位時間に放出するリンの量は多くなり、リンの放出速度が速くなる。この時、体内に蓄積される有機物は少なく有機物摂取速度は遅くなる。逆にpHが通常よりも低い時には、有機物が微生物の細胞膜を通過するためのエネルギーが通常よりも少なくてすみ、単位時間に放出するリンの量は少なく、リンの放出速度は遅くなる。この時、体内に蓄積される有機物は多く有機物摂取速度が速くなる。よって、攪拌工程において、反応槽内のpHを低く制御することで、有機物の摂取効率を高くすることができる。このことによって、pHの低い方が有機物の貯蔵量が多く、同じ有機物を貯蔵するためのリン放出量を少なくでき、微生物が貯蔵する有機物量に比例して、吸収できるリンの量が多くなり、曝気行程で吸収しなくてはならないリンの量を少なくすることができる。
【0014】
第2の発明は、排水を曝気槽へ流入させて、曝気を行う好気状態と曝気を停止して攪拌を行う嫌気状態を交互に繰返して処理を行った後、この処理水を最終沈殿池から放流させ、沈殿汚泥は曝気槽へ返送すると共に、余剰汚泥として引き出し、排水中の窒素、リンを除去する間欠曝気式活性汚泥法の制御方法において、排水が流入する第1曝気槽とこの第1曝気槽に直列に連結した第2曝気槽を用いて処理を行う装置において、第1曝気槽にpH計を設置し、攪拌工程におけるpHの値を攪拌工程開始時の反応槽内のpHよりも低くすることとする。
【0015】
この第2の発明の制御方法は、第1の発明と同じで、第1曝気槽の攪拌工程すなわちリン放出工程において反応槽内のpHを通常よりも低く制御して有機物の蓄積量を多くして、リン除去が不良の時に、リン放出量を少なくして、吸収しなくてはならないリンの量を少なくすれば、第2曝気槽でのリン吸収を円滑に行わせることができる。
【0016】
以上の方法によれば、適切なリン放出量とリン吸収量が確保されるのでリン除去が不良なときにリンの除去を良好にすることができる。
【0017】
【発明の実施の形態】
以下、本発明による間欠曝気式活性汚泥法の実施例を図面を参照して説明する。図1は本発明が適用される間欠曝気式活性汚泥法の回分式装置および制御システムの要部構成を示す模式図である。図1において、この装置は図6に示した装置と基本的に同じであるが、異なる点は、酸添加ポンプ11と酸貯溜槽12とアルカリ添加ポンプ13とアルカリ貯溜槽14を設置したことである。
【0018】
図2に第1の発明の制御方法を用いた場合のリン、pHの変化を示す。図2(a)にリン濃度PO4 −Pの、図2(b)にpHのそれぞれの時間経過特性を示す。基本的に1サイクルは1時間の攪拌、1時間の曝気、1時間の攪拌、1時間の曝気、1時間の沈殿、1時間の排出の合計6時間の工程からなる。サイクル開始時に下水の流入を行なうと同時に攪拌工程が始まり、脱窒が完了してからPO4 −Pの放出が行われる。攪拌工程が終了すると、曝気工程になりPO4 −Pの吸収がはじまる。この攪拌工程開始時に、攪拌工程開始時のpHの値よりも反応槽内のpHが0.5程度低くなるように酸添加ポンプ11を用いて酸貯溜槽12から反応槽に酸を添加して、反応槽内のpHを低くする。pHを低くすることで有機物が細胞膜を通過するエネルギーを少なくすることができ、有機物の摂取速度が速くなる。そのため少ないリンの放出量で多くの有機物を貯蔵することができる。pHが低い場合、放出したリンの量が同じであれば、pHの低い方が微生物の貯蔵した有機物は多い。貯蔵有機物が多いとそれに比例して、リン吸収量も多いと考えられている。攪拌工程が終了すると低くした反応槽内のpHをもとの値になるようにアルカリ添加ポンプ13を用いてアルカリ貯溜槽14から反応槽にアルカリを添加して、反応槽内のpHをもとに戻す。この攪拌、曝気工程を二回繰り返したあと活性汚泥と処理水を分離する沈殿工程に移り、その後、上澄水を排出する。また、1サイクル中の攪拌・曝気がそれぞれ1回の制御方法においても適応可能である。
【0019】
図3は本発明が適用される間欠曝気式活性汚泥法の第1、第2曝気槽を用いた装置および制御システムの要部構成を示す模式図である。図3において、この装置は図7に示した装置と基本的に同じであるが、異なる点は酸添加ポンプ11と酸貯溜槽12とアルカリ添加ポンプ13とアルカリ貯溜槽14を設置したことである。
【0020】
図4に第2の発明の制御方法を用いた場合のリン、pHの変化を示す。
図4(a)に第1曝気槽のリン濃度PO4 −Pの、図4(b)に第1曝気槽のpHの、また、図4(c)に第2曝気槽のリン濃度PO4 −Pの、図4(d)に第2曝気槽のpHの、それぞれの時間経過特性を示す。基本的に1サイクルは2時間から成り、第1曝気槽では30分の曝気、1時間30分の攪拌、第2曝気槽では1時間の曝気、1時間の攪拌工程からなる。下水の流入は断続的に第1曝気槽に行われる。第1曝気槽ではサイクル開始時に曝気工程が始まり、リン吸収と硝化が始まる。30分後、曝気工程に移り脱窒が行われる。この間、反応槽内に硝酸性窒素が残っているためリンの放出は起こらない。脱窒終了後リンの放出が起こる。ORP計の出力から屈曲点を検出した後、攪拌工程開始時のpHの値よりも反応槽内のpHが0.5程度低くするように酸添加ポンプ11を用いて酸貯溜槽12から反応槽に酸を添加して、反応槽内のpHを低くする。pHを低くすることで脱リン菌が貯蔵する有機物の量を多くすることが可能になる。第2曝気槽では、サイクル開始時にリン吸収と硝化のための曝気工程が始まり、第1曝気槽のORP屈曲点が検出されるまでの約1時間行われる。この間、第1曝気槽から第2曝気槽に流入する下水のリン濃度は低く、第2曝気槽内のリン濃度はほぼゼロである。第1曝気槽のORP屈曲点検出後攪拌工程に移行する。攪拌工程では脱窒が行われ、第2曝気槽のORP屈曲点検出まで攪拌工程が行われる。第2曝気槽のORP屈曲点検出後、第1曝気槽、第2曝気槽ともサイクルが元に戻る。この時、第1曝気槽で低くした反応槽内のpHをもとの値になるようにアルカリ添加ポンプ13を用いてアルカリ貯溜槽13から反応槽にアルカリを添加して、反応槽内のpHをもとに戻す。
【0021】
リンの放出は微生物が有機物を細胞内に貯蔵する反応と関係しており、リンの放出速度は反応槽内のpHに影響を受ける。図5はpHを変化させた場合のリン濃度の変化である。pHが通常より高い場合、有機物が細胞膜を通過するためのエネルギーが多く必要で、リン放出量は多くなり、貯蔵有機物量は少なくなる。また、pHが通常より低い場合、有機物が細胞膜を通過するエネルギーが少なくてすみ、リン放出量は少なく、貯蔵有機物量は多くなる。一般的に、リンの放出量は、pHと貯蔵有機物の量に関係し、リン吸収量は貯蔵有機物量に関係している。pHが同じであれは、リン放出量が多いほど貯蔵有機物が多く、リン放出量が同じであれば、pHが低いほど貯蔵有機物が多い。リンの吸収量はpHにはほとんど影響されず、微生物が貯蔵している有機物量が多い場合、吸収量も多い。下水のpHは7.0前後であるから、攪拌工程においてpHを6.5程度に制御して、リン放出量を少なくして、有機物の貯蔵量を多くすることで、攪拌時間で適切なリン放出量を確保でき、次に続く、曝気工程でのリン吸収量を多くすることが可能で、リンの除去が不良の時に、リンの除去を回復することができる。
【0022】
【発明の効果】
従来の間欠曝気式活性汚泥法の制御方法ではリン放出、吸収が行われているにも関わらず、処理水のリン除去率が悪い現象が起きるという問題があった。
これに対処するためになされた本発明の制御方法は、以下の利点を有する。即ち、第1の発明の制御方法は、排水が流入する反応槽内で、攪拌・曝気の組合せ工程、活性汚泥の沈殿工程、処理水の排出工程からなる処理サイクルを繰返して排水を処理する回分式装置を用いて、排水中の窒素、リンを除去する間欠曝気式活性汚泥法の制御方法において、pH計を設置し、攪拌工程におけるpHの値を攪拌工程開始時の反応槽内のpHよりも低くすることで、少ないリン放出量で多くの有機物を貯蔵し、曝気工程でのリンの負荷を軽減することができる。
【0023】
また、第2の発明の制御方法は、排水を曝気槽へ流入させて、曝気を行う好気状態と曝気を停止して攪拌を行う嫌気状態を交互に繰返して処理を行った後、この処理水を最終沈殿池から放流させ、沈殿汚泥は曝気槽へ返送するとともに、余剰汚泥として引き出し、排水中の窒素、リンを除去する間欠曝気式活性汚泥法の制御方法において、排水が流入する第1曝気槽とこの第1曝気槽に直列に連結した第2曝気槽を用いて処理を行う装置において、第1曝気槽にpH計を設置し、攪拌工程におけるpHの値を攪拌工程開始時の反応槽内のpHよりも低くすることによって、第1曝気槽で適切なリン放出を行うことができ、第2曝気槽のリン吸収を確実に行うことができる。
【0024】
以上の事で、通常の運転制御方法でリン除去が不良になった場合、本発明の制御方法を用いることで、リン放出量よりも吸収量を多くでき処理水のリン除去を良好にすることができる。
【図面の簡単な説明】
【図1】第1の発明の制御方法が適用される装置の要部構成を示す模式図。
【図2】第1の発明の制御方法を適用した装置の反応槽における水質とpHの変化を示し、(a)はPO4 −Pの、(b)はpHの、それぞれ時間経過に対する関係線図。
【図3】第2の発明の制御方法が適用される装置の要部構成を示す模式図。
【図4】第2の発明の制御方法を適用した装置の反応槽における水質とpHの変化を示し、(a)は第1曝気槽のリン濃度PO4 −Pの、(b)は第1曝気槽のpHの、(c)は第2曝気槽のリン濃度PO4 −Pの、(d)は第2曝気槽のpHの、それぞれ時間経過に対する関係線図。
【図5】pHの違いによるリン放出量の変化を示す関係線図。
【図6】従来の制御方法が適用される装置の要部構成を示す模式図。
【図7】従来の制御方法が適用される装置の要部構成を示す模式図。
【符号の説明】
1 : 下水
2 : 反応槽
2a: 第1曝気槽
2b: 第2曝気槽
3 : 処理水
4 : 処理水排出装置
4a: 最終沈殿池
5 : DO計
5a: 返送汚泥ポンプ
6 : インバーター
6a: 第1のORP計
6b: 第2のORP計
7 : 曝気ブロア
7a: 第1曝気ブロア
7b: 第2曝気ブロア
8 : 曝気攪拌装置
8a: 第1攪拌ポンプ
8b: 第2攪拌ポンプ
9 : 制御装置
10 : pH計
11 : 酸添加ポンプ
12 : 酸貯溜槽
13 : アルカリ添加ポンプ
14 : アルカリ貯溜槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for biologically treating sewage, domestic wastewater, and industrial wastewater, and more particularly to a method for controlling a process for removing nitrogen and phosphorus in wastewater.
[0002]
[Prior art]
The treatment of sewage and domestic wastewater is mainly organic matter removal, and biological treatment methods represented by the activated sludge method have been generally used. However, in recent years, eutrophication has become a major problem in closed waters such as lakes, and removal of nitrogen and phosphorus that cause this has become important. Therefore, a treatment method that can remove nitrogen and phosphorus in addition to organic substances has been developed as an improvement method of the activated sludge method. Typical methods include A 2 O method, batch activated sludge method, and intermittent aeration activated sludge method. Etc. These methods are collectively referred to as an anaerobic aerobic activated sludge method because organic substances, nitrogen, and phosphorus are removed by alternating microorganisms in an aerobic condition and an anaerobic condition.
[0003]
Here, the principle of sewage treatment for the purpose of removing nitrogen and phosphorus will be briefly described. The organic matter in the sewage becomes the food of microorganisms constituting the activated sludge and is decomposed and removed. Nitrogen is oxidized under the aerobic condition by NH 4 -N (ammonia nitrogen) to NO 3 -N (nitrate nitrogen) by the action of nitrifying bacteria, and then NO by the action of denitrifying bacteria under anaerobic conditions. 3- N is reduced to N 2 (nitrogen gas) and removed. The relationship between nitrification and denitrification can be summarized as follows.
Reaction Nitrogen form Reaction conditions Microbial nitrification reaction Ammonia nitrogen → Nitrate nitrogen Aerobic (with dissolved oxygen) Nitrification denitrification reaction Nitrate nitrogen → Nitrogen gas Anaerobic (no dissolved oxygen) Denitrifying bacteria By alternately changing the operating conditions between aerobic and anaerobic, activated sludge having the property of accumulating a large amount of phosphorus in the cells is created in the reaction tank and removed using this activated sludge. In other words, this activated sludge releases phosphorus stored in the body to store organic substances in water under anaerobic conditions, and uses organic substances stored in the body under aerobic conditions. It has the property of absorbing phosphorus in water. Dephosphorization is performed by removing activated sludge that has absorbed a large amount of phosphorus from the treatment system as excess sludge.
This relationship can be organized as follows.
Phosphorus concentration in reaction vessel Organic reaction conditions Phosphorus removal Phosphorus release Increase Storage Anaerobic (no dissolved oxygen) −
Phosphorus absorption Reduction Consumption Aerobic (with dissolved oxygen) Extraction of activated sludge As described above, two conditions of aerobic and anaerobic are indispensable for removing nitrogen and phosphorus, but strictly speaking, anaerobic conditions for denitrification Unlike the anaerobic conditions for dephosphorization, the release of phosphorus from the activated sludge occurs after oxygen molecules due to NO 3 -N disappear in the reaction tank after denitrification, and this is the next aeration This leads to absorption of phosphorus in the process.
[0004]
Next, the anaerobic and aerobic activated sludge method in a typical batch apparatus for small-scale sewage treatment will be described.
The activated sludge method using a batch apparatus is said to be a batch activated sludge process, and the method for removing nitrogen and phosphorus in the apparatus is described in Japanese Patent Application Laid-Open No. 7-136683 filed by the present inventors. Can be summarized as follows:
[0005]
FIG. 6 is a schematic diagram showing the main configuration of the apparatus used in the batch activated sludge method. In FIG. 6, the water and air paths are represented by solid arrows and the control signals are represented by dotted arrows along with the apparatus configuration. is there. In FIG. 6, this apparatus is mainly composed of a reaction tank 2 in which sewage 1 flows in and processing is performed, and a treated water discharge device 4 that discharges treated water 3. The control system comprises a DO meter 5 that measures the dissolved oxygen concentration, a control device 9 that outputs a control signal to the DO control inverter 6, the aeration blower 7, and the aeration stirring device 8 based on the DO measurement value and the control sequence. Yes.
[0006]
A typical operation method in this apparatus is a process cycle (hereinafter sometimes simply referred to as a cycle) consisting of a combined stirring / aeration process, an activated sludge settling process, and a treated water discharge process for 6 hours. In the reaction tank 2, stirring and aeration are intermittently repeated several times within 4 hours after the start of the cycle (intermittent aeration treatment step), and then the precipitation is performed for 1 hour and the treated water is discharged for 1 hour. During the intermittent aeration process in this cycle, the reactions of nitrification, denitrification, phosphorus release and phosphorus absorption proceed, and nitrogen and phosphorus are removed. In such operation, DO is controlled to about 2 mg / L depending on water quality and operating conditions, and when the DO set value is appropriate, removal of nitrogen and phosphorus is good.
[0007]
Moreover, the apparatus which used the two aeration tanks of the 1st aeration tank in which waste_water | drain flows in, and the 2nd aeration tank connected in series with this 1st aeration tank, and provided the final sedimentation tank after that, and its control method are this. This is described in JP-A-6-55190 filed by the inventors.
FIG. 7 is a schematic diagram showing a configuration of a main part of an apparatus for explaining the intermittent aeration method and control system described in JP-A-6-55190. The outline of the apparatus will be described below with reference to FIG. In FIG. 7, the path of water and air is represented by solid arrows, and the control signal system is represented by dotted arrows, and this apparatus is mainly a first in which sewage 1 flows and organic matter, nitrogen and phosphorus are removed by activated sludge. It comprises an aeration tank 2a and a second aeration tank 2b, a final sedimentation basin 4 in which activated sludge is separated by gravity sedimentation to obtain treated water 3, and a return sludge pump 5 that returns the settled activated sludge to the first aeration tank 2a. Yes. The volume ratio of the first aeration tank 2a and the second aeration tank 2b is approximately 1: 1, and the total residence time of the treated water is 16 to 32 hours. The control system includes an ORP meter 6a that measures the oxidation-reduction potential in the first aeration tank 2a, an ORP meter 6b that measures the oxidation-reduction potential in the second aeration tank 2b, and the first aeration blower 7a, the first 2 It consists of the control apparatus 9 which outputs the control signal to the aeration blower 7b, the 1st stirring pump 8a, and the 2nd stirring pump 8b.
[0008]
A typical control method in this apparatus is to set the aeration time to 1 hour, set the DO of the first aeration tank 2a at the aeration time to 0.2 mg / L, perform DO control, and set the agitation time for the first agitation time. 2 Measure the rate of change of the ORP in the aeration tank 2b, detect the ORP inflection point by calculation, stop stirring immediately after detection and open the aeration, and the first aeration tank 2a and the second aeration tank The aeration and stirring of 2b are linked.
[0009]
In the treatment process, low DO control is performed in the first aeration tank 2a, and nitrification and denitrification proceed simultaneously (aerobic denitrification), and the second aeration tank 2b actively nitrifies with DO of about 2 to 3 mg / L. At the same time, and absorbs phosphorus into activated sludge. And after 1 hour progress, it transfers to a stirring process automatically. In the agitation process, since aerobic denitrification has progressed in the first aeration tank 2a in the previous aeration process, NO 3 -N has a low concentration, and denitrification is completed in a short time. Phosphorus is released. Moreover, since the organic substance concentration is low in the second aeration tank 2b, denitrification proceeds slowly and simultaneously the ORP decreases. Since the ORP has a reaching point when denitrification is completed, the bending point is detected, stirring is stopped, and aeration is performed. Therefore, release of phosphorus hardly occurs in the second aeration tank 2b. That is, in the stirring step, phosphorus is mainly released in the first aeration tank 2a and denitrification is performed in the second aeration tank 2b. Since the above method uses two aeration tanks, it has a feature that raw water is discharged without treatment as compared with the case where there is one aeration tank.
[0010]
[Problems to be solved by the invention]
The control method between the batch activated sludge method and the intermittent aeration activated sludge method in the case of an apparatus in which two reaction tanks are connected in series has been described above. However, phosphorus removal is poor due to changes in water quality and operating conditions. May be. Despite the fact that there are enough dephosphorizing bacteria that accumulate a large amount of phosphorus in the cell and biological phosphorus is absorbed and released, phosphorus removal may be insufficient. For some reason, dephosphorization stores less organic matter for phosphorus absorption, and biological phosphorus release and absorption occurs, but the amount of released phosphorus is the same as the amount of absorbed phosphorus, or There is a problem that the amount of phosphorus to be absorbed is reduced, and phosphorus in the treated water cannot be completely absorbed.
[0011]
This invention is made | formed in view of the above-mentioned problem, The objective provides the control method of the intermittent aeration type activated sludge process which recovers the removal of phosphorus satisfactorily when the removal of phosphorus becomes poor. That is.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the control method of the present invention is performed as follows.
1st invention uses the batch type apparatus which processes waste water by repeating the processing cycle which consists of the stirring / aeration combined process, the activated sludge precipitation process, and the treated water discharge process in the reaction tank into which the waste water flows. In the control method of the intermittent aeration activated sludge method that removes nitrogen and phosphorus in the wastewater, a pH meter is installed, and the pH value in the stirring process is made lower than the pH in the reaction tank at the start of the stirring process; To do.
[0013]
In the control method according to the first aspect of the present invention, phosphorus is released when nitric acid is exhausted in the tank in the stirring step set for a predetermined time (for example, 1 hour). In general, if the pH is constant, the amount of phosphorus released is proportional to the amount of organic matter stored in the body by the dephosphorizing bacteria. However, if the amount of organic matter in the reaction tank is constant, the pH is usually as shown in FIG. When it is higher, more energy is required for the organic matter to pass through the cell membrane of the microorganism than usual, and the amount of phosphorus released per unit time increases, and the release rate of phosphorus increases. At this time, there is little organic matter accumulated in the body, and the organic matter intake rate is slow. Conversely, when the pH is lower than normal, less energy is required for the organic substance to pass through the cell membrane of the microorganism, and the amount of phosphorus released per unit time is small, and the phosphorus release rate is slow. At this time, many organic substances are accumulated in the body, and the organic substance intake speed is increased. Therefore, in the stirring process, the intake efficiency of organic substances can be increased by controlling the pH in the reaction tank to be low. As a result, the lower the pH, the more organic matter is stored, the amount of phosphorus released to store the same organic matter can be reduced, and the amount of phosphorus that can be absorbed is increased in proportion to the amount of organic matter stored by the microorganism. The amount of phosphorus that must be absorbed during the aeration process can be reduced.
[0014]
In the second invention, waste water is allowed to flow into an aeration tank, and an aerobic state in which aeration is performed and an anaerobic state in which aeration is stopped and agitation is repeated alternately. In the control method of the intermittent aeration activated sludge method in which the precipitated sludge is returned to the aeration tank and is extracted as excess sludge and nitrogen and phosphorus in the drainage are removed, the first aeration tank into which the wastewater flows and the first aeration tank. In a device that performs processing using a second aeration tank connected in series to one aeration tank, a pH meter is installed in the first aeration tank, and the pH value in the stirring process is determined from the pH in the reaction tank at the start of the stirring process. Will be lowered.
[0015]
The control method of the second invention is the same as that of the first invention. In the stirring step of the first aeration tank, that is, the phosphorus release process, the pH in the reaction tank is controlled to be lower than usual to increase the accumulated amount of organic matter. Thus, when phosphorus removal is poor, reducing the amount of phosphorus released and reducing the amount of phosphorus that must be absorbed, the phosphorus absorption in the second aeration tank can be performed smoothly.
[0016]
According to the above method, since an appropriate phosphorus release amount and phosphorus absorption amount are ensured, phosphorus removal can be improved when phosphorus removal is poor.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the intermittent aeration activated sludge method according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the main configuration of a batch type apparatus and control system of an intermittent aeration activated sludge method to which the present invention is applied. 1, this apparatus is basically the same as the apparatus shown in FIG. 6 except that an acid addition pump 11, an acid storage tank 12, an alkali addition pump 13, and an alkali storage tank 14 are installed. is there.
[0018]
FIG. 2 shows changes in phosphorus and pH when the control method of the first invention is used. FIG. 2 (a) shows the phosphorus concentration PO 4 -P, and FIG. 2 (b) shows the pH time characteristics. Basically, one cycle consists of a total of 6 hours including 1 hour of stirring, 1 hour of aeration, 1 hour of stirring, 1 hour of aeration, 1 hour of precipitation, and 1 hour of discharge. At the start of the cycle, sewage is introduced at the same time as the stirring step is started, and after denitrification is completed, PO 4 -P is released. When the stirring step is completed, an aeration step is started and PO 4 -P absorption begins. At the start of the stirring process, acid is added from the acid storage tank 12 to the reaction tank using the acid addition pump 11 so that the pH in the reaction tank is about 0.5 lower than the pH value at the start of the stirring process. The pH in the reaction vessel is lowered. By lowering the pH, the energy of the organic substance passing through the cell membrane can be reduced, and the intake rate of the organic substance can be increased. Therefore, many organic substances can be stored with a small amount of released phosphorus. When the pH is low and the amount of released phosphorus is the same, the lower the pH, the more organic matter is stored by the microorganism. In proportion to the amount of stored organic matter, it is believed that the amount of phosphorus absorbed is also proportional to it. When the stirring step is completed, alkali is added from the alkali storage tank 14 to the reaction tank using the alkali addition pump 13 so that the pH in the reaction tank is lowered to the original value, and the pH in the reaction tank is determined. Return to. After repeating this stirring and aeration process twice, it moves to the precipitation process which isolate | separates activated sludge and treated water, and discharges | emits supernatant water after that. In addition, agitation and aeration during one cycle can be applied to each control method.
[0019]
FIG. 3 is a schematic diagram showing the main configuration of an apparatus and a control system using the first and second aeration tanks of the intermittent aeration activated sludge method to which the present invention is applied. 3, this apparatus is basically the same as the apparatus shown in FIG. 7, except that an acid addition pump 11, an acid storage tank 12, an alkali addition pump 13, and an alkali storage tank 14 are installed. .
[0020]
FIG. 4 shows changes in phosphorus and pH when the control method of the second invention is used.
4A shows the phosphorus concentration PO 4 -P in the first aeration tank, FIG. 4B shows the pH of the first aeration tank, and FIG. 4C shows the phosphorus concentration PO 4 in the second aeration tank. The time course characteristics of the pH of the second aeration tank are shown in FIG. Basically, one cycle consists of 2 hours. The first aeration tank comprises 30 minutes of aeration, 1 hour and 30 minutes of stirring, and the second aeration tank comprises 1 hour of aeration and 1 hour of stirring. The inflow of sewage is intermittently performed in the first aeration tank. In the first aeration tank, the aeration process starts at the start of the cycle, and phosphorus absorption and nitrification begin. After 30 minutes, it moves to an aeration process and denitrification is performed. During this time, no release of phosphorus occurs because nitrate nitrogen remains in the reaction vessel. Phosphorus release occurs after denitrification. After detecting the bending point from the output of the ORP meter, the acid storage tank 12 is used to react the reaction tank from the acid storage tank 12 so that the pH in the reaction tank is about 0.5 lower than the pH value at the start of the stirring process. The acid in the reactor is added to lower the pH in the reaction vessel. By reducing the pH, it becomes possible to increase the amount of organic matter stored by the dephosphorizing bacteria. In the second aeration tank, an aeration process for phosphorus absorption and nitrification starts at the start of the cycle, and is performed for about 1 hour until the ORP inflection point of the first aeration tank is detected. During this time, the phosphorus concentration of sewage flowing from the first aeration tank into the second aeration tank is low, and the phosphorus concentration in the second aeration tank is almost zero. After detecting the ORP inflection point of the first aeration tank, the process proceeds to the stirring step. In the stirring process, denitrification is performed, and the stirring process is performed until the ORP inflection point of the second aeration tank is detected. After the ORP inflection point of the second aeration tank is detected, the cycle is returned to both the first aeration tank and the second aeration tank. At this time, alkali is added from the alkali storage tank 13 to the reaction tank using the alkali addition pump 13 so that the pH in the reaction tank lowered in the first aeration tank becomes the original value, and the pH in the reaction tank is increased. Return to the original.
[0021]
The release of phosphorus is related to the reaction in which microorganisms store organic substances in cells, and the release rate of phosphorus is affected by the pH in the reaction tank. FIG. 5 shows changes in phosphorus concentration when the pH is changed. When the pH is higher than usual, a large amount of energy is required for the organic substance to pass through the cell membrane, the amount of phosphorus released increases, and the amount of stored organic substance decreases. Further, when the pH is lower than usual, less energy is required for the organic substance to pass through the cell membrane, the amount of released phosphorus is small, and the amount of stored organic substance is large. In general, the amount of phosphorus released is related to pH and the amount of stored organic matter, and the amount of phosphorus absorbed is related to the amount of stored organic matter. If the pH is the same, the greater the amount of phosphorus released, the greater the amount of stored organic matter. If the amount of released phosphorus is the same, the lower the pH, the greater the amount of stored organic matter. The amount of phosphorus absorbed is hardly affected by pH, and when the amount of organic matter stored by the microorganism is large, the amount of absorption is also large. Since the pH of the sewage is around 7.0, by controlling the pH to about 6.5 in the stirring process, reducing the amount of phosphorus released and increasing the storage amount of organic matter, it is possible to achieve an appropriate phosphorus in the stirring time. The release amount can be secured, the amount of phosphorus absorbed in the subsequent aeration process can be increased, and the phosphorus removal can be recovered when the phosphorus removal is defective.
[0022]
【The invention's effect】
In the control method of the conventional intermittent aeration activated sludge method, there has been a problem that the phosphorus removal rate of the treated water is poor even though phosphorus is released and absorbed.
The control method of the present invention made to cope with this has the following advantages. That is, the control method of the first invention is a batch process in which wastewater is treated by repeating a treatment cycle comprising a stirring / aeration combined process, an activated sludge precipitation process, and a treated water discharge process in a reaction tank into which the wastewater flows. In the control method of the intermittent aeration activated sludge method that removes nitrogen and phosphorus in the wastewater using a type device, a pH meter is installed, and the pH value in the stirring process is determined from the pH in the reaction tank at the start of the stirring process. By lowering the amount, the organic substance can be stored with a small amount of released phosphorus, and the load of phosphorus in the aeration process can be reduced.
[0023]
The control method according to the second aspect of the present invention is a method in which wastewater is allowed to flow into an aeration tank, and an aerobic state in which aeration is performed and an anaerobic state in which aeration is stopped and agitated are alternately repeated, and then this process is performed. In the control method of the intermittent aeration activated sludge method in which water is discharged from the final sedimentation basin, the precipitated sludge is returned to the aeration tank, and is extracted as surplus sludge to remove nitrogen and phosphorus in the wastewater, the first inflow of wastewater. In an apparatus that performs processing using an aeration tank and a second aeration tank connected in series to the first aeration tank, a pH meter is installed in the first aeration tank, and the pH value in the agitation process is a reaction at the start of the agitation process. By making it lower than the pH in the tank, appropriate phosphorus release can be performed in the first aeration tank, and phosphorus absorption in the second aeration tank can be reliably performed.
[0024]
As described above, when phosphorus removal becomes poor by the normal operation control method, the amount of absorption can be increased more than the amount of phosphorus released by using the control method of the present invention, and the phosphorus removal of treated water is improved. Can do.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a main configuration of an apparatus to which a control method of a first invention is applied.
FIGS. 2A and 2B show changes in water quality and pH in a reaction tank of an apparatus to which the control method of the first invention is applied, wherein FIG. 2A is a relationship line of PO 4 -P, and FIG. Figure.
FIG. 3 is a schematic diagram showing the main configuration of an apparatus to which the control method of the second invention is applied.
FIG. 4 shows changes in water quality and pH in a reaction tank of an apparatus to which the control method of the second invention is applied, (a) shows the phosphorus concentration PO 4 -P in the first aeration tank, and (b) shows the first. (C) is the relationship between the pH of the aeration tank, the phosphorus concentration PO 4 -P of the second aeration tank, and (d) the pH of the second aeration tank with respect to time.
FIG. 5 is a relationship diagram showing a change in phosphorus release amount due to a difference in pH.
FIG. 6 is a schematic diagram showing a main configuration of an apparatus to which a conventional control method is applied.
FIG. 7 is a schematic diagram showing a main configuration of an apparatus to which a conventional control method is applied.
[Explanation of symbols]
1: Sewage 2: Reaction tank 2a: First aeration tank 2b: Second aeration tank 3: Treated water 4: Treated water discharge device 4a: Final sedimentation tank 5: DO meter 5a: Return sludge pump 6: Inverter 6a: First ORP meter 6b: second ORP meter 7: aeration blower 7a: first aeration blower 7b: second aeration blower 8: aeration agitating device 8a: first agitation pump 8b: second agitation pump 9: control device 10: pH Total 11: Acid addition pump 12: Acid storage tank 13: Alkali addition pump 14: Alkaline storage tank

Claims (2)

排水が流入する反応槽内で、攪拌・曝気の組合せ工程、活性汚泥の沈殿工程、処理水の排出工程からなる処理サイクルを繰返して排水を処理する回分式装置を用いて、排水中の窒素、リンを除去する間欠曝気式活性汚泥法の制御方法において、pH計を設置し、攪拌工程におけるpHの値を攪拌工程開始時の反応槽内のpHよりも低くすることを特徴とする間欠曝気式活性汚泥法の制御方法。In the reaction tank into which the wastewater flows, nitrogen in the wastewater is collected using a batch system that treats the wastewater by repeating the treatment cycle consisting of the combined stirring / aeration process, the activated sludge precipitation process, and the treated water discharge process. In the control method of the intermittent aeration activated sludge process for removing phosphorus, a pH meter is installed, and the intermittent aeration type is characterized in that the pH value in the stirring process is lower than the pH in the reaction tank at the start of the stirring process Control method of activated sludge process. 排水を曝気槽へ流入させて、曝気を行う好気状態と曝気を停止して攪拌を行う嫌気状態を交互に繰返して処理を行った後、この処理水を最終沈殿池から放流させ、沈殿汚泥は曝気槽へ返送するとともに、余剰汚泥の引き出し、排水中の窒素、リンを除去する間欠曝気式活性汚泥法の制御方法において、排水が流入する第1曝気槽とこの第1曝気槽に直列に連結した第2曝気槽を用いて処理を行う装置において、第1曝気槽にpH計を設置し、攪拌工程におけるpHの値を攪拌工程開始時の反応槽内のpHよりも低くすることを特徴とする間欠曝気式活性汚泥法の制御方法。The wastewater is allowed to flow into the aeration tank, and after treatment, the aerobic state in which aeration is performed and the anaerobic state in which aeration is stopped and agitation is repeated alternately, the treated water is discharged from the final sedimentation basin, and the precipitated sludge Is returned to the aeration tank, and in the intermittent aeration activated sludge control method that removes excess sludge and removes nitrogen and phosphorus in the wastewater, the first aeration tank into which the wastewater flows and the first aeration tank in series In the apparatus that performs processing using the connected second aeration tank, a pH meter is installed in the first aeration tank, and the pH value in the stirring process is made lower than the pH in the reaction tank at the start of the stirring process. Control method of intermittent aeration activated sludge process.
JP24514397A 1997-09-10 1997-09-10 Control method of intermittent aeration activated sludge process Expired - Fee Related JP3651201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24514397A JP3651201B2 (en) 1997-09-10 1997-09-10 Control method of intermittent aeration activated sludge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24514397A JP3651201B2 (en) 1997-09-10 1997-09-10 Control method of intermittent aeration activated sludge process

Publications (2)

Publication Number Publication Date
JPH1177079A JPH1177079A (en) 1999-03-23
JP3651201B2 true JP3651201B2 (en) 2005-05-25

Family

ID=17129271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24514397A Expired - Fee Related JP3651201B2 (en) 1997-09-10 1997-09-10 Control method of intermittent aeration activated sludge process

Country Status (1)

Country Link
JP (1) JP3651201B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478093B (en) * 2007-04-12 2016-06-01 诺维信生物股份有限公司 Wastewater treatment
JP7048462B2 (en) * 2018-09-14 2022-04-05 日立造船株式会社 Solution treatment system and solution treatment method
CN116081901A (en) * 2023-04-07 2023-05-09 北京博汇特环保科技股份有限公司 Sewage treatment system and control method thereof

Also Published As

Publication number Publication date
JPH1177079A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
ES2241113T3 (en) PROCEDURE THAT USES WATER WITH STRONG CONTENT IN AMMONIA FOR THE SELECTION AND ENRICHMENT OF NITRIFYING MICRO-ORGANISMS INTENDED FOR NITRIFICATION OF WASTEWATER.
CN104891655B (en) Device and method for treating high ammonia nitrogen wastewater
US6638427B2 (en) Waste water treatment method being able to treat surface active agent, nitrogen, hydrogen peroxide and phosphor with high efficiency
JP5900098B2 (en) Nitrogen and phosphorus removal apparatus and method
JPH07100486A (en) Method for treating drainage
JP3651201B2 (en) Control method of intermittent aeration activated sludge process
CN110902967A (en) Wastewater treatment method and wastewater treatment system based on sequencing batch membrane biological reaction
JP2004275820A (en) Wastewater treatment apparatus
JP3260558B2 (en) Control method of intermittent aeration type activated sludge method
JP3735952B2 (en) Control method of intermittent aeration activated sludge process
JP2002172400A (en) Method and apparatus for removing nitrogen in sludge return water
JP3644757B2 (en) Control method of intermittent aeration activated sludge process
CN211712879U (en) Wastewater treatment system based on sequencing batch membrane bioreaction
JP3738377B2 (en) Wastewater treatment method
JP2000107786A (en) Control method for intermittent aeration activated sludge process
JPH07116684A (en) Controlling method for intermittent aeration type activated sludge method
JP3250934B2 (en) How to control the sewage treatment process
JP2001029991A (en) Water treatment method
JPH1015591A (en) High-degree treatment of waste water
JP3260554B2 (en) How to control the sewage treatment process
JP3803883B2 (en) Purification device operation method
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
JP2003285093A (en) Biological denitrification method and apparatus therefor
KR100295499B1 (en) Sewage treatment equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees