JP3803883B2 - Purification device operation method - Google Patents

Purification device operation method Download PDF

Info

Publication number
JP3803883B2
JP3803883B2 JP00681796A JP681796A JP3803883B2 JP 3803883 B2 JP3803883 B2 JP 3803883B2 JP 00681796 A JP00681796 A JP 00681796A JP 681796 A JP681796 A JP 681796A JP 3803883 B2 JP3803883 B2 JP 3803883B2
Authority
JP
Japan
Prior art keywords
tank
sludge
aeration
anaerobic
orp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00681796A
Other languages
Japanese (ja)
Other versions
JPH10151489A (en
Inventor
一成 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP00681796A priority Critical patent/JP3803883B2/en
Publication of JPH10151489A publication Critical patent/JPH10151489A/en
Application granted granted Critical
Publication of JP3803883B2 publication Critical patent/JP3803883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は工場や家庭等からの廃水を浄化する浄化装置の運転方法に関する。
【0002】
【従来の技術】
工場や家庭からの廃水中には、脂肪、タンパク質等の高分子有機物が多量に混在しており、これがそのまま川や海に流されると、環境汚染の原因となる。そこで、微生物による分解・硝化・脱窒プロセスを経て窒素成分等をガス化して除去する浄化装置として、曝気槽を間欠的に曝気運転することで微生物による好気性処理と嫌気性処理とを交互に行う構造のもの知られている。
【0003】
そして、好気性処理では廃水中のアンモニア態窒素(NH4 +)が硝酸態窒素(NO3 -)や亜硝酸態窒素(NO2 -)に酸化分解され、また嫌気性処理では、嫌気性の脱窒菌が有機炭素を用いて、好気性処理で生成された硝酸態窒素(NO3 -)や亜硝酸態窒素(NO2 -)を還元し窒素ガス(N2)に変換する。また、嫌気状態では脂肪やタンパク質等の高分子有機物が低級な分子、例えば酢酸(CH3COOH)にまで分解され、更にこれがメタン生成菌によりCO2とCH4にまで分解される。
【0004】
上述したように廃水を生物的に処理する装置では多量の余剰汚泥が発生する。斯かる余剰汚泥は定期的に沈殿槽から取り出して焼却するのが一般的な浄化装置であるが、処理コストが大きくなるので、特公昭60−3873号公報には汚泥貯留槽を設け、この汚泥貯留槽において余剰汚泥を消化(分解ガス化)する処理方法が提案されている。
【0005】
また、汚泥貯留槽から汚泥を曝気槽に戻して、硝化効率を高めるようにした先行技術として、特開昭61−54295号公報や特開平2−284695号公報に開示されるものがある。
【0006】
【発明が解決しようとする課題】
ところで、好気性処理によって汚泥表面には酸化膜が形成されこの酸化膜によってこれ以上の分解が阻止される。そして本発明者はこの酸化膜は通常の還元雰囲気ではなかなか破壊されないが、酸化還元電位が更に低くなる超嫌気状態(ORP≦−190mV)にすると、酸化膜は還元され軟らかくなり破壊(消失)されるという知見を得た。
【0007】
超嫌気状態にするには新たに超嫌気槽を設けるか、従来の汚泥貯留槽を利用するかであるが、酸化還元電位(ORP)を−190mV以下まで下げるには、汚泥を所定期間静置しなければならない。
特に、この静置時間は超嫌気槽または汚泥貯留槽に汚泥を投入するときの汚泥の酸化還元電位(ORP)が高いとそれだけ汚泥の静置時間を長くしなければならず、キャリーオーバなどの問題が生じる。
一方、曝気槽における嫌気性処理によって汚泥の酸化還元電位(ORP)を低くして沈殿槽に移行すれば、超嫌気槽または汚泥貯留槽にて処理される汚泥も初めから酸化還元電位(ORP)が低いため、汚泥の静置時間を短縮できるが、これだと、曝気槽における嫌気性処理時間を長くしなければならず、全体の浄化効率が悪化する。
【0008】
【課題を解決するための手段】
本発明は、曝気槽での曝気運転を停止した後、所定時間経過後に汚泥の酸化還元電位(ORP)が最高値を示し、この後酸化還元電位(ORP)は徐々に低下するが、最高値よりも200mV以上低下すると、酸化還元電位(ORP)の低下率は急激に小さくなることに着目してなしたものである。
【0009】
即ち、本発明に係る浄化装置の運転方法は、曝気槽を間欠運転することで微生物による好気性処理と嫌気性処理を廃水に施し、この微生物による処理が終了した廃水を沈殿槽に移行して固液分離し、沈殿した汚泥の一部を超嫌気性処理して汚泥表面の酸化膜を破壊し、この酸化膜が破壊された汚泥を好気状態にある槽に戻すようにした浄化装置の運転方法であって、前記曝気槽から沈殿槽への廃水の移行開始の時点を、曝気槽における酸化還元電位(ORP)が最高値から200mV以上低下した時点とするようにした。
【0010】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。図1は本発明方法の実施に用いる浄化装置の全体構成図であり、浄化装置は上流側から順に、原液槽1、流量調整槽2、曝気槽3、沈殿槽4、砂濾過槽5、活性炭槽6及び消毒槽7が設けられ、更に沈殿槽4の下流側には濾過槽5とは別に超嫌気槽8が設けられている。
【0011】
前記原液槽1には木片等の大きな異物を取り除くフィルタ9が設けられ、フィルタ9を透過した廃水がポンプ10により流量調整槽2に送られ、この流量調整槽2からポンプ11にて計量桝12に廃水を送り、この計量桝12を介して曝気槽3に一定量の廃水を供給して好気性処理と嫌気性処理を施す。
【0012】
曝気槽3の底部には曝気装置13と攪拌装置14が配置され、曝気装置13から空気を供給することで曝気槽3内で好気性処理を行い、曝気装置13の運転を停止することで曝気槽3内で嫌気性処理を行う。攪拌装置14は曝気槽内を速かに好気性雰囲気または嫌気性雰囲気に切換えるためのものであり、好気性処理と嫌気性処理の何れの場合にも運転可能である。
【0013】
また、曝気槽3における好気性処理と嫌気性処理の切換えは、タイマーによる切換えの他に、曝気槽3内の廃水のDO値、pH値或いはORP値等を切換えのファクターとすることができる。
【0014】
そして、曝気槽3内での好気性処理と嫌気性処理が終了した廃水はポンプ15によって沈殿槽4に送られ、ここで静置することで上澄み液と汚泥16とに固液分離され、廃水中の汚泥16は沈殿槽4の底部に沈殿する。
【0015】
沈殿槽4での上澄み液は定量移行装置17を介して砂濾過槽5、活性炭槽6及び消毒槽7を介して、下水等に放流され、また沈殿槽4の底部に沈殿した汚泥16の一部は微生物の栄養源としてポンプ18で曝気槽3に戻され、他の一部はポンプ19で超嫌気槽8に送られる。
【0016】
超嫌気槽8では、汚泥の酸化還元電位(ORP)が−190mV以下になるまで嫌気状態のまま保持する。酸化還元電位(ORP)が−190mV以下になると、図2に示すように、汚泥16の表面酸化膜16aが軟化して破壊される。
【0017】
そして、表面酸化膜16aが破壊された汚泥16は、ポンプ20及び汚泥戻し管21を介して流量調整槽2に戻される。この流量調整槽2は廃水が流入するため好気状態となっており、表面酸化膜16aが破壊された汚泥16は、流量調整槽2にてある程度好気性処理されて一部が硝酸態窒素(NO3−N)や亜硝酸態窒素(NO2−N)に変換された状態で曝気槽3に供給される。
また、超嫌気槽8の上澄み液は定量移行装置22及び戻し管23を介して流量調整槽2に戻される。
【0018】
尚、汚泥16を流量調整槽2に戻さずに、好気状態にある曝気槽3に戻すようにしてもよい。ただし、嫌気状態の曝気槽に戻すのは浄化効率上好ましくない。即ち、嫌気状態の曝気槽に戻しても、酸化膜が破壊された汚泥は硝酸態窒素(NO3−N)や亜硝酸態窒素(NO2−N)に変換されず、次の好気性状態まで待機することになるからである。
【0019】
図3(a)は曝気槽でのDO値の変化を示すグラフ、図3(b)は曝気槽、沈殿槽及び超嫌気槽でのORP値の変化を示すグラフである。図3(a)(b)から、曝気槽3での曝気運転を停止した後、所定時間経過後に汚泥の酸化還元電位(ORP)が最高値を示し、この後酸化還元電位(ORP)は徐々に低下するが、最高値よりも200mV以上低下すると、酸化還元電位(ORP)の低下率は急激に小さくなることが分る。
したがって、酸化還元電位(ORP)が最高値よりも200mV以上低下した時点で沈殿槽4に移行するのが、浄化効率上有利と言える。
【0020】
また、図3(b)からは、曝気槽の嫌気性処理の中間時点で、酸化還元電位(ORP)を示す曲線が変曲点Hを持ち、酸化還元電位(ORP)が最高値を示した時点から変曲点Hを示す時点までの時間aと略同じ時間bが変曲点Hを過ぎて経過すると、酸化還元電位(ORP)の低下率が急激に小さくなることも判明した。そこで、酸化還元電位(ORP)が最高値を示した時点から変曲点Hを示す時点までの時間を測定し、更にこの時間だけ曝気槽で嫌気性処理した後、沈殿槽4に移行するのも、浄化効率上有利と考えられる。
【0021】
そして、図3(b)に示すように、曝気槽3から沈殿槽4に移行せしめられた汚泥は更にORP値が低下し、この沈殿槽4から超嫌気槽に移された汚泥は酸化還元電位(ORP)が−190mVになるまで静置される。
【0022】
【発明の効果】
以上に説明したように本発明によれば、曝気槽を間欠運転することで微生物による好気性処理と嫌気性処理を廃水に施すようにした浄化装置を運転するにあたり、曝気槽から沈殿槽への廃水の移行開始の時点を、曝気槽における酸化還元電位(ORP)が最高値から200mV以上低下した時点とするようにしたので、曝気槽における嫌気性処理時間と、超嫌気槽或いは汚泥貯留槽における超嫌気性処理時間とのバランスをとることができ、浄化装置全体として効率のよい運転を行うことができる。
【図面の簡単な説明】
【図1】本発明方法の実施に用いる浄化装置の全体構成図
【図2】汚泥の表面酸化膜の破壊の様子を説明した図
【図3】(a)は曝気槽でのDO値の変化を示すグラフ、(b)は曝気槽から超曝気槽でのORP値の変化を示すグラフ
【符号の説明】
1…原液槽、2…流量調整槽、3…曝気槽、4…沈殿槽、5…濾過槽、8…超嫌気槽、13…曝気装置、14…攪拌装置、16…汚泥、16a…汚泥の表面酸化膜、21…汚泥戻し管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a purification device for purifying waste water from a factory, a home, or the like.
[0002]
[Prior art]
Waste water from factories and households contains a large amount of high-molecular organic substances such as fat and protein, and if this is washed away into rivers and the sea, it causes environmental pollution. Therefore, as a purification device that gasifies and removes nitrogen components, etc. through the decomposition, nitrification, and denitrification processes by microorganisms, aerobic treatment and anaerobic treatment by microorganisms are alternately performed by intermittently aeration operation of the aeration tank It is known for the structure to do.
[0003]
The ammonium nitrogen in the waste water in the aerobic treatment (NH 4 +) is nitrate nitrogen (NO 3 -) and nitrite nitrogen (NO 2 -) are oxidized and decomposed to and anaerobic treatment, anaerobic Denitrifying bacteria use organic carbon to reduce nitrate nitrogen (NO 3 ) and nitrite nitrogen (NO 2 ) generated by aerobic treatment and convert them into nitrogen gas (N 2 ). In an anaerobic state, macromolecular organic substances such as fat and protein are decomposed into lower molecules such as acetic acid (CH 3 COOH), and further decomposed into CO 2 and CH 4 by methanogens.
[0004]
As described above, a large amount of excess sludge is generated in an apparatus for biologically treating wastewater. Such surplus sludge is generally removed from the sedimentation tank and incinerated regularly, but since the processing cost increases, Japanese Patent Publication No. 60-3873 provides a sludge storage tank. A treatment method for digesting (decomposing gasification) surplus sludge in a storage tank has been proposed.
[0005]
Further, as prior arts in which sludge is returned from the sludge storage tank to the aeration tank to increase the nitrification efficiency, there are those disclosed in Japanese Patent Application Laid-Open Nos. 61-54295 and 2-284695.
[0006]
[Problems to be solved by the invention]
By the way, an aerobic treatment forms an oxide film on the sludge surface, and this oxide film prevents further decomposition. The present inventor does not readily destroy this oxide film in a normal reducing atmosphere. However, when the oxide film is reduced to a super anaerobic state (ORP ≦ −190 mV) where the oxidation-reduction potential is further lowered, the oxide film is reduced and softened and destroyed (disappeared). I got the knowledge that.
[0007]
In order to make the super-anaerobic state, a new super-anaerobic tank is provided or a conventional sludge storage tank is used. To lower the oxidation-reduction potential (ORP) to -190 mV or less, the sludge is allowed to stand for a predetermined period. Must.
In particular, if the sludge oxidation / reduction potential (ORP) is high when sludge is put into a super anaerobic tank or sludge storage tank, the standing time of the sludge must be lengthened accordingly. Problems arise.
On the other hand, if the sludge redox potential (ORP) is lowered by anaerobic treatment in the aeration tank and transferred to the sedimentation tank, the sludge treated in the super anaerobic tank or sludge storage tank is also redox potential (ORP) from the beginning. Therefore, the sludge standing time can be shortened. However, in this case, the anaerobic treatment time in the aeration tank must be lengthened, and the overall purification efficiency is deteriorated.
[0008]
[Means for Solving the Problems]
In the present invention, after the aeration operation in the aeration tank is stopped, the oxidation-reduction potential (ORP) of the sludge shows the highest value after a predetermined time has elapsed, and thereafter, the oxidation-reduction potential (ORP) gradually decreases. In particular, the reduction rate of the oxidation-reduction potential (ORP) is abruptly reduced when it is lowered by 200 mV or more.
[0009]
That is, the operation method of the purification apparatus according to the present invention is to perform aerobic treatment and anaerobic treatment with microorganisms by intermittently operating the aeration tank, and transfer the waste water after the treatment with microorganisms to the sedimentation tank. Separation of solid and liquid, a part of the settled sludge is super anaerobically treated to destroy the oxide film on the surface of the sludge, and the sludge whose oxide film has been destroyed is returned to the aerobic tank. In the operation method, the start point of the transfer of waste water from the aeration tank to the settling tank was set to a time point when the oxidation-reduction potential (ORP) in the aeration tank decreased from the maximum value by 200 mV or more.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an overall configuration diagram of a purification apparatus used for carrying out the method of the present invention. The purification apparatus is a raw solution tank 1, a flow rate adjustment tank 2, an aeration tank 3, a precipitation tank 4, a sand filtration tank 5, and an activated carbon in order from the upstream side. A tank 6 and a disinfection tank 7 are provided, and a super anaerobic tank 8 is provided on the downstream side of the precipitation tank 4 separately from the filtration tank 5.
[0011]
The stock solution tank 1 is provided with a filter 9 that removes large foreign matters such as wood chips, and waste water that has passed through the filter 9 is sent to the flow rate adjusting tank 2 by the pump 10, and the measuring rod 12 is sent from the flow rate adjusting tank 2 to the pump 11. Waste water is sent to the aeration tank 3 and a certain amount of waste water is supplied to the aeration tank 3 through the measuring tank 12 to perform aerobic treatment and anaerobic treatment.
[0012]
An aeration device 13 and an agitation device 14 are disposed at the bottom of the aeration tank 3, aerobic treatment is performed in the aeration tank 3 by supplying air from the aeration device 13, and aeration is performed by stopping the operation of the aeration device 13. Anaerobic treatment is performed in the tank 3. The stirrer 14 is for quickly switching the inside of the aeration tank to an aerobic atmosphere or an anaerobic atmosphere, and can be operated in any of an aerobic treatment and an anaerobic treatment.
[0013]
In addition, the switching between the aerobic treatment and the anaerobic treatment in the aeration tank 3 can be performed by using the DO value, pH value, ORP value, etc. of the waste water in the aeration tank 3 as a switching factor in addition to the switching by the timer.
[0014]
Then, the waste water that has undergone the aerobic treatment and the anaerobic treatment in the aeration tank 3 is sent to the precipitation tank 4 by the pump 15, and is left to stand for solid-liquid separation into the supernatant liquid and the sludge 16. The sludge 16 inside settles at the bottom of the settling tank 4.
[0015]
The supernatant liquid in the settling tank 4 is discharged into the sewage or the like through the sand filtration tank 5, the activated carbon tank 6 and the disinfection tank 7 through the quantitative transfer device 17, and one of the sludge 16 that has settled at the bottom of the settling tank 4. The part is returned to the aeration tank 3 by a pump 18 as a nutrient source for microorganisms, and the other part is sent to the super anaerobic tank 8 by a pump 19.
[0016]
In the super anaerobic tank 8, the sludge oxidation-reduction potential (ORP) is maintained in an anaerobic state until it becomes −190 mV or less. When the oxidation-reduction potential (ORP) is −190 mV or less, as shown in FIG. 2, the surface oxide film 16 a of the sludge 16 is softened and destroyed.
[0017]
Then, the sludge 16 whose surface oxide film 16a has been destroyed is returned to the flow rate adjusting tank 2 via the pump 20 and the sludge return pipe 21. The flow rate adjusting tank 2 is in an aerobic state because the waste water flows in, and the sludge 16 in which the surface oxide film 16a is destroyed is subjected to aerobic treatment to some extent in the flow rate adjusting tank 2 and a part thereof is nitrate nitrogen ( It is supplied to the aeration tank 3 in a state converted to NO 3 —N) or nitrite nitrogen (NO 2 —N).
Further, the supernatant liquid of the super anaerobic tank 8 is returned to the flow rate adjusting tank 2 via the quantitative transfer device 22 and the return pipe 23.
[0018]
The sludge 16 may be returned to the aeration tank 3 in an aerobic state without returning to the flow rate adjustment tank 2. However, returning to an anaerobic aeration tank is not preferable in terms of purification efficiency. That is, even if it returns to an anaerobic aeration tank, the sludge whose oxide film was destroyed is not converted into nitrate nitrogen (NO 3 -N) or nitrite nitrogen (NO 2 -N), and the next aerobic state It is because it will wait until.
[0019]
FIG. 3A is a graph showing a change in DO value in an aeration tank, and FIG. 3B is a graph showing a change in ORP value in an aeration tank, a precipitation tank, and a super anaerobic tank. 3 (a) and 3 (b), after stopping the aeration operation in the aeration tank 3, the oxidation-reduction potential (ORP) of the sludge shows the highest value after a predetermined time has elapsed, and thereafter the oxidation-reduction potential (ORP) gradually increases. However, it is understood that the reduction rate of the oxidation-reduction potential (ORP) is abruptly reduced when it is reduced by 200 mV or more from the maximum value.
Therefore, it can be said that it is advantageous in terms of purification efficiency to shift to the precipitation tank 4 when the oxidation-reduction potential (ORP) decreases by 200 mV or more from the maximum value.
[0020]
Further, from FIG. 3 (b), at the intermediate point of the anaerobic treatment of the aeration tank, the curve indicating the redox potential (ORP) has an inflection point H, and the redox potential (ORP) showed the highest value. It has also been found that when a time “b” that is substantially the same as the time “a” from the time point to the time point indicating the inflection point H passes the inflection point H, the rate of reduction of the oxidation-reduction potential (ORP) rapidly decreases. Therefore, the time from when the redox potential (ORP) shows the maximum value to the time when the inflection point H is measured is measured, and after anaerobic treatment in the aeration tank for this time, the process proceeds to the precipitation tank 4. Is also considered advantageous in terms of purification efficiency.
[0021]
As shown in FIG. 3 (b), the sludge transferred from the aeration tank 3 to the settling tank 4 has a further reduced ORP value, and the sludge transferred from the settling tank 4 to the super anaerobic tank has a redox potential. Let stand until (ORP) is -190 mV.
[0022]
【The invention's effect】
As described above, according to the present invention, in operating a purification apparatus that performs aerobic treatment and anaerobic treatment by microorganisms by operating the aeration tank intermittently, the aeration tank is moved from the aeration tank to the sedimentation tank. Since the redox potential (ORP) in the aeration tank decreased to 200 mV or more from the maximum value, the start point of the transition of the waste water was set at the anaerobic treatment time in the aeration tank and the super anaerobic tank or sludge storage tank. A balance with the super-anaerobic treatment time can be achieved, and the purification apparatus as a whole can be operated efficiently.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a purification apparatus used in carrying out the method of the present invention. FIG. 2 is a diagram illustrating a state of destruction of a surface oxide film of sludge. FIG. 3 (a) is a change in DO value in an aeration tank. (B) is a graph showing the change in the ORP value from the aeration tank to the super-aeration tank.
DESCRIPTION OF SYMBOLS 1 ... Stock solution tank, 2 ... Flow control tank, 3 ... Aeration tank, 4 ... Precipitation tank, 5 ... Filtration tank, 8 ... Super anaerobic tank, 13 ... Aeration apparatus, 14 ... Stirrer, 16 ... Sludge, 16a ... Sludge Surface oxide film, 21 ... sludge return pipe.

Claims (1)

曝気槽を間欠運転することで微生物による好気性処理と嫌気性処理を廃水に施し、この微生物による処理が終了した廃水を沈殿槽に移行して固液分離し、沈殿した汚泥の一部を超嫌気性処理して汚泥表面の酸化膜を破壊し、この酸化膜が破壊された汚泥を好気状態にある槽に戻すようにした浄化装置の運転方法であって、前記曝気槽から沈殿槽への廃水の移行開始の時点を、曝気槽における酸化還元電位(ORP)が最高値から200mV以上低下した時点とすることを特徴とする浄化装置の運転方法。By performing intermittent operation of the aeration tank, aerobic treatment and anaerobic treatment by microorganisms are performed on wastewater, and the wastewater that has been treated by microorganisms is transferred to a precipitation tank for solid-liquid separation. An operation method of a purification apparatus in which an anaerobic treatment is performed to destroy the oxide film on the surface of the sludge, and the sludge in which the oxide film is destroyed is returned to the tank in an aerobic state, from the aeration tank to the settling tank A method for operating a purification apparatus, characterized in that the start point of the transfer of wastewater is set to a point in time when the oxidation-reduction potential (ORP) in the aeration tank has decreased by 200 mV or more from the maximum value.
JP00681796A 1996-01-18 1996-01-18 Purification device operation method Expired - Fee Related JP3803883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00681796A JP3803883B2 (en) 1996-01-18 1996-01-18 Purification device operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00681796A JP3803883B2 (en) 1996-01-18 1996-01-18 Purification device operation method

Publications (2)

Publication Number Publication Date
JPH10151489A JPH10151489A (en) 1998-06-09
JP3803883B2 true JP3803883B2 (en) 2006-08-02

Family

ID=11648770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00681796A Expired - Fee Related JP3803883B2 (en) 1996-01-18 1996-01-18 Purification device operation method

Country Status (1)

Country Link
JP (1) JP3803883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130381A (en) * 2013-01-09 2013-06-05 郝新浦 VUN treatment construction method for domestic sewage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841850B2 (en) * 2005-03-01 2011-12-21 住重環境エンジニアリング株式会社 Organic wastewater treatment method and organic wastewater treatment equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130381A (en) * 2013-01-09 2013-06-05 郝新浦 VUN treatment construction method for domestic sewage

Also Published As

Publication number Publication date
JPH10151489A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
FR2913234A1 (en) Treating urban/industrial used water containing sulfide and ammonium, sewage, condensates and leachate, comprises biologically treating used water in free culture by anoxic treatment to eliminate organic carbon using heterotrophic bacteria
JPH10500611A (en) In particular, a method and apparatus for treating wastewater containing organic matter by wet oxidation with internal recirculation of solid residue, and a purification facility therefor
JP3653427B2 (en) Tofu drainage treatment method and equipment
KR100229237B1 (en) Advanced treatment method and its device of night soil
JP3803883B2 (en) Purification device operation method
KR19980071903A (en) Nutrient Removal Method of Improved Sewage and Wastewater Using Anaerobic Fermentation Tank
JP3832888B2 (en) Purification device operation method
CN110697991B (en) Garbage leachate biological treatment process and system
JP2946163B2 (en) Wastewater treatment method
JP3215619B2 (en) Purification device and operation method thereof
JPH07323297A (en) Biological treatment of organic sewage
CN105859042A (en) Sewage treatment method and system
JPH03232590A (en) Treatment of sewage
JPH10151491A (en) Operation method of septic facility
KR102607197B1 (en) High-concentration landfill leachate, livestock wastewater, manure, food wastewater, industrial wastewater and low-concentration wastewater treatment system using an upflow complex bioreactor
JPH02303598A (en) Treatment of organic matter-containing water
KR19990030406A (en) Nutrient treatment method of wastewater by changing the flow path
KR100303939B1 (en) A Sequential Batch Reactor type tank, which use cubic type floating material containing elvan and ativated carbon for purifying sewage
JPH05277475A (en) Treatment method for water containing organic substance
JPH10151492A (en) Operation of purifying apparatus
CN211712879U (en) Wastewater treatment system based on sequencing batch membrane bioreaction
JP2834765B2 (en) Wastewater treatment method
KR100239804B1 (en) System and its operation method for disposing of livestock waste biologically
JP3562760B2 (en) Wastewater treatment method and wastewater treatment facility by aeration and fermentation decomposition
KR0178670B1 (en) Nitrogen removal method of organic wastewater in the water phase corrosion method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees